

ASX: PLS

11 June 2025

Pilgangoora Mineral Resource update delivers 23% increase in contained lithium

KEY OUTCOMES

- 2025 Mineral Resource update reinforces PLS' 100%-owned Pilgangoora Operation, as one of the largest hard rock lithium operations globally.
- 104,672m drill program leads to a substantial increase in Mineral Resource for the Pilgangoora Operation, including:
 - 39 million tonne (Mt) increase in the total Measured, Indicated and Inferred Mineral Resource to 446Mt at 1.28% lithium oxide (Li₂O), 122 ppm tantalum pentoxide (Ta₂O₅) and 0.59% iron oxide (Fe₂O₃), containing 5.7Mt of lithium oxide and 120 million pounds of Ta₂O₅;
 - 23% increase in contained lithium oxide in the total Measured, Indicated and Inferred Mineral Resource due to 10% increase in tonnage and 12% improvement in grade; and
 - \circ 14% increase in the total Measured and Indicated Mineral Resource to 376Mt grading 1.29% Li₂O, 119 ppm Ta₂O₅ and 0.59% Fe₂O₃, containing 4.8Mt of lithium oxide and 99 million pounds of Ta₂O₅.
- Updated Mineral Resource incorporates all results from the 2024 financial year (FY24) and FY25 drilling campaign, comprising 364 holes targeting down-dip extensions over a continuous strike length of over 7km.
- 12% uplift of total Mineral Resource grade from 1.15% Li₂O to 1.28% Li₂O largely as a result of the addition of new higher-grade Mineral Resource within the Central Extension drill areas, and revised reasonable prospects of eventual economic extraction (RPEEE) assessment criteria which removed lower grade material from the previous Mineral Resource.
- Significant exploration potential remains at the Pilgangoora Operation with mineralisation remaining open along strike including at the "Bridge Zone" between the Central Area and North Area that remains untested below 200m depth.
- Pilgangoora Operation exploration activities moderated from the end of March 2025 as part of PLS' wider cost reduction initiatives.

Pilbara Minerals Limited (PLS, Company or Group) is pleased to announce a substantial increase in Mineral Resource at its 100%-owned Pilgangoora Operation in Western Australia's Pilbara region, reinforcing its position as one of the world's largest hard-rock lithium operations.

The updated Mineral Resource, which represents a 10% increase in total Mineral Resource tonnage and 23% increase in contained lithium oxide when compared with the 30 June 2024 Mineral Resource statement, now contains 5.7Mt of lithium oxide at an increased grade of 1.28% Li₂O as outlined in Table 1.

PLS Managing Director and CEO, Dale Henderson, said:

"The significant uplift in the Mineral Resource reaffirms our 100% owned Pilgangoora Operation as one of the world's largest and highest-quality hard rock lithium assets. This outcome is aligned with our strategy to optimise the operating base and unlock the full potential of this world-class asset, driving long-term value for our shareholders.

The upgrade further consolidates PLS' position as a leading global lithium supplier. It reflects the fundamental strengths of our business – large-scale, high-quality assets, disciplined operations, a diversified supply chain, and a strong balance sheet. These strengths provide the resilience to navigate

current market conditions, while preserving the flexibility to scale as the lithium market transitions to its next phase."

Mineral Resource update

The updated Mineral Resource is calculated as at 31 March 2025 and incorporates all historical drilling and data acquired through exploration campaigns completed by PLS between November 2014 and March 2025. The reported Mineral Resource has been classified in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, JORC Code, 2012 Edition (2012 JORC). The Mineral Resource accounts for depletion of 4Mt due to mining activity from 30 June 2024 to 31 March 2025.

The estimation was carried out internally by PLS Principal Resource Geologist Mr Michael Slevin, resulting in the estimation of Measured, Indicated and Inferred Resources. The reporting (using a cutoff of 0.2% Li₂O and depleted to end of March 2025) results in a Measured, Indicated and Inferred Mineral Resource estimate (Table 1).

Table 1 – Pilgangoora Operation updated JORC Mineral Resource as at 31 March 2025 (using 0.2% Li ₂ O	
cut off).	

	Category	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)	Fe₂O₃ (%)	Li₂O (Mt)	Ta₂O₅ (M lb)
	Measured	19	1.34	113	0.41	0.3	5
In-situ	Indicated	349	1.29	121	0.54	4.5	93
(≥0.2% Li₂O)	Inferred	70	1.25	134	0.58	0.9	21
	Sub-Total	438	1.29	122	0.54	5.6	118
	Measured	1	1.10	106	0.75	0.0	0
Stockpiles	Indicated	7	0.93	82	3.39	0.1	1
(≥0.2% Li₂O)	Inferred	-	-	-	-	-	-
	Sub-Total	8	0.95	85	3.03	0.1	2
	Measured	20	1.32	113	0.43	0.3	5
Bilgangooro	Indicated	356	1.29	120	0.60	4.6	94
Pilgangoora	Inferred	70	1.25	134	0.58	0.9	21
	Total	446	1.28	122	0.59	5.7	120

Note: rounding applied to numbers in Table above.

The Pilgangoora Mineral Resource is reported as 446Mt at 1.28% Li₂O and 122 ppm Ta₂O₅. This represents a change since the previous statement reported in 2024¹. The changes are primarily a result of:

- application of a Pit Optimisation due to revised RPEEE assessment, removing approximately 53Mt at 0.7% Li₂O of the prior 30 June 2024 Mineral Resource¹;
- significant exploration success in the Central area adding approximately 87Mt at 1.5% Li₂O to the updated Mineral Resource;
- changes within the South and North areas of the Mineral Resource; and
- addition of stockpiles to the Mineral Resource.

Refer to Figure 2 for a reconciliation from the Mineral Resource as at 30 June 2024¹ to the 31 March 2025 Mineral Resource.

¹ For more information, refer to PLS' 2024 Annual Report released to the ASX on 26 August 2024.

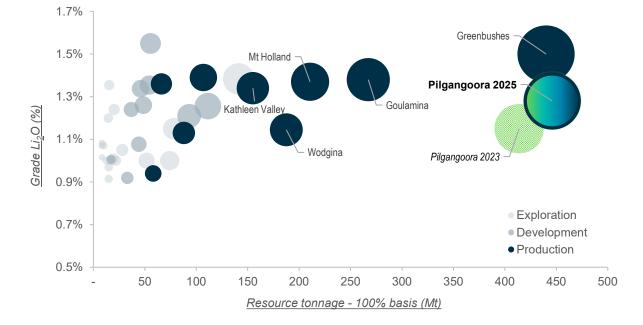
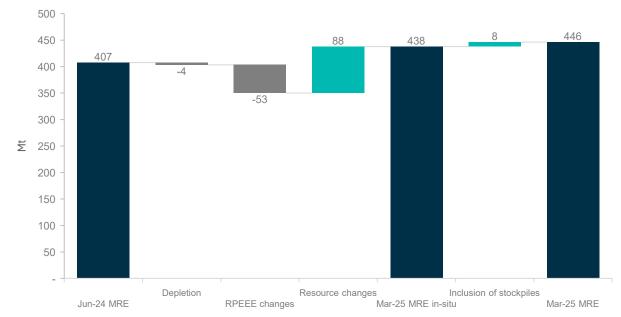



Figure 1 – Global lithium pegmatite Mineral Resources by grade and tonnage.

(bubble size represents Mineral Resource LCE².)

Note: rounding applied to numbers in Figure 2 above.

² Sources: Company filings as at 11 June 2025 – 'LCE' refers to Lithium Carbonate Equivalent. Refer to Appendix 4 for further details. Note: 'Production' includes assets in operation or in care & maintenance. 'Development' includes assets under construction or where a Feasibility Study has been released. 'Exploration' includes all other projects (PFS & earlier). Presented on a 100% basis. Excludes Manono Project.

FY24 and FY25 Drilling Campaigns

The FY24 and FY25 drilling programs, which inform the 2025 Pilgangoora Mineral Resource update, had the following objectives:

- drill test and upgrade Inferred Mineral Resources and unclassified material to the Indicated category within the unconstrained pit shell in the near mine areas; and
- drill test extensions of the key pegmatite domains in the mine corridor to the north of Central Pit.

The drilling program commenced in September 2023 and comprised 364 holes and 104,672m of drilling comprising 84,494m of reverse circulation and 20,178m of diamond drilling. Refer to Figure 9 for drill hole locations across the Pilgangoora Operation area. Refer to Appendix 1 for drill collar details.

Multiple high-grade zones were returned with some of the best intercepts including:

- 83m at 1.46% Li₂O, 115ppm Ta₂O₅ from 532m (PLS1789ADT)
- 67m at 1.56% Li₂O, 206ppm Ta₂O₅ from 341m (PLS1905)
- 49m at 1.74% Li₂O, 50ppm Ta₂O₅ from 424m (PLS1871)
- 40m at 1.61% Li₂O, 96ppm Ta₂O₅ from 231m (PLS1901)
- 37m at 1.47% Li₂O, 97ppm Ta₂O₅ from 253m (PLS1875)
- 33m at 1.70% Li₂O, 283ppm Ta₂O₅ from 482m (PLS1865DT)
- 29m at 2.14% Li₂O, 156ppm Ta₂O₅, from 382m (PLS1795DT)
- 26m at 2.31% Li₂O, 198ppm Ta₂O₅, from 375m (PLS1844)
- 26m at 2.25% Li₂O, 84ppm Ta₂O₅, from 427m (PLS1848DT)
- 26m at 1.80% Li₂O, 288ppm Ta₂O₅ from 534m (PLS1880DT)
- 22m at 2.00% Li₂O, 129ppm Ta₂O₅ from 415m (PLS1794DT)
- 21m at 2.02% Li₂O, 301ppm Ta₂O₅ from 439m (PLS1818DT)
- 19m at 2.29% Li₂O, 296ppm Ta₂O₅ from 500m (PLS1896DT)
- 16m at 2.38% Li₂O, 236ppm Ta₂O₅ from 412m (PLS1820DT)

Refer to Appendix 2 for a full table of all intercepts reported at a 0.5% Li₂O cut-off.

FURTHER INFORMATION RELEVANT TO THE MINERAL RESOURCE UPDATE

Details of the drilling data used for the estimation, site inspection information and the quality control checks completed on the data are documented in Appendix 3 (2012 JORC Table 1, Sections 1 to 3).

The updated in-situ Mineral Resource is divided into three spatial areas, South, Central, and North, summarised below and outlined in detail in Table 2.

- **Central** (309Mt), comprising mineralisation north of 7669600mN and south of 7673850mN containing the Central and Eastern pegmatite groups;
- **South** (113Mt), comprising mineralisation south of 7669600mN containing the Southern pegmatite groups; and
- **North** (16Mt), comprising mineralisation north of 7673850mN containing the Monster, Monster West and Lynas pegmatite groups.

Area	Category	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)	Fe ₂ O ₃ (%)	Li₂O (Mt)	Ta₂O₅ (M lb)
	Measured	8	1.21	76	0.47	0.1	1
South	Indicated	82	1.06	69	0.57	0.9	12
South	Inferred	23	1.06	62	0.73	0.2	3
	Combined	113	1.07	68	0.60	1.2	17
	Measured	10	1.43	140	0.36	0.1	3
Central	Indicated	255	1.37	137	0.53	3.5	77
Central	Inferred	44	1.36	171	0.50	0.6	17
	Combined	309	1.37	142	0.52	4.2	97
	Measured	1	1.41	139	0.41	0	0
North	Indicated	12	1.26	116	0.54	0.1	3
North	Inferred	3	1.14	132	0.64	0	1
	Combined	16	1.25	121	0.55	0.2	4
	Measured	19	1.34	113	0.41	0.3	5
Total	Indicated	349	1.29	121	0.54	4.5	93
Total	Inferred	70	1.25	134	0.58	0.9	21
	Combined	438	1.29	122	0.54	5.6	118

Table 2 – Pilgangoora Operation in-situ Mineral Resource breakdown by area.

Note: Rounding applied to numbers above.

The Mineral Resource is reported using a 0.2% Li₂O cut-off in line with previous Mineral Resource estimates. Figure 3 shows the relationship between tonnes and Li₂O% grade at varying cut-offs.

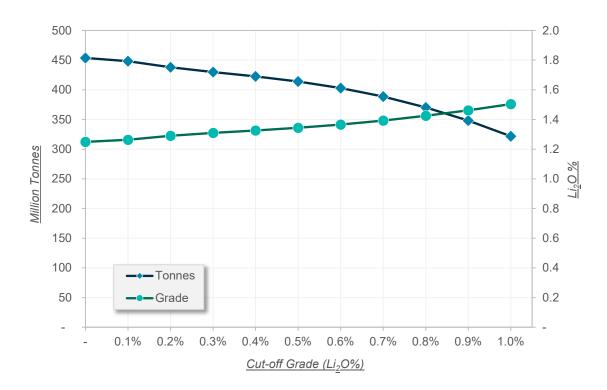


Figure 4 – Oblique View (looking -30/290) showing Mineral Resource by Classification and RPEEE pit shell.

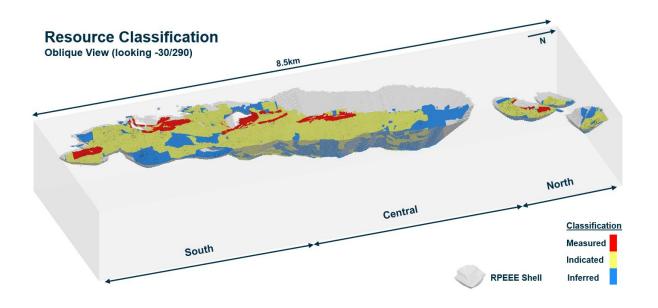
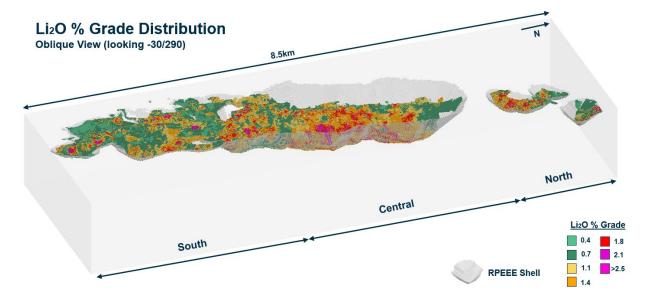



Figure 5 – Oblique View (looking -30/290) showing Li₂O grade distribution and RPEEE pit shell.

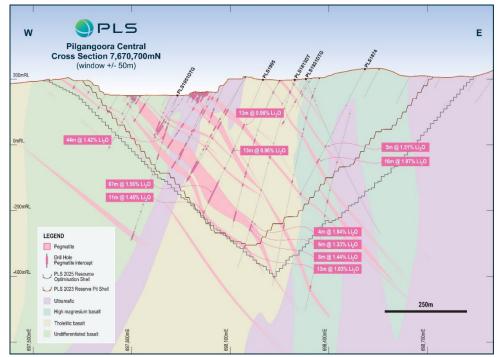
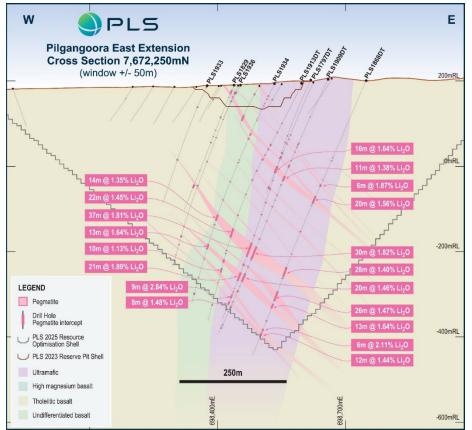

<complex-block>

Figure 6 – Oblique View (looking +20/185) showing window of modelled Pegmatites and Drilling, with March 2025 Central Pit and RPEEE pit shell.

The Pilgangoora pegmatites are characterised by a series of stacked pegmatite lenses that dip moderately toward the east. Figure 6 presents an oblique view facing south, illustrating the modelled pegmatite domains extending from the base of the Central Pit, in addition to the RPEEE pit shell that has been used to constrain the reported Mineral Resource.


Additional cross sections showing the stacked pegmatite domains in the Central Pit and the East Extension areas are shown as Figures 7 and 8. The cross sections also illustrate the results of the Pilgangoora waste rock model that has been developed utilising geochemistry and mapping data.

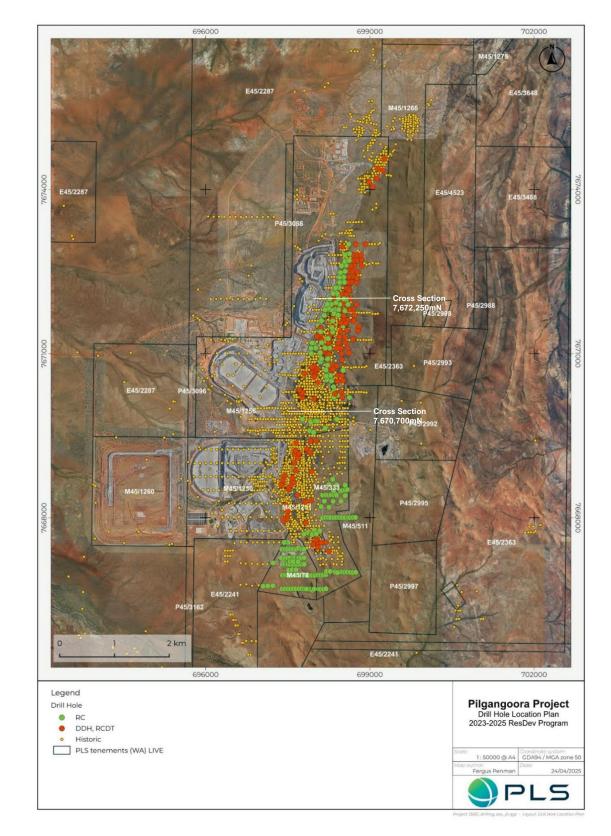


Figure 9 – Drill hole location plan Pilgangoora Operation area and cross section locations.

GEOLOGY

The Pilgangoora Lithium-Tantalum deposit is located on the western flank of the East Strelley greenstone belt, in a sequence of highly deformed, fault bounded mafic dominated supracrustal rocks, which protrude into the Carlindi Batholith.

Lithologies within the project area are dominantly tholeiitic metabasalts with minor thin interflow metasedimentary units. Within the centre of the project area is an intrusive sequence of layered metaultramafic sills, with subordinate meta-mafic units up to 500m thick. This ultramafic sequence is comprised of peridotite, pyroxenite and Mg- and Fe-rich varieties of dolerite, with gradational contacts between units.

Four principal phases of deformation have been recognised in the project area. The first phase (D1) ductile deformation event produced the steeply inclined attitude of the supracrustal rock sequence by the development of a fold and thrust belt. The second phase (D2) ductile deformation event resulted in a regional north-south trending strike slip fault system being developed across the greenstone belt. The third phase (D3) Mosquito Creek Orogenic event led to further transcurrent deformation in the upper crust, reactivation of the strike-slip major shear zones within the greenstone belt and emplacement of the Sisters Supersuite granite-granitic pegmatites.

The final key phase of deformation was the Turner River Orogenic event (D4) which produced staged wrench faulting and strike-parallel main faults that exploited existing D2 and D3 structures. The D4 phase of deformation is coincident with the emplacement of the Split rock supersuite and the spodumene bearing pegmatites at Pilgangoora. The D4 faults acted as passive guides to pegmatite emplacement with the pegmatites changing in thickness and orientation as well as terminating proximal to these faults.

Three principal pegmatite groups or domains are identified in the centre of the project area – Eastern, Central and South. In addition, there are three outlying pegmatite groups, Lynas Find, Monster and South End. Pegmatites of the three principal domains have a strike length of up to 1.4km, and mostly range in thickness from 1-30m, although pegmatites of the Central domains may be up to 70m thick.

The distribution of the Pilgangoora pegmatites is shown in Figure 10. Drilling has shown that the pegmatites occur as dykes dipping to the east at 20-60° (see Figures 6 to 8), striking parallel to subparallel to the dominant NNW trending schistose (D3) fabric within the greenstones. Pegmatites of the three principal pegmatite groups typically breach D3 faults. The Central pegmatites generally occur within dip-slip shear zones, and the Eastern pegmatites within strike slip shear zones. The Lynas Find and Monster pegmatites occupy the D4 cross faults.

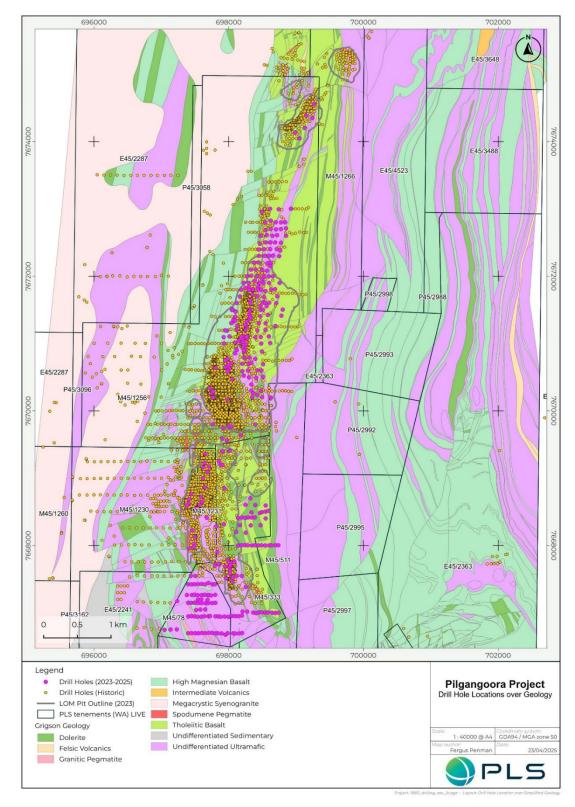


Figure 10 – Geology and drill hole summary.

EXPLORATION TARGET AND FUTURE EXPLORATION POTENTIAL

A Pilgangoora Operation Exploration Target of approximately 76Mt to 102Mt at 1.1% to 1.5% Li₂O and 144 to 192 Ta_2O_5 ppm has been identified as outlined in Table 3 below. The potential quantity and grade of the Exploration Target is an approximation and is conceptual in nature. There has been insufficient exploration in this area to estimate a Mineral Resource, and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

The Exploration Target is based upon a Whittle pit optimisation of the reported Mineral Resource and the modelled and estimated Pegmatite wireframes which have not been classified into, and therefore not included within, the reported Mineral Resource.

The material exclusive of the reported Mineral Resource which is contained within the pit optimisation is between 76Mt to 102Mt at 1.1% to 1.5% Li_2O , and 144 to 192ppm Ta_2O_5 , and has an average nominal drill spacing of 200m x 200m with a maximum extrapolation of less than 400m. The range of tonnes and grade were calculated by assuming 100% conversion as the upper target and 75% conversion as the lower target.

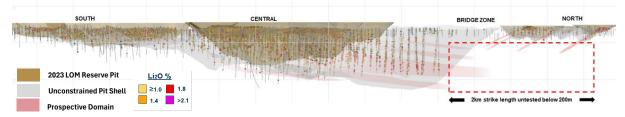

The modelled and estimated Pegmatite for the Exploration Target is supported by the same information used to generate the reported Mineral Resource including the drilling dataset, geological mapping and modelling, geo-metallurgical test work and characterisation.

Table 3 – Pilgangoora Operation Exploration Target.

Target Area	Approximate Tonnes	Approximate Grade	Approximate Grade
	(Mt)	Li₂O (%)	Ta₂O₅ (ppm)
Exploration Target	76 - 102	1.1 - 1.5	144 - 192

Additional to the reported Exploration Target, the shallow plunging high grade mineralised pegmatite system remains open to the North and at depth as shown in Figure 11. The "Bridge Zone" as depicted by the red outline is approximately 2km in length and has not been drill tested below 200 vertical metres. This Bridge Zone is not included in the reported Exploration Target as the area has not yet been drill tested.

Figure 11 – Pilgangoora Longitudinal View - South Pit to North (looking west) showing significant intercepts ≥1.0% Li₂O and the Bridge Zone.

A staged RC and diamond drilling program designed to convert unclassified tonnes and test the Bridge Zone is planned and will commence once market conditions are more favourable.

Refer to Figure 12 for an aerial view of Pilgangoora deposits and target areas for future exploration.

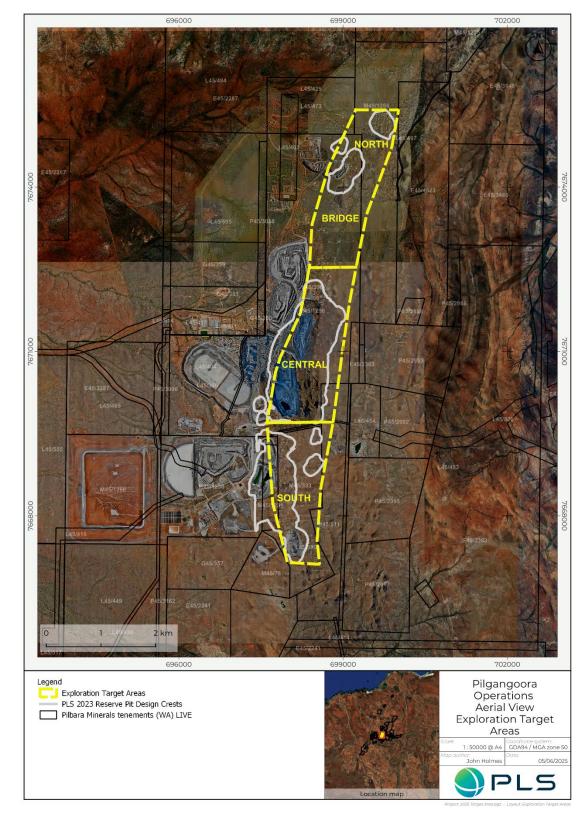


Figure 12 – Pilgangoora Operation aerial view showing 2023 Ore Reserve pit design crests and future areas for follow up exploration.

Release authorised by Dale Henderson, PLS' Managing Director and CEO.

Contact

Investors/shareholders James Fuller T: +61 (0) 488 093 763 E: james.fuller@pls.com Media Michael Vaughan Fivemark Partners T: +61 (0) 422 602 720

PLS is a leading global producer of lithium materials, with a diversified portfolio of assets and strategic partnerships in the rapidly growing battery materials sector. The Group owns 100% of the world's largest, independent hard-rock lithium operation, the Pilgangoora Operation in Australia, and the Colina Lithium Project in Brazil. PLS is also integrated into the lithium value chain through its joint venture with POSCO in South Korea, which manufactures battery-grade lithium hydroxide.

With significant scale, high-quality assets, and a strong commitment to advancing the global energy transition, PLS has established enduring partnerships with leading international companies in the sector such as POSCO, Ganfeng, Chengxin, Yahua, and General Lithium.

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation prepared by Mr John Holmes (Head of Geology and Exploration at PLS). Mr Holmes is a shareholder of PLS. Mr Holmes is a member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (2012 JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Holmes consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to the Mineral Resource is based on and fairly represents information compiled by Mr Michael Slevin (Principal Resource Geologist at PLS). Mr Slevin is a member of the Australasian Institute of Mining and Metallurgy. Mr Slevin has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (2012 JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Slevin consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to Stockpiles contained within the Mineral Resource is based on and fairly represents information compiled by Mr Calvin Ferguson (Geology Superintendent at PLS). Mr Ferguson is a member of the Australasian Institute of Mining and Metallurgy. Mr Ferguson has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (2012 JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ferguson consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

IMPORTANT INFORMATION

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the Group believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the Group's business.

Forward looking statements involve known and unknown risks, uncertainties and other factors which may cause PLS' actual results or performance to differ materially from any future results or performance expressed or implied by these forward looking statements. Relevant factors may include, but are not limited to, the speculative nature of exploration and project development, including the risks of obtaining the necessary licences, permits and approvals and diminishing quantities or grades of mineral resources, political and social risks, changes to the regulatory framework within which PLS operates, environmental conditions and litigation.

SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to Table 1, Sections 1 to 3 included in Appendix 3).

Geology and geological interpretation

Lithium (occurring as Spodumene) and Tantalum (occurring as Tantalite) is hosted within pegmatite lenses within mafic, ultramafic, and sedimentary sequences of the East Strelley greenstone belt. The area of the Pilgangoora pegmatite field comprising the reported Mineral Resource comprises a series of pegmatites up to 65m thick. The pegmatites dip to the east between 20-60° and are parallel to sub-parallel to the main fabric within the greenstones. The geological interpretation is considered robust, and supported by production, drilling data, structural measurements (downhole, and surface), pit mapping, aerial photography of surface and mined exposures, mineralogical, and geo-metallurgical studies and data analysis.

Drilling techniques

Various drilling programs have been undertaken across the Pilgangoora Operation tenements, both by PLS and prior tenement holders:

- Talison Minerals Pty Ltd (Talison) conducted a 54 hole RC drilling program in 2008 totalling 3,198m.
- Global Advanced Metals Pty Ltd (GAM) completed 29 drill holes for a total of 2,783m in 2010 and 17 RC holes for 1,776m in 2012.
- PLS have completed 374,895m of exploration and resource definition RC drilling and 38,402m of diamond drill core within the Pilgangoora Mining Leases (M45/1230, M45/1231, M45/1256, M45/333, M45/511, M45/78 and M45/1266). PLS completed 175,224m of RC grade control drilling from 2018 to March 2025.

Sampling and sub-sampling techniques

Sample information used in resource estimation was derived from both RC and diamond core drilling, from Exploration, Geo-metallurgical, Resource Definition, and Grade Control drill programs.

Historical RC drilling by Talison (2008, 2010) and GAM (2012) collected 1m samples using cone splitters. RC drilling completed by PLS (from 2014) and Dakota Minerals (2016) utilised rig-mounted

cyclones with cone splitters, while Altura Operations Pty Ltd (Altura) (2016-2018) used riffle splitters. Typical sample splits were approximately 85% reject and 15% sample (collected in calico bags for assay). All logged pegmatite intersections were sampled, including 2-6m of host rock on either side of the pegmatite interval. Diamond core sizes include NQ, HQ and PQ. Core sampling varied by program, typically half core for HQ and NQ, while PQ core for metallurgical programs was quarter cut with half core reserved for test work. Sample intervals are determined by geological contacts and program requirements.

Sample analysis method

Sample analysis has been conducted at multiple laboratories over the Pilgangoora project's history. Initial drilling programs from 2008-2010 utilised Talison's internal laboratory at Greenbushes, with samples from 2012 sent to GAM's internal laboratory at Wodgina for XRF analysis. Selected pulps from 2008-2010 drilling and all pegmatite pulps from 2012 were sent to SGS Perth for lithium analysis by Atomic Absorption Spectroscopy.

From 2014-2015, Nagrom Perth became the primary laboratory using XRF and ICP techniques. In 2016, ALS Global Perth completed analysis via sodium peroxide fusion with ICP-MS finish. From 2017, Nagrom Perth was the primary laboratory, supplemented by an SGS on-site laboratory for grade control samples from 2019-2022. From September 2024, SGS Perth became the primary laboratory for PLS samples. Analytical methods since 2017 employ sodium peroxide fusion with ICP-OES/ICP-MS finish for lithium analysis, while tantalum analysis utilises ICP-MS. Multi-element analysis is conducted using both XRF and ICP techniques, covering suites of 9-35 elements including Fe₂O₃.

Historical assays from 2008-2016 included XRF analysis for a 36-element suite, total acid digestion with ICP finish, and Atomic Absorption Spectroscopy for Li₂O analysis. Altura's 2017 program utilised microwave-assisted HF acid digestion techniques.

All samples have been used to support geological interpretation of the pegmatite wireframes. Samples which were not assayed by using a fusion digest technique were removed from the dataset prior to estimation of grade variables. The removal of these assays prior to estimation was a result of a PLS internal study being completed in 2024 noting a grade bias between historical samples which were analysed using a HF acid digest and the more recent sodium peroxide digest samples. Subsequently over 90% of the pulps from non-mined and non-grade-controlled areas were retrieved, selected on a nominal 50m x 50m grid spacing and submitted to the Nagrom laboratory for analysis via sodium peroxide fusion ICP. This further analysis of the results confirmed the bias noted in 2024.

In addition to Li₂O and Ta₂O₅, PLS has also estimated Fe₂O₃ for the Mineral Resource as a potential deleterious element in the production of spodumene concentrates. During the process of drilling, sampling and assaying, PLS identified two key issues causing contamination and, hence, artificial elevation of the Fe₂O₃ assays for the drill samples. Firstly, the highly abrasive nature of the mineralised pegmatite on the RC drilling bits and rods has resulted in iron contamination of the drill samples in the field. Secondly, when the drill samples were pulverised in laboratory in steel containers, the highly abrasive nature resulted in further iron contamination. As such, PLS completed a statistical analysis into both above-mentioned issues, which then allowed for factoring of the Fe₂O₃ assays to account for the contamination. The two step Fe₂O₃ adjustment process and factors are summarised in detail within Appendix 3 - 2012 JORC Table 1. The Fe₂O₃ grades are an estimate only, however consistent with the broad estimation techniques applied for the estimate of the global resource.

Cut-off grades

The Mineral Resource has been reported above a cut-off grade of 0.2% Li_2O consistent with the 0.2% Li_2O cut-off used in the prior 2023 Mineral Resource. The cut-off is supported by the 2023 reported Pilgangoora Ore Reserve statement which is reported using an ore cut-off variable by Li_2O % and Ta_2O_5 ppm, which is equivalent to approximately 0.3% Li_2O .

Mining Factors

The Pilgangoora deposit is currently in active operations via open-pit mining methods, and the reported Mineral Resource is reported within a Whittle-optimised pit shell. Pegmatites with a modelled thickness less than 2m are excluded from the reported Mineral Resource. Future approvals (including environmental and heritage) for the complete extraction of the reported Mineral Resource will be necessary, and the Mineral Resource is reported on the assumption that all future approvals will be granted. Whilst the current mining method is open pit, the deposit's geometry and grade are considered amenable to underground mining methods. A range of scenarios were considered as part of the RPEEE assessment, and the chosen pit shell used for reporting is considered to balance the range of options available to PLS for extraction of the Mineral Resource.

Metallurgical Factors

Processing operations at Pilgangoora have been successfully commissioned and operated since 2018, with integrated ore sorting in operation since August 2024. Multiple phases of metallurgical and geometallurgical test work have been undertaken on a regular basis. Pegmatite within the oxide zone is excluded from the reported Mineral Resource. The current Pilgangoora Ore Reserve estimates³ metallurgical parameters provided the basis for determining the metallurgical factors for the RPEEE assessment.

Estimation Methodology

Categorical Indicator Kriging (CIK) was employed to delineate sub-domains within pegmatite boundaries, with indicators derived from geo-metallurgical characterisation of the pegmatites. Grade estimation for Li₂O, Ta₂O₅, and Fe₂O₃ utilised Ordinary Kriging (OK), constrained to the pegmatite boundaries. Internal sub-domain estimation applied a combination of hard and soft boundary conditions, dependent on pegmatite characteristics. Li₂O, Ta₂O₅, and Fe₂O₃ are not correlated and thus estimated independently.

The estimation was resolved into parent cells measuring $10m (E) \times 20m (N) \times 5m (RL)$, with sub-celling applied at domain boundaries to ensure accurate volumetric representation. Estimation parameters were derived from variogram models, and cross validation. Dynamic anisotropy guided the orientation of search ellipses to follow individual pegmatite trends. Assay data was composited to one metre lengths and constrained within the pegmatite wireframes. A top-cap of $3.5\% Fe_2O_3$ was used to avoid the smearing of host rock Fe_2O_3 grades within the pegmatite.

Bulk density relationships were established through regression analysis for the pegmatite units. Within the block model, pegmatite bulk densities are calculated based on the Li₂O content of parent blocks, while waste host rock densities and grades are assigned according to modelled lithological units. These bulk density regressions and assignments were developed from diamond drillholes using Archimedes measurements performed on non-porous core samples.

³ Refer to 2024 PLS Annual Report dated 26 August 2024.

Classification criteria

The reported Mineral Resource has been classified in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves JORC Code 2012 Edition, into Measured, Indicated and Inferred categories using a range of criteria, including but not limited to; geological and metallurgical understanding, geological and grade continuity, drillhole spacing, modelling methodology, model validations (including comparison with previous estimates, mine production data, confirmatory and resource classification conversion drilling success), and RPEEE assessment. Measured Resources are nominally equivalent to a drill spacing of 12.5m x 12.5m to 25m x 25m, Indicated Resources are nominally equivalent to a drill spacing of 50m x 50m to 50m x 100m, and Inferred Resources are nominally equivalent to a drill spacing of 75m x 75m to 75m x 150m.

APPENDIX 1 – DRILL HOLE COLLAR TABLE

Hole ID	Hole Type	East	North	RL	Total	Dip (°)	Azimuth (°)
PLS1553M	DDH	(MGA94) 698302	(MGA94) 7671425	(mASL) 200	Depth (m) 64	-60	273
PLS1554M	DDH	698308	7671362	200	46	-60	270
PLS1555M	DDH	698269	7671326	199	70	-60	270
PLS1556M	DDH	698266	7671250	200	62	-61	272
PLS1559M	DDH	698048	7667753	199	29	-61	269
PLS1560M	DDH	698025	7667724	200	28	-61	271
PLS1561M	DDH	698005	7667679	201	23	-61	270
PLS1562M	DDH	698022	7667626	204	38	-62	272
PLS1563M	DDH	698018	7667581	209	48	-61	272
PLS1564M	DDH	698060	7667525	213	77	-81	266
PLS1565M	DDH	698053	7667457	213	80	-80	269
PLS1566M	DDH	697767	7670199	169	59	-60	269
PLS1567M	DDH	697750	7670263	170	55	-61	270
PLS1568M	DDH	697771	7670287	170	52	-61	270
PLS1569M	DDH	697716	7670338	172	44	-66	269
PLS1570M	DDH	697983	7670774	200	52	-60	271
PLS1571M	DDH	698040	7670713	200	89	-60	270
PLS1572M	DDH	697995	7670675	201	59	-61	272
PLS1573M	DDH	697948	7670649	200	19	-76	273
PLS1574M	DDH	698007	7670626	201	52	-61	271
PLS1575M	DDH	697991	7670600	200	39	-60	269
PLS1576M	DDH	697984	7670575	200	34	-61	270
PLS1577G	DDH	698121	7671262	195	80	-65	274
PLS1578G	DDH	697675	7668411	211	138	-81	125
PLS1579G	DDH	697962	7667513	206	60	-64	271
PLS1580G	DDH	698195	7667547	226	83	-80	89
PLS1581G	DDH	699264	7674556	215	90	-65	101
PLS1582G	DDH	699127	7674201	204	100	-66	133
PLS1583M	DDH	698228	7670875	190	36	-80	273
PLS1584M	DDH	698219	7670950	190	32	-60	273
PLS1585M	DDH	698184	7671020	190	32	-60	268
PLS1586M	DDH	698218	7671024	191	47	-85	271
PLS1587M	DDH	698147	7671038	190	19	-70	88
PLS1588M	DDH	698255	7670987	190	70	-75	270
PLS1589M	DDH	697806	7670638	191	167	-64	91
PLS1590M	DDH	697408	7668625	145	53	-86	271
PLS1591M	DDH	697378	7668593	145	22	-65	4
PLS1592M	DDH	698322	7671638	190	17	-81	268
PLS1593M	DDH	697459	7668225	193	41	-64	270
PLS1594M	DDH	697500	7668122	198	57	-75	270
PLS1596M	DDH	697495	7668025	195	67	-76	268
PLS1597M	DDH	697483	7667975	193	56	-80	268
PLS1598M	DDH	697417	7667960	192	31	-80	269
PLS1599M	DDH	697409	7668687	140	18	-86	269
PLS1601	RC	697895	7666694	211	100	-60	272
PLS1602	RC	697951	7666675	210	100	-61	273

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1603	RC	697983	7666698	219	100	-60	271
PLS1604	RC	698066	7666696	210	100	-61	271
PLS1605	RC	698094	7666694	205	100	-60	270
PLS1606	RC	698151	7666693	200	100	-60	270
PLS1607	RC	698198	7666700	205	100	-60	269
PLS1608	RC	698451	7667008	218	100	-60	270
PLS1609	RC	698490	7667006	218	100	-60	270
PLS1610	RC	698541	7667004	219	100	-60	270
PLS1611	RC	698584	7667005	215	100	-60	270
PLS1612	RC	698640	7667001	219	100	-60	270
PLS1613	RC	698693	7666997	214	100	-60	270
PLS1614	RC	698744	7667003	214	100	-60	270
PLS1615	RC	697399	7667148	192	100	-60	270
PLS1616	RC	697446	7667149	195	100	-60	271
PLS1617	RC	697496	7667151	198	142	-60	270
PLS1617S	RC	697501	7667150	199	100	-61	91
PLS1618	RC	697546	7667146	200	100	-60	269
PLS1619	RC	697597	7667143	211	100	-60	270
PLS1620	RC	697654	7667146	209	100	-60	270
PLS1621	RC	697693	7667145	207	100	-60	270
PLS1622	RC	697750	7667146	206	100	-60	268
PLS1623	RC	697801	7667149	216	100	-60	270
PLS1624	RC	697379	7667265	205	100	-61	271
PLS1625	RC	697453	7667265	202	106	-60	270
PLS1626	RC	697494	7667269	200	100	-60	270
PLS1627	RC	697539	7667263	203	100	-60	270
PLS1628	RC	697598	7667262	210	100	-60	270
PLS1629	RC	697640	7667267	207	100	-60	270
PLS1630	RC	697692	7667264	203	100	-60	269
PLS1630A	RC	697698	7667265	202	300	-60	270
PLS1631	RC	697738	7667258	203	100	-60	269
PLS1632	RC	697799	7667268	202	100	-61	271
PLS1633	RC	697395	7667423	197	100	-60	271
PLS1634	RC	697450	7667422	200	100	-60	266
PLS1635	RC	697497	7667425	201	100	-60	269
PLS1636	RC	697549	7667426	207	100	-60	269
PLS1637	RC	697599	7667428	213	100	-60	271
PLS1638	RC	697648	7667422	209	100	-60	270
PLS1639	RC	697698	7667445	202	100	-60	270
PLS1640	RC	697757	7667424	198	100	-60	271
PLS1641	RC	697795	7667423	198	100	-61	274
PLS1642	RC	697505	7667547	195	52	-60	271
PLS1643	RC	697397	7666697	192	40	-60	270
PLS1644	RC	697447	7666698	194	50	-60	273
PLS1645	RC	697500	7666698	197	144	-60	272
PLS1646	RC	697549	7666697	200	100	-61	272

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1647	RC	697601	7666700	199	100	-61	271
PLS1648	RC	697648	7666699	200	106	-60	269
PLS1649	RC	697701	7666701	201	100	-60	272
PLS1650	RC	697753	7666703	206	100	-61	270
PLS1651	RC	697801	7666697	215	100	-61	266
PLS1652	RC	697840	7666696	217	100	-60	275
PLS1653	RC	697400	7666948	196	100	-61	264
PLS1654	RC	697449	7666951	199	100	-60	274
PLS1655	RC	697495	7666949	201	100	-60	268
PLS1656	RC	697536	7666942	205	100	-60	269
PLS1657	RC	697592	7666943	206	106	-60	270
PLS1658	RC	697638	7666949	205	100	-60	270
PLS1659	RC	697701	7666949	214	112	-60	270
PLS1660	RC	697724	7666951	215	100	-59	268
PLS1661	RC	697802	7666949	226	100	-60	270
PLS1662	RC	697842	7666948	232	100	-59	267
PLS1663	RC	697880	7666943	239	100	-59	272
PLS1664	RC	697937	7666944	235	100	-61	272
PLS1665	RC	697994	7666942	222	100	-60	273
PLS1666	RC	698048	7666954	211	100	-60	270
PLS1667	RC	698099	7666950	207	100	-60	270
PLS1668	RC	698144	7666951	212	100	-60	270
PLS1669	RC	698195	7666958	225	100	-60	270
PLS1670	RC	698206	7667020	245	100	-60	270
PLS1671	RC	698275	7667018	245	100	-60	270
PLS1672	RC	698364	7667004	237	100	-59	272
PLS1673	RC	698407	7666995	222	88	-61	269
PLS1674	RC	698137	7667997	205	100	-60	270
PLS1675	RC	698189	7668005	212	100	-60	270
PLS1676	RC	698241	7668005	210	100	-61	272
PLS1677	RC	698283	7668002	210	100	-60	273
PLS1678	RC	698342	7668001	207	100	-60	270
PLS1679	RC	698388	7668004	209	100	-60	270
PLS1680	RC	698138	7668410	212	106	-57	271
PLS1681	RC	698196	7668414	221	140	-61	273
PLS1682	RC	698246	7668411	228	141	-60	272
PLS1683	RC	698289	7668417	227	160	-60	270
PLS1684	RC	698340	7668417	218	156	-60	270
PLS1685	RC	698389	7668416	213	442	-61	268
PLS1686	RC	698464	7668483	213	240	-61	269
PLS1687	RC	698494	7668497	217	80	-60	270
PLS1688	RC	698548	7668504	214	100	-60	270
PLS1689	RC	698589	7668513	212	100	-60	270
PLS1690	RC	698440	7668002	211	100	-60	270
PLS1691DT	RCDT	698515	7671898	189	526	-64	270
PLS1692DT	RCDT	698439	7671898	109	500	-60	270

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1693DT	RCDT	698483	7671795	192	500	-65	270
PLS1694DT	RCDT	698299	7671847	187	349	-65	269
PLS1695DT	RCDT	698497	7671956	191	490	-66	271
PLS1696G	DDH	698277	7671108	190	65	-66	91
PLS1697G	DDH	698050	7670470	190	160	-65	81
PLS1701M	DDH	697445	7668766	140	30	-81	90
PLS1703M	DDH	697516	7668508	115	38	-61	273
PLS1704M	DDH	697516	7668550	115	18	-80	274
PLS1705M	DDH	697568	7668603	115	33	-61	306
PLS1706M	DDH	697607	7668650	115	44	-61	275
PLS1708M	DDH	697590	7668725	115	24	-70	91
PLS1709M	DDH	697877	7669199	225	45	-71	271
PLS1710M	DDH	697852	7669253	214	30	-60	91
PLS1711M	DDH	697912	7669400	203	27	-75	88
PLS1712M	DDH	698014	7669405	212	85	-85	290
PLS1714M	DDH	697617	7668999	192	40	-81	272
PLS1715M	DDH	697688	7669090	193	59	-77	271
PLS1716M	DDH	697705	7669172	194	64	-71	270
PLS1717M	DDH	697622	7669161	188	31	-81	270
PLS1718M	DDH	697641	7669225	188	29	-81	270
PLS1719M	DDH	697654	7669362	189	36	-60	271
PLS1720M	DDH	698205	7671075	190	55	-61	274
PLS1721M	DDH	698273	7671074	190	83	-61	274
PLS1722M	DDH	698208	7671112	190	13	-81	91
PLS1723M	DDH	698320	7671501	190	70	-76	271
PLS1748	RC	698488	7668002	215	100	-60	270
PLS1749	RC	698543	7668001	211	100	-60	270
PLS1750	RC	698603	7668001	209	100	-60	267
PLS1751	RC	698637	7668002	210	100	-60	270
PLS1752	RC	698690	7668004	212	100	-60	270
PLS1753	RC	698737	7668004	213	100	-60	270
PLS1763	RC	697437	7667547	194	100	-61	268
PLS1770	RC	697233	7667172	191	100	-58	269
PLS1775	RC	697049	7666748	188	100	-60	272
PLS1776	RC	697137	7666753	192	100	-58	272
PLS1777	RC	697228	7666754	200	100	-62	272
PLS1781DT	RCDT	698048	7671497	185	570	-90	0
PLS1782DT	RCDT	698072	7671325	191	616	-90	0
PLS1783DT	RCDT	698070	7671351	189	607	-60	269
PLS1784	RC	697974	7671190	199	456	-80	269
PLS1785	RC	698010	7671105	199	350	-65	273
PLS1786DT	RCDT	698098	7671341	190	655	-70	269
PLS1787	RC	698056	7671509	186	400	-65	270
PLS1788DT	RCDT	698448	7671304	214	775	-65	272
PLS1789	RC	698100	7671475	188	34	-80	180
PLS1789ADT	RCDT	698100	7671470	188	673	-80	174

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1790	RC	698361	7671800	189	425	-65	272
PLS1791DT	RCDT	698688	7671808	196	675	-66	270
PLS1792	RC	698592	7671996	193	418	-65	272
PLS1793DT	RCDT	698335	7672008	189	700	-65	269
PLS1794DT	RCDT	698498	7672091	196	547	-64	274
PLS1795DT	RCDT	698571	7672082	194	595	-65	270
PLS1796	RC	698403	7672098	190	440	-66	269
PLS1797DT	RCDT	698620	7672199	206	601	-65	272
PLS1798DT	RCDT	698474	7671498	199	793	-60	268
PLS1799DT	RCDT	698510	7671617	198	777	-59	268
PLS1800DT	RCDT	698470	7671404	212	799	-61	272
PLS1801DT	RCDT	698425	7671194	221	751	-60	273
PLS1802	RC	697543	7667200	197	100	-60	270
PLS1803	RC	697593	7667199	204	100	-58	267
PLS1804	RC	697688	7667194	204	200	-60	270
PLS1805	RC	697515	7667041	204	100	-61	270
PLS1806	RC	697579	7667049	213	160	-60	270
PLS1807	RC	697651	7667050	208	155	-60	272
PLS1808	RC	698546	7671780	190	567	65	270
PLS1809DT	RCDT	698538	7671603	196	625	60	270
PLS1810	RC	698510	7671503	197	552	65	270
PLS1811DT	RCDT	698718	7672607	198	652	65	270
PLS1812DT	RCDT	698395	7670772	223	675	65	280
PLS1813DT	RCDT	698297	7670699	198	600	70	270
PLS1814DT	RCDT	698509	7670505	210	700	65	270
PLS1815	RC	698336	7670393	219	550	60	270
PLS1816	RC	698426	7670238	224	544	60	270
PLS1817DT	RCDT	698600	7671605	196	650	60	270
PLS1818DT	RCDT	698720	7671700	197	675	60	270
PLS1819DT	RCDT	698801	7671504	198	700	60	270
PLS1820DT	RCDT	698781	7671414	203	725	60	270
PLS1821DT	RCDT	698424	7670601	203	625	60	270
PLS1822DT	RCDT	698704	7671599	195	675	65	270
PLS1823DT	RCDT	698581	7671423	204	650	65	270
PLS1824	RC	698337	7670299	219	506	60	270
PLS1825	RC	698322	7671392	175	560	65	270
PLS1826	RC	698222	7670523	206	460	65	270
PLS1827	RC	698308	7671475	175	402	65	270
PLS1828	RC	698284	7670599	198	500	65	270
PLS1829	RC	698439	7672205	190	500	65	270
PLS1830	RC	698452	7671898	187	442	65	270
PLS1831	RC	698202	7670591	207	450	65	270
PLS1832	RC	698094	7670853	195	350	65	270
PLS1833	RC	698525	7671999	192	484	65	270
PLS1834	RC	698091	7671016	192	450	65	270
PLS1835DT	RCDT	698254	7671266	175	650	65	270

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1836	RC	697944	7671195	196	300	65	270
PLS1837DT	RCDT	698247	7671199	175	662	70	270
PLS1838	RC	697925	7671094	188	238	65	270
PLS1839	RC	697929	7671001	189	225	65	270
PLS1840	RC	698296	7671900	185	350	65	270
PLS1841DT	RCDT	698475	7671097	217	604	65	270
PLS1842DT	RCDT	698711	7672403	203	652	65	270
PLS1843DT	RCDT	698544	7671203	228	631	65	270
PLS1844	RC	698600	7671899	193	562	65	270
PLS1845	RC	698168	7668303	207	138	60	270
PLS1846	RC	698327	7668299	204	192	60	270
PLS1847	RC	698474	7668300	211	240	60	270
PLS1848DT	RCDT	698494	7670880	235	640	65	270
PLS1849	RC	698549	7668401	209	264	60	270
PLS1850	RC	698337	7668493	226	200	60	270
PLS1851DT	RCDT	698408	7670490	216	625	65	270
PLS1852DT	RCDT	698482	7670999	230	718	65	270
PLS1853DT	RCDT	698476	7670301	216	620	65	270
PLS1854DT	RCDT	698547	7671301	220	650	65	270
PLS1855	RC	698249	7668604	215	200	60	270
PLS1856DT	RCDT	698307	7670791	206	610	65	270
PLS1857	RC	698395	7668602	236	250	60	270
PLS1858	RC	698549	7668595	226	275	60	270
PLS1859	RC	698322	7668702	208	222	60	270
PLS1860	RC	698109	7668201	202	166	60	270
PLS1861	RC	698253	7668190	204	200	60	270
PLS1862DT	RCDT	698496	7670203	217	575	60	270
PLS1863DT	RCDT	698487	7670599	210	661	60	270
PLS1864DT	RCDT	698756	7671899	200	700	65	270
PLS1865DT	RCDT	698654	7671999	194	703	65	270
PLS1866DT	RCDT	698617	7672401	194	601	65	270
PLS1867DT	RCDT	698573	7672192	204	601	65	270
PLS1868DT	RCDT	698749	7672298	203	700	65	270
PLS1869DT	RCDT	698618	7672150	203	700	65	270
PLS1870	RC	698166	7671698	188	300	65	270
PLS1871	RC	698226	7670789	196	525	65	270
PLS1872	RC	698117	7671602	190	305	70	270
PLS1873	RC	698303	7671795	188	350	65	270
PLS1874	RC	698510	7670692	230	443	60	270
PLS1875	RC	698265	7671101	170	525	75	270
PLS1876	RC	698118	7671201	170	425	65	270
PLS1877DT	RCDT	698620	7672502	193	600	65	270
PLS1878	RC	698186	7671100	193	519	65	270
PLS1879DT	RCDT	698689	7672501	197	658	65	270
PLS1879DT	RCDT	698774	7672497	208	675	65	270
PLS1880D1	RC	698241	7670912	170	503	70	270
		030241	1010912	170	505	70	210

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1882DT	RCDT	698649	7672600	189	600	65	270
PLS1883DT	RCDT	698596	7671105	222	770	65	270
PLS1884	RC	698565	7672613	192	550	65	270
PLS1885DT	RCDT	698616	7671007	238	750	65	270
PLS1886	RC	698423	7672001	190	475	65	270
PLS1887	RC	698380	7671928	187	400	65	270
PLS1888	RC	698329	7672098	189	400	65	270
PLS1889DT	RCDT	698701	7672696	192	625	65	270
PLS1890	RC	698300	7670499	204	503	65	270
PLS1891DT	RCDT	698774	7672700	199	675	65	270
PLS1892	RC	697902	7669586	186	250	65	270
PLS1893DT	RCDT	698850	7672708	210	706	65	270
PLS1894	RC	697973	7669561	190	300	65	270
PLS1895	RC	698181	7669635	186	375	65	270
PLS1896DT	RCDT	698764	7672379	207	700	70	270
PLS1897	RC	697768	7669799	185	225	65	270
PLS1898	RC	697921	7669747	180	275	65	290
PLS1899DT	RCDT	698697	7672801	208	625	65	270
PLS1900	RC	698003	7669774	183	300	65	290
PLS1901	RC	698035	7669767	183	325	75	270
PLS1902DT	RCDT	698774	7672798	199	676	65	270
PLS1903	RC	698396	7669798	188	375	65	270
PLS1904DT	RCDT	698838	7672800	203	709	65	270
PLS1905	RC	698200	7670700	198	452	65	270
PLS1906	RC	698348	7671729	190	400	65	270
PLS1907	RC	698240	7671274	165	375	75	270
PLS1908	RC	698118	7670904	194	504	70	270
PLS1909DT	RCDT	698659	7672306	203	650	65	270
PLS1910DT	RCDT	698694	7671261	226	675	65	270
PLS1911DT	RCDT	698630	7671801	194	600	65	270
PLS1912	RC	698627	7670196	208	400	65	270
PLS1913DT	RCDT	698598	7672301	193	600	65	270
PLS1914	RC	698227	7670901	166	550	65	270
PLS1915DT	RCDT	698742	7672994	215	675	70	270
PLS1916DT	RCDT	698852	7672600	212	700	65	270
PLS1917DT	RCDT	698923	7673001	193	700	65	270
PLS1918	RC	698346	7670201	224	475	65	270
PLS1919DT	RCDT	698525	7671690	195	550	65	270
PLS1920DTG	RCDT	698364	7670264	221	440	65	95
PLS1921DTG	RCDT	698329	7670713	201	525	65	85
PLS1922DTG	RCDT	698395	7671093	212	440	65	115
PLS1923	RC	698322	7671597	160	425	65	270
PLS1924	RC	698424	7671701	196	473	65	270
PLS1925DTG	RC	697640	7668862	136	30	65	300
PLS1926DTG	RCDT	697980	7670168	125	350	65	250
			-				
PLS1927	RC	698099	7671400	188	466	65	270

Hole ID	Hole Type	East (MGA94)	North (MGA94)	RL (mASL)	Total Depth (m)	Dip (°)	Azimuth (°)
PLS1928	RC	698431	7671803	192	475	65	270
PLS1929	RC	698039	7671302	194	450	70	270
PLS1930M	DDH	698495	7672956	190	50	60	275
PLS1931	RC	698248	7671827	187	300	65	270
PLS1932DTG	RCDT	698038	7671306	194	425	75	325
PLS1933	RC	698375	7672202	187	350	65	270
PLS1934	RC	698533	7672303	193	550	65	270
PLS1935	RC	698524	7672400	190	503	65	270
PLS1936	RC	698448	7672301	189	450	65	270
PLS1937	RC	698446	7672396	187	458	65	270
PLS1938	RC	698548	7672502	190	466	65	270
PLS1939	RC	698083	7667758	202	300	60	270
PLS1940	RC	697984	7667781	200	225	60	270
PLS1941	RC	697946	7667692	203	203	60	270
PLS1942	RC	698023	7667703	200	260	60	270
PLS1943DTG	RCDT	698112	7667548	200	130	65	265
PLS1944	RC	697849	7667725	197	150	85	270
PLS1945	RC	697797	7667698	196	50	60	270
PLS1946DTG	RCDT	698473	7671559	200	440	65	290
PLS1947DTG	RCDT	697818	7668286	208	285	65	295
PLS1948DTG	RCDT	697929	7668313	200	261	65	90
PLS1949DTG	RCDT	698254	7667384	230	150	-70	118
PLS1950DTG	RCDT	697907	7669196	221	181	65	120
PLS1951DTG	RCDT	697945	7670748	161	475	70	270
PLS1952DTG	RCDT	698562	7671554	196	447	60	95
PLS1953	RC	698462	7672481	186	475	65	270
PLS1954	RC	698481	7672600	188	478	65	270
PLS1955	RC	698546	7672686	192	500	65	270
PLS1956DTG	RCDT	697936	7668848	218	270	65	70
PLS1957DTG	RCDT	697645	7668864	136	165	-64	301
PLS1958DTG	RCDT	697833	7667905	230	235	65	240
PLS1959	RC	698613	7673001	195	550	65	270
PLS1960	RC	698623	7672700	197	491	65	270
PLS1961	RC	698625	7672824	214	550	65	270
PLS1962	RC	698542	7672799	199	491	65	270
PLS1963	RC	698223	7671902	188	275	65	270
PLS1964	RC	698270	7672000	188	300	65	270
PLS1965	RC	698184	7671800	187	250	65	270
PLS1966DTG	RCDT	699053	7674046	227	175	65	140
PLS1967DTG	RCDT	698984	7674132	206	155	65	310
PLS1968DTG	RCDT	699240	7674348	223	200	65	110
PLS1969DTG	RCDT	699149	7674385	208	155	65	290

APPENDIX 2 –	DRILL F	HOLE INT	ERCEPTS
---------------------	---------	----------	---------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1553M	22.3	30.8	8.5	2.15	265
PLS1553M	36.5	56.1	19.7	1.77	252
PLS1554M	21.8	44.0	22.2	1.55	195
PLS1555M	2.1	21.3	19.2	1.30	227
PLS1555M	37.3	38.4	1.1	1.56	117
PLS1555M	41.2	46.2	5.1	1.35	256
PLS1555M	56.4	68.4	12.1	1.08	207
PLS1556M	9.9	25.8	15.9	1.43	219
PLS1556M	37.7	42.9	5.2	1.44	318
PLS1556M	48.5	50.8	2.3	2.20	482
PLS1556M	54.5	58.1	3.5	1.90	177
PLS1559M	2.2	6.0	3.8	0.70	94
PLS1559M PLS1559M	11.5 18.3	<u>15.9</u> 27.8	4.5 9.5	0.99	63 52
PLS1559M PLS1560M	18.3	27.8	9.5	1.36	81
PLS1561M	6.6	10.4	3.8	1.12	82
PLS1562M	5.2	8.8	3.5	1.44	39
PLS1562M	11.7	19.2	7.5	1.63	64
PLS1562M	23.4	32.3	8.9	1.60	42
PLS1563M	18.0	19.0	1.0	0.62	57
PLS1563M	28.0	45.4	17.4	1.58	95
PLS1564M	36.3	59.4	23.1	1.79	65
PLS1564M	61.4	70.7	9.3	1.42	62
PLS1565M	44.2	71.1	26.9	2.25	68
PLS1566M	4.6	9.9	5.3	1.74	184
PLS1566M	15.6	54.4	38.8	1.84	108
PLS1567M	10.1	43.5	33.4	1.71	98
PLS1567M	46.1	51.1	5.0	0.75	126
PLS1568M	17.5	50.9	33.4	1.53	139
PLS1569M	18.6	28.5	9.8	1.41	208
PLS1569M	35.4	36.5	1.1	2.07	161
PLS1570M	33.0	49.0	16.1	0.90	111
PLS1571M	41.0	56.7	15.7	1.76	142
PLS1571M	75.0	82.3	7.3	0.92	176
PLS1572M	28.2	34.1	5.9	1.39	108
PLS1572M	37.7	41.7	4.0	1.05	109
PLS1572M	43.8	49.5	5.7	0.86	282
PLS1573M	0.0	7.0	7.0	1.02	120
PLS1573M PLS1574M	9.1 24.4	16.1 26.2	7.0 1.9	0.72	293 105
PLS1574M PLS1574M	24.4	31.1	2.2	0.72	105
PLS1574M	34.1	37.6	3.5	1.06	193
PLS1574M PLS1574M	46.7	47.9	1.2	0.49	239
PLS1575M	40.7	9.1	4.9	1.25	78
PLS1575M	15.7	19.2	3.5	0.72	150
PLS1575M	30.7	36.2	5.5	1.13	188
PLS1576M	1.1	11.4	10.3	1.37	170
PLS1576M	13.6	16.5	2.9	0.87	198
PLS1576M	20.4	28.2	7.8	1.56	234
PLS1578G	70.8	71.8	1.1	2.88	147
PLS1578G	74.1	99.0	25.0	1.78	54
PLS1578G	103.0	109.0	6.0	1.98	53
PLS1578G	112.0	117.0	5.0	1.82	41
PLS1578G	133.0	134.2	1.2	1.86	44
PLS1581G	6.7	20.8	14.1	1.82	101
PLS1583M	4.8	10.4	5.5	1.37	179
PLS1583M	12.6	16.3	3.8	1.51	177
PLS1583M	19.0	27.2	8.2	0.90	122
PLS1584M	4.3	9.7	5.4	0.93	209
PLS1584M	11.8	28.3	16.5	1.98	224

APPENDIX 2 -	- DRILL HOLE INTERCEPTS	continued
---------------------	-------------------------	-----------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1585M	0.0	11.2	11.2	1.49	257
PLS1585M	16.2	24.9	8.6	1.04	216
PLS1585M	27.0	28.1	1.1	1.20	452
PLS1586M	13.0	43.9	30.9	1.88	168
PLS1587M	5.0	15.0	10.0	1.02	371
PLS1588M	24.5	57.4	32.9	1.59	189
PLS1588M	64.0	65.1	1.1	2.26	425
PLS1589M	73.1	79.2	6.1	1.11	146
PLS1589M	82.2	115.3	33.1	1.47	103
PLS1589M	117.4	159.2	41.8	1.33	86
PLS1590M	19.0	35.4	16.4	1.29	77
PLS1590M	48.4	49.5	1.1	0.51	62
PLS1591M	1.0	9.2	8.2	0.92	64
PLS1591M	13.5	18.0	4.6	0.32	37
PLS1592M	0.0	6.3	6.3	1.21	290
PLS1592M	14.9	15.9	1.0	0.53	144
PLS1593M	10.6	14.6	4.0	0.59	71
PLS1594M	14.8	57.4	42.6	1.92	52
PLS1596M	24.4	50.3	25.9	1.28	58
PLS1596M	61.4	62.4	1.0	1.01	17
PLS1597M	14.7	18.8	4.1	1.14	56
PLS1597M	34.0	35.9	1.9	0.86	50
PLS1599M	0.0	12.8	12.8	1.17	43
PLS1618	11.0	21.0	10.0	1.22	154
PLS1619	35.0	36.0	1.0	0.53	216
PLS1619	39.0	40.0	1.0	0.92	233
PLS1620	53.0	58.0	5.0	1.15	213
PLS1680	88.0	90.0	2.0	1.47	31
PLS1680	97.0	101.0	4.0	1.80	67
PLS1681	108.0	109.0	1.0	0.50	42
PLS1683	135.0	146.0	11.0	1.71	44
PLS1684	133.0	134.0	1.0	1.87	63
PLS1684	138.0	152.0	14.0	1.89	51
PLS1685	143.0	153.0	10.0	1.24	59
PLS1685	156.0	163.0	7.0	1.50	58
PLS1685	382.0	383.0	1.0	1.33	72
PLS1685	386.0	388.0	2.0	0.78	43
PLS1686	166.0	182.0	16.0	1.78	48
PLS1691DT	47.0	52.0	5.0	0.52	199
PLS1691DT	72.0	75.0	3.0	1.20	211
PLS1691DT	106.0	110.0	4.0	0.97	518
PLS1691DT	120.0	132.0	12.0	0.98	234
PLS1691DT	138.0	156.0	18.0	1.58	252
PLS1691DT	173.0	178.0	5.0	1.65	250
PLS1691DT	181.0	184.0	3.0	0.55	169
PLS1691DT	189.0	193.0	4.0	1.72	237
PLS1691DT	239.0	240.0	1.0	1.27	73
PLS1691DT	246.0	249.0	3.0	0.97	105
PLS1691DT	269.0	271.0	2.0	1.12	128
PLS1691DT	336.0	355.0	19.0	2.19	416
PLS1691DT	372.9	388.9	16.0	1.75	225
PLS1691DT	394.8	402.8	8.0	1.98	104
PLS1691DT	410.3	424.8	14.4	1.77	176
PLS1691DT	429.9	445.0	15.1	1.67	99
PLS1691DT	465.0	467.0	2.0	1.99	193
PLS1691DT	480.0	481.9	1.9	2.37	387
PLS1691DT	488.1	492.2	4.1	1.73	168
PLS1691DT	514.4	516.8	2.4	1.41	44
PLS1692DT	18.0	20.0	2.0	1.35	800
PLS1692DT	50.0	55.0	5.0	1.43	310

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1692DT	64.0	70.0	6.0	1.94	205
PLS1692DT	89.0	99.0	10.0	1.37	281
PLS1692DT	102.0	108.0	6.0	0.73	47
PLS1692DT	130.0	134.0	4.0	0.96	111
PLS1692DT	138.0	144.0	6.0	1.66	345
PLS1692DT	159.0	162.0	3.0	1.15	191
PLS1692DT	194.0	199.0	5.0	1.21	123
PLS1692DT	224.0	225.0	1.0	0.93	109
PLS1692DT	269.7	280.0	10.3	1.51	165
PLS1692DT	290.0	305.4	15.4	0.81	131
PLS1692DT	309.0	310.0	1.0	1.22	242
PLS1692DT	334.0	342.0	8.0	1.48	133
PLS1692DT	362.0	367.0	5.0	1.62	69
PLS1692DT	387.0	397.8	10.9	1.61	112
PLS1692DT	401.8	408.7	6.9	1.81	93
PLS1692DT	413.0	418.0	5.0	1.32	66
PLS1693DT	38.0	40.0	2.0	0.82	269
PLS1693DT	56.0	59.0	3.0	1.05	332
PLS1693DT	96.0	98.0	2.0	1.92	298
PLS1693DT	109.0	120.0	11.0	1.39	135
PLS1693DT	130.0	150.0	20.0	1.31	152
PLS1693DT	162.0	169.0	7.0	1.07	480
PLS1693DT	178.0	182.0	4.0	1.74	193
PLS1693DT	203.0	207.0	4.0	1.41	155
PLS1693DT	223.0	231.0	8.0	0.99	136
PLS1693DT	275.8	277.9	2.0	2.16	265
PLS1693DT	318.8	338.4	19.6	1.68	140
PLS1693DT	352.4	358.0	5.6	1.98	159
PLS1693DT	372.2	376.4	4.2	1.74	179
PLS1693DT	378.7	394.3	15.7	1.83	102
PLS1693DT	408.0	420.3	12.3	1.54	106
PLS1693DT	435.9	438.1	2.2	1.72	148
PLS1693DT	451.2	459.9	8.7	1.29	108
PLS1693DT	470.0	488.0	18.0	1.39	80
PLS1694DT	45.0	46.0	1.0	1.27	225
PLS1694DT	77.0	79.0	2.0	0.80	227
PLS1694DT	155.6	166.4	10.8	1.54	354
PLS1694DT	248.8	250.0	1.2	1.72	93
PLS1694DT	303.8	308.2	4.4	2.01	251
PLS1695DT	36.0	39.0	3.0	2.28	273
PLS1695DT	43.0	44.0	1.0	1.22	190
PLS1695DT	66.0	70.0	4.0	1.68	215
PLS1695DT	92.0	95.0	3.0	1.34	367
PLS1695DT	103.0	111.0	8.0	1.78	203
PLS1695DT	133.7	143.6	9.9	1.97	241
PLS1695DT	146.8	152.0	5.2	1.83	231
PLS1695DT	170.7	172.7	2.0	2.39	352
PLS1695DT	175.8	179.8	4.0	1.41	298
PLS1695DT	191.1	193.0	1.9	0.81	185
PLS1695DT	221.6	224.0	2.4	2.09	182
PLS1695DT	243.7	245.9	2.1	1.22	225
PLS1695DT	305.8	315.0	9.2	1.12	142
PLS1695DT	323.3	331.0	7.7	1.77	230
PLS1695DT	357.1	368.0	11.0	1.12	126
PLS1695DT	385.0	387.7	2.7	1.13	99
PLS1695DT	409.1	424.0	14.9	1.77	132
PLS1696G	3.5	21.3	17.8	1.76	238
PLS1696G	23.5	32.5	9.0	1.61	181
PLS1697G	63.2	90.2	27.0	1.33	68
PLS1697G	93.9	97.0	3.1	0.93	56

APPENDIX 2 -	- DRILL HOLE	INTERCEPTS	continued
---------------------	--------------	-------------------	-----------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1701M	0.0	10.6	10.6	1.42	60
PLS1703M	0.0	16.3	16.3	1.92	62
PLS1703M	18.9	28.8	10.0	1.32	36
PLS1704M	2.3	6.0	3.7	1.24	81
PLS1705M	0.0	24.9	24.9	1.81	88
PLS1706M	0.0	4.7	4.7	1.98	37
PLS1706M	7.0	8.7	1.7	1.02	31
PLS1706M	28.9	38.5	9.7	2.09	62
PLS1708M	0.0	20.8	20.8	1.58	50
PLS1709M	5.4	6.6	1.2	1.39	34
PLS1709M	34.5	43.4	9.0	1.41	78
PLS1710M	3.4	21.6	18.3	1.30	74
PLS1711M	10.5	22.4	12.0	1.28	60
PLS1712M	11.7	18.1	6.5	1.32	54
PLS1712M	35.0	36.4	1.3	2.19	91
PLS1712M	48.3	49.6	1.4	1.47	54
PLS1712M	67.1	81.9	14.8	1.67	66
PLS1714M	6.0	7.1	1.1	0.85	5
PLS1714M	10.3	17.0	6.7	1.10	98
PLS1714M	28.6	36.7	8.2	1.36	153
PLS1715M	4.5	13.0	8.5	1.64	104
PLS1715M	26.8	36.3	9.5	2.13	76
PLS1715M	44.9	55.3	10.4	1.45	91
PLS1716M	10.0	15.6	5.7	1.37	218
PLS1716M	35.4	40.6	5.2	1.71	76
PLS1716M	55.3	59.9	4.6	1.43	124
PLS1710M PLS1717M	6.0	14.1	8.1	1.43	59
PLS1717M	25.5	28.6	3.1	0.72	77
PLS1718M	15.0	23.6	8.6	1.51	63
PLS1718M	26.7	29.0	2.3	0.71	9
PLS1719M	20.7	33.8	13.6	1.35	96
PLS1720M	3.0	7.6	4.6	1.02	110
PLS1720M	19.7	26.9	7.2	1.64	210
PLS1720M	49.0	55.3	6.3	1.42	240
PLS1721M	1.7	3.0	1.4	1.90	240
	5.4	13.2	7.8	1.88	302
PLS1721M PLS1721M	18.0	25.8	7.8	1.63	204
	62.0	81.7	19.7		148
PLS1721M PLS1723M	21.6	31.5	19.7	<u>1.59</u> 2.14	207
PLS1723M	41.7	51.0	9.3	1.40	159
	53.5		9.3	1.40	248
PLS1723M	308.0	67.6			
PLS1781DT PLS1781DT	308.0	<u>318.0</u> 384.5	10.0 2.4	<u>1.01</u> 0.55	101 248
	412.2		3.4	1.02	69
PLS1781DT PLS1781DT		415.7			
PLS1781DT PLS1781DT	421.3 461.6	<u>423.2</u> 462.6	1.9 1.0	<u>1.16</u> 1.22	95
PLS1781DT PLS1781DT	461.6	462.6			14
	465.7		2.0	0.80	44
PLS1781DT		475.8	4.8	0.44	
PLS1781DT	482.0	483.0	1.0	0.75	31
PLS1781DT	486.1	487.1	1.0	0.53	1
PLS1781DT PLS1782DT	526.5 187.0	<u>531.2</u> 188.0	4.7 1.0	0.58 1.56	26 180
PLS1782DT PLS1782DT	230.0	232.0 283.0	2.0	1.64	93
	279.0		4.0	0.94	202
PLS1782DT	286.0	288.0	2.0	0.90	180
PLS1782DT	293.0	296.0	3.0	2.21	105
PLS1782DT	328.0	331.0	3.0	0.97	110
PLS1782DT	380.4	386.0	5.6	1.89	87
PLS1782DT	397.1	400.0	2.9	1.24	86
PLS1782DT	410.0	429.7	19.7	1.45	58

Ta₂O₅ (ppm)

458.0 PLS1782DT 435.9 22.1 1.52 145 PLS1782DT 463.1 466.8 143 3.6 1.38 PLS1782DT 476.8 495.4 18.6 1.20 190 PLS1782DT 540.8 3.2 145 544.0 1 92 PLS1782DT 559.6 562.6 3.1 0.64 185 PLS1782DT 60 583.7 589.0 5.3 0.66 PLS1783DT 236.0 238.0 2.0 0.81 143 PLS1783DT 284.0 286.0 2.0 0.93 224 PLS1783DT 387.0 388.0 1.0 0.62 204 PLS1783DT 458.0 459.0 1.0 0.70 74 PLS1784 161.0 111 160.0 1.0 0.60 PLS1784 137 183.0 190.0 7.0 1.22 PLS1784 271.0 40 267.0 1 82 56 PLS1784 321.0 323.0 2.0 0.96 105 PI S1784 326.0 335.0 90 1 20 30 PLS1784 410.0 416.0 6.0 1.36 169 PLS1784 423.0 424.0 0.97 67 1.0 PLS1784 430.0 452.0 22.0 1.25 56 PLS1785 72.0 73.0 1.0 0.55 1 PLS1785 170.0 175.0 5.0 1.36 116 PLS1785 197.0 206.0 9.0 1.03 135 PLS1786DT 194.0 195.0 1.0 0.53 82 PLS1786DT 278.0 281.0 3.0 0.64 24 PLS1786DT 285.0 288.0 3.0 0.64 80 PLS1786DT 322.0 19.0 1.56 104 303.0 PLS1786DT 338.0 340.0 2.0 0.57 35 0.68 PLS1786DT 345.0 2.0 11 343.0 PLS1786DT 376 0 20 42 374 0 1 24 PLS1786DT 396.0 403.0 7.0 1.64 60 PLS1786DT 407.0 1.0 0.52 408.0 76 PLS1786DT 444.0 456.0 12.0 1 05 108 PLS1786DT 492.0 493.0 1.0 0.83 59 PLS1786DT 530.0 1.21 524.0 6.0 61 PLS1786DT 535.7 537.7 2.0 0.78 3 PLS1786DT 541.0 544.0 3.0 0.74 81 PLS1786DT 554.0 567.5 13.5 1.20 98 PLS1786DT 2.0 0.71 571.6 2 573.6 PLS1786DT 609.0 612.3 3.3 0.97 91 PLS1788DT 148 0 149 0 10 1 04 261 PLS1788DT 185.0 194.0 9.0 1.99 230 PLS1788DT 225.0 227.0 2.0 1.20 580 PLS1788DT 230.0 231.0 1.0 0.74 100 PLS1788DT 264.0 270.0 6.0 0.62 76 PLS1788DT 277.0 296.0 19.0 1.33 126 PLS1788DT 310.0 311.0 1.0 0.78 193 PLS1788DT 359.0 374.0 15.0 1.46 167 PLS1788DT 439.0 445.0 6.0 1.38 65 PLS1788DT 450.0 456.0 1 25 60 89 PLS1788DT 486.0 497.0 11.0 1.81 67 PLS1788DT 523.7 533.8 10.1 1.99 87 PLS1788DT 745.2 748.5 3.3 0.96 81 PLS1789ADT 178.0 184.0 6.0 0.68 62 PLS1789ADT 240.0 256.0 16.0 0.78 84 PLS1789ADT 298.4 301.2 2.9 1.54 74 PLS1789ADT 500.0 501.0 1.0 0.60 1 PLS1789ADT 503.3 505.0 1.7 0.64 1 PLS1789ADT 12 509.0 514.8 5.8 0.80 PLS1789ADT 532.2 615.0 82.8 1.46 115

Thickness (m)

Li₂O (%)

APPENDIX 2 – DRILL HOLE INTERCEPTS continued Depth From (m)

Depth To (m)

Hole ID

Note: All downhole drill intercepts post ASX Resource Release 7 August 2023. Intercepts are reported with a 0.5% Li₂O cut-off. Depth and thickness is rounded to one decimal and Li₂O grades to two decimals.

655.0

668.0

37.3

2.0

1 56

1.21

617.8

666.0

PI S1789ADT

PLS1789ADT

70

214

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1790	8.0	14.0	6.0	1.98	174
PLS1790	20.0	26.0	6.0	1.14	126
PLS1790	50.0	60.0	10.0	1.30	135
PLS1790	81.0	84.0	3.0	0.55	154
PLS1790	97.0	99.0	2.0	1.33	300
PLS1790	114.0	116.0	2.0	0.95	113
PLS1790	139.0	141.0	2.0	1.38	188
PLS1790	157.0	158.0	1.0	0.60	182
PLS1790	174.0	175.0	1.0	1.68	328
PLS1790	205.0	222.0	17.0	1.53	240
PLS1790	236.0	241.0	5.0	1.85	135
PLS1790	253.0	254.0	1.0	1.64	131
PLS1790	275.0	277.0	2.0	0.95	141
PLS1790	287.0	292.0	5.0	1.57	187
PLS1790	309.0	310.0	1.0	0.64	56
PLS1790	334.0	341.0	7.0	1.82	136
PLS1790	344.0	347.0	3.0	2.17	109
PLS1790	351.0	357.0	6.0	2.00	75
PLS1790	389.0	391.0	2.0	0.83	111
PLS1790	396.0	397.0	1.0	0.70	23
PLS1790	420.0	421.0	1.0	0.60	133
PLS1791DT	237.0	248.0	11.0	1.80	283
PLS1791DT	263.0	266.0	3.0	1.14	316
PLS1791DT	269.0	275.0	6.0	1.07	298
PLS1791DT	301.0	304.0	3.0	1.25	281
PLS1791DT	333.0	337.0	4.0	1.31	240
PLS1791DT	367.0	368.0	1.0	1.15	344
PLS1791DT	378.0	391.0	13.0	1.69	171
PLS1791DT	401.0	404.0	3.0	1.86	142
PLS1791DT	409.0	410.0	1.0	0.58	82
PLS1791DT	440.0	452.0	12.0	1.61	186
PLS1791DT	545.1	550.3	5.3	2.47	160
PLS1791DT	556.9	557.9	1.0	1.46	215
PLS1791DT	560.2	571.0	10.9	1.53	207
PLS1791DT	576.7	580.1	3.3	1.42	87
PLS1791DT	594.6	599.6	5.0	0.88	93
PLS1791DT	605.4	608.0	2.6	0.52	203
PLS1792	99.0	101.0	2.0	0.73	159
PLS1792	104.0	105.0	1.0	0.63	166
PLS1792	118.0	121.0	3.0	1.16	380
PLS1792	159.0	161.0	2.0	1.69	317
PLS1792	166.0	188.0	22.0	1.29	198
PLS1792	191.0	202.0	11.0	1.45	277
PLS1792	213.0	216.0	3.0	1.47	382
PLS1792	271.0	273.0	2.0	1.23	201
PLS1792	281.0	284.0	3.0	2.30	147
PLS1792	377.0	382.0	5.0	1.46	127
PLS1792	385.0	415.0	30.0	1.96	145
PLS1793DT	174.0	181.0	7.0	1.21	204
PLS1793DT	271.0	273.0	2.0	1.07	87
PLS1793DT	324.0	329.0	5.0	1.20	141
PLS1793DT	499.0	500.0	1.0	1.04	73
PLS1793DT	505.0	511.0	6.0	0.59	155
PLS1793DT	557.0	566.0	9.0	0.67	53
PLS1793DT	570.8	573.1	2.3	0.90	101
PLS1793DT	620.2	623.4	3.2	1.09	106
PLS1793DT	637.0	642.4	5.4	0.70	239
PLS1793DT	651.0	660.0	9.0	0.88	130
PLS1793DT	677.4	680.4	3.0	1.25	143
PLS1794DT	25.0	26.0	1.0	0.82	531
= .					

PLS17940T 47.0 51.0 4.0 0.79 258 PLS1794DT 78.0 83.0 5.0 1.65 171 PLS1794DT 94.0 101.0 7.0 1.56 157 PLS1794DT 113.0 124.0 11.0 1.96 209 PLS1794DT 167.0 171.0 4.0 1.05 266 PLS1794DT 205.0 206.0 1.0 0.54 17 PLS1794DT 337.0 347.0 10.0 1.66 163 PLS1794DT 366.0 367.0 1.0 1.69 74 PLS1794DT 370.0 374.0 4.0 1.63 98 PLS1794DT 497.0 490.0 3.0 1.69 74 PLS1794DT 497.8 498.0 1.3 0.91 167 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 116.0 116.0 1.05 152 PLS1795DT	Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS17940T 94.0 101.0 7.0 1.56 157 PLS17940T 113.0 124.0 11.0 1.96 200 PLS17940T 205.0 206.0 1.0 0.54 17 PLS17940T 331.0 330.0 19.0 1.32 188 PLS17940T 337.0 347.0 10.0 1.66 163 PLS17940T 370.0 374.0 4.0 1.83 98 PLS17940T 370.0 374.0 4.0 1.69 147 PLS17940T 440.0 483 98 1.3 0.91 167 PLS17940T 447.8 489.1 1.3 0.91 167 144 PLS17950T 91.0 95.0 4.0 0.89 278 12.17950T PLS17950T 160.0 165.0 5.0 2.12 247 12.17950T 130.0 135.3 1363 PLS17950T 238.0 240.0 2.0 1.02 275 153.3	PLS1794DT			. ,		
PLS17940T 94.0 101.0 7.0 1.56 157 PLS17940T 113.0 124.0 11.0 1.96 200 PLS17940T 205.0 206.0 1.0 0.54 17 PLS17940T 331.0 330.0 19.0 1.32 188 PLS17940T 337.0 347.0 10.0 1.66 163 PLS17940T 370.0 374.0 4.0 1.83 98 PLS17940T 370.0 374.0 4.0 1.69 147 PLS17940T 440.0 483 98 1.3 0.91 167 PLS17940T 447.8 489.1 1.3 0.91 167 144 PLS17950T 91.0 95.0 4.0 0.89 278 12.17950T PLS17950T 160.0 165.0 5.0 2.12 247 12.17950T 130.0 135.3 1363 PLS17950T 238.0 240.0 2.0 1.02 275 153.3	PLS1794DT	78.0	83.0	5.0	1.65	171
PLS17940T 167.0 171.0 4.0 1.05 266 PLS17940T 205.0 206.0 1.0 0.54 17 PLS17940T 337.0 334.0 19.0 1.32 188 PLS17940T 337.0 347.0 10.0 1.66 163 PLS17940T 370.0 374.0 4.0 1.63 98 PLS17940T 457.0 420.0 3.0 1.69 74 PLS17940T 447.8 4891 1.3 0.91 167 PLS17940T 447.8 4891 1.3 0.91 167 PLS17950T 91.0 96.0 4.0 0.89 278 PLS17950T 1160.0 165 5.0 2.12 247 PLS17950T 160.0 165.0 1.04 299 215 PLS17950T 238.0 240.0 2.0 1.02 275 PLS17950T 268.0 275.0 6.0 0.91 130 P	PLS1794DT				1.56	157
PLS1794DT 205.0 206.0 1.0 0.54 17 PLS1794DT 311.0 330.0 19.0 1.32 188 PLS1794DT 366.0 367.0 10.0 1.66 163 PLS1794DT 370.0 374.0 4.0 1.63 98 PLS1794DT 397.0 400.0 3.0 1.69 74 PLS1794DT 477.0 22.0 2.00 129 PLS1794DT 478.8 489.1 1.3 0.91 167 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 116.0 10.4 0.89 278 PLS1795DT 1160.0 165.0 5.0 2.12 247 PLS1795DT 120.0 185.0 5.0 2.12 247 PLS1795DT 120.0 160.0 1.04 299 1.33 363 PLS1795DT 230.0 230.0 3.0 1.53 363 125	PLS1794DT	113.0	124.0	11.0	1.96	209
PLS1794DT 310 3300 190 132 188 PLS1794DT 337.0 347.0 10.0 1.66 163 PLS1794DT 370.0 374.0 4.0 1.68 163 PLS1794DT 370.0 374.0 4.0 1.68 98 PLS1794DT 415.0 437.0 22.0 2.00 129 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 176.0 192.0 16.0 1.04 299 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 <td< td=""><td>PLS1794DT</td><td>167.0</td><td>171.0</td><td>4.0</td><td>1.05</td><td>266</td></td<>	PLS1794DT	167.0	171.0	4.0	1.05	266
PLS1794DT 337.0 347.0 10.0 1.66 163 PLS1794DT 386.0 374.0 1.0 1.90 169 PLS1794DT 397.0 400.0 3.0 1.63 98 PLS1794DT 497.0 400.0 3.0 1.63 74 PLS1794DT 445.8 489.1 1.3 0.91 167 PLS1794DT 447.8 489.1 1.3 0.91 167 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 1160.0 166.0 5.0 2.12 247 PLS1795DT 230.0 233.0 3.0 1.53 383 PLS1795DT 230.0 233.0 3.0 1.63 136 PLS1795DT 228.0 240.0 2.0 1.02 275 PLS1795DT 362.0 411.0 290 2.14 156 <	PLS1794DT	205.0	206.0	1.0	0.54	17
PLS1794DT 337.0 347.0 10.0 1.66 163 PLS1794DT 366.0 367.0 1.0 1.90 169 PLS1794DT 397.0 400.0 3.0 1.63 98 PLS1794DT 397.0 400.0 3.0 1.63 74 PLS1794DT 415.0 437.0 22.0 2.00 129 PLS1794DT 447.8 489.1 1.3 0.91 167 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 1160.0 166.0 5.0 2.12 247 PLS1795DT 230.0 233.0 3.0 1.53 383 PLS1795DT 230.0 233.0 3.0 1.53 383 PLS1795DT 289.0 275.0 6.0 0.91 130 PLS1795DT 382.0 411.0 29.0 2.14 155	PLS1794DT	311.0	330.0	19.0	1.32	188
PLS1794DT 370.0 374.0 4.0 1.63 98 PLS1794DT 397.0 400.0 3.0 1.69 74 PLS1794DT 415.0 437.0 22.0 2.00 129 PLS1794DT 487.8 489.1 1.3 0.91 167 PLS1794DT 487.8 489.1 1.3 0.91 167 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 110.0 95.0 4.0 0.89 278 PLS1795DT 160.0 165.0 5.0 2.12 247 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 302.0 411.0 29.0 2.14 156 PLS1795DT 515.2 526.0 10.8 1.83 180	PLS1794DT	337.0	347.0	10.0	1.66	163
PLS1794DT 397.0 400.0 3.0 1.69 74 PLS1794DT 415.0 437.0 22.0 2.00 129 PLS1794DT 447.8 4489.1 1.3 0.91 167 PLS1794DT 447.8 4489.1 1.3 0.91 167 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 160.0 165.0 5.0 2.12 247 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 230.0 233.0 3.0 1.53 133 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 332.0 411.0 29.0 2.14 156 PLS1795DT 432.0 477.0 38.0 1.63 126	PLS1794DT	366.0	367.0	1.0	1.90	169
PLS1794DT 415.0 437.0 22.0 2.00 129 PLS1794DT 487.8 489.1 1.3 0.91 167 PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 160.0 165.0 5.0 2.12 247 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 180 PLS1795DT 515.2 526.0 10.8 1.83 180	PLS1794DT	370.0	374.0	4.0	1.63	98
PLS1794DT 487.8 489.1 1.3 0.91 167 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 160.0 165.0 5.0 2.12 247 PLS1795DT 176.0 192.0 16.0 1.04 299 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1796 73.0 74.0 1.0 1.17 188 <td< td=""><td>PLS1794DT</td><td>397.0</td><td>400.0</td><td>3.0</td><td>1.69</td><td>74</td></td<>	PLS1794DT	397.0	400.0	3.0	1.69	74
PLS1794DT 494.0 496.0 2.0 1.83 144 PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 160.0 165.0 5.0 2.12 247 PLS1795DT 176.0 192.0 16.0 1.04 299 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 289.0 275.0 6.0 0.91 130 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 1.0 1.20 156	PLS1794DT	415.0	437.0	22.0	2.00	129
PLS1795DT 91.0 95.0 4.0 0.89 278 PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 176.0 192.0 16.0 1.04 299 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 4130.0 438.0 1.63 126 44 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1796DT 576.0 580.0 4.0 0.53 40 <	PLS1794DT	487.8	489.1	1.3	0.91	167
PLS1795DT 112.0 114.0 2.0 1.05 152 PLS1795DT 160.0 165.0 5.0 2.12 247 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 439.0 477.0 38.0 1.63 122 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 30.0 31.0 1.0 1.22 331 PLS1796 320.0 320.0 4.0 1.08 85 PLS1	PLS1794DT	494.0	496.0	2.0	1.83	144
PLS1796DT 160.0 165.0 5.0 2.12 247 PLS1795DT 176.0 192.0 16.0 1.04 299 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 269.0 275.0 6.0 0.91 130 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 413.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1796DT 533.0 538.0 5.0 1.12 64 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 322.0 332.0 4.0 1.08 85 PLS	PLS1795DT	91.0		4.0	0.89	278
PLS1795DT 176.0 192.0 16.0 1.04 299 PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 288.0 240.0 2.0 1.02 275 PLS1795DT 269.0 275.0 6.0 0.91 130 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 342.0 411.0 29.0 2.14 156 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 392.0 399.0 7.0 1.32 133 PLS17	PLS1795DT	112.0	114.0		1.05	152
PLS1795DT 230.0 233.0 3.0 1.53 363 PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 269.0 275.0 6.0 0.91 130 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797	PLS1795DT	160.0	165.0	5.0	2.12	247
PLS1795DT 238.0 240.0 2.0 1.02 275 PLS1795DT 269.0 275.0 6.0 0.91 130 PLS1795DT 303.0 306.0 3.0 135 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 1.0 1.20 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 88.0 89.0 1.0 1.22 331 PLS1796 382.0 332.0 4.0 1.08 85 PLS1796 392.0 399.0 7.0 1.32 133 PLS1797DT <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PLS1795DT 269.0 275.0 6.0 0.91 130 PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 382.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PLS1795DT 303.0 306.0 3.0 1.35 175 PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 88.0 89.0 1.0 1.22 331 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PLS1795DT 382.0 411.0 29.0 2.14 156 PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1796DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 88.0 89.0 1.0 1.22 331 PLS1796 226.0 235.0 9.0 0.79 318 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT						
PLS1795DT 417.0 426.0 9.0 1.79 127 PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 226.0 225.0 9.0 0.79 318 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT 180.0 1.0 1.15 308 PLS1797DT 180.0						
PLS1795DT 439.0 477.0 38.0 1.63 126 PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 120 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 88.0 89.0 1.0 1.22 331 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT 160.0 166.0 6.0 0.95 179 PLS1797DT 199.0 204.0 5.0 1.44 169 PLS1797DT						
PLS1795DT 515.2 526.0 10.8 1.83 180 PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 88.0 89.0 1.0 1.22 331 PLS1796 226.0 235.0 9.0 0.79 318 PLS1796 322.0 339.0 7.0 1.32 133 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT 160.0 166.0 6.0 0.95 179 PLS1797DT 187.0 188.0 1.0 1.15 308 PLS1797DT 199.0 204.0 5.0 1.44 169 PLS1797DT						
PLS1795DT 533.0 538.0 5.0 1.12 64 PLS1795DT 576.0 580.0 4.0 0.53 40 PLS1796 0.0 10.0 10.0 1.20 156 PLS1796 30.0 31.0 1.0 0.54 212 PLS1796 73.0 74.0 1.0 1.17 188 PLS1796 226.0 235.0 9.0 0.79 318 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1796 328.0 332.0 4.0 1.08 85 PLS1797DT 144.0 149.0 5.0 0.84 150 PLS1797DT 187.0 188.0 1.0 1.15 308 PLS1797DT 189.0 204.0 5.0 1.44 169 PLS1797DT 221.0 237.0 16.0 1.64 315 PLS1797DT						
PLS1795DT576.0580.04.00.5340PLS17960.010.010.010.01.20156PLS179630.031.01.00.54212PLS179673.074.01.01.17188PLS179688.089.01.01.22331PLS1796226.0235.09.00.79318PLS1796328.0332.04.01.08855PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT21.0237.016.01.64315PLS1797DT221.0237.016.01.163269PLS1797DT399.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT392.0393.01.00.83223PLS1797DT440.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1798DT127.0136.09.01.31311PLS1798DT127.0136.09.01.31311PLS1798DT<						
PLS17960.010.010.01.20156PLS179630.031.01.00.54212PLS179673.074.01.01.17188PLS179688.089.01.01.22331PLS1796226.0235.09.00.79318PLS1796328.0332.04.01.0885PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT187.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT126.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>						-
PLS179630.031.01.00.54212PLS179673.074.01.01.17188PLS179688.089.01.01.22331PLS1796226.0235.09.00.79318PLS1796328.0332.04.01.0885PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT187.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT221.0237.0160.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT182.0189.07.01.15347						
PLS179673.074.01.01.17188PLS179688.089.01.01.22331PLS1796226.0235.09.00.79318PLS1796328.0332.04.01.0885PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT392.0393.01.00.83223PLS1797DT392.0393.01.00.83223PLS1797DT462.9468.96.00.9885PLS1797DT440.6505.721.21.89138PLS1797DT557.756.37.61.48111PLS1798DT127.0136.09.01.31311PLS1798DT158.0159.01.01.31311PLS1798DT158.0159.01.01.31347						
PLS179688.089.01.01.22331PLS1796226.0235.09.00.79318PLS1796322.0332.04.01.0885PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15146PLS1797DT309.0340.01.00.83270PLS1797DT339.0340.01.00.83223PLS1797DT462.9468.96.00.9885PLS1797DT462.9468.96.00.9885PLS1797DT557.7565.37.61.48111PLS1797DT557.7565.37.61.48125PLS1797DT567.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.31311PLS1798DT182.0189.07.01.15347						
PLS1796226.0235.09.00.79318PLS1796328.0332.04.01.0885PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT392.0393.01.00.83223PLS1797DT462.9468.96.00.9885PLS1797DT462.9468.96.00.9885PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.80206PLS1798DT128.0159.01.01.31311PLS1798DT						
PLS1796328.0332.04.01.0885PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.31311PLS1798DT182.0189.07.01.15347						
PLS1796392.0399.07.01.32133PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT462.9468.96.00.9885PLS1797DT444.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT144.0149.05.00.84150PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT392.0393.01.00.83223PLS1797DT392.0393.01.00.83223PLS1797DT440.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1798DT127.0136.09.01.80206PLS1798DT127.0136.09.01.31311PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT160.0166.06.00.95179PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83223PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347				-		
PLS1797DT187.0188.01.01.15308PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT158.0159.01.01.15347						
PLS1797DT199.0204.05.01.44169PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT221.0237.016.01.64315PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT462.9468.96.00.9885PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT275.0277.02.01.15269PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT442.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT309.0312.03.01.15146PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT339.0340.01.00.83270PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347				-	-	
PLS1797DT392.0393.01.00.83223PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT410.0447.037.01.81138PLS1797DT462.9468.96.00.9885PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347				-		
PLS1797DT462.9468.96.00.9885PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT484.6505.721.21.89138PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT540.6549.89.32.84125PLS1797DT557.7565.37.61.48111PLS1798DT127.0136.09.01.80206PLS1798DT158.0159.01.01.31311PLS1798DT182.0189.07.01.15347						
PLS1797DT 557.7 565.3 7.6 1.48 111 PLS1798DT 127.0 136.0 9.0 1.80 206 PLS1798DT 158.0 159.0 1.0 1.31 311 PLS1798DT 182.0 189.0 7.0 1.15 347						
PLS1798DT 127.0 136.0 9.0 1.80 206 PLS1798DT 158.0 159.0 1.0 1.31 311 PLS1798DT 182.0 189.0 7.0 1.15 347						
PLS1798DT 158.0 159.0 1.0 1.31 311 PLS1798DT 182.0 189.0 7.0 1.15 347						
PLS1798DT 182.0 189.0 7.0 1.15 347						
PLS1798DT 226.0 229.0 3.0 1.61 162						
PLS1798DT 253.0 261.0 8.0 1.97 174						
PLS1798DT 319.0 343.0 24.0 1.74 177						
PLS1798DT 391.0 405.0 14.0 1.66 94						
PLS1798DT 433.0 460.0 27.0 1.54 61						
PLS1798DT 492.0 496.0 4.0 1.38 63						
PLS1798DT 671.2 674.6 3.4 0.95 73						

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1798DT	733.0	742.0	9.0	1.35	72
PLS1798DT	763.4	765.0	1.6	0.69	93
PLS1799DT	138.0	147.0	9.0	1.71	168
PLS1799DT	180.0	185.0	5.0	2.14	251
PLS1799DT	193.0	194.0	1.0	0.52	261
PLS1799DT	206.0	214.0	8.0	0.60	54
PLS1799DT	223.0	226.0	3.0	2.00	137
PLS1799DT	270.0	278.0	8.0	1.74	212
PLS1799DT	338.0	358.0	20.0	1.72	136
PLS1799DT	387.0	389.6	2.5	1.46	214
PLS1799DT	416.4	442.0	25.6	1.75	81
PLS1799DT	446.0	453.0	7.0	1.80	150
PLS1799DT	469.8	473.7	3.9	1.39	106
PLS1799DT	485.0	498.0	13.1	1.88	90
PLS1799DT	581.8	584.3	2.5	0.90	160
PLS1799DT	654.4	655.4	1.0	0.85	17
PLS1799DT	657.9	661.5	3.6	0.60	28
PLS1799DT	695.8	697.0	1.2	0.60	1
PLS1799DT	723.4	730.6	7.2	2.07	178
PLS1799DT	741.0	747.0	6.0	0.61	79
PLS1799DT	768.1	769.2	1.1	1.71	142
PLS1800DT	149.0	151.0	2.0	0.74	171
PLS1800DT	162.0	164.0	2.0	0.92	121
PLS1800DT	182.0	185.0	3.0	1.89	191
PLS1800DT	203.0	208.0	5.0	1.45	840
PLS1800DT	258.0	263.0	5.0	0.89	166
PLS1800DT	274.0	293.0	19.0	1.62	179
PLS1800DT	360.0	374.0	14.0	1.74	117
PLS1800DT	433.0	441.0	8.0	1.86	65
PLS1800DT	475.0	484.0	9.0	1.37	76
PLS1800DT	490.3	496.4	6.2	1.96	96
PLS1800DT	541.6	543.5	1.9	1.34	98
PLS1800DT	759.1	761.0	1.9	0.85	25
PLS1800DT	764.0	765.0	1.0	0.55	23
PLS1801DT	157.0	160.0	3.0	0.92	211
PLS1801DT	188.0	193.0	5.0	1.94	182
PLS1801DT	243.0	246.0	3.0	0.91	160
PLS1801DT	252.0	240.0	8.0	1.44	141
PLS1801DT	286.0	288.0	2.0	0.93	194
PLS1801DT	302.0	309.0	7.0	1.45	128
PLS1801DT	312.0	314.0	2.0	1.30	249
PLS1801DT	407.0	412.0	5.0	1.17	76
PLS1801DT	457.0	473.0	16.0	1.83	70
PLS1801DT	507.7	516.5	8.7	1.17	74
PLS1801DT	711.0	726.5	15.5	1.66	42
PLS1806	94.0	96.0	2.0	1.35	184
PLS1808	150.0	158.0	8.0	1.51	195
PLS1808	167.0	169.0	2.0	1.60	412
PLS1808	180.0	190.0	10.0	1.00	147
PLS1808	194.0	198.0	4.0	1.30	266
PLS1808	203.0 221.0	204.0 259.0	1.0 38.0	0.72 1.17	<u>107</u> 67
PLS1808	-				
PLS1808	262.0	267.0	5.0	1.63	170
PLS1808	304.0	309.0	5.0	1.29	311
PLS1808	354.0	380.0	26.0	1.73	149
PLS1808	401.0	417.0	16.0	1.62	143
PLS1808	433.0	435.0	2.0	1.49	202
PLS1808	438.0	459.0	21.0	1.30	104
PLS1808	467.0	473.0	6.0	1.61	92
PLS1808	498.0	508.0	10.0	1.09	115

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1809DT	174.0	176.0	2.0	1.67	244
PLS1809DT	180.0	187.0	7.0	1.63	277
PLS1809DT	218.0	219.0	1.0	0.52	34
PLS1809DT	237.0	241.0	4.0	1.14	207
PLS1809DT	249.0	250.0	1.0	0.57	177
PLS1809DT	262.0	266.0	4.0	0.88	123
PLS1809DT	289.0	291.0	2.0	2.43	198
PLS1809DT	300.0	310.0	10.0	1.45	163
PLS1809DT	323.0	325.0	2.0	1.05	176
PLS1809DT	367.0	368.0	1.0	0.60	140
PLS1809DT	390.0	407.0	17.0	1.66	136
PLS1809DT	447.0	461.0	14.0	1.35	223
PLS1809DT	489.2	491.9	2.7	1.43	114
PLS1809DT	496.8	505.4	8.5	1.42	97
PLS1809DT	511.2	515.4	4.2	1.31	113
PLS1809DT	526.5	527.8	1.3	1.11	64
PLS1810	167.0	174.0	7.0	1.55	207
PLS1810	179.0	180.0	1.0	1.22	200
PLS1810	200.0	201.0	1.0	1.02	300
PLS1810	256.0	258.0	2.0	0.55	175
PLS1810	262.0	263.0	1.0	0.83	100
PLS1810	275.0	280.0	5.0	0.99	80
PLS1810 PLS1810	299.0	312.0	13.0	1.22	169
PLS1810 PLS1810	320.0	312.0	1.0	0.80	50
PLS1810 PLS1810	422.0	438.0	16.0	2.13	109
PLS1810 PLS1810	422.0	438.0	9.0	1.83	50
PLS1810 PLS1810	475.0	484.0	3.0	1.03	50
PLS1810 PLS1810	523.0	527.0	4.0	1.11	50
PLS1810	540.0	548.0	8.0	1.73	50
PLS1811DT PLS1811DT	43.0 137.0	<u>44.0</u> 144.0	1.0 7.0	0.69	<u>18</u> 338
	158.0	159.0	1.0	1.70	186
PLS1811DT PLS1811DT	193.0	197.0	4.0	1.80	289
			6.0		
PLS1811DT PLS1811DT	232.0 314.0	238.0 327.0	13.0	0.80	<u>153</u> 250
PLS1811DT PLS1811DT	314.0	354.0	3.0	1.30	301
	407.0	408.0	1.0	0.92	402
PLS1811DT					
PLS1811DT	425.0 452.7	432.0	7.0	1.25	282
PLS1811DT PLS1811DT	456.8	<u>454.7</u> 457.8	2.0 1.0	0.70	100 100
PLS1811DT PLS1811DT	450.8	462.3	2.0	0.93	100
	509.0		8.0		263
PLS1811DT PLS1811DT	524.0	517.0 525.0	1.0	<u>1.70</u> 1.11	300
PLS1811DT PLS1811DT	537.2	525.0	20.7	1.64	242
PLS1811DT PLS1811DT	600.8	605.7	4.9	0.91	317
PLS1811DT PLS1811DT	616.0	617.0	4.9	0.91	100
PLS1811DT PLS1811DT	616.0	628.0			
PLS1811DT PLS1812DT	148.0	149.0	5.7 1.0	1.37 0.53	<u>235</u> 127
		149.0			
PLS1812DT PLS1812DT	159.0 198.0	161.0	2.0 1.0	0.76 0.55	<u>103</u> 137
PLS1812D1 PLS1812DT	203.0	204.0	1.0	0.55	137
PLS1812D1 PLS1812DT		204.0	2.0		150
	228.0 348.0	379.0		0.83	88
PLS1812DT	568.4	575.9	31.0	1.14	88 87
PLS1812DT			7.5		59
PLS1812DT	653.2 11.0	659.8 14.0	6.6 3.0	<u>2.45</u> 1.30	59 170
PLS1813DT		46.0	3.0		95
PLS1813DT	35.0			0.83	
PLS1813DT	91.0	92.0	1.0	1.63	211
PLS1813DT	204.0	205.0	1.0	2.32	76
PLS1813DT	221.0	223.0	2.0	0.76	60

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1813DT	243.0	250.0	7.0	1.59	67
PLS1813DT	349.0	355.0	6.0	0.89	54
PLS1813DT	449.1	453.5	4.4	1.84	68
PLS1813DT	462.0	468.0	6.0	1.33	35
PLS1813DT	471.0	479.0	8.0	1.14	56
PLS1813DT	525.0	537.7	12.7	1.03	45
PLS1814DT	88.0	90.0	2.0	0.78	237
PLS1814DT	191.0	206.0	15.0	2.10	91
PLS1814DT	238.0	245.0	7.0	2.57	90
PLS1814DT	267.0	269.0	2.0	1.68	83
PLS1814DT	494.5	500.9	6.4	1.32	62
PLS1814DT	505.0	508.2	3.2	1.77	70
PLS1814DT	616.9	617.9	1.0	1.08	13 97
PLS1815 PLS1815	81.0 208.0	86.0 210.0	5.0 2.0	<u>1.10</u> 0.87	130
PLS1815 PLS1815	208.0	249.0	3.0	1.53	57
PLS1815 PLS1815	246.0	249.0	4.0	0.99	63
PLS1815	298.0	300.0	2.0	2.05	60
PLS1815 PLS1815	372.0	410.0	38.0	1.14	78
PLS1815 PLS1815	461.0	410.0	1.0	0.79	10
PLS1815	541.0	545.0	4.0	0.54	40
PLS1816	147.0	158.0	11.0	1.58	86
PLS1816	185.0	187.0	2.0	1.52	89
PLS1816	293.0	294.0	1.0	0.59	51
PLS1816	323.0	343.0	20.0	1.24	80
PLS1816	430.0	433.0	3.0	1.85	45
PLS1816	442.0	454.0	12.0	1.16	57
PLS1816	457.0	470.0	13.0	1.52	53
PLS1816	511.0	515.0	4.0	0.86	106
PLS1817DT	235.0	248.0	13.0	1.60	238
PLS1817DT	253.0	254.0	1.0	0.50	609
PLS1817DT	266.0	267.0	1.0	0.55	195
PLS1817DT	270.0	272.0	2.0	0.64	293
PLS1817DT	330.0	340.0	10.0	1.42	118
PLS1817DT	361.0	377.0	16.0	1.62	183
PLS1817DT PLS1817DT	480.0 505.4	<u>497.0</u> 512.4	17.0 7.0	<u>1.58</u> 1.86	106 89
PLS1817DT	515.2	523.9	8.8	1.72	75
PLS1817DT	552.7	554.0	1.3	1.63	73
PLS1817DT	569.8	577.8	8.0	1.59	79
PLS1818DT	284.0	295.0	11.0	2.14	161
PLS1818DT	298.0	301.0	3.0	1.37	283
PLS1818DT	305.0	312.0	7.0	1.75	172
PLS1818DT	318.0	319.0	1.0	0.55	232
PLS1818DT	332.0	334.0	2.0	2.22	161
PLS1818DT	364.0	367.0	3.0	1.19	221
PLS1818DT	397.0	400.0	3.0	1.10	235
PLS1818DT	410.0	419.0	9.0	2.38	167
PLS1818DT	422.0	427.0	5.0	1.77	133
PLS1818DT	439.0	460.0	21.0	2.02	301
PLS1818DT	582.3	600.0	17.7	1.48	160
PLS1818DT	615.0	626.0	11.0	0.95	126
PLS1818DT	633.0	635.6	2.6	0.52	22
PLS1819DT	336.0	338.0	2.0	0.82	153
PLS1819DT	411.0	424.0	13.0	1.39	190
PLS1819DT	470.0	477.0	7.0	0.90	109
PLS1819DT PLS1819DT	480.0 502.0	482.0 507.3	2.0 5.3	<u>1.20</u> 1.66	<u>141</u> 67
PLS1819D1 PLS1819DT	535.5	507.3	9.2	1.60	92
PLS1819DT PLS1819DT	5551.3	567.0	9.2	1.96	104
	551.5	507.0	13.7	1.50	1 104

	Dauth France (m)				T - O (mm)
Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta ₂ O₅ (ppm)
PLS1819DT	675.0	685.0	10.0	1.22	110
PLS1820DT	336.0	337.0	1.0	1.72	264
PLS1820DT	412.0	428.0	16.0	2.38	236
PLS1820DT	478.0	485.0	7.0	1.35	222
PLS1820DT	505.0	510.9	5.9	1.40	193
PLS1820DT	529.0	558.9	29.9	1.80	76
PLS1820DT	686.2	687.6	1.4	1.47	95
PLS1821DT	42.0	43.0	1.0	0.70	409
PLS1821DT	55.0	59.0	4.0	0.94	211
PLS1821DT	68.0	71.0	3.0	0.96	121
PLS1821DT	136.0	146.0	10.0	1.77	70
PLS1821DT	178.0	179.0	1.0	0.64	201
PLS1821DT	292.0	296.0	4.0	1.84	137
PLS1821DT	321.0	325.0	4.0	1.55	60
PLS1821DT	414.0	423.0	9.0	0.91	91
PLS1821DT	506.5	520.5	14.0	1.48	58
PLS1822DT	283.0	289.0	6.0	1.72	201
PLS1822DT	298.0	307.0	9.0	1.44	213
PLS1822DT	311.0	318.0	7.0	1.83	177
PLS1822DT	334.0	335.0	1.0	0.72	231
PLS1822DT	339.0	341.0	2.0	1.17	347
PLS1822DT	384.0	388.0	4.0	1.08	163
PLS1822DT	413.0	417.0	4.0	0.97	155
PLS1822DT	434.0	448.0	14.0	1.86	124
PLS1822DT	452.0	476.0	24.0	1.52	91
PLS1822DT	592.8	594.8	2.0	1.63	156
PLS1822DT	600.7	616.8	16.1	1.54	138
PLS1822DT	643.4	651.0	7.6	1.53	76
PLS1823DT	242.0	250.0	8.0	1.63	181
PLS1823DT	267.0	275.0	8.0	1.34	164
PLS1823DT	337.0	345.0	8.0	1.16	184
PLS1823DT	363.0	385.0	22.0	1.65	161
PLS1823DT	494.0	503.0	9.0	1.05	140
PLS1823DT	532.0	541.1	9.0	1.60	74
PLS1823DT PLS1823DT	598.8	607.5	8.7	1.82	82
			-	-	-
PLS1824	77.0	84.0	7.0	2.02	95
PLS1824	221.0	224.0	3.0	1.16	63
PLS1824	246.0	268.0	22.0	1.77	75
PLS1824	357.0	375.0	18.0	1.40	65
PLS1824	447.0	450.0	3.0	0.82	17
PLS1824	494.0	502.0	8.0	0.83	118
PLS1825	0.0	1.0	1.0	2.11	333
PLS1825	12.0	22.0	10.0	1.75	258
PLS1825	27.0	34.0	7.0	1.49	212
PLS1825	40.0	45.0	5.0	2.08	317
PLS1825	58.0	59.0	1.0	0.82	237
PLS1825	79.0	92.0	13.0	1.30	196
PLS1825	133.0	137.0	4.0	1.46	141
PLS1825	162.0	172.0	10.0	1.63	130
PLS1825	183.0	197.0	14.0	1.60	196
PLS1825	224.0	226.0	2.0	0.99	82
PLS1825	277.0	298.0	21.0	1.90	91
PLS1825 PLS1825		310.0		2.07	104
	302.0		8.0		
PLS1825	333.0	340.0	7.0	1.64	70
PLS1825	345.0	360.0	15.0	1.73	102
PLS1825	383.0	386.0	3.0	0.75	98
PLS1825	391.0	393.0	2.0	1.33	91
PLS1825	404.0	406.0	2.0	1.02	47
PLS1825 PLS1825	526.0 546.0	540.0 547.0	14.0	1.40 0.98	120

Depth From (m) Thickness (m) Ta₂O₅ (ppm) Hole ID Li₂O (%) Depth To (m) 148.0 PLS1826 144.0 4.0 2.32 103 PLS1826 153.0 168.0 15.0 61 1.33 PLS1826 228.0 229.0 1.73 67 1.0 PLS1826 232.0 239.0 70 76 0.87 PLS1826 322.0 328.0 6.0 1.23 77 PLS1826 68 331.0 340.0 9.0 1.44 PLS1826 346.0 355.0 9.0 1.24 50 PLS1826 393.0 419.0 26.0 1.61 52 PLS1826 445.0 447.0 2.0 1.32 166 PLS1827 4.0 13.0 9.0 1.69 161 PLS1827 22.0 30.0 8.0 1.75 160 PLS1827 33.0 1.43 46.0 13.0 276 PLS1827 1.31 439 65.0 69.0 4.0 PLS1827 76.0 84.0 8.0 1.11 101 PLS1827 87.0 2.0 0.83 89.0 1 PLS1827 125.0 126.0 1.0 1.67 110 PLS1827 161.0 10.0 1.98 148 151.0 PLS1827 180.0 185.0 5.0 1.15 124 PLS1827 200.0 204.0 4.0 1.01 152 PLS1827 213.0 214.0 1.0 0.87 171 PLS1827 272.0 312.0 40.0 1.07 65 PLS1827 326.0 335.0 9.0 1.40 78 PLS1827 341.0 355.0 14.0 1.24 101 PLS1827 383.0 384.0 1.0 0.70 1 PLS1827 400.0 4.0 0.48 20 396.0 PLS1828 77.0 78.0 10 1 35 103 PLS1828 172.0 176.0 4.0 1.02 164 PLS1828 206.0 223.0 17 0 93 183 PLS1828 289.0 295.0 6.0 0.89 16 PLS1828 301.0 304.0 3.0 0.68 1 PLS1828 329.0 331.0 2.0 1 21 89 PLS1828 383.0 394.0 11.0 1.62 99 PLS1828 406.0 416.0 10.0 1.20 43 PLS1828 472.0 483.0 11.0 0.95 59 PLS1829 13.0 21.0 8.0 1.22 163 PLS1829 31.0 35.0 4.0 0.62 211 PLS1829 254.0 259.0 228 5.0 1 47 PLS1829 343.0 344.0 1.0 0.69 63 PLS1829 5.0 1.71 418.0 423.0 122 PLS1830 23.0 26.0 3.0 1.43 498 PLS1830 51.0 56.0 5.0 1.33 267 PLS1830 68.0 75.0 7.0 1.74 185 PLS1830 93.0 108.0 15.0 1.09 170 PLS1830 128.0 131.0 3.0 0.98 410 PLS1830 140.0 143.0 3.0 1.05 450 PLS1830 156.0 158.0 2.0 0.92 257 PLS1830 193.0 198.0 5.0 1.02 173 PLS1830 227.0 230.0 3.0 0.82 102 PLS1830 276.0 290.0 14.0 0.80 104 PLS1830 297.0 10.0 1.08 102 307.0 PLS1830 310.0 311.0 1.0 1.15 203 PLS1830 341.0 358.0 17.0 1.33 103 PLS1830 370.0 376.0 6.0 1.56 69 PLS1830 7.0 119 396.0 403.0 1.28 PLS1830 407.0 426.0 19.0 1.80 110 PLS1831 138.0 3.0 0.74 92 141.0 PLS1831 158.0 1.23 144.0 14 0 61 PLS1831 162.0 163.0 1.0 0.74 1 PLS1831 79 213.0 233.0 1.04 20.0 PLS1831 248.0 251.0 3.0 0.76 40

APPENDIX 2 – DRILL HOLE INTERCEPTS continued

APPENDIX 2 –	DRILL HOLE INTERCE	PTS continued
---------------------	---------------------------	---------------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1831	334.0	380.0	46.0	1.38	64
PLS1831	414.0	430.0	16.0	0.96	54
PLS1832	83.0	99.0	16.0	1.44	98
PLS1832	104.0	109.0	5.0	1.61	191
PLS1832	139.0	156.0	17.0	1.44	152
PLS1832	172.0	176.0	4.0	0.90	34
PLS1832	188.0	191.0	3.0	1.99	117
PLS1832	228.0	236.0	8.0	0.72	174
PLS1832	242.0	246.0	4.0	0.58	84
PLS1832	250.0	261.0	11.0	1.29	68
PLS1832	264.0	319.0	55.0	1.32	123
PLS1832	325.0	330.0	5.0	0.94	18
PLS1833	58.0	65.0	7.0	1.18	190
PLS1833	77.0	80.0	3.0	1.14	240
PLS1833	108.0	109.0	1.0	1.40	760
PLS1833	120.0	127.0	7.0	1.32	353
PLS1833	151.0	173.0	22.0	1.57	175
PLS1833	192.0	197.0	5.0	1.28	252
PLS1833	210.0	214.0	4.0	1.08	196
PLS1833	240.0	242.0	2.0	1.59	240
PLS1833	261.0	262.0	1.0	0.74	288
PLS1833	322.0	346.0	24.0	1.22	171
PLS1833	351.0	369.0	18.0	1.30	145
PLS1833	387.0	400.0	13.0	1.45	117
PLS1833	405.0	420.0	15.0	1.09	124
PLS1833	428.0	435.0	7.0	0.93	151
PLS1833	462.0	480.0	18.0	1.72	103
PLS1834	90.0	94.0	4.0	0.93	159
PLS1834	108.0	109.0	1.0	1.04	103
PLS1834	119.0	122.0	3.0	1.22	144
PLS1834	149.0	150.0	1.0	1.70	82
PLS1834	163.0	164.0	1.0	1.02	225
PLS1834	174.0	175.0	1.0	1.55	140
PLS1834	235.0	237.0	2.0	1.35	112
PLS1834	261.0	271.0	10.0	1.35	98
PLS1834	279.0	301.0	22.0	1.25	88
PLS1834	308.0	321.0	13.0	1.27	205
PLS1834	361.0	369.0	8.0	1.55	71
PLS1834	382.0	386.0	4.0	0.67	84
PLS1834	418.0	424.0	6.0	0.97	76
PLS1835DT	11.0	16.0	5.0	0.95	552
PLS1835DT	28.0	32.0	4.0	1.98	237
PLS1835DT	73.0	78.0	5.0	1.62	115
PLS1835DT	99.0	115.0	16.0	1.28	137
PLS1835DT	142.0	145.0	3.0	1.29	176
PLS1835DT	224.0	233.0	9.0	1.42	122
PLS1835DT	237.0	265.0	28.0	1.46	81
PLS1835DT	279.0	285.0	6.0	1.64	124
PLS1835DT	293.0	299.0	6.0	1.16	87
PLS1835DT	313.0	315.0	2.0	1.14	73
PLS1835DT	356.0	359.0	3.0	1.44	80
PLS1835DT	439.0	443.0	4.0	1.30	101
PLS1835DT	489.0	492.0	3.0	0.85	37
PLS1835DT	534.3	550.5	16.1	1.18	86
PLS1835DT	558.3	579.5	21.2	1.50	179
PLS1835DT	581.8	585.3	3.5	0.90	39
PLS1835DT	604.2	616.5	12.4	1.25	119
PLS1835DT	625.5	627.2	1.7	1.32	74
PLS1837DT PLS1837DT	1.0	8.0	7.0	1.58	320
	14.0	17.0	3.0	1.72	256

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS1837DT	21.0	25.0	4.0	1.51	146
PLS1837DT	58.0	64.0	6.0	1.17	142
PLS1837DT	90.0	93.0	3.0	0.77	138
PLS1837DT	97.0	108.0	11.0	1.38	194
PLS1837DT	133.0	135.0	2.0	0.93	175
PLS1837DT	219.0	224.0	5.0	1.10	97
PLS1837DT	229.0	259.0	30.0	1.73	85
PLS1837DT	277.0	284.0	7.0	1.71	112
PLS1837DT	293.0	296.0	3.0	1.97	61
PLS1837DT	309.0	310.0	1.0	1.24	60
PLS1837DT	363.0	365.0	2.0	0.98	47
PLS1837DT	453.0	477.0	24.0	1.60	72
PLS1837DT	482.0	494.0	12.0	1.66	159
PLS1837DT	570.8	579.7	8.8	1.70	57
PLS1837DT	582.3	594.9	12.6	2.10	74
PLS1837DT	603.1	604.4	1.4	1.34	33
PLS1837DT	606.7	608.4	1.4	2.53	35
PLS1837DT	611.6	613.6	2.0	0.89	109
PLS1837DT	618.8	619.9	1.0	0.85	53
PLS1837D1 PLS1838	107.0	108.0	1.0	1.36	125
			-		-
PLS1839	78.0	79.0	1.0 3.0	1.08	126 161
PLS1839	115.0	118.0		1.10	
PLS1839	124.0	125.0	1.0	0.70	67
PLS1839	148.0	152.0	4.0	1.32	46
PLS1839	203.0	207.0	4.0	1.46	32
PLS1840	147.0	154.0	7.0	1.15	342
PLS1840	246.0	249.0	3.0	0.95	134
PLS1840	302.0	307.0	5.0	2.05	180
PLS1841DT	217.0	218.0	1.0	1.43	293
PLS1841DT	241.0	247.0	6.0	1.60	260
PLS1841DT	251.0	256.0	5.0	0.63	93
PLS1841DT	262.0	264.0	2.0	0.83	266
PLS1841DT	312.0	321.0	9.0	0.98	191
PLS1841DT	362.0	369.0	7.0	0.89	106
PLS1841DT	399.0	404.0	5.0	1.10	139
PLS1841DT	478.0	487.0	9.0	1.38	72
PLS1841DT	571.0	578.5	7.5	1.65	71
PLS1842DT	175.0	178.0	3.0	1.27	351
PLS1842DT	183.0	193.0	10.0	1.38	649
PLS1842DT	211.0	215.0	4.0	1.04	265
PLS1842DT	253.0	259.0	6.0	1.63	305
PLS1842DT	284.0	296.0	12.0	1.71	311
PLS1842DT	325.0	329.0	4.0	1.33	435
PLS1842DT	355.0	356.0	1.0	1.30	219
PLS1842DT	384.0	387.0	3.0	0.65	175
PLS1842DT	445.0	446.0	1.0	0.57	98
PLS1842DT	471.0	504.0	33.0	1.62	137
PLS1842DT	509.0	511.0	2.0	1.42	103
PLS1842DT	514.0	525.0	11.0	1.09	138
PLS1842DT	550.0	565.5	15.5	1.82	109
PLS1842DT	575.6	585.0	9.4	2.18	157
PLS1842DT	601.7	605.1	3.5	2.22	181
PLS1842DT	614.9	623.6	8.7	1.69	167
PLS1843DT	270.0	280.0	10.0	1.35	148
PLS1843DT	305.0	312.0	7.0	1.49	258
PLS1843DT	393.0	402.0	9.0	1.47	151
PLS1843DT	434.0	458.0	24.0	1.46	113
PLS1843DT	532.0	548.9	16.9	1.61	82
PLS1843DT	564.4	565.5	1.1	1.13	117
PLS1844	157.0	159.0	2.0	1.09	200

APPENDIX 2 -	- DRILL HOLE	INTERCEPTS	continued
---------------------	--------------	-------------------	-----------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1844	171.0	174.0	3.0	1.93	357
PLS1844	182.0	187.0	5.0	2.06	210
PLS1844	191.0	194.0	3.0	2.30	298
PLS1844	210.0	212.0	2.0	1.04	240
PLS1844	256.0	264.0	8.0	1.84	180
PLS1844	295.0	298.0	3.0	1.24	233
PLS1844	338.0	340.0	2.0	1.15	229
PLS1844	375.0	401.0	26.0	2.31	198
PLS1844	412.0	414.0	2.0	1.59	110
PLS1844	421.0	432.0	11.0	1.29	146
PLS1844	438.0	444.0	6.0	1.84	107
PLS1844	455.0	479.0	24.0	1.91	156
PLS1844	482.0	490.0	8.0	1.64	193
PLS1844	509.0	511.0	2.0	1.23	163
PLS1844	517.0	524.0	7.0	0.97	118
PLS1844	533.0	534.0	1.0	0.82	54
PLS1844	548.0	555.0	7.0	1.86	91
PLS1845	113.0	114.0	1.0	1.03	60
PLS1845	120.0	121.0	1.0	0.85	104
PLS1846	151.0	153.0	2.0	0.85	22
PLS1846 PLS1846	160.0	167.0	7.0	1.14	61
PLS1840 PLS1847	185.0	196.0	11.0	1.14	44
PLS1848DT	271.0	277.0	6.0	1.63	310
PLS1848DT	352.0	379.0	27.0	1.55	139
PLS1848DT	415.0	421.0	6.0	1.80	84
PLS1848DT	413.0	453.0	26.0	2.25	84
PLS1848DT	456.0	468.0	12.0	1.16	64
PLS1848DT	621.0	631.0	12.0	1.58	71
PLS1849	190.0	204.0	14.0	1.38	60
PLS1849 PLS1849	233.0		2.0	1.44	83
PLS1849 PLS1849	238.0	<u>235.0</u> 239.0	1.0	0.62	46
PLS1849 PLS1850	130.0	131.0	1.0	0.62	17
PLS1850 PLS1851DT	134.0 15.0	<u> 144.0</u> 20.0	10.0	0.73	67 220
			5.0		
PLS1851DT	32.0	35.0	3.0	1.48	206
PLS1851DT	39.0	43.0	4.0	1.60	248
PLS1851DT	145.0	161.0	16.0	1.10	102
PLS1851DT	334.0	337.0	3.0	1.08	142
PLS1851DT	382.0	387.0	5.0	1.70	82
PLS1851DT	408.0	419.0	11.0	0.84	65
PLS1851DT	529.7	544.1	14.4	1.49	60
PLS1852DT	248.0	249.0	1.0	1.04	283
PLS1852DT	266.0	272.0	6.0	1.49	285
PLS1852DT	321.0	327.0	6.0	1.19	185
PLS1852DT	361.0	374.0	13.0	1.30	128
PLS1852DT	402.0	408.0	6.0	1.73	129
PLS1852DT	488.0	494.0	6.0	1.73	67
PLS1852DT	585.7	589.8	4.1	1.70	71
PLS1853DT	181.0	207.0	26.0	1.66	95
PLS1853DT	315.0	316.0	1.0	0.57	88
PLS1853DT	423.0	425.0	2.0	0.91	100
PLS1854DT	240.0	252.0	12.0	1.82	159
PLS1854DT	275.0	290.0	15.0	1.12	118
PLS1854DT	355.0	363.0	8.0	1.61	162
PLS1854DT	401.0	414.0	13.0	1.92	107
PLS1854DT	473.0	484.0	11.0	1.46	154
PLS1854DT	490.0	493.0	3.0	1.62	135
PLS1854DT	542.0	548.0	6.0	2.17	106
PLS1854DT	613.1	622.4	9.3	1.42	92
PLS1856DT	45.0	48.0	3.0	1.18	344

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS1856DT	72.0	74.0	2.0	0.89	105
PLS1856DT	79.0	85.0	6.0	1.27	127
PLS1856DT	97.0	107.0	10.0	1.57	122
PLS1856DT	115.0	123.0	8.0	1.14	137
PLS1856DT	246.0	250.0	4.0	1.14	53
PLS1856DT	270.0	283.0	13.0	0.87	81
PLS1856DT	373.0	376.0	3.0	1.47	50
PLS1856DT	398.0	399.0	1.0	0.51	142
PLS1856DT	411.0	412.0	1.0	1.28	74
PLS1856DT	488.1	510.0	21.9	1.30	46
PLS1856DT	567.0	573.0	6.0	1.08	67
PLS1856DT	576.4	577.5	1.2	0.59	6
	121.0				
PLS1857	-	122.0	1.0	1.47	40
PLS1857	134.0	139.0	5.0	1.86	82
PLS1857	147.0	152.0	5.0	1.37	64
PLS1858	170.0	173.0	3.0	1.62	35
PLS1858	190.0	202.0	12.0	1.79	61
PLS1859	69.0	70.0	1.0	0.78	60
PLS1859	81.0	85.0	4.0	1.10	123
PLS1859	120.0	122.0	2.0	1.36	71
PLS1859	209.0	211.0	2.0	1.48	49
PLS1860	101.0	103.0	2.0	0.78	78
PLS1862DT	180.0	195.0	15.0	1.41	80
PLS1862DT	198.0	199.0	1.0	0.98	92
PLS1862DT	376.0	390.0	14.0	1.19	78
PLS1862DT	490.0	499.6	9.6	1.27	221
PLS1862DT	520.7	526.8	6.1	1.62	200
PLS1863DT	189.0	197.0	8.0	1.58	72
PLS1863DT	201.0	206.0	5.0	0.95	86
PLS1863DT	209.0	210.0	1.0	0.95	72
PLS1863DT	256.0	260.0	4.0	0.74	58
PLS1863DT	371.0	381.0	10.0	0.87	48
PLS1863DT	493.0	498.0	5.0	1.18	91
PLS1863DT	500.3	508.4	8.1	1.45	212
PLS1863DT	646.5	651.1	4.6	1.53	200
PLS1864DT	256.0	258.0	2.0	2.31	425
PLS1864DT	263.0	270.0	7.0	1.66	252
PLS1864DT	288.0	291.0	3.0	1.23	453
PLS1864DT	303.0	307.0	4.0	1.20	203
PLS1864DT	319.0	324.0	5.0	1.26	209
PLS1864DT	348.0	350.0	2.0	1.07	205
PLS1864DT	353.0	354.0	1.0	1.85	203
PLS1864DT PLS1864DT	358.0	361.0	3.0	1.05	187
PLS1864DT	370.0	371.0	1.0	0.72	107
PLS1864DT PLS1864DT	370.0	371.0	4.0	0.72	121
PLS1864DT	409.0	424.0	15.0	1.74	190
PLS1864DT	429.0	433.0	4.0	1.20	198
PLS1864DT	447.0	451.0	4.0	1.24	440
PLS1864DT	461.0	477.0	16.0	1.62	174
PLS1864DT	564.1	566.4	2.3	2.06	195
PLS1864DT	568.7	571.4	2.6	0.55	23
PLS1864DT	601.0	602.0	1.0	0.82	281
PLS1864DT	604.4	605.8	1.3	1.62	149
PLS1864DT	608.6	611.7	3.1	0.90	116
PLS1864DT	618.9	628.6	9.7	2.12	164
PLS1864DT	631.4	636.9	5.6	1.85	172
		047.0	1.8	1.45	148
PLS1864DT	646.1	647.9			
PLS1865DT	187.0	188.0	1.0	1.08	125

Hole ID Depth From (m) Depth To (m) Thickness (m) Li₂O (%) Ta₂O₅(ppm) PLS1865DT 222.0 225.0 3.0 2.09 268 PLS1865DT 205 230.0 233.0 3.0 1.20 PLS1865DT 242.0 246.0 4.0 1.50 194 PLS1865DT 270.0 271.0 1.0 0.98 122 PLS1865DT 290.0 293.0 3.0 1.26 206 PLS1865DT 319.0 321.0 2.0 0.91 124 PLS1865DT 237 342.0 343.0 10 1 40 PLS1865DT 0.75 205 396.0 402.0 6.0 PLS1865DT 426.0 19.0 407.0 1 81 218 PLS1865DT 438.4 444.5 6.1 1.47 300 451.7 PLS1865DT 26 1.83 449.1 336 PLS1865DT 470.4 477.8 7.4 1.79 290 PLS1865DT 32.7 482.2 514.8 1.70 283 PLS1865DT 547.7 549.4 1.7 2.04 209 PLS1865DT 554.6 557.6 3.1 1.39 159 PLS1865DT 564.2 570.0 5.9 1.52 146 PLS1866DT 96.0 98.0 2.0 1.61 868 PLS1866DT 108.0 113.0 5.0 1.46 304 PLS1866DT 133.0 134.0 1.0 0.84 266 PLS1866DT 144.0 146.0 2.0 1.17 250 PLS1866DT 174.0 178.0 4.0 1.30 240 PLS1866DT 218.0 226.0 80 0.65 163 252.0 PLS1866DT 254.0 2.0 0.96 186 PLS1866DT 171 351 0 352 0 10 1 03 PLS1866DT 400.0 409.0 9.0 1.60 132 PLS1866DT 412.0 419.0 7.0 1.54 101 PLS1866DT 452.0 457.0 5.0 1.13 116 PLS1866DT 461.0 463.0 2.0 1.03 86 PLS1866DT 472.0 475.0 3.0 2.10 65 PLS1866DT 478.0 479.0 1.0 0.94 2 PLS1866DT 110 488.0 491.0 3.0 1.48 PLS1866DT 497.0 498.0 1.0 0.65 96 PLS1867DT 10 33.0 34.0 0.93 200 PLS1867DT 109.0 110.0 1.0 0.50 200 PLS1867DT 20 116.0 118 0 0.74 250 PLS1867DT 153.0 160.0 7.0 1.33 414 PLS1867DT 12.0 1.46 304 180.0 192.0 PLS1867DT 336.0 338.0 2.0 0.57 350 PLS1867DT 361.0 385.0 24.0 1.63 283 PLS1867DT 414.0 424.0 10.0 1.07 310 PLS1867DT 448.0 471.0 23.0 1.69 235 PLS1867DT 489.0 490.0 1.0 1.06 300 PLS1867D1 537.0 538.3 1.3 0.91 178 PLS1867DT 567.9 572 9 5.0 0.82 89 PLS1868DT 199.0 200.0 1.0 0.82 383 PLS1868DT 206.0 207.0 1.0 0.61 5 PLS1868DT 256.0 257.0 1.0 1.24 160 PLS1868DT 273.0 1.87 200 267.0 6.0 PLS1868DT 298.0 318.0 20.0 1.56 312 PLS1868DT 322.0 0.62 327.0 5.0 157 PLS1868DT 387.0 391.0 4.0 1.26 193 PLS1868DT 447.0 446.0 1.0 0.65 65 PLS1868DT 473.0 474 0 12 1.0 0.54 PLS1868DT 478.0 506.0 28.0 1.38 120 PLS1868DT 537.8 1 47 564 0 26.3 113 PLS1868DT 569.0 582.0 13.0 1.64 122 PLS1868DT 611 2 615.2 40 1.65 141 PLS1868DT 2.11 78 633.3 639.1 5.8 654.2 PLS1868DT 642 5 11 7 1 4 4 122 PLS1869DT 157.0 2.0 0.85 350 155.0

APPENDIX 2 – DRILL HOLE INTERCEPTS continued

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1869DT	187.0	192.0	5.0	1.31	380
PLS1869DT	214.0	233.0	19.0	1.24	379
PLS1869DT	262.0	265.0	3.0	1.59	333
PLS1869DT	271.0	272.0	1.0	0.52	400
PLS1869DT	292.0	295.0	3.0	1.42	333
PLS1869DT	390.0	399.0	9.0	1.32	367
PLS1869DT	402.0	419.0	17.0	1.52	265
PLS1869DT	422.0	423.0	1.0	0.85	300
PLS1869DT	440.0	454.0	14.0	1.43	196
PLS1869DT	458.0	475.0	17.0	1.03	80
PLS1869DT	500.5	509.9	9.3	1.89	214
PLS1869DT	515.3	522.0	6.7	1.05	203
PLS1869DT	552.8	554.1	1.4	0.85	391
PLS1869DT	564.3	566.0	1.7	1.12	320
PLS1869DT	618.0	620.0	2.0	0.95	200
PLS1869DT	633.3	637.0	3.7	1.88	200
PLS1870	192.0	193.0	1.0	0.62	222
PLS1871	11.0	13.0	2.0	0.79	574
PLS1871	180.0	195.0	15.0	1.36	91
PLS1871	198.0	205.0	7.0	1.32	114
PLS1871	253.0	266.0	13.0	1.06	41
PLS1871	310.0	326.0	16.0	1.56	125
PLS1871	352.0	357.0	5.0	0.98	133
PLS1871	360.0	363.0	3.0	1.57	145
PLS1871	384.0	392.0	8.0	1.63	147
PLS1871	424.0	473.0	49.0	1.74	50
PLS1871	499.0	509.0	10.0	1.38	104
PLS1873	29.0	30.0	1.0	0.68	274
PLS1873	58.0	59.0	1.0	1.16	317
PLS1873	159.0	169.0	10.0	1.26	285
PLS1873	174.0	181.0	7.0	0.86	230
PLS1873	200.0	201.0	1.0	0.75	13
PLS1873	213.0	214.0	1.0	0.53	59
PLS1873	272.0	278.0	6.0	1.59	202 76
PLS1874 PLS1874	262.0 307.0	<u>267.0</u> 323.0	5.0	1.51	76
	0.0	3.0	16.0 3.0	<u>1.97</u> 0.74	186
PLS1875 PLS1875	47.0	50.0	3.0	1.41	198
PLS1875	66.0	75.0	9.0	1.99	229
PLS1875	236.0	237.0	1.0	1.04	4
PLS1875	240.0	241.0	1.0	0.91	13
PLS1875	253.0	290.0	37.0	1.47	98
PLS1875	293.0	294.0	1.0	1.55	100
PLS1875	303.0	310.0	7.0	1.19	63
PLS1875	331.0	332.0	1.0	1.39	86
PLS1875	336.0	343.0	7.0	1.30	49
PLS1875	346.0	347.0	1.0	0.69	59
PLS1875	350.0	360.0	10.0	1.07	70
PLS1875	510.0	511.0	1.0	1.34	79
PLS1876	0.0	2.0	2.0	0.79	263
PLS1876	97.0	98.0	1.0	0.78	273
PLS1876	111.0	112.0	1.0	0.56	210
PLS1876	120.0	122.0	2.0	0.52	89
PLS1876	153.0	155.0	2.0	1.09	122
PLS1876	244.0	245.0	1.0	0.50	75
PLS1876	268.0	272.0	4.0	1.70	147
PLS1876	285.0	287.0	2.0	1.08	62
PLS1876	293.0	313.0	20.0	1.57	105
PLS1876	319.0	323.0	4.0	1.24	119
PLS1876	332.0	336.0	4.0	1.42	276

APPENDIX 2 –	DRILL HOLE	INTERCEPTS	continued
---------------------	-------------------	-------------------	-----------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1876	339.0	340.0	1.0	0.60	14
PLS1876	368.0	376.0	8.0	1.53	60
PLS1876	404.0	411.0	7.0	0.86	42
PLS1877DT	119.0	123.0	4.0	1.42	182
PLS1877DT	159.0	160.0	1.0	0.62	9
PLS1877DT	220.0	224.0	4.0	1.20	141
PLS1877DT	262.0	276.0	14.0	1.18	242
PLS1877DT	296.0	299.0	3.0	0.42	37
PLS1877DT	307.0	308.0	1.0	0.99	357
PLS1877DT	418.0	425.0	7.0	0.81	114
PLS1877DT	452.5	456.0	3.5	0.71	57
PLS1877DT	459.0	463.0	4.0	0.59	88
PLS1877DT	534.0	537.6	3.6	1.54	75
PLS1878	0.0	10.0	10.0	1.98	178
PLS1878	22.0	29.0	7.0	1.31	184
PLS1878	57.0	62.0	5.0	1.02	136
PLS1878	153.0	155.0	2.0	1.29	93
PLS1878	174.0	175.0	1.0	0.68	116
PLS1878	181.0	182.0	1.0	1.66	156
PLS1878	185.0	186.0	1.0	0.57	81
PLS1878	189.0	210.0	21.0	1.71	109
PLS1878	215.0	223.0	8.0	1.51	107
PLS1878	230.0	232.0	2.0	0.85	61
PLS1878	258.0	268.0	10.0	1.32	70
PLS1878	331.0	345.0	14.0	1.89	73
PLS1878	394.0	395.0	1.0	0.77	32
PLS1878	418.0	446.0	28.0	1.30	75
PLS1878	460.0	473.0	13.0	1.76	164
PLS1878	492.0	495.0	3.0	1.40	123
PLS1878	499.0	509.0	10.0	0.98	80
PLS1879DT	151.0	157.0	6.0	1.48	947
PLS1879DT	167.0	170.0	3.0	0.48	52
PLS1879DT	179.0	181.0	2.0	1.72	287
PLS1879DT	221.0	225.0	4.0	1.37	321
PLS1879DT	274.0	283.0	9.0	1.93	217
PLS1879DT	293.0	295.0	2.0	1.76	272
PLS1879DT	304.0	308.0	4.0	1.40	226
PLS1879DT	311.0	316.0	5.0	1.43	290
PLS1879DT	335.0	338.0	3.0	0.98	302
PLS1879DT	349.0	350.0	1.0	0.63	84
PLS1879DT	403.0	408.0	5.0	0.88	229
PLS1879DT PLS1879DT	415.0	418.6	3.6	0.54	145
	424.4 481.2	425.4 491.0	1.0 9.8	0.51 0.84	50 74
PLS1879DT PLS1879DT	511.3	526.6	9.8 15.3	1.50	
PLS1879DT PLS1879DT	511.3	526.6	3.5	1.38	66 71
PLS1879DT	647.0	652.4	5.4	1.04	83
PLS1880DT	181.0	189.0	8.0	1.21	206
PLS1880DT	252.0	254.0	2.0	1.29	200
PLS1880DT	260.0	262.0	2.0	1.29	170
PLS1880DT	307.0	308.0	1.0	0.56	11
PLS1880DT	337.0	353.0	16.0	1.43	228
PLS1880DT	384.0	388.0	4.0	1.43	201
PLS1880DT	406.0	410.0	4.0	0.86	507
PLS1880DT	400.0	435.0	2.0	0.80	340
PLS1880DT	433.0	488.0	5.0	1.30	810
PLS1880DT	531.8	533.0	1.2	0.85	285
PLS1880DT	543.1	568.9	25.9	1.80	288
PLS1880DT	588.0	604.4	16.4	1.47	270
PLS1880DT	607.4	615.4	8.1	1.98	292
1 20100001	007.4	013.4	0.1	1.30	232

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS1880DT	636.7	638.7	2.0	1.29	421
PLS1880DT	651.4	661.3	9.9	1.89	257
PLS1881	5.0	17.0	12.0	1.25	132
PLS1881	21.0	26.0	5.0	0.99	158
PLS1881	29.0	33.0	4.0	0.94	259
PLS1881	45.0	47.0	2.0	1.04	91
PLS1881	61.0	63.0	2.0	0.96	131
PLS1881	203.0	225.0	22.0	1.43	60
PLS1881	257.0	279.0	22.0	1.80	60
PLS1881	368.0	369.0	1.0	0.80	45
PLS1881	395.0	398.0	3.0	0.75	53
PLS1881	480.0	500.0	20.0	1.59	57
PLS1882DT	133.0	141.0	8.0	0.87	288
PLS1882DT	220.0	225.0	5.0	1.14	269
PLS1882DT	307.0	309.0	2.0	0.90	122
PLS1882DT	316.0	319.0	3.0	0.47	18
PLS1882DT	380.2	382.9	2.7	1.77	363
PLS1882DT	454.7	461.0	6.3	0.69	142
PLS1882DT	463.4	464.5	1.1	0.59	100
PLS1882DT	488.3	502.7	14.4	0.88	227
PLS1882DT	549.4	551.0	1.6	0.88	331
PLS1882DT	554.0	556.0	2.0	1.02	300
PLS1883DT	336.0	348.0	12.0	1.82	308
PLS1883DT	421.0	424.0	3.0	1.46	233
PLS1883DT	459.0	488.0	29.0	1.71	241
PLS1883DT	573.9	580.0	6.1	1.54	268
PLS1883DT	695.3	700.2	5.0	1.03	190
PLS1884	24.0	30.0	6.0	1.23	717
PLS1884	35.0	36.0	1.0	0.62	100
PLS1884	204.0	211.0	7.0	0.44	329
PLS1884	300.0	303.0	3.0	0.72	300
PLS1884	382.0	385.0	3.0	1.03	300
PLS1885DT	270.0	271.0	1.0	2.10	800
PLS1885DT	382.0	383.0	1.0	1.12	300
PLS1885DT	484.9	511.4	26.5	1.86	253
PLS1885DT	574.3	580.3	6.0	1.15	280
PLS1885DT	711.8	714.6	2.8	1.58	265
PLS1886	35.0	42.0	7.0	0.76	357
PLS1886	51.0	59.0	8.0	1.09	250
PLS1886	69.0	74.0	5.0	1.89	280
PLS1886	110.0	113.0	3.0	0.71	367
PLS1886	177.0	179.0	2.0	1.58	400
PLS1886	240.0	241.0	1.0	0.73	500
PLS1886		269.0	18.0	1.49	339
PLS1886	251.0	269.0	3.0	1.38	339
	275.0				
PLS1886	286.0	288.0	2.0	0.73	350
PLS1886	301.0	303.0	2.0	2.03	250
PLS1886	308.0	310.0	2.0	1.25	350
PLS1886	314.0	317.0	3.0	1.19	233
PLS1886	358.0	371.0	13.0	1.65	238
PLS1886	463.0	469.0	6.0	0.90	217
PLS1887	11.0	12.0	1.0	0.57	400
PLS1887	29.0	31.0	2.0	1.58	350
PLS1887	38.0	43.0	5.0	0.93	340
PLS1887	79.0	81.0	2.0	1.01	550
PLS1887	150.0	152.0	2.0	1.15	350
PLS1887	216.0	232.0	16.0	1.95	375
PLS1887	245.0	246.0	1.0	1.20	500
1 LO 1007					
PLS1887	258.0	260.0	2.0	0.80	350

APPENDIX 2 – DRILL HOLE INTERCEPTS continued	
--	--

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1887	287.0	290.0	3.0	1.44	267
PLS1887	324.0	326.0	2.0	0.60	250
PLS1887	335.0	338.0	3.0	0.54	200
PLS1887	347.0	350.0	3.0	1.07	300
PLS1888	158.0	159.0	1.0	0.70	600
PLS1889DT	153.0	161.0	8.0	1.72	438
PLS1889DT	171.0	172.0	1.0	1.44	500
PLS1889DT	204.0	209.0	5.0	1.42	130
PLS1889DT	213.0	215.0	2.0	0.70	150
PLS1889DT	245.0	250.0	5.0	1.32	60
PLS1889DT	328.0	344.0	16.0	0.74	144
PLS1889DT	357.0	365.2	8.2	0.62	282
PLS1889DT	424.4	425.6	1.2	1.36	590
PLS1889DT	429.0	430.2	1.2	1.00	403
PLS1889DT	497.8	499.9	2.1	1.65	300
PLS1889DT	508.9	512.8	3.9	1.10	307
PLS1889DT	523.6	537.0	13.4	1.51	263
PLS1889DT	586.9	589.2	2.3	1.55	248
PLS1890	177.0	179.0	2.0	1.33	250
PLS1890	211.0	215.0	4.0	1.70	200
PLS1890	218.0	219.0	1.0	0.69	200
PLS1890	278.0	281.0	3.0	1.34	267
PLS1890	351.0	352.0	1.0	1.80	200
PLS1890	363.0	380.0	17.0	1.62	200
PLS1890	383.0	403.0	20.0	1.37	200
PLS1890	450.0	461.0	11.0	1.27	209
PLS1890	430.0	489.0	2.0	1.44	300
PLS1891DT	74.0	75.0	1.0	0.60	50
PLS1891DT	126.0	132.0	6.0	1.27	92
PLS1891DT	138.0	144.0	6.0	1.81	500
PLS1891DT	189.0	190.0	1.0	1.93	200
PLS1891DT	197.0	202.0	5.0	1.51	140
PLS1891DT	226.0	202.0	5.0	0.72	200
PLS1891DT PLS1891DT	334.0	338.0	4.0	1.32	338
PLS1891DT PLS1891DT	343.0	338.0	4.0	1.32	200
PLS1891DT PLS1891DT	351.0 449.0	363.0 460.0	12.0 11.0	<u>1.00</u> 0.88	213 132
PLS1891DT	479.0	484.5	5.5 12.4	1.31	125
PLS1891DT	531.9	544.2		1.84	110
PLS1891DT	551.7	560.5	8.8	1.81	103
PLS1891DT	566.6	590.7	24.1	1.94	94
PLS1891DT	622.4 627.0	624.5	2.0	0.71	50
PLS1891DT		633.0	6.1	1.67	183
PLS1891DT	653.6	655.1	1.6	0.80	75
PLS1891DT	660.6	663.8	3.2	0.92	145
PLS1892	145.0	149.0	4.0	1.43	250
PLS1892	153.0	154.0	1.0	0.80	200
PLS1892	196.0	197.0	1.0	0.86	200
PLS1893DT	150.0	152.0	2.0	0.83	300
PLS1893DT	165.0	171.0	6.0	1.61	383
PLS1893DT	228.0	230.0	2.0	0.68	350
PLS1893DT	234.0	237.0	3.0	0.66	167
PLS1893DT	353.0	355.0	2.0	0.98	600
PLS1893DT	374.0	375.0	1.0	1.09	400
PLS1893DT	387.0	397.0	10.0	1.62	410
PLS1893DT	469.4	471.4	2.0	1.55	50
PLS1893DT	483.0	490.4	7.4	1.60	184
PLS1893DT	520.9	524.3	3.4	1.33	206
				·	
PLS1893DT PLS1893DT PLS1893DT	537.3 570.8	540.6 583.1	3.3 12.2	1.27 1.81	366 141

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS1893DT	597.5	613.8	16.3	2.24	312
PLS1893DT	620.2	635.3	15.1	1.44	247
PLS1893DT	680.5	697.3	16.8	1.40	218
PLS1894	172.0	180.0	8.0	2.18	56
PLS1894	184.0	196.0	12.0	1.06	54
PLS1895	5.0	11.0	6.0	1.02	50
PLS1895	23.0	24.0	1.0	2.05	50
PLS1895	39.0	41.0	2.0	1.15	50
PLS1895	47.0	54.0	7.0	0.64	50
PLS1895	126.0	134.0	8.0	1.32	50
PLS1895	165.0	166.0	1.0	0.62	50
PLS1895	183.0	190.0	7.0	1.74	50
PLS1895	311.0	322.0	11.0	1.91	55
PLS1896DT	200.0	204.0	4.0	1.85	925
PLS1896DT	257.0	259.0	2.0	1.74	250
PLS1896DT	269.0	274.0	5.0	1.62	360
PLS1896DT	305.0	313.0	8.0	1.26	313
PLS1896DT	318.0	323.0	5.0	1.24	313
PLS1896DT	316.0	334.0		1.24	475
PLS1896DT PLS1896DT	326.0	334.0	8.0	1.37	320
			5.0		
PLS1896DT	419.0	422.0	3.0	0.63	300
PLS1896DT	426.0	427.0	1.0	0.93	400
PLS1896DT	499.9	519.0	19.0	2.29	296
PLS1896DT	527.2	529.5	2.3	2.05	300
PLS1896DT	538.0	539.0	1.0	0.50	100
PLS1896DT	541.2	546.2	5.0	0.70	185
PLS1896DT	590.2	614.8	24.6	1.50	266
PLS1896DT	618.9	621.7	2.8	0.60	256
PLS1896DT	628.7	631.9	3.1	0.55	208
PLS1896DT	644.7	662.5	17.7	1.47	258
PLS1897	41.0	44.0	3.0	2.06	200
PLS1897	172.0	180.0	8.0	1.71	213
PLS1898	14.0	16.0	2.0	0.57	100
PLS1898	195.0	216.0	21.0	1.51	243
PLS1898	238.0	243.0	5.0	1.89	220
PLS1899DT	124.0	131.0	7.0	0.95	514
PLS1899DT	158.0	160.0	2.0	0.67	250
PLS1899DT	212.0	214.0	2.0	0.87	300
PLS1899DT	247.0	253.0	6.0	1.16	483
PLS1899DT	281.0	300.0	19.0	0.86	211
PLS1899DT	309.0	314.0	5.0	0.52	200
PLS1899DT	337.0	345.0	8.0	1.56	388
PLS1899DT	350.0	352.0	2.0	0.69	150
PLS1899DT	355.0	356.0	1.0	0.53	100
PLS1899DT	424.5	428.0	3.5	1.39	422
PLS1899DT	430.8	436.5	5.7	1.30	357
PLS1899DT	500.3	510.8	10.5	1.14	238
PLS1899DT	527.7	530.1	2.5	1.35	340
PLS1899DT	535.3	551.2	15.9	1.28	291
PLS1899DT	596.4	603.3	6.9	1.14	378
PLS1900	0.0	15.0	15.0	0.92	200
PLS1900	36.0	37.0	1.0	0.79	200
PLS1900	49.0	62.0	13.0	1.04	238
PLS1900	226.0	227.0	1.0	1.96	300
PLS1900	233.0	249.0	16.0	1.71	225
PLS1900	252.0	253.0	1.0	0.62	100
PLS1900	284.0	290.0	6.0	1.28	200
PLS1900	293.0	294.0	1.0	0.61	100
PLS1901	3.0	9.0	6.0	1.50	58
PLS1901	16.0	19.0	3.0	1.30	50

APPENDIX 2 -	DRILL HOLE	INTERCEPTS	continued
---------------------	-------------------	-------------------	-----------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	₅ (ppm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	61
PLS1902DT 164.0 171.0 7.0 1.61 4 PLS1902DT 177.0 179.0 2.0 1.15 5 PLS1902DT 236.0 238.0 2.0 1.64 5 PLS1902DT 269.0 270.0 1.0 1.00 4 PLS1902DT 356.0 357.0 1.0 1.12 1 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 386.0 386.0 1.0 0.78 3 PLS1902DT 400.0 402.0 2.0 1.18 1 PLS1902DT 426.0 443.0 7.0 0.83 2 PLS1902DT 534.7 544.9 10.2 1.82 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 664.0 646.2 1.2 1.43 2 PLS1902DT	50
PLS1902DT 177.0 179.0 2.0 1.15 2 PLS1902DT 236.0 238.0 2.0 1.64 3 PLS1902DT 236.0 270.0 1.0 1.00 4 PLS1902DT 356.0 357.0 1.0 1.12 1 PLS1902DT 356.0 372.0 6.0 1.25 2 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 386.0 386.0 1.0 0.78 2 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 424.0 425.0 2.0 0.83 2 PLS1902DT 426.0 443.0 7.0 0.83 2 PLS1902DT 534.7 544.9 10.2 1.82 2 PLS1902DT 662.9 57.7 14.8 0.79 2 PLS1902DT 6645.0 646.2 1.2 1.43 2 PLS1902DT	96
PLS1902DT 286.0 270.0 1.0 1.64 2 PLS1902DT 269.0 270.0 1.0 1.00 44 5 PLS1902DT 356.0 357.0 1.0 1.12 1 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 376.0 1.0 0.78 2 2 PLS1902DT 365.0 386.0 1.0 0.83 4 PLS1902DT 400.0 402.0 2.0 1.18 1 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 436.0 443.0 7.0 0.83 2 2 PLS1902DT 528.9 532.6 3.7 1.23 2	186
PLS1902DT 260.0 270.0 1.0 1.00 4 PLS1902DT 350.0 351.0 1.0 0.94 6 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 365.0 386.0 1.0 0.78 2 PLS1902DT 365.0 386.0 1.0 0.78 2 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 436.0 443.0 7.0 0.83 2 PLS1902DT 450.0 452.0 2.0 0.880 2 PLS1902DT 562.9 532.6 3.7 1.23 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 664.0 616.3 8.4 1.37 2 PLS1903 10.0 11.0 1.0 1.90 2 PLS1903 <t< td=""><td>300</td></t<>	300
PLS1902DT 350.0 351.0 1.0 0.94 £ PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 377.0 378.0 1.0 0.78 2 PLS1902DT 385.0 386.0 1.0 0.78 2 PLS1902DT 385.0 386.0 1.0 0.83 4 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 436.0 443.0 7.0 0.83 2 PLS1902DT 528.9 532.6 3.7 1.23 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 608.0 616.3 8.4 1.37 2 PLS1902DT 608.0 233.0 204.0 1.0 9.8 2 PLS1903 203.0 211.0 3.0 0.54 2 1.50	350
PLS1902DT 356.0 357.0 1.0 1.12 1 PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 385.0 386.0 1.0 0.78 2 PLS1902DT 385.0 386.0 1.0 0.78 2 PLS1902DT 400.0 402.0 2.0 1.18 1 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 456.0 443.0 7.0 0.83 2 PLS1902DT 584.7 544.9 10.2 1.82 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 664.0 616.3 8.4 1.37 2 PLS1902DT 664.0 646.2 1.2 1.43 2 PLS1903 203.0 204.0 1.0 0.98 2 PLS1903 203.0 233.0 8.0 1.19 2 PLS1903 <t< td=""><td>100</td></t<>	100
PLS1902DT 366.0 372.0 6.0 1.25 2 PLS1902DT 377.0 378.0 1.0 0.78 3 PLS1902DT 385.0 386.0 1.0 0.83 4 PLS1902DT 400.0 402.0 2.0 1.18 1 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 436.0 443.0 7.0 0.83 2 2 PLS1902DT 534.7 544.9 10.2 1.82 2 2 PLS1902DT 662.9 577.7 14.8 0.79 2 2 2 PLS1902DT 645.0 646.2 1.2 1.43 2 2 2 1.43 2 2 1.43 2 2 1.43 2 2 1.43 2 1.43 2 1.43 2 1.43 2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 <td>500</td>	500
PLS1902DT 377.0 378.0 1.0 0.78 2 PLS1902DT 385.0 386.0 1.0 0.83 4 PLS1902DT 400.0 402.0 2.0 1.18 1 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 436.0 443.0 7.0 0.83 2 PLS1902DT 528.9 532.6 3.7 1.23 2 PLS1902DT 528.9 532.6 3.7 1.23 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 645.0 646.2 1.2 1.43 2 PLS1903 10.0 11.0 1.0 1.90 2 PLS1903 203.0 204.0 1.0 0.98 2 PLS1903 203.0 204.0 1.0 0.98 2 PLS1903 233.0 237.0 4.0 0.60 1.9 PLS1903 345	100
PLS1902DT 385.0 386.0 1.0 0.83 4 PLS1902DT 400.0 402.0 2.0 1.18 1 PLS1902DT 424.0 425.0 1.0 0.67 2 PLS1902DT 436.0 443.0 7.0 0.83 2 PLS1902DT 450.0 452.0 2.0 0.80 2 PLS1902DT 528.9 532.6 3.7 1.23 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 668.0 616.3 8.4 1.37 2 PLS1902DT 664.0 646.2 1.2 1.43 2 PLS1903 10.0 11.0 1.90 3 2 PLS1903 203.0 211.0 3.0 0.54 2 PLS1903 203.0 211.0 3.0 0.54 2 PLS1903 335.0 336.0 3.0 1.24 2 PLS1904DT 121.0	267
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	300
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100
PLS1902DT 450.0 452.0 2.0 0.80 2 PLS1902DT 528.9 532.6 3.7 1.23 3 PLS1902DT 534.7 544.9 10.2 1.82 3 PLS1902DT 662.9 577.7 14.8 0.79 2 PLS1902DT 608.0 616.3 8.4 1.37 3 3 PLS1903DT 645.0 646.2 1.2 1.43 3 3 PLS1903 49.0 61.0 12.0 1.50 3 3 PLS1903 203.0 204.0 1.0 0.98 3 3 PLS1903 203.0 204.0 1.0 0.98 3	300
PLS1902DT 532.6 3.7 1.23 5 PLS1902DT 534.7 544.9 10.2 1.82 3 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 608.0 616.3 8.4 1.37 3 PLS1902DT 645.0 646.2 1.2 1.43 3 PLS1903 10.0 11.0 1.0 1.90 3 PLS1903 203.0 204.0 1.0 0.98 3 PLS1903 203.0 204.0 1.0 0.98 3 PLS1903 233.0 237.0 4.0 0.60 3 PLS1903 335.0 328.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 191.0 192.0 1.0 1.62 1 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.	300
PLS1902DT 534.7 544.9 10.2 1.82 2 PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 608.0 616.3 8.4 1.37 3 PLS1902DT 645.0 646.2 1.2 1.43 3 PLS1903 10.0 11.0 1.0 1.90 3 PLS1903 203.0 204.0 1.0 0.98 9 PLS1903 203.0 204.0 1.0 0.98 9 PLS1903 233.0 237.0 4.0 0.60 9 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 344.0<	200
PLS1902DT 562.9 577.7 14.8 0.79 2 PLS1902DT 608.0 616.3 8.4 1.37 3 PLS1902DT 645.0 646.2 1.2 1.43 3 PLS1903 10.0 11.0 1.0 1.90 3 PLS1903 203.0 204.0 1.0 0.98 9 PLS1903 203.0 204.0 1.0 0.98 9 PLS1903 208.0 211.0 3.0 0.54 9 PLS1903 233.0 237.0 4.0 0.60 9 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 191.0 192.0 1.0 0.67 1 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 344.0 <td>300</td>	300
PLS1902DT 608.0 616.3 8.4 1.37 23 PLS1902DT 645.0 646.2 1.2 1.43 3 PLS1903 10.0 11.0 1.0 1.90 3 PLS1903 203.0 204.0 1.0 0.98 3 PLS1903 203.0 204.0 1.0 0.98 3 PLS1903 203.0 237.0 4.0 0.60 3 PLS1903 233.0 237.0 4.0 0.60 3 PLS1903 315.0 323.0 3.0 1.24 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 <td>321</td>	321
PLS1902DT 645.0 646.2 1.2 1.43 53 PLS1903 10.0 11.0 1.0 1.90 53 PLS1903 49.0 61.0 12.0 1.50 53 PLS1903 203.0 204.0 1.0 0.98 53 PLS1903 203.0 204.0 1.0 0.98 53 PLS1903 233.0 237.0 4.0 0.60 54 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 344.0 343.0 2.0 0.68 1 PLS1904DT 344.0 343.0 2.0 0.68 1 PLS1904DT 368.0	273
PLS1903 10.0 11.0 1.10 1.19 2 1.0 1.19 2 1.0 1.19 2 1.0 1.19 2 1.0 1.19 2 1.0 1.19 2 1.0 1.19 2 1.0 1.19 2 1.0 1.10 1.15 1.0 1.10 1.15 1.0 1.10 1.15 1.10 <th1.15< th=""> 1.10 1.15 <th< td=""><td>391</td></th<></th1.15<>	391
PLS1903 49.0 61.0 12.0 1.50 PLS1903 203.0 204.0 1.0 0.98 9 PLS1903 208.0 211.0 3.0 0.54 9 PLS1903 233.0 237.0 4.0 0.60 9 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 2 PLS1904DT 191.0 192.0 1.0 1.59 2 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 428.0 4	300
PLS1903 49.0 61.0 12.0 1.50 PLS1903 203.0 204.0 1.0 0.98 9 PLS1903 208.0 211.0 3.0 0.54 9 PLS1903 233.0 237.0 4.0 0.60 9 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 2 PLS1904DT 191.0 192.0 1.0 1.59 2 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 428.0 4	300
PLS1903 208.0 211.0 3.0 0.54 PLS1903 233.0 237.0 4.0 0.60 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 456.0 462.0 6.0 0.83 2 PLS1904DT 488.0 494.0 6.0 1.84 1 PLS1904DT 528.9 530.7 1.8	54
PLS1903 233.0 237.0 4.0 0.60 PLS1903 315.0 323.0 8.0 1.19 2 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 343.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 423.0 434.0 11.0 1.15 2 PLS1904DT 428.0 494.0 6.0 0.83 2 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT 588.9 589.9 21.0 1.32 3 PLS1904DT 588.9	50
PLS1903 315.0 323.0 8.0 1.19 22 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 488.0 494.0 6.0 0.83 2 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT	50
PLS1903 315.0 323.0 8.0 1.19 22 PLS1903 355.0 358.0 3.0 1.24 2 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 488.0 494.0 6.0 0.83 2 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT	50
PLS1903 355.0 358.0 3.0 1.24 22 PLS1904DT 121.0 122.0 1.0 0.67 1 PLS1904DT 130.0 136.0 6.0 1.30 3 PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 456.0 462.0 6.0 0.83 2 PLS1904DT 458.0 494.0 6.0 1.84 1 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 3	200
PLS1904DT 130.0 136.0 6.0 1.30 33 PLS1904DT 191.0 192.0 1.0 1.59 33 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 456.0 462.0 6.0 0.83 2 PLS1904DT 458.0 494.0 6.0 1.84 1 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 588.6 553.0 14.4 1.72 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 667.5 15.4 1.73 3 3 PLS1904DT	200
PLS1904DT 191.0 192.0 1.0 1.59 3 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 428.0 494.0 6.0 0.83 2 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT 592.1 607.5 15.4 1.73 3 PLS1904DT 627.8 629.3 1.5 1.41 6 PLS1904DT 654.5 656.7 2.2 2.05 3 2 <	100
PLS1904DT 191.0 192.0 1.0 1.59 33 PLS1904DT 196.0 201.0 5.0 1.74 1 PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 488.0 494.0 6.0 0.83 2 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 627.8 629.3 1.5 1.41 6 PLS1904DT	333
PLS1904DT 334.0 337.0 3.0 0.62 1 PLS1904DT 341.0 343.0 2.0 0.68 1 PLS1904DT 368.0 379.0 11.0 1.15 2 PLS1904DT 423.0 434.0 11.0 0.65 2 PLS1904DT 456.0 462.0 6.0 0.83 2 PLS1904DT 488.0 494.0 6.0 1.84 1 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 627.8 629.3 1.5 1.41 6 PLS1904DT 654.5 656.7 2.2 2.05 3 PLS1904DT 671.0 688.7 17.7 1.53 2 PLS1904DT	300
PLS1904DT341.0343.02.00.681PLS1904DT368.0379.011.01.152PLS1904DT423.0434.011.00.652PLS1904DT456.0462.06.00.832PLS1904DT488.0494.06.01.841PLS1904DT528.9530.71.82.133PLS1904DT538.6553.014.41.723PLS1904DT568.9589.921.01.323PLS1904DT568.9569.315.41.733PLS1904DT627.8629.31.51.416PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905225.0238.013.00.962PLS1905225.0238.04.00.922	100
PLS1904DT368.0379.011.01.152PLS1904DT423.0434.011.00.652PLS1904DT456.0462.06.00.832PLS1904DT488.0494.06.01.841PLS1904DT528.9530.71.82.133PLS1904DT538.6553.014.41.723PLS1904DT568.9589.921.01.323PLS1904DT568.9589.921.01.323PLS1904DT627.8629.31.51.416PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905225.0238.013.00.962PLS1905225.0238.013.00.922	117
PLS1904DT423.0434.011.00.652PLS1904DT456.0462.06.00.832PLS1904DT488.0494.06.01.841PLS1904DT528.9530.71.82.133PLS1904DT538.6553.014.41.723PLS1904DT568.9589.921.01.323PLS1904DT568.9589.921.01.323PLS1904DT627.8629.31.51.416PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905225.0238.013.00.962PLS1905225.0238.013.00.922	175
PLS1904DT456.0462.06.00.832PLS1904DT488.0494.06.01.841PLS1904DT528.9530.71.82.133PLS1904DT538.6553.014.41.723PLS1904DT568.9589.921.01.323PLS1904DT592.1607.515.41.733PLS1904DT627.8629.31.51.416PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905225.0238.013.00.962PLS1905225.0250.0254.04.00.922	245
PLS1904DT 488.0 494.0 6.0 1.84 1 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 592.1 607.5 15.4 1.73 3 PLS1904DT 627.8 629.3 1.5 1.41 6 PLS1904DT 654.5 656.7 2.2 2.05 3 PLS1904DT 671.0 688.7 17.7 1.53 2 PLS1904DT 703.4 704.4 1.0 0.53 2 PLS1905 146.0 159.0 13.0 0.98 2 PLS1905 218.0 220.0 2.0 1.50 2 PLS1905 225.0 238.0 13.0 0.96 2 PLS1905	200
PLS1904DT 488.0 494.0 6.0 1.84 1 PLS1904DT 528.9 530.7 1.8 2.13 3 PLS1904DT 538.6 553.0 14.4 1.72 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 568.9 589.9 21.0 1.32 3 PLS1904DT 592.1 607.5 15.4 1.73 3 PLS1904DT 627.8 629.3 1.5 1.41 6 PLS1904DT 654.5 656.7 2.2 2.05 3 PLS1904DT 671.0 688.7 17.7 1.53 2 PLS1904DT 703.4 704.4 1.0 0.53 2 PLS1905 146.0 159.0 13.0 0.98 2 PLS1905 218.0 220.0 2.0 1.50 2 PLS1905 225.0 238.0 13.0 0.96 2 PLS1905	200
PLS1904DT538.6553.014.41.7233PLS1904DT568.9589.921.01.3233PLS1904DT592.1607.515.41.7333PLS1904DT627.8629.31.51.4166PLS1904DT654.5656.72.22.0533PLS1904DT671.0688.717.71.5322PLS1904DT703.4704.41.00.5322PLS1905146.0159.013.00.9822PLS1905218.0220.02.01.5022PLS1905225.0238.013.00.9622PLS1905250.0254.04.00.9222	25
PLS1904DT568.9589.921.01.323PLS1904DT592.1607.515.41.733PLS1904DT627.8629.31.51.416PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905218.0220.02.01.502PLS1905225.0238.013.00.962PLS1905250.0254.04.00.922	338
PLS1904DT568.9589.921.01.323PLS1904DT592.1607.515.41.733PLS1904DT627.8629.31.51.416PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905218.0220.02.01.502PLS1905225.0238.013.00.962PLS1905250.0254.04.00.922	347
PLS1904DT 592.1 607.5 15.4 1.73 33 PLS1904DT 627.8 629.3 1.5 1.41 66 PLS1904DT 654.5 656.7 2.2 2.05 33 PLS1904DT 671.0 688.7 17.7 1.53 22 PLS1904DT 703.4 704.4 1.0 0.53 23 PLS1905 146.0 159.0 13.0 0.98 23 PLS1905 218.0 220.0 2.0 1.50 23 PLS1905 248.0 220.0 2.0 1.50 23 PLS1905 248.0 220.0 2.0 1.50 23 PLS1905 250.0 238.0 13.0 0.96 23 PLS1905 250.0 254.0 4.0 0.92 23	317
PLS1904DT654.5656.72.22.053PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905218.0220.02.01.502PLS1905225.0238.013.00.962PLS1905250.0254.04.00.922	342
PLS1904DT671.0688.717.71.532PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905218.0220.02.01.502PLS1905225.0238.013.00.962PLS1905250.0254.04.00.922	600
PLS1904DT671.0688.717.71.5322PLS1904DT703.4704.41.00.5322PLS1905146.0159.013.00.9822PLS1905218.0220.02.01.5022PLS1905225.0238.013.00.9622PLS1905250.0254.04.00.9222	300
PLS1904DT703.4704.41.00.532PLS1905146.0159.013.00.982PLS1905218.0220.02.01.502PLS1905225.0238.013.00.962PLS1905250.0254.04.00.922	275
PLS1905146.0159.013.00.982PLS1905218.0220.02.01.502PLS1905225.0238.013.00.962PLS1905250.0254.04.00.922	200
PLS1905 218.0 220.0 2.0 1.50 22 PLS1905 225.0 238.0 13.0 0.96 2 PLS1905 250.0 254.0 4.0 0.92 2	246
PLS1905 225.0 238.0 13.0 0.96 22 PLS1905 250.0 254.0 4.0 0.92 22	200
PLS1905 250.0 254.0 4.0 0.92 2	215
	200
PLS1905 296.0 297.0 1.0 0.55 2	200
	100
	150
PLS1905 341.0 408.0 67.0 1.56 2	206
	218
	180
	100
	173
	50
	185

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1906	143.0	145.0	2.0	0.97	300
PLS1906	174.0	176.0	2.0	0.77	350
PLS1906	203.0	216.0	13.0	2.03	338
PLS1906	239.0	242.0	3.0	0.87	300
PLS1906	278.0	286.0	8.0	0.89	250
PLS1906	303.0	305.0	2.0	1.81	200
PLS1906	325.0	338.0	13.0	1.86	246
PLS1906	344.0	357.0	13.0	1.74	208
PLS1907	9.0	19.0	10.0	1.76	440
PLS1907	60.0	67.0	7.0	1.51	200
PLS1907	89.0	104.0	15.0	1.46	353
PLS1907	114.0	118.0	4.0	1.43	275
PLS1907	143.0	146.0	3.0	1.18	333
PLS1907	223.0	235.0	12.0	1.37	275
PLS1907	242.0	252.0	10.0	2.07	210
PLS1907	266.0	282.0	16.0	1.59	231
PLS1907	293.0	296.0	3.0	0.51	167
PLS1907	310.0	315.0	5.0	1.39	220
PLS1907	318.0	319.0	1.0	0.96	100
PLS1907 PLS1907	318.0	325.0	1.0	1.23	200
PLS1907 PLS1907	360.0	363.0	3.0	1.69	150
PLS1907 PLS1908	109.0	124.0	15.0	1.55	133
PLS1908 PLS1908	134.0	140.0	6.0	1.55	83
	155.0		1.0		100
PLS1908 PLS1908	176.0	156.0 198.0	22.0	<u>1.04</u> 1.30	164
PLS1908 PLS1908	210.0	224.0	-	1.80	75
			14.0		100
PLS1908	251.0	252.0	1.0	0.77	
PLS1908	259.0	261.0	2.0	0.65	200
PLS1908	272.0	278.0	6.0	0.69	125
PLS1908	287.0	288.0	1.0	0.52	50
PLS1908	295.0	341.0	46.0	1.37	99
PLS1908	344.0	365.0	21.0	0.70	186
PLS1908	388.0	391.0	3.0	1.64	50
PLS1908	408.0	411.0	3.0	1.44	50
PLS1908	427.0	436.0	9.0	0.77	56
PLS1908	492.0	493.0	1.0	0.76	50
PLS1909DT	95.0	96.0	1.0	0.51	50
PLS1909DT	162.0	170.0	8.0	0.61	188
PLS1909DT	173.0	178.0	5.0	0.86	120
PLS1909DT	187.0	188.0	1.0	0.74	200
PLS1909DT	208.0	209.0	1.0	1.56	300
PLS1909DT	219.0	226.0	7.0	1.13	121
PLS1909DT	249.0	260.0	11.0	1.38	227
PLS1909DT	294.0	297.0	3.0	1.47	367
PLS1909DT	323.0	325.0	2.0	0.99	50
PLS1909DT	361.0	362.0	1.0	1.61	300
PLS1909DT	405.8	408.5	2.7	1.69	513
PLS1909DT	426.7	457.0	30.3	1.82	290
PLS1909DT	476.6	478.8	2.3	1.66	300
PLS1909DT	494.1	514.6	20.5	1.46	266
PLS1909DT	537.3	542.4	5.1	1.77	367
PLS1909DT	565.8	567.1	1.3	1.63	302
PLS1909DT	577.6	585.4	7.8	0.88	95
PLS1909DT	625.2	627.0	1.8	1.27	78
PLS1909DT	631.2	634.9	3.7	0.71	131
PLS1910DT	384.0	394.0	10.0	1.41	300
PLS1910DT	397.0	399.0	2.0	1.20	450
PLS1910DT	470.3	475.0	4.7	1.81	329
					520
PLS1910DT	505.8	508.0	2.2	1.73	354

APPENDIX 2 - DRILL HOLE INTERCEPTS co	ontinued
---------------------------------------	----------

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1910DT	656.0	663.9	7.9	1.92	231
PLS1911DT	200.0	206.0	6.0	1.30	367
PLS1911DT	226.0	230.0	4.0	1.03	238
PLS1911DT	250.0	253.0	3.0	1.17	367
PLS1911DT	319.0	322.0	3.0	0.57	167
PLS1911DT	330.0	332.0	2.0	0.93	200
PLS1911DT	372.0	379.0	7.0	1.09	186
PLS1911DT	435.0	436.0	1.0	1.33	200
PLS1911DT	463.0	474.0	11.0	1.75	205
PLS1911DT	477.0	490.0	13.0	1.10	181
PLS1911DT	496.0	516.8	20.8	1.33	115
PLS1911DT	541.7	554.6	12.9	0.99	77
PLS1911DT	570.0	571.1	1.1	0.50	300
PLS1912	334.0	349.0	15.0	0.78	227
PLS1912	353.0	357.0	4.0	0.78	250
PLS1913DT	102.0	104.0	2.0	1.09	150
PLS1913DT	157.0	163.0	6.0	1.25	225
PLS1913DT	171.0	174.0	3.0	1.37	150
PLS1913DT	187.0	190.0	3.0	1.19	133
PLS1913DT	197.0	203.0	6.0	1.19	225
PLS1913DT	227.0	230.0	3.0	0.98	150
PLS1913DT	253.0	254.0	1.0	1.28	700
PLS1913DT	289.0	293.0	4.0	0.38	150
PLS1913DT	342.0	343.0	1.0	1.32	200
PLS1913DT	376.0	398.0	22.0	1.45	111
PLS1913DT	430.0	432.0	2.0	1.71	75
PLS1913DT	436.0	438.0	2.0	0.87	50
PLS1913DT	452.0	458.0	6.0	1.08	67
PLS1913DT	473.0	483.0	10.0	1.13	75
PLS1913DT	507.2	508.4	1.2	0.81	353
PLS1913DT	560.6	561.8	1.2	0.81	400
PLS1914	0.0	20.0	20.0	1.59	375
PLS1914	42.0	43.0	1.0	1.08	300
PLS1914	176.0	193.0	17.0	1.22	265
PLS1914	196.0	203.0	7.0	1.40	257
PLS1914	231.0	248.0	17.0	1.82	212
PLS1914	339.0	342.0	3.0	2.30	267
PLS1914	385.0	391.0	6.0	1.78	200
PLS1914 PLS1914	409.0 452.0	428.0 474.0	19.0 22.0	<u>1.64</u> 1.76	205 205
	452.0		-		205
PLS1914 PLS1914	500.0	482.0 505.0	3.0 5.0	<u>1.37</u> 1.57	200
PLS1914 PLS1915DT	58.0	64.0	5.0 6.0	1.57	533
PLS1915DT PLS1915DT	170.0	172.0	2.0	0.67	150
PLS1915DT	206.0	208.0	2.0	1.23	450
PLS1915DT	329.0	332.0	3.0	2.29	233
PLS1915DT	335.0	342.0	7.0	1.28	64
PLS1915DT	349.0	353.0	4.0	1.18	63
PLS1915DT	391.0	393.0	2.0	1.06	50
PLS1915DT	412.0	414.0	2.0	0.67	150
PLS1915DT	439.4	443.5	4.1	1.12	134
PLS1915DT	468.1	474.6	6.5	0.92	89
PLS1915DT	500.3	516.7	16.4	1.39	99
PLS1915DT	523.6	526.8	3.2	1.40	104
PLS1915DT	532.6	544.0	11.4	1.56	118
PLS1915DT	558.0	567.2	9.2	1.12	90
		616.5	10.7	1.49	168
PLS1915DT	605.9				
PLS1915DT PLS1915DT	605.9 637.0				
PLS1915DT PLS1915DT PLS1916DT	605.9 637.0 116.0	638.8 118.0	1.8 2.0	1.24	142 600

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1916DT	185.0	191.0	6.0	1.80	417
PLS1916DT	240.0	241.0	1.0	0.96	300
PLS1916DT	248.0	250.0	2.0	0.89	350
PLS1916DT	259.0	264.0	5.0	1.89	400
PLS1916DT	315.0	316.0	1.0	0.70	300
PLS1916DT	370.0	387.0	17.0	1.56	412
PLS1916DT	405.0	410.0	5.0	1.35	300
PLS1916DT	490.2	493.6	3.4	1.08	317
PLS1916DT	547.6	554.0	6.4	1.53	283
PLS1916DT	572.4	584.2	11.8	1.43	278
PLS1916DT	588.6	593.1	4.5	0.63	282
PLS1916DT	598.6	603.0	4.4	1.04	368
PLS1916DT	634.0	647.2	13.2	1.70	268
PLS1916DT	649.6	661.5	11.9	1.42	300
PLS1916DT	674.1	679.2	5.1	2.15	402
PLS1916DT	689.3	695.7	6.4	1.67	263
PLS1910D1 PLS1917DT	150.0	152.0	2.0	0.54	50
PLS1917DT	180.0	181.0	1.0	0.60	50
PLS1917DT PLS1917DT	209.0	210.0	1.0	0.57	200
PLS1917DT PLS1917DT	348.0		5.0	1.26	
		353.0			140
PLS1917DT	455.0	461.0	6.0	1.44	75
PLS1917DT	507.7	519.0	11.3	1.67	162
PLS1917DT	523.2	537.0	13.8	1.78	158
PLS1917DT	539.2	540.3	1.1	0.75	50
PLS1917DT	548.2	552.1	3.9	2.07	228
PLS1917DT	554.3	556.5	2.3	1.97	123
PLS1917DT	567.0	568.9	1.9	0.94	138
PLS1917DT	574.0	576.7	2.7	0.94	250
PLS1917DT	591.7	617.0	25.3	1.71	132
PLS1918	88.0	92.0	4.0	1.40	275
PLS1918	234.0	237.0	3.0	1.24	267
PLS1918	268.0	270.0	2.0	0.63	200
PLS1918	363.0	373.0	10.0	1.37	185
PLS1918	385.0	405.0	20.0	1.43	203
PLS1918	409.0	422.0	13.0	1.44	188
PLS1919DT	153.0	156.0	3.0	0.99	150
PLS1919DT	163.0	173.0	10.0	1.70	160
PLS1919DT	206.0	208.0	2.0	1.24	250
PLS1919DT	228.0	231.0	3.0	1.63	117
PLS1919DT	240.0	241.0	1.0	0.96	100
PLS1919DT	244.0	246.0	2.0	0.67	50
PLS1919DT	272.0	273.0	1.0	1.18	100
PLS1919DT	276.0	277.0	1.0	1.62	200
PLS1919DT	288.0	293.0	5.0	0.91	160
PLS1919DT	370.4	377.0	6.6	2.14	300
PLS1919DT	380.0	382.2	2.2	1.18	348
PLS1919DT	390.5	393.8	3.3	2.06	303
PLS1919DT	414.2	438.4	24.2	1.58	279
PLS1919DT	464.7	487.8	23.2	1.36	300
PLS1919DT	522.7	526.5	3.8	1.91	237
PLS1923	9.0	12.0	3.0	0.56	300
PLS1923	15.0	16.0	1.0	1.36	300
PLS1923	19.0	20.0	1.0	2.33	500
PLS1923	37.0	47.0	10.0	1.32	340
PLS1923	65.0	74.0	9.0	1.34	278
PLS1923	94.0	98.0	4.0	0.62	288
PLS1923	111.0	116.0	5.0	1.24	220
PLS1923	161.0	166.0	5.0	1.54	340
PLS1923	169.0	177.0	8.0	0.82	350
PLS1923	182.0	187.0	5.0	0.66	220
1 201020	102.0	107.0	0.0	0.00	

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1923	201.0	206.0	5.0	1.07	190
PLS1923	218.0	222.0	4.0	0.55	250
PLS1923	235.0	236.0	1.0	0.67	50
PLS1923	278.0	283.0	5.0	0.61	50
PLS1923	288.0	304.0	16.0	0.89	81
PLS1923	318.0	339.0	21.0	1.61	62
PLS1923	400.0	401.0	1.0	1.18	50
PLS1924	73.0	88.0	15.0	1.34	200
PLS1924	118.0	130.0	12.0	1.53	163
PLS1924	142.0	154.0	12.0	1.82	238
PLS1924	172.0	177.0	5.0	1.29	200
PLS1924	205.0	209.0	4.0	1.45	138
PLS1924	243.0	246.0	3.0	1.10	167
PLS1924	280.0	296.0	16.0	1.36	153
PLS1924	312.0	318.0	6.0	1.47	158
PLS1924	336.0	342.0	6.0	1.56	133
PLS1924	365.0	400.0	35.0	1.73	84
PLS1924	406.0	409.0	3.0	1.19	133
PLS1924	429.0	436.0	7.0	1.28	57
PLS1924	447.0	458.0	11.0	1.02	114
PLS1924	463.0	466.0	3.0	1.63	67
PLS1925DTG	18.0	21.0	3.0	1.27	50
PLS1925DTG	25.0	27.0	2.0	1.17	50
PLS1926DTG	2.0	19.0	17.0	1.28	53
PLS1926DTG	74.0	86.0	12.0	1.30	58
PLS1926DTG	90.0	95.0	5.0	1.60	50
PLS1927	253.0	256.0	3.0	1.36	50
PLS1927	263.0	274.0	11.0	0.87	73
PLS1927	346.0	350.0	4.0	2.10	50
PLS1927	368.0	369.0	1.0	0.78	50
PLS1927	384.0	392.0	8.0	1.00	56
PLS1927	453.0	456.0	3.0	1.07	100
PLS1927	459.0	460.0	1.0	0.75	50
PLS1928	16.0	18.0	2.0	2.00	400
PLS1928	50.0	54.0	4.0	1.20	250
PLS1928	62.0	71.0	9.0	1.95	206
PLS1928	98.0	112.0	14.0	1.70	229
PLS1928	132.0	142.0	10.0	1.31	390
PLS1928	151.0	156.0	5.0	1.33	340
PLS1928	190.0	195.0	5.0	1.30	320
PLS1928	226.0	227.0	1.0	0.70	200
PLS1928	231.0	232.0	1.0	0.55	300
PLS1928	275.0	288.0	13.0	1.50	377
PLS1928	291.0	292.0	1.0	0.55	200
PLS1928	300.0	312.0	12.0	1.00	300
PLS1928	321.0	329.0	8.0	0.47	250
PLS1928	332.0	336.0	4.0	0.48	300
PLS1928	353.0	389.0	36.0	1.24	250
PLS1928	392.0	397.0	5.0	0.60	200
PLS1928	411.0	412.0	1.0	0.94	300
PLS1928	420.0	422.0	2.0	0.68	150
PLS1928	428.0	448.0	20.0	1.19	235
PLS1929	198.0	199.0	1.0	1.30	400
PLS1929	218.0	220.0	2.0	1.07	400
PLS1929	280.0	281.0	1.0	0.65	300
PLS1929	311.0	315.0	4.0	1.57	200
PLS1929	415.0	417.0	2.0	0.76	300
PLS1931	110.0	111.0	1.0	0.58	600
PLS1931	268.0	270.0	2.0	1.27	350
PLS1933	185.0	186.0	1.0	0.77	400
1 201000	100.0	100.0	1.0	0.11	-00

Ta₂O₅ (ppm) Depth From (m) Thickness (m) Hole ID Depth To (m) Li₂O (%) PLS1933 333.0 1.0 0.54 500 334.0 PLS1934 89.0 7.0 0.67 286 96.0 PLS1934 127.0 136.0 9.0 0.58 300 PLS1934 139.0 3.0 0 78 142 0 233 PLS1934 335.0 349.0 14.0 1.35 193 PLS1934 2.0 150 360.0 1.02 358.0 PLS1934 407.0 420.0 13.0 1.64 119 PLS1934 525.0 530.0 5.0 1.50 60 PLS1935 24.0 25.0 1.0 0.54 300 PLS1935 39.0 41.0 2.0 0.85 400 PLS1935 156.0 4.0 152.0 1.04 375 PLS1935 167.0 100 168.0 1.0 0.52 PLS1935 184.0 186.0 20 550 1.13 PLS1935 249.0 251.0 2.0 0.67 450 PLS1935 1.0 292.0 293.0 200 0.56 PLS1935 337.0 342.0 5.0 0.94 360 PLS1935 11.0 0.70 291 383.0 394.0 PLS1935 416.0 417.0 1.0 0.66 300 PLS1936 16.0 21.0 5.0 1.37 360 PLS1936 86.0 87.0 1.0 0.54 300 PLS1936 251.0 254.0 3.0 1.08 267 PLS1936 377.0 378.0 1.0 0.58 50 PLS1936 396.0 399.0 3.0 0.96 267 PLS1938 38.0 44.0 6.0 1.57 483 PLS1938 166.0 0.61 300 165.0 1.0 PLS1938 180.0 181 0 10 0.50 500 PLS1938 210.0 214.0 4.0 1.04 375 PLS1938 232.0 234 0 20 2.00 300 PLS1938 253.0 255.0 2.0 0.64 700 PLS1938 263.0 264.0 1.0 0.50 1300 PLS1938 294.0 296.0 2.0 0.77 300 PLS1938 369.0 371.0 2.0 0.99 300 PLS1938 1.78 500 376.0 377.0 1.0 PLS1938 404.0 414.0 10.0 1.60 350 PLS1939 19.0 23.0 4.0 1.00 50 PLS1939 122.0 130.0 8.0 1.28 69 134.0 137.0 3.0 PLS1939 1 12 50 PLS1939 271.0 282.0 11.0 0.86 55 PLS1940 50 70 8.0 10 0.60 PLS1940 80.0 83.0 3.0 1.66 50 PLS1940 97.0 105.0 8.0 0.83 50 PLS1940 180.0 193.0 13.0 1.41 65 PLS1941 151.0 154.0 3.0 1.09 50 PLS1941 160.0 161.0 1.0 0.56 50 PLS1941 200.0 201.0 1.0 1.10 100 PLS1942 1.0 7.0 6.0 1.15 50 PLS1942 15.0 22.0 7.0 1.06 50 PLS1942 237.0 236.0 1.0 0.62 50 PLS1943DTG 35.0 38.0 3.0 1.26 67 PLS1943DTG 41.0 19.0 50 60.0 1.68 PLS1944 2.0 14.0 12.0 1.40 50 PLS1944 83.0 100.0 17.0 1.60 50 PLS1945 7.0 14.0 7.0 1.03 50 PLS1946DTG 123.0 131.0 8.0 188 1.84 PLS1946DTG 170.0 174.0 4.0 1.34 250 PLS1946DTG 201.0 204.0 3.0 1.77 83 PLS1946DTG 222.0 225.0 3.0 1.42 83 PLS1946DTG 262.0 263.0 1.11 50 1.0 PLS1947DTG 40 1 18 50 20.0 24.0 PLS1947DTG 45.0 48.0 3.0 0.88 50

APPENDIX 2 – DRILL HOLE INTERCEPTS continued

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS1947DTG	51.0	54.0	3.0	0.57	50
PLS1947DTG	65.0	66.0	1.0	0.63	50
PLS1947DTG	111.0	115.0	4.0	2.05	50
PLS1947DTG	158.0	173.0	15.0	1.72	60
PLS1947DTG	177.0	185.0	8.0	1.38	50
PLS1948DTG	55.0	58.0	3.0	0.86	67
PLS1950DTG	26.0	28.0	2.0	0.96	50
PLS1950DTG	76.0	85.0	9.0	1.26	50
PLS1951DTG	88.0	94.0	6.0	0.64	167
PLS1951DTG	97.0	108.0	11.0	1.17	173
PLS1951DTG	111.0	155.0	44.0	1.42	122
PLS1951DTG	162.0	164.0	2.0	1.40	50
PLS1951DTG	199.0	200.0	1.0	1.06	50
PLS1953	72.0	75.0	3.0	0.66	150
PLS1954	89.0	90.0	1.0	0.61	50
PLS1954	140.0	142.0	2.0	0.85	75
PLS1954	282.0	285.0	3.0	1.08	117
PLS1955	297.0	298.0	1.0	0.55	100
PLS1955	341.0	343.0	2.0	0.69	50
PLS1955	346.0	357.0	11.0	0.68	82
PLS1955	411.0	413.0	2.0	0.57	200
PLS1955	427.0	434.0	7.0	0.78	50
PLS1956DTG	15.0	22.0	7.0	1.50	50
PLS1956DTG	56.0	67.0	11.0	1.81	50
PLS1958DTG	82.0	108.0	26.0	1.40	185
PLS1958DTG	137.0	139.0	2.0	0.81	300
PLS1959	97.0	107.0	10.0	0.70	155
PLS1959	119.0	122.0	3.0	1.31	233
PLS1959	193.0	195.0	2.0	0.72	125
PLS1959	365.0	366.0	1.0	0.70	100
PLS1959	497.0	513.0	16.0	1.60	163
PLS1961	41.0	58.0	17.0	1.13	409
PLS1961	121.0	126.0	5.0	0.63	290

JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad	• The deposit has been sampled using a series of reverse circulation (RC) holes and diamond holes. Diamond holes drilled were originally for metallurgical sampling and checking of existing RC holes by drilling "twins". More recent diamond core tails have been drilled for resource extension evaluation.
	meaning of sampling.	• Talison Minerals Pty Ltd (Talison) conducted a 54 drill hole RC program in 2008 totaling 3,198m.
		In late 2009, Talison separated certain assets (including Pilgangoora tenements) into Global Advanced Metals Pty Ltd (GAM).
		• GAM completed 29 drill holes for a total of 2,783m in 2010 and 17 RC holes for 1,776m in 2012, prior to transferring the tenements to each of PLS and Altura Lithium Operations Pty Ltd (Altura).
		PLS completed the acquisition of Altura on 20 January 2021, later renaming it Ngungaju Lithium Operations Pty Ltd (NLO).
		• A total of 83,785m of RC drilling and 2,298m of diamond drilling were completed at NLO.
		Dakota Minerals Ltd (Dakota) drilled 63 RC holes for 5,276m and 12 diamond holes for 100m in 2016.
		 PLS completed a total of 1,712 exploration holes for 299,060m within the Pilgangoora Mining Leases from 2015 to 2025. This includes 263,020m of exploration RC drilling and 36,037m of diamond drill core.
		• Drilling completed by PLS since the Resource Estimate released to the ASX on 7 August 2023 included 84,494m of RC exploration drilling and 20,178m of diamond core.
		• PLS has completed a total of 175,224m of infill RC grade control drilling within the Pilgangoora active mining areas since 2017.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	• Talison/GAM RC holes were all sampled every metre, with samples split on the rig using a cyclone splitter. The sampling system consisted of a trailer mounted cyclone with cone splitter and dust suppression system. The cyclone splitter was configured to split the cuttings at 85% to waste (to be captured in 600mm x 900mm green plastic mining bags) and 15% to the sample port in pre-numbered,

Criteria	JORC Code explanation	Commentary
		draw-string calico sample bags (12 inch by 18 inch).
		• During RC drilling conducted by PLS in 2015 and 2016, samples were collected at 1m intervals within pegmatite zones. Additionally, sampling extended 2m to 6m into the footwall and hanging wall country rock to support waste rock characterisation studies.
		 Dakota RC samples were sampled every metre and collected using a rig- mounted cyclone splitter including a dust suppression system. Approximately 85% of the RC chips were split to 600mm x 900mm green plastic mining bags for storage and logging and 15% was captured at the sample port in draw-string calico sample bags. Diamond holes were PQ core and were twins of RC holes drilled for metallurgical purposes. Half core was used for metallurgical test work, whilst quarter core was used for assaying.
		• PLS RC holes drilled between 2014 and 2025 were sampled every metre, with samples split on the rig using a cyclone splitter. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. The cyclone splitter was configured to split the cuttings at 85% to waste. The 15% sample taken for analysis was collected from the sample port in draw-string calico sample bags (10-inch by 14-inch). Waste sample collected from 2014 to 2022 was to be captured in 600mm x 900mm green plastic mining bags. From 2023, two x 15% samples were collected from the sample port, with the first taken for analysis and the second for sieving. The remaining 60% waste sample collected was discarded.
		• All PLS diamond core (PQ, HQ, and NQ) samples were collected in plastic core trays, sequence checked, metre marked, and oriented using the base of core orientation line. Each sample was then cut longitudinally down the core axis, parallel to the orientation line where possible.
		• PLS diamond core (PQ and HQ) drilled between 2015 and 2018 was sampled by taking a 15-20mm fillet at 1m intervals within the pegmatite zones. HQ core drilled in 2023 was cut and sampled as half core. NQ was cut and sampled as half-core.
		• PLS diamond core (PQ) between 2019 and 2023 was cut longitudinally in half. Following this, one half was cut in half again (to quarter the core) and sampled into labelled calico bags based on geometallurgical boundaries with minimum sample length of 10cm and maximum of 1m for assay analysis.
		• PLS diamond core (HQ) from 2024 onwards had half core sampled into labelled calico bags with minimum interval of 30cm and maximum interval 1.2m.

Criteria	JORC Code explanation	Commentary
		• Altura's drilling sampled RC holes on 1m intervals from the beginning to end of each hole. Each 1m sample was split directly using a rig-mounted riffle splitter and then collected into a uniquely numbered calico bag. The remaining material for each 1m interval was collected directly off the cyclone into a numbered plastic bag and kept near the drill site for geological logging.
	Aspects of the determination of mineralisation that are Material to the Public Report.	• Talison/GAM holes are all RC, with samples split at the rig sent to the Wodgina site laboratory and analysed by XRF for a suite of 36 elements.
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold	• Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic Absorption Spectroscopy (AAS).
	that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	• PLS Diamond core was cut at Nagrom (2015) and IMO (2016) and then crushed and pulverised in preparation for analysis by XRF and ICP.
		 Dakota Minerals RC 1m split samples were sent to Nagrom laboratory in Perth and analysed using ICP for 5 elements (Li2O, Cs, Be, Fe and Ta) Quarter core samples were sent to SGS in Perth for analysis using XRF and ICP techniques for a suite of elements.
		• PLS RC samples from 2021 to August 2024 were sent to Nagrom laboratory in Perth and analysed for a suite of multi-elements. Analysis was completed by XRF and ICP techniques (both ICP-MS and ICP-OES).
		• PLS RC samples from September 2024 to March 2025 were sent to SGS Laboratories in Perth and analysed for a suite of multi-elements. Analysis was completed by XRF and ICP-MS and ICP-OES techniques.
		• PLS Diamond Drill Core samples from 2017 to 2025 were cut at the onsite facility and the core samples sent to Nagrom laboratory and SGS Laboratories in Perth and analysed for a suite of multi-elements. Analysis was completed by XRF and ICP techniques.
		 Altura1m RC samples were split at the rig and then sent to either LabWest or SGS laboratories for analysis by XRF and ICP techniques.
		• Altura diamond drill core sample lengths were determined by mineralisation logged in the core. Half core samples through mineralised zones were sent to the laboratory for analysis.
Drilling	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard	The drilling rig used by Talison in 2008 is not noted in any reports.
techniques	tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The 2010 drilling was completed by Australian Drilling Solutions using an Atlas Copco Explorac 220 RC truck mounted drill rig with a compressor rated to 350psi / 1200cfm and a booster rated to 800psi, with an expected 600psi down-hole. An

		PLS
Criteria	JORC Code explanation	Commentary
		auxiliary booster/compressor was not required at any point during the drilling.
		• The 2012 drilling was completed by McKay Drilling using an 8x8 Mercedes Truck-mounted Schramm T685WS rig with a Foremost automated rod-handler system and on-board compressor rated to 1,350cfm/500psi with an auxiliary booster mounted on a further 8x8 Mercedes truck and rated at 900cfm/350psi. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a trailer mounted cyclone with cone splitter and dust suppression system.
		• The PLS 2014 drilling was completed by Quality Drilling Services (QDS Kalgoorlie) using a track mounted Schramm T450 RC rig with a 6x6 truck mounted auxiliary booster & compressor. Drilling used a reverse circulation face sampling hammer with nominal 51/4" bit. The system delivered approximately 1800cfm @ 650- 700psi down hole whilst drilling.
		• The 2015 RC drilling was undertaken by Orbit Drilling (200 holes), Mt Magnet Drilling (44 holes) and Strike Drilling (11 holes). Orbit used two track mounted rigs; a Schramm T450 RC Rig, and a bigger Hydco 350 RC Rig. Mt Magnet also used a track mounted Schramm T450 RC Rig; Strike drilling used an Atlas Copco X350 RC Rig mounted on a VD3000 Morooka rubber track base with additional track mounted booster & auxiliary compressor.
		 Diamond drilling during 2015 was completed by Orbit Drilling, using a truck mounted Hydco 1200H rig, drilling HQ sized core.
		• The 2016 resource RC drilling was completed by 4 track mounted RC rigs & 2 diamond rigs. 2 Atlas Copco X350 RC rigs mounted on a rubber track mounted Morooka base were used by Strike drilling together with track mounted booster & auxiliary compressor. 2 track mounted RC rigs were also used by Mt Magnet Drilling, a Schramm T450 rig and a UDR250 rig.
		• Diamond drilling during 2016 was completed by 2 Mt Magnet Drilling rigs drilling a combination of PQ, HQ & NQ size core. A truck mounted Hydco 650 rig and support truck and a TR1000 track mounted rig & track mounted support vehicle was used.
		 Drilling undertaken over the Lynas deposit was predominantly reverse circulation drilling and undertaken by Strike Drilling. Holes range in dip from approximately 60° to vertical. Average depth of drilling is 85m and ranging from 16m to 206m. Mount Magnet Drilling using a track-mounted rig (Schramm T450) and compressor (rated 1,350 cfm/800 psi) and 6WD support truck. The drill rig utilised a reverse circulation face sampling hammer, with 138mm bit. The sampling was conducted using a rig-mounted cyclone with cone splitter and dust

Criteria	JORC Code explanation	Commentary
		suppression system.
		• Strike Drilling, using a truck-mounted KWL700 RC rig, which used a rig-mounted cyclone and cone splitter, and dust suppression system.
		• RC drilling in 2018 was completed by Strike Drilling Pty Ltd using a KWL1000 truck mounted rig and Mt Magnet Drilling Pty Ltd using an RC300 track mounted Schramm drill rig. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system.
		• Exploration RC drilling in 2021 was completed by Mt Magnet Drilling utilising an RCD300-2 track mounted drilling rig with a truck mounted booster & auxiliary compressor (900cfm/350psi) coupled to a V8 booster up to 1000psi. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system.
		 Altura drilling between 2010 and 2013 included both RC and diamond holes. Drilling was completed using a PRD2000 multipurpose rig rated at 1120 cfm @350 psi. In 2016 9 diamond holes were drilled to twin RC holes. This was undertaken by DDH1 using a Sandvik UDR 1200 (PQ3 size core), truck mounted rig. RC drilling in 2016 was undertaken by Strike Drilling using a truck mounted rig SD02/KWL700, and Mount Magnet Drilling with a RC450 Hydco track mounted rig as well as a MP1300 multipurpose truck mounted rig.
		 Exploration RC drilling in 2022 to 2023 was completed by three drilling companies: Mt Magnet Drilling, Strike Drilling and Orlando Drilling. Mt Magnet Drilling used a RCD300-2 track mounted drilling rig with a truck mounted booster & auxiliary compressor (900cfm/350psi) coupled to a V8 booster up to 1000psi. Strike Drilling Pty Ltd using a KWL1000 truck mounted Schramm 685 drill rig. Orlando Drilling utilized two Atlas Copco E220 RC track mounted drill rigs. Drilling utilized a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system.
		• Exploration RC drilling from 2024 to 2025 was completed by Strike Drilling Pty Ltd using a KWL1000 truck mounted Schramm 685 drill rig. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system.
		 Diamond core drilling from 2023 to 2025 was completed by DDH1 using a Sandwick 712 tracked mounted rig.
		The majority of diamond core holes were orientated via commercial digital core orientation systems provided by the drilling contractors, marking the bottom of

Criteria	JORC Code explanation	Commentary
		hole at the barrel. The core is then refitted by PLS personnel at the Core Shed and orientation lines are then drawn between the markings.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• Recoveries for the majority of the historical holes are not known, while recoveries for 2012 GAM holes were overwhelmingly logged as "good."
		 Recoveries for PLS RC and diamond holes were virtually all dry and overwhelmingly logged as "good."
		• PLS records Diamond core sample recovery quantitatively during the logging process, core recovery is high due to the competent nature of the lithological units.
		• Recoveries for Dakota RC and diamond holes were recorded as "good" by the geologist.
		Altura RC Holes were mostly recorded as "Dry" by the geologist.
		Sample recovery in 2021 was recorded as good for all RC holes.
		Sample recovery in 2022 – 2025 drilling program was recorded as good for RC holes.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	• Whilst drilling through the pegmatite, rods were flushed with air after each metre drilled for GAM and PLS holes; and after every 6m for Dakota holes. In addition, moist or wet ground conditions resulted in the cyclone being washed out between each sample run.
		• Loss of fines as dust was reduced by injecting water into the sample pipe before it reached the cyclone. This minimises the possibility of a positive bias whereby fines are lost, and heavier, tantalum bearing material, is retained.
		• RC drilling recovery is supervised during drilling activities, including weighing samples on the rig, and any recovery issues are recorded and rectified.
		• Sample weights for all PLS RC samples from 2024 were recorded by the laboratory upon receipt, Data analysis is completed monthly and results discussed with drilling contractors.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	 No material bias between sample recovery and grade of Li₂O, Ta₂O₅ or Fe₂O₃ has been identified.
	material.	• The assay results of twin RC and Diamond hole samples do not show sample bias caused by a significant loss of/gain in lithium values caused by loss of fines.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	RC 1m samples were laid out in lines of 20 or 30 samples with cuttings sieved and geologically logged for each interval and stored in 20 compartment plastic rock-chip trays with hole numbers and depth intervals marked (one compartment

Criteria	JORC Code explanation	Commentary
		per 1m).
		 Geological logging information was recorded directly onto digital logging system and information validated and transferred electronically to Database administrators in Perth.
		• Geotechnical logging is routinely collected on Diamond Core drilling and includes multiple targeted Geotechnical drilling programs that have been completed from 2016 to 2025.
		The logging detail is considered to support appropriate Mineral Resource estimation, mining studies, metallurgical studies, and operations.
	Whether logging is qualitative or quantitative in nature. Core (or costean,	Geological logging is predominantly qualitative in nature.
	channel, etc) photography.	Geotechnical logging is both qualitative and quantitative.
		 All drill core has been photographed dry and wet using a specialised photography frame and camera.
		• The majority of chip trays from RC drilling have been photographed and are also stored onsite at Pilgangoora in a containerised onsite library
		 All remnant drill core (excluding 2019 PQ core) is currently stored on pallets at Pilgangoora.
		• For the PLS 2015 diamond drilling program, drill core was transported to Nagrom laboratories for cutting, sampling and detailed logging in 2015.
		• For the PLS 2016 diamond drilling program drill core was logged in detail on site and dispatched to ALS laboratories in Perth for cutting, sampling & assaying.
		• For the PLS 2017 PQ diamond drilling program drill core was logged in detail and cut on site and the filleted samples were sent to Nagrom in Perth for analysis.
		• For the PLS 2022-2025 drilling programs drill core was logged in detail and half cut onsite using an automatic enclosed Corewise coresaw. Cut core was sent to Nagrom or SGS Laboratories in Perth for analysis.
	The total length and percentage of the relevant intersections logged.	595km of drilling has been logged representing >98% of drilling.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	RC samples collected by Talison/GAM were generally dry and split at the rig
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	using a cyclone splitter.
		 RC samples collected by Altura were normally all dry and split at the rig using a rig mounted riffle splitter to provide a 1/8th sample
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 RC samples collected by PLS were normally all dry and split at the rig using a

Criteria	JORC Code explanation	Commentary
		cone splitter mounted directly beneath the cyclone.
		 2015-2018 PLS diamond core had a 15 to 20mm fillet of core taken every metre of PQ or HQ core for sample. NQ core was halved.
		Dakota PQ sized core was cut and sampled. Half core was utilised for metallurgical tests, and quarter core for assaying.
		All 2017-2019 drill core was cut and sampled at the core logging facility at Pilgangoora.
		RC samples in 2021 were generally dry and split at the rig using a cyclone splitter.
		Altura HQ sized core was half cut and sampled for assay.
		• PQ core during 2023 was logged in detail half cut, with one half quartered using an automatic enclosed coresaw. Quarter core was sampled and sent to Nagrom in Perth for analysis.
		HQ core collected during the 2022-2025 drilling programs was logged in detail and half cut and sampled onsite using an automatic enclosed coresaw. Cut core was sent to Nagrom or SGS Laboratories in Perth for analysis.
		• The nature, and quality of the sample preparation techniques is considered appropriate for the style of mineralization.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Talison/GAM/PLS samples have field duplicates as well as laboratory splits and repeats.
		• 238 sample pulps were collected to check ALS Laboratory results by Nagrom in 2016.
		• 55 Dakota GAM Wodgina laboratory splits of the samples were taken at 20m intervals with a repeat/duplicate analysis also occurring every 20m and offset to the lab splits by 10 samples. In total one field duplicate series, one splits series and one lab duplicate/repeat series were used for quality control purposes assessing different stages in the sampling process. This methodology was used for the samples from the 2010 and 2012 drilling programs. Comparison of these splits and duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the analysis process.
		• The GAM and PLS RC drilling contains QC samples (field duplicates and laboratory pulp splits, GAM internal standard, selected CRM's for PLS), and have produced results deemed acceptable.
		110 sample pulps (10% of the June 2015 resource composite samples) were

Criteria	JORC Code explanation	Commentary
		selected from across the pegmatite zones for umpire checks with ALS Laboratory Perth. 238 sample pulps from the 2016 drilling were selected from across the pegmatite zones for umpire checks with Nagrom. All closely correlated with the original assays.
		 Dakota field RC duplicates, pulp duplicates and coarse diamond field duplicates generally indicate good repeatability of samples.
		 Samples were selected from pegmatite pulps for re-assaying by ALS (original lab was Nagrom) and were also resampled and sent to ALS for analysis.
		 QAQC has been maintained regularly on the Nagrom results from the 2017-2021 drilling, with duplicates and standards showing consistent precision and accuracy.
		• The majority of the Altura exploration drilling was undertaken at LabWest. 153 samples from 7 holes were submitted to Ultratrace for umpire checks. Results were comparable, with a slight bias towards the Ultratrace results.
		 Altura P17 and P18 series holes were sent to SGS for analysis. QC of standards and field duplicates returned results within acceptable ranges. 774 samples were sent to Intertek for umpire checks, with good correlation noted for Li₂O and Fe₂O₃.
		 QA/QC has been maintained for all sample submissions since the 2022 drilling campaign with duplicates and standards showing consistent precision and accuracy.
		• 75 duplicate core samples were prepped using tungsten-carbide bowls and LM5s to ascertain iron contamination from the SGS Laboratories sample preparation procedure. A contamination factor was calculated and applied to SGS samples.
		RC duplicates were obtained from a duplicate outlet direct from the cyclone.
		• During 2023 and partial 2024 diamond drilling half core duplicates were taken direct from the core. From mid- 2024 onwards a lab split duplicate was requested from the lab.
		• Umpire analysis was completed on 200 samples by ALS Perth in 2024 of selected SGS Perth assay jobs. The results returned a strong positive correlation of greater than 0.99.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 For the Talison/GAM/PLS RC drilling, field duplicates were collected every 20m, and splits were undertaken at the sample prep stage on every other 20m. Talison/GAM/PLS RC samples have field duplicates as well as laboratory splits
		and repeats.

Criteria	JORC Code explanation	Commentary
		PLS diamond holes have laboratory splits and repeats.
		Duplicates submitted by Dakota included field RC duplicates, pulp duplicates from diamond core, and coarse crushed diamond core duplicates.
		 For all PLS RC holes from 2016 to 2025 field duplicates were taken approximately every 20m, and standards and blanks every 50 samples.
		• Altura submitted duplicates approximately every 15m, and standards every 50m.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	• Drilling sample sizes are considered to be appropriate to correctly represent the tantalum and lithium mineralisation at Pilgangoora based on the style of mineralisation (pegmatite) and the thickness and consistency of mineralization, for the scale of mining.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The Talison/GAM samples were assayed by the Wodgina Laboratory, for a 36 element suite using XRF on fused beads.
laboratory tests		 During late 2014 & 2015 the PLS samples were assayed at the Nagrom Perth laboratory, using XRF on fused beads plus ICP to determine Li2O, ThO2 and U3O8.
		 All the 2016 PLS samples were assayed by ALS laboratories in Perth using a Sodium Peroxide fusion with ICPMS finish.
		• Dakota RC samples were assayed at Nagrom's laboratory in Perth, for a 5 element suite using XRF with a sodium peroxide fusion, and total acid digestion with an ICP-MS finish. Diamond drill samples were assayed at SGS's laboratory in Perth, for a 19 element suite using XRF with a sodium peroxide fusion, and total acid digestion with an ICP-MS finish.
		• From 2017 to 2019, PLS samples were assayed by Nagrom Perth laboratory and analysed for a suite of 9 elements via ME-MS91 Sodium Peroxide for ICPMS finish and Peroxide fusion with an ME-ICP89 ICPAES finish.
		• From 2021 to August 2024 drill samples were submitted to Nagrom Laboratories in Perth and analysed for a suite of 25 elements. Samples were subject to a sodium peroxide fusion and analysed using ICPOES and ICPMS techniques.
		 A proportion of samples collected between 2022 and 2023 were also sent to SGS Laboratories in Perth and analysed for a suite of 25 elements via two methods of analysis. XRF analysis with a lithium borate flux and nitrate additive was used for a suite of 20 analytes and ICP analysis using sodium peroxide fusion / HCL digest was used for another 5 analytes including beryllium, rubidium and lithium, tantalum and niobium oxides.
		From September 2024 PLS drill samples collected were sent to SGS

Criteria	JORC Code explanation	Commentary
		Laboratories in Perth and analysed for a suite of 25 elements via two methods of analysis. XRF analysis with a lithium borate flux and nitrate additive was used for a suite of 20 analytes and ICP analysis using sodium peroxide fusion / HCL digest was used for another 5 analytes including beryllium, rubidium, lithium, tantalum and niobium oxides.
		• All drill core (both recent and historic) from the Pilgangoora Project has been analysed by handheld XRF from 2024 on 5m intervals. Information has been used to assist in developing a waste rock model for the project area, none of the XRF results have been used to determine grade concentrations from within the Pegmatite.
		Altura PRC prefix holes were submitted to LabWest and analysed by total acid digestion with an ICP-MS finish.
		• Altura 17P and 18P series holes were submitted to SGS and analysed for a suite of 9 elements by Borate Fusion with XRF, and Sodium Peroxide Fusion with ICP-AES finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the	No geophysical tools were used to determine any element concentrations.
	parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	• Handheld pXRF units used for waste host rock discrimination. The units used are Olympus Vanta VMR and Thermo Scientific Niton XL2 Plus, typical read times are 50 seconds.
		 An affine transformation has been used to calibrate the pXRF results (based upon analysis of pXRF measurements taken where an ICP results exist) prior to modelling waste host rock lithologies.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	• Duplicates of the samples were taken at 20m intervals with blanks and standards inserted every 50m. Comparison of duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the sampling and analysis process.
		• Drilling contains QC samples (field duplicates, blanks and standards plus laboratory pulp splits, and laboratory internal standards), and have produced results deemed acceptable.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Infill drilling completed by GAM in 2012 and PLS in 2014 to 2016 confirmed the approximate width and grade of previous drilling.
assaying	The use of twinned holes.	• Eight of the diamond holes were drilled as twins to RC holes, and compared to verify assays and lithology during 2015.
		• An additional eight diamond holes were drilled as twins to RC holes to verify assays & lithology during 2016. The remainder were drilled for metallurgical or

Criteria	JORC Code explanation	Commentary
		geotechnical test work.
		 Dakota drilled two twin RC/DDH holes which show good constancy of mineralization.
		• A number of the 2017 PQ diamond core holes were also drilled as twin holes to verify results from RC drilling. Results compare well.
		Additional PQ drilling was undertaken in 2019 and 2023, with some holes drilled as twins. Results compare well.
		• RC grade control drilling has been undertaken on nominal 12.5m centres since the commencement of operations in 2018.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	An electronic relational database containing collars, surveys, assays and geolog is maintained by MRG, an Independent Geological consultancy
	Discuss any adjustment to assay data.	 A two-step adjustment has been applied to the Fe₂O₃ assays to account for (i) contamination of pulps by the steel bowl at the grinding stage, and (ii) contamination of RC chips with the drill bit and tube wear with increasing hole depth. Step one is to subtract 0.33% from all Nagrom Fe₂O₃ assays and 0.47% from all ALS Fe₂O₃ assays, step 2 is to subtract a regressed factor by depth from all PLS, Altura and historic RC samples. No second factor has been applied to the PLS or Altura diamond core Fe₂O₃ assays.
		 Additional Fe₂O₃ analysis on 75 diamond drill core samples has been undertake in 2023 by SGS and a factor of 0.85% has been determined and applied to Fe₂O assays.
		• For Dakota assays Fe was adjusted to Fe ₂ O ₃ by multiplying by 1.4297 Fe ₂ O ₃ values were adjusted by subtracting 0.52% Fe ₂ O ₃ from all RC samples, which is the total correction factor for contamination caused by steel RC drill bits and pulverising the samples in steel bowls.
		 Assays have been reported by either elements or oxides by the various labs use throughout the life of the project. The SQL database converts (if necessary) to either element or oxide. Lithium is converted if necessary to Li₂O% for estimation using ((Li ppm x 2.1527)/10000), Tantalum is converted if necessary to Ta₂O₅ ppm using (Ta ppm x 1.2211), and Iron is converted if necessary to Fe₂O₃% usin ((Fe ppm x 1.4297)/10000).
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral	Talison/GAM holes were surveyed using a DGPS with sub one metre accuracy by the GAM survey department.
	Resource estimation.	PLS drill hole collar locations were surveyed at the end of the program using a

Criteria	JORC Code explanation	Commentary
		dual channel DGPS with +/- 10cm accuracy on northing, easting & RL by PLS personnel.
		No downhole surveys were completed for PLC001-039 (Talison).
		Gyro surveys were completed every 5m down hole for PLC040-068 (Talison).
		 Eastman Single Shot surveys were completed in a stainless steel starter rod approximately every 30m for PLC069-076 & PLRC001-009 (GAM).
		 Reflex EZ-shot, electronic single shot camera surveys were completed in a stainless steel starter rod for each hole for the PLS November-December 2014 RC drilling completed by QDS Drilling. Reflex instruments were also used by Mt Magnet Drilling for the PLS RC and diamond drilling completed in 2015 and 2016. Measurements were recorded at 10m, 40m, 70m and 100m (or EOH) for each hole.
		• Camteq Proshot, electronic single shot cameras were completed in a stainless steel starter rod for each hole from the PLS 2015 RC and diamond drilling campaigns completed by Orbit drilling. Camteq down hole survey equipment was also used for each hole for the PLS RC drilling by Strike. Measurements were recorded at 10m, 40m, 70m and 100m (or EOH) for each hole.
		 Downhole survey information was also collected using a KEEPER High-Speed Gyro Survey/Steering System Gyro instrument for selected RC and diamond holes completed in 2016. This included surveying a number of holes as an audit on the single shot surveys which compared well.
		• For the Dakota drilling, the drill-hole locations were located using a Navcom 3040 Real time GPS, with an accuracy of +/- 10cm vertical and +/-5cm horizontal. Down hole surveying of drill holes was conducted roughly every 30m using a Reflex multi-shot camera to determine the true dip and azimuth of each hole. Subsequently, more detailed down hole surveying was conducted to verify this data, using a High-Speed True North Seeking Keeper Gyroscope.
		 All drill holes from 2021 to 2025 were surveyed using a DGPS on grid MGA (GDA94, Zone 50).
		• Down hole surveying of drill holes was conducted using a Gyro tool provided by all drilling contractors. Measurements were recorded at the bottom of each hole and every 10m up hole for vertical holes and continuous readings in and out for angle holes.
		 Drill hole collar locations were surveyed by the mine survey team using a differential GPS (DGPS).

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used.	The grid used was MGA (GDA94, Zone 50).
	Quality and adequacy of topographic control.	• The topographic surface used was completed in 2016 to a resolution of 50cm contours. Aerial Drone surveys collecting topographic information are undertaken monthly in the active mining areas.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Drilling spacings within the resource area vary between 12.5m to 200m apart. Drilling spacings for the 2021 exploration RC holes varied between 50m to 75m apart. Drilling spacings for the 2022-2025 exploration RC and diamond holes varied between 50m to 200m apart.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 between 50m to 200m apart. The data spacing is considered appropriate for the relevant Mineral Resource Classifications reported, and for relevant Ore Reserve calculation.
	Whether sample compositing has been applied.	• No sample compositing has been undertaken. The sample data was composited to 1m intervals prior to estimation, aligning with the most common sample length taken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• The mineralisation dips between 20 and 60 degrees at a dip direction between 050 and 115 degrees for the majority of the domains. The Monster zone strikes 040 to 045 degrees and dips moderately to the south-east. In the Lynas area the pegmatite varies between horizontal and 50-degree dip towards the south and south-east.
		• The drilling orientation and the intersection angles are deemed appropriate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified.
Sample security	The measures taken to ensure sample security.	• All samples are collected into numbered calico bags, and then placed into larger bulka bags with a sample submission sheet. The bulka bags are then transported to the site laboratory or Perth via freight truck, with consignment note. The samples are then receipted by the independent laboratory. All sample submissions are documented and tracked via a submission register, and all assays are returned in electronic format to the external database management company MRG.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• The collar and assay data have been reviewed by compiling a SQL relational database. This allowed some minor sample numbering discrepancies to be identified and amended.
		• Drilling locations and survey orientations have been checked visually in 3 dimensions and found to be consistent.
		• All GAM assays were sourced directly from the laboratory (Wodgina laboratory). It has not been possible to check these original digital assay files.
		• QAQC of active drilling activities and assay results are completed monthly, documented, and a monthly QAQC meeting is completed with the relevant contractors.
		In 2024 a PLS internal review of historical assays was completed. The review identified a Li ₂ O% assay bias between historical assays and more recently completed PLS Grade Control drilling assays, over the Grade Control area of South Pit. The bias was an approximate 15% increase in Li ₂ O% of Grade Control versus historical assays. It was hypothesized that the historical assays underreported Li ₂ O due to a HF digest opposed to the Grade Control assays digest of sodium peroxide fusion. Subsequently, to test the hypothesis, over 90% of the pulps from non-grade controlled, non-mined, areas of southern deposit area were retrieved (selected on a nominal 50m x 50m grid spacing from within the Pegmatite) and submitted to Nagrom laboratories for ICP analysis using a sodium peroxide fusion digest. The results were returned in 2025 and compared to original historical assays have underreported Li ₂ O. Assays not assayed by a fusion digest technique representing approximately 9% of the assays within the database (of which >70% have been mined out by operations) have been flagged to not be used in the grade estimation of the reported Mineral Resource.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites The security of the tenure held at the time of reporting along with any known	 PLS owns 100% of mining tenements M45/1256, M45/333, M45/511, M45/78, M45/1266, M45/1230 and M45/1231. The Pilgangoora resource (including former NLO) is located within M45/1256, M45/333, M45/1230 and M45/1231 which are 100% owned by the Group. The Lynas Find resource is located within M45/1266. No known impediments.
	impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Talison completed RC holes in 2008. GAM completed RC holes between 2010 and 2012. Dakota Minerals Ltd completed diamond and RC holes in 2016. Altura completed Diamond and RC holes between 2010 and 2018. Altura completed two phases of diamond drilling (phase 1 from 2011 to 2013 and phase 2 in 2016) with a total of 18 holes drilled.
Geology	Deposit type, geological setting and style of mineralisation.	The Pilgangoora pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that have intruded a sheared metagabbro.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 RC drilling undertaken in 2021 has been previously reported in ASX announcements on 10 May 2021, 23 June 2021 and 28 July 2021. All PLS drill hole information pre 2021 has been previously reported. A summary of all exploration holes drilled in the 2022-2023 drilling campaign has been previously reported in the announcement released to the ASX on 7 August 2023 titled, Substantial 109Mt Mineral Resource increase to 414Mt – further extends Pilgangoora's position as a world class lithium project. All exploration holes subsequent to 30 June 2023 (being the exploration holes drilled subsequent to those stated in the 7 August 2023 ASX announcement) are summarised in Appendix 1.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Length weighted averages used for exploration results. Cutting of high grades was not applied in the reporting of intercepts in Appendix 2. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Down hole intercepts from the July 2023 to 2025 drilling programs have been reported and are tabled in Appendix 2. All other intercepts have been previously reported. Reported intercepts are not true width. Cross sections (Figures 7 and 8) illustrate the modelled pegmatite domains and intersections.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 See Figures 4 to 10. Cross sections showing selected holes from the program are presented as Figures 7 to 9.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting of 2021 drill hole details has been previously reported in ASX announcements on 10 May 2021, 23 June 2021, 28 July 2021 and 7 August 2023. All other PLS results have been previously reported. A summary of drill hole details and results undertaken in August 2023 -2025 drilling programs has been included in this announcement in Appendices 1 and 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material exploration data has been reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Further planned drilling aims to test extensions to the currently modelled pegmatites zones and to infill where required to convert Mineral Resources to high confidence classification (i.e. Inferred to Indicated and Indicated to Measured). Refer to figures 11 and 12.

C	Criteria	JORC Code explanation	Commentary
		Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The Pilgangoora database is managed by external database management consultants Mitchell River Group (MRG) via an SQL server database using commercial industry standard database management software DataShed [™] since 2013.
		• The prior original database was compiled by GAM and supplied as a Microsoft Access database.
		 Prior to 2015 drilling data was supplied in Excel templates, using drop down lists to verify codes. In 2015 PLS implemented commercial OCRIS data logging software which comprises built-in validation procedures prior to SQL database import
		• Data obtained during the acquisition of Altura in 2021 was supplied as an Access and SQL database.
		• The database used for the reported Mineral Resource was provided as a Microsoft Access export by MRG from the SQL database, dated 21st March 2025.
	Data validation procedures used.	• Data validation checks are completed on import to the SQL database by MRG, and errors are corrected in consultation with PLS staff.
		 Data is also validated post database export by PLS staff with Mining software (allowing for 3-dimensional analysis) and where errors occur, amendments are requested to MRG to amend the SQL database.
		 Historical data has previously been checked against supplied databases supplied by GAM for prior reported Mineral Resources, no additional check has been completed for the reported Mineral Resource.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	• The Competent Person for the reported Mineral Resource, Mr Michael Slevin (MAusIMM), is a full-time employee of PLS and has completed multiple site visits. The site visits included a review of drilling activities, logging, and sampling. All activities are observed to be completed in- line with procedures, which have been reviewed and considered to be appropriate.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The geological interpretation is considered robust, Lithium (occurring as Spodumene) and Tantalum (occurring as Tantalite) is hosted within pegmatite lenses within mafic, ultramafic, and sedimentary sequences of the East Strelly greenstone belt. The area of the Pilgangoora

Criteria	JORC Code explanation	Commentary
	 Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	pegmatite field comprising the reported Mineral Resource comprises a series of pegmatites up to 65m thick. The pegmatites dip to the east between 20-60° and are parallel to sub-parallel to the main fabric within the greenstones.
	 The use of geology in guiding and controlling Mineral Resource estimation. 	• The interpretation is supported by drilling data, structural measurements (downhole, and surface), pit mapping, aerial photography of surface and mined exposures, mineralogical, and geometallurgical studies and data analysis.
	The factors affecting continuity both of grade and geology.	 Material alternative interpretations are considered unlikely, localised alternative interpretations are possible however are considered to have a minimal impact on Mineral Resources on a global scale if they were to occur, this is supported by confirmatory and resource conversion targeted drilling completed in 2024 in relation to the prior 2023 Mineral Resource, and production data from the active mining operation. The potential for alternative interpretations has been considered as part of the classification criteria of the reported Mineral Resource. The pegmatite Li₂O, Ta₂O₅, and Fe₂O₃ grade estimates are constrained within pegmatite wireframes. The Pegmatite wireframes have been modelled on the presence of logged Pegmatite and using a nominal 2.5% Fe₂O₃ cut at the boundary between wall rock to account for mixing of waste rock and pegmatite across the 1m boundary of the RC sample interval, surface and pit mapping, draped photography (including from mined exposures), and guided by structural measurements and interpolants from drillhole, surface, and mined exposure measurements. Geo-metallurgical characterisation of pegmatite types have been used to create indicators for Categorical Indicator Kriging (CIK) estimation to define internal zones to the
		 pegmatite aiding determination of estimation domains within the pegmatite wireframes. The key factor affecting grade continuity is the presence of Pegmatite, and the key factor affecting Pegmatite continuity is the lithological and structural setting.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The combined approximate strike length of the 'South" and "Central" areas of the reported Mineral Resource is approximately 6.3km, with a plan width of approximately 1.3km, and a maximum depth below surface of 710m. The "North" area of the reported Mineral Resource comprises the Monster and Lynas Pegmatite clusters which have an approximate strike length of 800m and 500m, plan width of 600m and 425m and maximum depth from surface of 186m and 205m

Criteria	JORC Code explanation	Commentary
		respectively.
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme	• Exploratory Data Analysis (EDA) was completed in Geovariances Isatis Neo – mining 2024.04, Python, and Seequent Leapfrog Geo 2024.1.2.
	grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a	Geological wireframe modelling was completed in Seequent Leapfrog Geo 2024.1.2 software.
	description of computer software and parameters used.	 Variography, and estimation parameter selection was completed in Isatis Neo – mining 2024.04.
	 The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource 	Block Model construction, estimation, and reporting was completed in Geovia Surpac 2023 (Refresh 3).
	estimate takes appropriate account of such data.	 Validation was completed in a combination of all prior mentioned software packages.
	 The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables 	 Block model was constructed with parent block size used for Grade estimation of 10m(E), 20m(N), 5m(RL) and sub-blocked to 2.5m(E), 2.5m(N) 5m(RL). Discretisation was set to 5 x 5 x 3 for all estimation domains.
	of economic significance (e.g. sulphur for acid mine drainage characterisation).	• Parent block, and sub-block dimensions chosen were a result of the consideration given to, data-spacing, current mining methodology, and model purpose
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	 Compositing of assays and indicators was composited to 1m using a best fit method.
	 Any assumptions behind modelling of selective mining units. 	• Categorical Indicator Kriging (CIK) was completed within the Pegmatite wireframes to define Pegmatite types to define sub-domains for grade estimation using indicators determined from Geo-metallurgical charcterisation studies, composites within the subdomain were then "backflagged" prior to grade estimation.
	Any assumptions about correlation between variables.	 Ordinary Kriging (OK) was completed to estimate Li₂O%, Adjusted Fe₂O₃%, and Ta₂O₅ppm, into parent blocks
	 Description of how the geological interpretation was used to control the resource estimates. 	• Estimation was constrained by hard boundaries between the Pegmatite wireframes and host rock waste boundaries (including internal host rock xenoliths modelled). Within the Pegmatite wireframes, a mixture of hard and soft boundaries has been used dependent on Pegmatite type
	 Discussion of basis for using or not using grade cutting or capping. 	 and supported by statistical and geological analysis. Three grade estimation passes were used. The first pass has a limit of 75m, the second pass 150m, and the third pass searching a large distance to fill the remaining blocks within the wireframes zones, each estimation pass used a maximum of 12 composites, a minimum of 6

JORC Code explanation	Commentary
	composites, and a maximum of 4 composites per drill hole.
comparison of model data to drill hole data, and use of reconciliation data if available.	 Directional variograms were modelled by domain, Nugget values (normalised to a sill of 1) for Li₂O range between 15 and 30%, Ta₂O₅ nugget values range between 15 and 30% and adjusted Fe2O3 nugget values between 25 and 35%. Variogram range for Li₂O are up to 750m in the principal direction of continuity, Ta₂O₅ commonly fails to reach the sill until beyond 750m and Fe₂O₃ up to 750m. Domains with more limited samples use the variography of geologically, similar adjacent domains.
	• Seach ellipse sizes were based upon a combination of variogram anisotropy, range, and trends of the wireframes mineralised zones. Search parameters underwent iteration via cross validation. Search ellipses utilise Dynamic Anisotropy to follow the orientation trend of each pegmatite wireframe.
	- Tantalum has been estimated as Ta_2O_5 ppm, as has been included in the RPEEE assessment.
	• Deleterious Iron was estimated using an adjusted Fe ₂ O ₃ % variable via Ordinary Kriging (OK) (and thus reported) within the Pegmatite.
	 Within Pegmatite, no correlations have been identified between Li₂O, Fe₂O₃ and Ta₂O₅, thus have been estimated independently
	 The adjusted Fe₂O₃ represents the Fe₂O₃ assays adjusted for the contamination obtained during the sample collection (steel from drill bit and rod wear) and sample preparation (wear in the steel pulversiation containers) processes. The adjustment values result from statistical analysis and co-located data comparison between diamond core and RC twin hole assays, completed prior to the previously reported 2023 Mineral Resource. The Competent Person has reviewed the analysis and deemed the analysis to be appropriate and the adjustment necessary. However, the SGS Perth adjustment of 0.85% Fe₂O₃ has been replaced by the Nagrom 0.33% Fe₂O₃ samples on all SGS Perth assay results, as the SGS Perth adjustment resulted in the occurrence of negative or 0% Fe₂O₃ assays returned in 2024 and 2025. The replacement affects 7% of samples and is considered to be conservative, prior to further test work being completed. The Nagrom adjustment was chosen as a replacement as the Nagrom assays represent the majority (70%) of the dataset assays. The adjustment is applied to the Fe₂O₃ assays in two steps. Step one is the sample preparation adjustment, which is to subtract 0.33% from all Nagrom

Criteria	JORC Code explanation	Commentary
		from all historic GAM Fe ₂ O ₃ assays, 0.4% from all Altura Fe ₂ O ₃ assays. Step 2 is the sample collection adjustment, which is to subtract a regressed factor by depth from all RC samples. No sample collection adjustment has been applied to diamond core samples.
		 Adjusted Fe₂O₃% composites were top-capped to 3.5%, affecting 1.4% of composites following a statistical review and geological analysis. RC Drilling has been completed on 1m intervals and thus mixes material across the Pegmatite, and host rock boundary. No top-capping was applied to Li₂O or Ta₂O₅ composites.
		 Unadjusted Fe₂O₃% was assigned to each lithological waste rock type by the mean values obtained and assessed during the Waste Modelling process completed in 2024. Fe₂O₃ of the waste rocks range from 1.5 to 16.93%. The basis for using unadjusted Fe₂O₃ for host waste rock is based upon the assumption of the host waste rock being less abrasive than the pegmatite. Li₂O% and Ta₂O₅ ppm was assigned to the host waste rocks at a value of 0.01. Lithium is present within the waste host rock proximal to pegmatites due to the presence of Holmquistite, however it has not been estimated as it is not deemed to be recoverable.
		• Validation of the reported Mineral Resource included, a volumetric comparison of the resource wireframes to the block model volumes, a comparison of block model grades to the declustered input composite grades, swath plot comparison by variogram direction, and easting, northing, and elevation, visual comparisons of input composite grades vs. block model grades.
		• Further validation was completed by comparison to the prior reported 2023 Mineral Resource, globally, and using various spatial constraints such as depleted mined surfaces, 2023 Ore Reserve Pit Designs etc, the reported Mineral Resource compares well across all of these comparisons. The reported Mineral Resource has also been compared against operational Grade Control models and Mine Production records.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnes have been estimated on a dry basis.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 A 0.2% Li₂O cut-off has been applied consistent with the 0.2% Li₂O cut- off used in the prior 2023 Mineral Resource. The cut-off is supported by the 2023 reported Pilgangoora Ore Reserve statement which is reported using a ore cut-off variable by Li₂O% and Ta₂O₅ ppm, which is

Criteria	JORC Code explanation	Commentary
		equivalent to approximately 0.3% Li ₂ O.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The reported Mineral Resource is reported exclusive of mining dilution. Mining dilution and ore loss were incorporated into the Reasonable Prospects for Eventual Economic Extraction (RPEEE) assessment. Pegmatites with a modelled thickness of less than 2 metres are excluded from the reported Mineral Resource. The Pilgangoora operation comprises integrated ore sorting which has been in operation since August 2024. The current mining method employed at Pilgangoora is Open Pit – Load and Haul, however the deposit geometry is considered to be amenable to Underground Mining methods, no detailed Underground study has yet been completed to the Competent Person's knowledge and as such the reported Mineral Resource is constrained by a Whittle™ Pit Optimisation, however the RPEEE assessment considered a range of scenarios.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Metallurgical assumptions are based upon the 2023 Pilgangoora Ore Reserve. Processing operations at Pilgangoora have been successfully commissioned, and operated since 2018, with integrated ore sorting in operation since August 2024. Multiple phases of metallurgical, and geo-metallurgical test work and analysis have been undertaken on a regular basis. Pegmatite within the oxide zone is excluded from the reported Mineral Resource.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 The reported Mineral Resource is situated on approved Mining Leases, and actively in operation, with waste rock disposal in the form of Waste Landforms and process residue is being deposited into Tailings Storage Facilities (TSF). Future approvals, including environmental and heritage will be necessary for the complete extraction of the reported Mineral Resource, and the Mineral Resource is reported on the assumption that all necessary future approvals will be granted.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or	Density measurements are routinely collected as part of Diamond core processing, using an industry standard submersion method for

Criteria	JORC Code explanation	Commentary
	 dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 determining the density of competent diamond core. Pegmatite densities have been determined by statistical analysis completed on measurements within Pegmatite units, the analysis shows a positive correlation and rank correlation between density and Li₂O %. The correlation is supported by geological understanding that Spodumene has a higher density than the matrix of the Pegmatite it is hosted in. Regression has been used to assign bulk density within the modelled Pegmatite: Bulk Density = (0.058 x Li₂O %) + 2.619. The resultant global mean of the bulk density of the reported Mineral Resource Pegmatite is 2.69(t/m³). Host Waste Rock densities have been assigned based upon analysis of measurements collected within the host rock and assigned independently to the relevant modelled host waste rock. The density of the host waste rock ranges from 2.80-3.11(t/m³).
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The reported Mineral Resource has been classified in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves JORC Code 2012 Edition, into Measured, Indicated and Inferred categories. The reported Mineral Resource has been classified using a range of criteria, including but not limited to; Geological and Metallurgical understanding, Geological and Grade continuity, Drillhole spacing, Modelling methodology, Model Validations including comparison with previous estimates and mine production data, confirmatory and resource classification conversion drilling success, and RPEEE assessment. Measured Resources are nominally equivalent to a drill spacing of 12.5m x 12.5m to 25m x 25m. Indicated Resources are nominally equivalent to a drill spacing of 50m x 50m to 50m x 100m. Inferred Resources are nominally equivalent to a drill spacing of 75m x 75m to 75m x 150m. Appropriate account has been taken of all relevant factors The reported Mineral Resource appropriately reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	PLS has commissioned a number of independent reviews of the Pilgangoora Operation which have examined the Mineral Resource Estimate and relevant geology practices, including, most recently, an

Criteria	IOBC Code explanation	Commontory					
	JORC Code explanation	Commentary Independent Technical Review commissioned in support of the Revolving Credit Facility transaction announced in October 2024. This Independent Technical Review did not identify any material flaws in the 2023 Mineral Resource computation, classification, documentation or QA/QC.					
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The reported Mineral Resource has been classified in accordance with the JORC Code, 2012 Edition, using a qualitative approach. All factors that have been considered have been adequately communicated in Section 1 and Section 3 of this table. The statement relates to global estimates of tonnes and grade. The reported Mineral Resource has been compared to previous Mineral Resource estimates and mine production data, both indicating that the reported Mineral Resource estimate is appropriate. 					

APPENDIX 4 – SOURCES FOR FIGURE 1 (LITHIUM PEGMATITE MINERAL RESOURCES BUBBLE CHART)

					Total (M,I&I) ³		Measured		Indicated		Inferred	
Company ¹	Project name	Stage ²	Date (announced)	Announcement / report title	Tonnage (Mt)	Grade (% Li ₂ O)	Tonnage <i>(Mt)</i>	Grade (% Li ₂ O)	Tonnage (<i>Mt</i>)	Grade (% Li ₂ O)	Tonnage (Mt)	Grade (% Li ₂ O)
Pilbara Minerals Limited	Pilgangoora 2025	Production	11-Jun-25	Reported herein	446	1.28%	20	1.32%	356	1.29%	70	1.25%
Pilbara Minerals Limited	Pilgangoora 2023	Production	7-Aug-23	Substantial Increase in Mineral Resource	413.8	1.15%	22.1	1.34%	315.2	1.15%	76.6	1.07%
IGO Limited	Greenbushes	Production	25-Feb-25	Revised Greenbushes CY24	440	1.5%	1	2.6%	390	1.5%	49	1.1%
Leo Lithium Limited	Goulamina	Production	1-Jul-24	Goulamina Mineral Resource Upgrade	267.2	1.38%	13.1	1.58%	94.9	1.42%	159.2	1.33%
Sociedad Quimica y Min. de Chile SA	Mt Holland	Production	17-Apr-25	SEC Technical Report Summary	210.6	1.37%	83.0	1.42%	94.3	1.40%	33.4	1.17%
Albemarle Corporation	Wodgina	Production	12-Feb-25	Albemarle 2024 Form 10-K	187.5	1.14%	-	-	158.5	1.15%	29.0	1.1%
Liontown Resources Limited	Kathleen Valley	Production	30-Oct-24	September Quarter 2024 Presentation	155	1.34%	19	1.29%	109	1.37%	26	1.27%
Patriot Battery Metals Inc.	Shaakichiuwaanann	Exploration	13-May-25	Significant Mineral Resource Upgrade	141.2	1.38%	-	-	108.0	1.40%	33.3	1.33%
Arcadium Lithium plc (Rio Tinto)	Galaxy (James Bay)	Development	28-Feb-24	Arcadium 2023 10-K	111.3	1.26%	-	-	55.4	1.22%	55.9	1.29%
Sigma Lithium Corporation	Grota do Cirilo	Production	1-Apr-25	Investor Presentation April 2025	106.9	1.39%	45.8	1.39%	47.4	1.40%	13.7	1.36%
Sayona Mining Limited	Moblan	Development	27-Aug-24	Moblan Mineral Resource increase	93.1	1.21%	6.0	1.53%	59.1	1.22%	28.0	1.14%
Sayona Mining Limited	NAL	Production	27-Aug-24	North American Lithium Mineral Resource	87.9	1.13%	0.9	1.11%	71.1	1.14%	15.8	1.05%
Winsome Resources Limited	Adina	Exploration	28-May-24	Adina Mineral Resource increases 33%	77.9	1.15%	-	-	61.4	1.14%	16.5	1.19%
Wildcat Resources Limited	Tabba Tabba	Exploration	28-Nov-24	Wildcat delivers MRE of 74.1Mt @ 1.0%	74.1	1.00%	-	-	70.0	1.01%	4.1	0.76%
Mineral Resources Limited	Mount Marion	Production	21-Feb-24	Mt Marion underground Mineral Resource	66.1	1.36%	-	-	54.7	1.40%	11.4	1.05%
Mineral Resources Limited	Bald Hill	Production	13-Nov-24	Bald Hill Operations and Mineral Resources	58.1	0.94%	-	-	17.2	0.91%	40.9	0.95%
Frontier Lithium Inc.	Pakeagama Lake	Development	28-May-25	News release re Feasibility Study	55.5	1.55%	16.4	1.61%	20.5	1.53%	18.6	1.51%
Global Lithium Resources Limited	Manna	Exploration	12-Jun-24	43% Increase in Manna Lithium Deposit	51.6	1.00%	-	-	32.9	1.04%	18.7	0.92%
Core Lithium Ltd	Finniss	Exploration	14-May-25	Updated Finniss Lithium Project Ore Reserve	48.5	1.26%	6.3	1.41%	21.9	1.29%	20.3	1.18%
Livent Corporation (Rio Tinto)	Whabouchi	Development	14-Nov-23	SEC Technical Report Summary	54.3	1.35%	10.5	1.40%	35.5	1.35%	8.3	1.31%
Lithium Ionic Corp.	Bandeira	Development	6-May-25	Lithium Ionic reports updated Mineral Resource	45.8	1.34%	3.4	1.38%	23.9	1.33%	18.6	1.34%
Piedmont Lithium Inc.	Carolina	Development	19-Nov-24	Proposed Merger & Equity Financing Presentation	44.1	1.08%	-	-	28.2	1.11%	15.9	1.02%
Atlantic Lithium	Ewoyaa	Development	30-Jul-24	New Dog-Leg Target Delivers Increase to Ewoyaa	36.8	1.24%	3.7	1.37%	26.1	1.24%	7.0	1.15%
Critical Elements Lithium Corporation	Rose	Development	11-Oct-23	Rose Lithium-Tantalum Project Feasibility Study	32.9	0.92%	-	-	30.6	0.93%	2.4	0.78%
Savannah Resources Plc	Barroso	Exploration	2-May-24	Savannah Resources website	28	1.05%	6.6	1.1%	12.1	1.0%	9.3	1.1%
Delta Lithium Limited	Yinnetharra	Exploration	31-Mar-25	Yinnetharra Lithium and Tantalum MRE update	21.9	1.0%	-	-	16.1	1.0%	5.8	0.9%
Green Technology Metals Limited	Root	Exploration	3-Apr-25	Resource increase at Root	20.1	1.24%	-	-	10.0	1.32%	10.1	1.13%
Lithium Ionic Corp.	Baixa Grande	Exploration	14-Jan-25	32% Growth in Updated Mineral Resource	19.4	1.01%	1.1	1.19%	5.4	1.10%	12.9	0.96%
Global Lithium Resources Limited	Marble Bar	Exploration	15-Dec-22	GL1 Delivers Transformative 50.7Mt	18.0	1.00%	-	-	3.8	0.97%	14.2	1.01%

					Total (M,I&I) ³		Measured		Indicated		Inferred	
Company ¹	Project name	Stage ²	Date (announced)	Announcement / report title	Tonnage (Mt)	Grade (% Li ₂ O)	Tonnage (Mt)	Grade (% Li ₂ O)	Tonnage <i>(Mt)</i>	Grade (% Li₂O)	Tonnage <i>(Mt)</i>	Grade (% Li ₂ O)
Sayona Mining Limited	Authier	Development	19-Nov-24	Proposed Merger & Equity Financing Presentation	17.0	1.01%	6.0	0.98%	8.1	1.03%	2.9	1.00%
Avalon Advanced Materials Inc.	Separation Rapids	Exploration	27-Feb-25	Avalon Advanced Material Announces 28% Increase	15.3	1.35%	4.33	1.28%	8.65	1.36%	2.29	1.46%
Liontown Resources Limited	Buldania	Exploration	8-Nov-19	Maiden Lithium Mineral Resource Estimate	14.9	0.97%	-	-	9.1	0.98%	5.9	0.95%
Rock Tech Lithium Inc.	Georgia Lake	Exploration	15-Nov-22	Rock Tech Lithium completes Pre-Feasibility Study	14.8	0.91%	-	-	10.6	0.88%	4.2	1.00%
Delta Lithium Limited	Mount Ida	Exploration	3-Oct-23	Mt Ida Lithium Project Mineral Resource	14.6	1.2%	-	-	7.8	1.3%	6.8	1.1%
European Lithium Limited	Wolfsberg	Exploration	1-Dec-21	11% increase in total Measured, Indicated & Inferred	12.9	1.00%	4.3	1.13%	5.4	0.95%	3.1	0.90%
Green Technology Metals Limited	Seymour	Exploration	3-Apr-25	Resource increase at Root	10.3	1.07%	-	-	6.1	1.25%	4.1	0.70%
Snow Lake Resources Ltd.	Snow Lake	Exploration	9-Aug-23	Technical Report Summary	8.4	1.08%	0.8	1.13%	6.6	1.10%	1.1	0.99%
Cygnus Metals Limited	Pontax	Exploration	31-Mar-25	NI 43-101 Technical Report	8.27	1.02%	-	-	-	-	8.27	1.02%
Critical Resources Limited	Mavis Lake	Exploration	5-May-23	8.0Mt at 1.07% Li2O Maiden Mineral Resource	8.0	1.07%	-	-	-	-	8.0	1.07%

Source: Company filings as at 11 June 2025.

Notes

1. Company reporting the Mineral Resource Estimate in the source document.

2. 'Production' includes assets in operation or in care & maintenance. 'Development' includes assets under construction or where a Feasibility Study has been released. 'Exploration' includes all other projects (e.g. PEA, PFS, Scoping Study or earlier).

3. Figures are reported on a 100% asset basis and are rounded. Measured, Indicated and Inferred Mineral Resources have been aggregated in the Total (M,I&I) figures.

4. Proven Ore Reserves have been added to Measured Mineral Resource and Probable Ore Reserves have been added to Indicated Mineral Resource for the following projects which report Mineral Resources exclusive of Ore Reserves: Wodgina, Galaxy (James Bay) and Whabouchi to allow for comparison.

5. Table focused on the larger conventional lithium pegmatite Mineral Resources reported under JORC 2012, NI-43-101 or 1300 of Regulation S-K issued by the SEC and does not purport to include all global projects.

6. Excludes the Manono Project in the DRC.