

ASX Announcement 15 December 2025

Exceptional Gold Assay from Redcastle Reef Grade Control Drilling

Highlights:

- Initial assays from grade control drilling at Redcastle Reef received
- Exceptional high-grade assay: BMRC173: 1m @ 3,650 g/t Au¹ from 15m (15–16m)
 - ¹ Cautionary Statement: assay results such as 3,650 g/t Au are indicative of nuggety gold, known to occur at Redcastle Reef deposit, and are typically cut to a lower value in Mineral Resource Estimation (ASX: RC1 30 June 2025)
- Multiple high-grade intercepts, including:
 - BMRC173: 7m @ 527 g/t Au from 15m (15–22m), incl. 1m @ 3,650 g/t Au¹ (15-16m)
 - o BMRC171: 2m @ 14.58 g/t Au from 24m (24–26m), incl. 1m @ 22.30 g/t Au (25–26m)
- Broad mineralised intervals confirming grade continuity, including:
 - o BMRC170: 4m @ 1.78 g/t Au from 29m (29–33m), incl. 1m @ 4.26 g/t Au (32–33m)
 - BMRC170: 7m @ 1.29 g/t Au from 36m (36–43m), incl. 1m @ 2.57 g/t Au (41–42m)
 - o BMRC169: 2m @ 1.35 g/t Au from 30m (30–32m)
- Results support geological interpretation of high-grade trend used in RR Mineral Resource Estimate (ASX: RC1 Announcement 30 June 2025)

Redcastle Resources Limited ("Redcastle" or "the Company") is pleased to report assay results from eight (8) initial grade control Reverse Circulation ("RC") drillholes at the Redcastle Reef ("RR") deposit. The grade control program is being conducted by BML Ventures Ltd (BML) on behalf of the Joint Venture between RC1 and BML Ventures Ltd (RB JV). Annexure A contains all drillhole collar information, significant intercepts (uncut) and assay results (uncut).

The RB JV GC drilling program at RR is planned to include approximately 12,800m on an 8m x 6m grid and designed to improve grade definition for mine planning and gold production. (ASX: RC1 Announcement 21 November 2025). Any future revisions to the RR Mineral Resource Estimate ("MRE") will be released following receipt of the full set of GC drilling results.

Chairman's comment

"These initial grade control results from Redcastle Reef are highly encouraging, with multiple high-grade intercepts reported over meaningful widths, demonstrating the continuity and tenor of the mineralised system. It is particularly encouraging to see that RB JV grade control drilling is supporting RC1's existing Mineral Resource Estimate (MRE) drilling results. Redcastle Reef has long been recognised for the presence of coarse gold, and these results further confirm that characteristic. RC1 is fortunate to have access to experienced personnel with extensive expertise in managing coarse-gold mineralisation in the Eastern Goldfields over many years."

Summary and Interpretation

RR hosts localised high-grade gold mineralisation within a quartz vein and stockwork setting, consistent with the geological interpretation applied in the previously reported RR MRE (ASX: RC1 Announcement 30 June 2025). High-grade mineralisation is developed in discrete shoots within an east-plunging structural corridor and has historically been subject to estimation parameters to manage grade variability, presence of nuggets and historical mining impacts.

Along the RR trend, historical drilling intersected robust gold grades, including RRC083: 8m @ 3.56 g/t Au (21–29m) and RC62: 7m @ 2.72 g/t Au (23–30m) (ASX: RC1 Announcement 30 June 2025).

The recent RB JV GC drilling returned locally elevated gold grades within the established RR high-grade trend, supporting continuity of discrete high-grade shoots and improving short-range definition for near-term mine planning and exploitation.

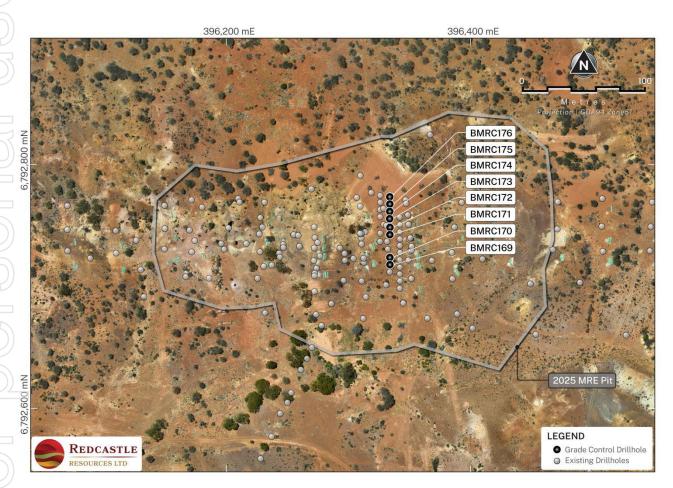


Figure 1 Plan view of GC drillhole location

Operational compliance with JORC 2012

Samples were analysed for gold by fire assay using a 40g charge at Bureau Veritas, Kalgoorlie. A QA/QC program incorporating certified reference materials (CRMs), blanks and duplicates were included in this batch.

Additional information related to drilling, sample preparation, assaying, sample security and QA/QC are found in Annexure B JORC 2012 Table 1 appended to this announcement.

Forward Plans

The Company and the RB JV are continuing to progress all activities necessary to enable mining operations to commence as quickly as possible. With respect to the GC drilling programme specifically:

- GC drilling continues at RR without incident.
- Interpretation of GC drilling results will be updated as additional assays are received.
- Initiating confirmatory check assays for the high-grade 'nuggety' interval(s) (e.g., gravimetric finish and/or screen fire assay), if considered necessary.
- Upon receipt of the full GC dataset, RC1 will assess the implications for any future MRE work.

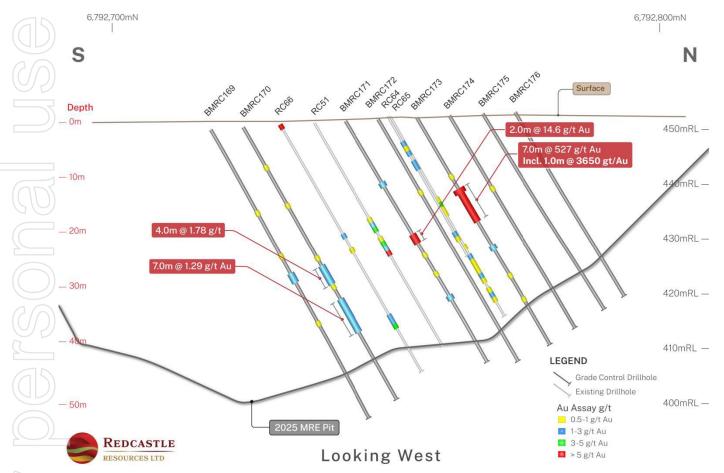


Figure 2 Cross section 396,334mE showing recent GC drilling

Reference RC1 Announcements

Recent and relevant announcements relating to the QA and RR MRE lodged on the ASX include:

Date	Announcement
21 November 2025	Grade control drilling underway at Redcastle Reef
30 July 2025	RC1 Lifts Mineral Resource Estimates to 42koz
5 May 2025 Final Assays Bolster and Enhance Redcastle Project Poter	
5 March 2025	Additional High-Grade Gold Intersected in Eastern Goldfields
31 January 2025	Update on Redcastle Drilling Program
29 July 2024	Queen Alexandra Diamond Drilling Program Complete
9 July 2024	High Grade Intersection at Queen Alexandra
18 June 2024	Redcastle Project Drilling Update
14 May 2024	Redcastle Project Exploration Update
19 April 2024	Redcastle Project Exploration Update
20 February 2024	Queen Alexandra Maiden JORC Resource Estimate
22 December 2023	Drilling Returns Additional High Grade Gold Intercepts
7 December 2023	Consistent Shallow Gold Mineralisation at Queen Alexandra
21 November 2022	Further Shallow RC Drilling Results at Redcastle
21 September 2022	Update on RC Drilling at Redcastle
6 July 2022	Outstanding High Grade Shallow RC Drilling Results

About Redcastle Resources Ltd

Redcastle Resources Ltd (ASX: RC1) is a WA-based rapidly emerging gold company predicated on holding tenements in the right location, within a proven gold producing province; containing the right rocks and structures, that are conducive to finding commercial quantities of high-grade gold through the application of modern and innovative exploration techniques. Our growth strategy is committed to growth through targeted drilling, development, production and value accretive acquisitions to generate shareholder value as an integrated gold exploration and production company.

Redcastle's Portfolio is located ~60 kilometres east-southeast of the Gwalia Gold Mine. The portfolio comprises a series of contiguous tenements centrally located within a region known as the "golden circle", an area delineated by multi-million-ounce gold mining operations within the highly prospective Leonora-Laverton portion of the greenstone belt of the eastern Yilgarn. In August 2025, RC1 and BML Ventures Ltd formed a Joint Venture (RB JV) (ASX: RC1 10 August 2025) that is focused on exploiting potential gold deposits within three of the RPA tenements including QA and RR.

RC1's Portfolio is divided into the *Redcastle Project Area (RPA)* and *TBone Belt (TBone)*. RPA has a JORC compliant Mineral Resource Estimate at Queen Alexandra (QA) and Redcastle Reef (RR) (ASX: RC1 30 June 2025) of 42,000 ounces, and several highly prospective target areas which have demonstrated the clear potential to add to this resource base. The TBone Belt remains fundamentally underexplored by modern techniques, and represents an exciting, scalable opportunity to build a pipeline of high-priority drill targets immediately adjacent to RPA.

Following the TBone Belt acquisition (ASX: RC1 20 August 2025), RC1's combined tenement portfolio in the Eastern Goldfields now covers an area of 86km2 comprising the following:

- Prospecting Licenses (PLs): 56
- Mining Leases (MLs): 6
- Mining Lease Applications (MLAs): 5

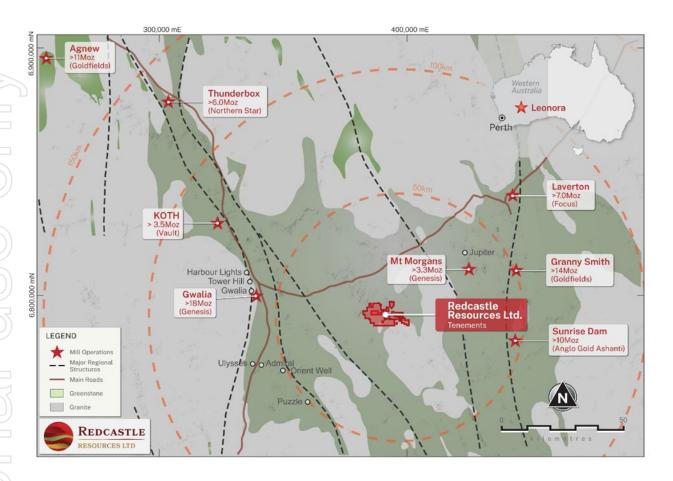


Figure 3 Redcastle Project and TBone Package - tenements location plan

This announcement has been approved for release to ASX by the Board of Redcastle Resources Ltd -ENDS-

For further information, please contact:

Ray Shaw

Chairman

T+61 8 6559 1792

E: admin@redcastle.net.au

Ron Miller

Director

T +61 8 6559 1792

E: admin@redcastle.net.au

Sam Burns

Six Degrees Investor Relations

T +61 (0) 400 164 067

E: sam.burns@sdir.com.au

Forward-Looking Statements

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Redcastle operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking

statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside Redcastle's control. No decision to proceed to production has been made, and any such decision will be subject to the outcomes of detailed feasibility studies.

In relying on the above mentioned ASX announcements and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above-mentioned announcements, and in the case of estimates of mineral resources, all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Competent Persons Statement

The information in this report that relates to Mineral Resource Estimation and grade control drilling results at Redcastle Reef is based on information compiled by Dr. Spero Carras, a Competent Person and consultant to the Company, who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM Membership No: 107972). Dr. Carras has sufficient experience (40+ years working on gold) that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. As Competent Person, Dr. Carras consents to the inclusion in the report of matters based on the information compiled by him, in the form and context in which it appears.

ANNEXURE A

Table 1. Summary of Grade Control (GC) Drillhole Collar Information

<u> </u>						
Hole ID	Easting (m)	Northing (m)	RL (m)	Depth (m)	Dip(°)	Azimuth(°)
BMRC169	396334	6792718	450	60	-60	0
BMRC170	396334	6792724	450	57	-60	0
BMRC171	396334	6792743	452	51	-60	0
BMRC172	396334	6792749	452	51	-60	0
BMRC173	396334	6792756	452	48	-60	0
BMRC174	396334	6792762	453	45	-60	0
BMRC175	396334	6792768	453	42	-60	0
BMRC176	396334	6792774	453	39	-60	0

Coordinates are in GDA94 / MGA Zone 51, rounded to the nearest metre. Dip is reported in degrees. Azimuths are referenced to true north.

Table 2 Significant Intercepts (uncut)

Hole ID	From	То	Au g/t	Interval	Ave Au g/t
BMRC169	30	31	1.50		
BMRC169	31	32	1.20	2m	1.35
BMRC170	29	30	0.92		
BMRC170	30	31	1.06		
BMRC170	31	32	0.86		
BMRC170	32	33	4.26	4m	1.78
BMRC170	36	37	0.78		
BMRC170	37	38	0.50		
BMRC170	38	39	1.78		
BMRC170	39	40	0.94		
BMRC170	40	41	1.82		
BMRC170	41	42	2.57		
BMRC170	42	43	0.64	7m	1.29
BMRC171	13	14	1.50	1m	1.50
BMRC171	24	25	6.85		
BMRC171	25	26	22.30	2m	14.58
BMRC171	37	38	2.38	1m	2.38
BMRC173	15	16	3650		
BMRC173	16	17	0.54		
BMRC173	17	18	2.39		
BMRC173	18	19	0.06		
BMRC173	19	20	12.90		
BMRC173	20	21	0.53		
BMRC173	21	22	20.70	7m	527
BMRC173	27	28	1.97	1m	1.97

Table 3 Complete Assay Results – Grade Control Drilling (Uncut Values)

Ī	Hole ID	Depth	Depth To	Au g/t
	BMRC169	0	1	0.090
1	BMRC169	1	2	0.020
İ	BMRC169	2	3	0.005
İ	BMRC169	3	4	0.005
İ	BMRC169	4	5	0.130
	BMRC169	5	6	0.005
İ	BMRC169	6	7	0.005
l	BMRC169	7	8	0.060
ŀ	BMRC169	8	9	0.005
ŀ	BMRC169	9	10	0.005
	BMRC169	10	11	0.020
ŀ	BMRC169	11	12	0.070
ŀ	BMRC169	12	13	0.005
ŀ	BMRC169	13	14	0.050
ŀ	BMRC169	14	15	0.020
ļ	BMRC169	15	16	0.020
	BMRC169	16	17	0.005
	BMRC169	17	18	0.003
	BMRC169	18	19	0.780
ļ	BMRC169		20	
ŀ		19		0.150
ŀ	BMRC169	20	21	0.005
ļ	BMRC169	21	22	0.005
ŀ	BMRC169	22	23	0.020
ļ	BMRC169	23	24	0.020
ļ	BMRC169	24	25	0.005
ļ	BMRC169	25	26	0.005
	BMRC169	26	27	0.710
	BMRC169	27	28	0.280
ļ	BMRC169	28	29	0.230
	BMRC169	29	30	0.020
-	BMRC169	30	31	1.500
ļ	BMRC169	31	32	1.200
ļ	BMRC169	32	33	0.090
ļ	BMRC169	33	34	0.240
ļ	BMRC169	34	35	0.005
	BMRC169	35	36	0.005
	BMRC169	36	37	0.020
ļ	BMRC169	37	38	0.005
	BMRC169	38	39	0.005
	BMRC169	39	40	0.020
	BMRC169	40	41	0.540
	BMRC169	41	42	0.040
	BMRC169	42	43	0.060
ĺ	BMRC169	43	44	0.005
ĺ	BMRC169	44	45	0.005
ı	BMRC169	45	46	0.005

Hole ID	Depth	Depth To	Au g/t
BMRC169	46	47	0.005
BMRC169	47	48	0.005
BMRC169	48	49	0.005
BMRC169	49	50	0.005
BMRC169	50	51	0.005
BMRC169	51	52	0.005
BMRC169	52	53	0.005
BMRC169	53	54	0.005
BMRC169	54	55	0.005
BMRC169	55	56	0.050
BMRC169	56	57	0.020
BMRC169	57	58	0.005
BMRC169	58	59	0.005
BMRC169	59	60	0.005
BMRC170	0	1	0.070
BMRC170	1	2	0.040
BMRC170	2	3	0.005
BMRC170	3	4	0.005
BMRC170	4	5	0.005
BMRC170	5	6	0.005
BMRC170	6	7	0.370
BMRC170	7	8	0.080
BMRC170	8	9	0.840
BMRC170	9	10	0.210
BMRC170	10	11	0.020
BMRC170	11	12	0.020
BMRC170	12	13	0.005
BMRC170	13	14	0.005
BMRC170	14	15	0.030
BMRC170	15	16	0.150
BMRC170	16	17	0.690
BMRC170	17	18	0.160
BMRC170	18	19	0.030
BMRC170	19	20	0.030
BMRC170	20	21	0.020
BMRC170	21	22	0.005
BMRC170	22	23	0.060
BMRC170	23	24	0.005
BMRC170	24	25	0.030
BMRC170	25	26	0.200
BMRC170	26	27	0.350
BMRC170	27	28	0.780
BMRC170	28	29	0.140
BMRC170	29	30	0.920
BMRC170	30	31	1.060
BMRC170	31	32	0.860

	Hole ID	Depth	Depth To	Au g/t
	BMRC170	32	33	4.260
	BMRC170	33	34	0.650
	BMRC170	34	35	0.020
1	BMRC170	35	36	0.230
	BMRC170	36	37	0.780
	BMRC170	37	38	0.500
	BMRC170	38	39	1.780
	BMRC170	39	40	0.940
	BMRC170	40	41	1.820
	BMRC170	41	42	2.570
	BMRC170	42	43	0.640
	BMRC170	43	44	0.130
	BMRC170	44	45	0.200
	BMRC170	45	46	0.030
	BMRC170	46	47	0.020
	BMRC170	47	48	0.030
	BMRC170	48	49	0.050
	BMRC170	49	50	0.020
	BMRC170	50	51	0.040
	BMRC170	51	52	0.005
	BMRC170	52	53	0.020
	BMRC170	53	54	0.005
	BMRC170	54	55	0.005
	BMRC170	55	56	0.005
	BMRC170	56	57	0.005
	BMRC171	0	1	0.160
	BMRC171	1	2	0.140
	BMRC171	2	3	0.005
	BMRC171	3	4	0.020
	BMRC171	4	5	0.020
	BMRC171	5	6	0.005
	BMRC171	6	7	0.005
	BMRC171	7	8	0.005
	BMRC171	8	9	0.005
	BMRC171	9	10	0.050
	BMRC171	10	11	0.040
	BMRC171	11	12	0.005
ŀ	BMRC171	12	13	0.005
	BMRC171	13	14	1.500
	BMRC171	14	15	0.060
	BMRC171	15	16	0.005
	BMRC171	16	17	0.005
ŀ	BMRC171	17	18	0.080
ŀ	BMRC171	18	19	0.005
ŀ	BMRC171	19	20	0.005
	BMRC171	20	21	0.005
	BMRC171	21	22	0.020
ŀ	BMRC171	22	23	0.010
L				

		Т	
Hole ID	Depth	Depth To	Au g/t
BMRC171	23	24	0.050
BMRC171	24	25	6.850
BMRC171	25	26	22.300
BMRC171	26	27	0.210
BMRC171	27	28	0.310
BMRC171	28	29	0.560
BMRC171	29	30	0.180
BMRC171	30	31	0.290
BMRC171	31	32	0.320
BMRC171	32	33	0.670
BMRC171	33	34	0.100
BMRC171	34	35	0.010
BMRC171	35	36	0.030
BMRC171	36	37	0.100
BMRC171	37	38	2.380
BMRC171	38	39	0.280
BMRC171	39	40	0.090
BMRC171	40	41	0.150
BMRC171	41	42	0.070
BMRC171	42	43	0.050
BMRC171	43	44	0.005
BMRC171	44	45	0.005
BMRC171	45	46	0.005
BMRC171	46	47	0.005
BMRC171	47	48	0.005
BMRC171	48	49	0.005
BMRC171	49	50	0.005
BMRC171	50	51	0.005
BMRC172	0	1	0.250
BMRC172	1	2	0.200
BMRC172	2	3	0.005
BMRC172	3	4	0.005
BMRC172	4	5	0.005
BMRC172	5	6	0.005
BMRC172	6	7	0.150
BMRC172	7	8	0.030
BMRC172	8	9	0.020
BMRC172	9	10	0.490
BMRC172	10	11	0.310
BMRC172	11	12	0.090
BMRC172	12	13	0.005
BMRC172	13	14	0.050
BMRC172	14	15	0.010
BMRC172	15	16	0.510
BMRC172	16	17	0.020
BMRC172	17	18	0.020
BMRC172	18	19	0.005
BMRC172	19	20	0.005
DIVINCI/Z	1.0	20	0.003

	Hole ID	Depth	Depth To	Au g/t
	BMRC172	20	21	0.005
	BMRC172	21	22	0.030
)	BMRC172	22	23	0.030
	BMRC172	23	24	0.010
	BMRC172	24	25	0.020
	BMRC172	25	26	0.020
	BMRC172	26	27	0.200
	BMRC172	27	28	0.020
	BMRC172	28	29	0.010
	BMRC172	29	30	0.030
	BMRC172	30	31	0.070
	BMRC172	31	32	0.140
	BMRC172	32	33	0.005
	BMRC172	33	34	0.005
	BMRC172	34	35	0.060
	BMRC172	35	36	0.030
	BMRC172	36	37	0.040
	BMRC172	37	38	0.005
	BMRC172	38	39	0.040
	BMRC172	39	40	0.005
	BMRC172	40	41	0.005
	BMRC172	41	42	0.005
	BMRC172	42	43	0.005
	BMRC172	43	44	0.005
	BMRC172	44	45	0.005
	BMRC172	45	46	0.005
	BMRC172	46	47	0.005
	BMRC172	47	48	0.005
	BMRC172	48	49	0.005
	BMRC172	49	50	0.040
	BMRC172	50	51	0.005
	BMRC173	0	1	0.310
	BMRC173	1	2	0.160
	BMRC173	2	3	0.005
	BMRC173	3	4	0.005
	BMRC173	4	5	0.020
	BMRC173	5	6	0.030
	BMRC173	6	7	0.005
	BMRC173	7	8	0.005
	BMRC173	8	9	0.005
	BMRC173	9	10	0.005
	BMRC173	10	11	0.030
	BMRC173	11	12	0.230
	BMRC173	12	13	0.720
	BMRC173	13	14	0.060
	BMRC173	14	15	0.070
	BMRC173	15	16	3650.0
	BMRC173	16	17	0.540

	T		
Hole ID	Depth	Depth To	Au g/t
BMRC173	17	18	2.390
BMRC173	18	19	0.060
BMRC173	19	20	12.900
BMRC173	20	21	0.530
BMRC173	21	22	20.700
BMRC173	22	23	0.005
BMRC173	23	24	0.070
BMRC173	24	25	0.050
BMRC173	25	26	0.070
BMRC173	26	27	0.030
BMRC173	27	28	1.970
BMRC173	28	29	0.030
BMRC173	29	30	0.040
BMRC173	30	31	0.150
BMRC173	31	32	0.040
BMRC173	32	33	0.100
BMRC173	33	34	0.650
BMRC173	34	35	0.010
BMRC173	35	36	0.005
BMRC173	36	37	0.005
BMRC173	37	38	0.005
BMRC173	38	39	0.670
BMRC173	39	40	0.100
BMRC173	40	41	0.005
BMRC173	41	42	0.005
BMRC173	42	43	0.005
BMRC173	43	44	0.005
BMRC173	44	45	0.005
BMRC173	45	45	0.300
BMRC173	46	47	0.005
BMRC173	47	48	0.005
	0		
BMRC174		1 2	0.180
BMRC174	1		0.170
BMRC174	2	3	0.005
BMRC174	3	4	0.030
BMRC174	4	5	0.005
BMRC174	5	6	0.110
BMRC174	6	7	0.005
BMRC174	7	8	0.005
BMRC174	8	9	0.070
BMRC174	9	10	0.005
BMRC174	10	11	0.010
BMRC174	11	12	0.005
BMRC174	12	13	0.020
BMRC174	13	14	0.005
BMRC174	14	15	0.005
BMRC174	15	16	0.650
BMRC174	16	17	0.005

Hole ID	Depth	Depth To	Au g/t
BMRC174	17	18	0.040
BMRC174	18	19	0.050
BMRC174	19	20	0.060
BMRC174	20	21	0.010
BMRC174	21	22	0.005
BMRC174	22	23	0.005
BMRC174	23	24	0.005
BMRC174	24	25	0.005
BMRC174	25	26	0.020
BMRC174	26	27	0.005
BMRC174	27	28	0.040
BMRC174	28	29	0.010
BMRC174	29	30	0.005
BMRC174	30	31	0.005
BMRC174	31	32	0.005
BMRC174	32	33	0.005
BMRC174	33	34	0.020
BMRC174	34	35	0.005
BMRC174	35	36	0.005
BMRC174	36	37	0.250
BMRC174	37	38	0.040
BMRC174	38	39	0.020
BMRC174	39	40	0.005
BMRC174	40	41	0.005
BMRC174	41	42	0.020
BMRC174	42	43	0.005
BMRC174	43	44	0.005
BMRC174	44	45	0.005
BMRC175	0	1	0.240
BMRC175	1	2	0.070
BMRC175	2	3	0.020
BMRC175	3	4	0.010
BMRC175	4	5	0.005
BMRC175	5	6	0.005
BMRC175	6	7	0.005
BMRC175	7	8	0.005
BMRC175	8	9	0.020
BMRC175	9	10	0.005
BMRC175	10	11	0.005
BMRC175	11	12	0.005
BMRC175	12	13	0.005
BMRC175	13	14	0.005
BMRC175	14	15	0.005
BMRC175	15	16	0.005
BMRC175	16	17	0.010
BMRC175	17	18	0.005
BMRC175	18	19	0.005
BMRC175	19	20	0.010
DIVINCE/3	1 10		0.010

Hole ID	Depth	Depth To	Au g/t
BMRC175	20	21	0.090
BMRC175	21	22	0.005
BMRC175	22	23	0.005
BMRC175	23	24	0.010
BMRC175	24	25	0.005
BMRC175	25	26	0.005
BMRC175	26	27	0.005
BMRC175	27	28	0.005
BMRC175	28	29	0.005
BMRC175	29	30	0.005
BMRC175	30	31	0.010
BMRC175	31	32	0.005
BMRC175	32	33	0.010
BMRC175	33	34	0.005
BMRC175	34	35	0.005
BMRC175	35	36	0.020
BMRC175	36	37	0.005
BMRC175	37	38	0.020
BMRC175	38	39	0.020
BMRC175	39	40	0.030
BMRC175	40	41	0.020
BMRC175	41	42	0.050
BMRC176	0	1	0.140
BMRC176	1	2	0.160
BMRC176	2	3	0.020
BMRC176	3	4	0.020
BMRC176	4	5	0.010
BMRC176	5	6	0.005
BMRC176	6	7	0.010
BMRC176	7	8	0.020
BMRC176	8	9	0.005
BMRC176	9	10	0.020
BMRC176	10	11	0.010
BMRC176	11	12	0.005
BMRC176	12	13	0.005
BMRC176	13	14	0.020
BMRC176	14	15	0.020
BMRC176	15	16	0.010
BMRC176	16	17	0.005
BMRC176	17	18	0.010
BMRC176	18	19	0.010
BMRC176	19	20	0.003
BMRC176	20	21	0.020
BMRC176		22	0.005
BMRC176	21 22	23	0.005
BMRC176	23	24	0.003
-			
BMRC176	24	25	0.010
BMRC176	25	26	0.020

Hole ID	Depth	Depth To	Au g/t
BMRC176	26	27	0.050
BMRC176	27	28	0.060
BMRC176	28	29	0.005
BMRC176	29	30	0.005
BMRC176	30	31	0.020
BMRC176	31	32	0.050
BMRC176	32	33	0.010
BMRC176	33	34	0.005
BMRC176	34	35	0.005
BMRC176	35	36	0.005
BMRC176	36	37	0.005
BMRC176	37	38	0.005
BMRC176	38	39	0.005

Samples were analysed by Bureau Veritas Minerals, Kalgoorlie (40 g fire assay). Au results are uncut; Au lower detection limit is 0.005 g/t.

ANNEXURE B

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

• (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Industry Standard Reverse Circulation (RC) drilling techniques were employed to deliver consecutive 1 metre down-hole drill cuttings to the surface, whereby sample return is passed through a cyclone underflow into a stationary Metzke cone splitter attached to the underside of the cyclone. One subsample collection port is utilised to split each one metre downhole sample, enabling one sub-sample split (~2-3kg) to be collected into calico bags. The remainder of the sample was then free dumped onto the ground surface, in rows of 20 single metre piles, near to the drill hole collar. All drilling, sample collection and sampling handling procedures were supervised by BML's consultant geology personnel to today's industry standards. QA/QC procedures were implemented during the drilling program to today's industry standards. All samples were obtained to enable total pulverisation and catchweights obtained for industry standard gold analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse Circulation (RC) drilling techniques employed using face sampling hammer with a hole diameter of approximately 125mm. Drill Rig is a Marooka-mounted AustEx X300 with on-board Atlas Copco 966psi/435cfm air compressor.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drilling was observed at all times and recoveries were observed to be high and consistent, thus sampling is
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	considered to be representative, and without sample bias.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or	 Drill chip samples were logged geologically to a level of deto suitable for mineral resource estimation. Logging was qualitative and quantitative. All drill samples were logged.
	costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	 RC drill samples were split, to obtain sub-samples for analysis, using a stationary cone splitter mounted beneath the sample cyclone attached to the drill rig.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC drilling and sample splitting using cyclones and stationary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	cone splitters is considered to be industry standard and appropriate for evaluating Archaean gold lode deposit
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Field duplicate samples were taken at a ratio of 1 in 40 samples. Samples collected to date adequately repeat.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	 Certified Reference Material (CRM) were inserted into the sampling stream at a ratio of 1 in 40 samples. All samples deemed to assay within acceptable tolerances.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were submitted to an independent laboratory (Bureau Veritas, Kalgoorlie). Industry standard sample preparation (dry, crush and total pulverisation) and analysis be
	For geophysical tools, spectrometers, handheld XRF instruments,	40g Fire Assay with AAS finish were employed.

Criteria	JORC Code explanation	Commentary
laboratory tests	etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 CRM samples were inserted into the sampling stream, and samples submitted to the laboratory. Review of QA/QC data did not reveal any bias and the lev of accuracy and precision to be appropriate for mineral resource estimation and mine planning.
erification f sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Verification of significant intersections was conducted internally by BML personnel. There was no twinning of holes. All data is entered into a computer database and verified. Data is recorded onto laptop computers and uploaded or the Company's server. No adjustments were made to the original laboratory assay.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Drill hole collars were located using a Leica base station arroving units to obtain millimeter accurate collar pickups. Coordinates are reported to GDA94 datum, UTM MGA94 Z 51. Topographic control is established using RTK GPS to an accuracy of ±0.1m
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 RC drill samples were taken at 1 metre downhole intervals. drill hole spacing is considered to be sufficient to establish degree of geological and grade continuity appropriate for Mineral Resource and Ore Reserve estimation procedures classifications applied. Sample compositing was not applied to RC drill samples,
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported	 RC drill holes were inclined at -60° towards true north, orthogonal to the main mineralisation trends. The quartz vertical form a stockwork style of mineralisation and the drill direction was optimised to intersect all major orientations of the vein Although the veins are multi-directional, the drilling orientations is considered to provide unbiased sampling of the mineralise.

Criteria	JORC Code explanation	Commentary
	if material.	zones.
Sample security	The measures taken to ensure sample security.	Sample security was maintained at all times by the BML's geological personnel. Individual samples were collected in prenumbered calico bags, then collated into labeled poly-woven bags, zip-tied, and hand delivered direct to the laboratory (Bureau Veritas, Kalgoorlie).
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There has been no audit or review of sampling techniques and data.

Section 2 Reporting of Exploration Results

• (Criteria listed in the preceding section also apply to this section.)

	• (Chiefia listed in the preceding section also apply to this section.)		
	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	 Mining Lease 39/318 is registered 100% to E-Collate Pty Ltd, a wholly owned subsidiary of Redcastle Resources Ltd. There are no current known impediments to obtaining a license to operate in the area. Standard Western Australia royalties apply to the project.
5)	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous explorers in this area include Hill Minerals (1980s) and Terrain Minerals (early 2000s), and their activities included geological mapping, magnetics and drilling.
<u>)</u>	Geology	Deposit type, geological setting and style of mineralisation.	 The geology comprises typical Archaean greenstone, shear-hosted gold mineralisation. This style of mineralisation is typical within Archaean greenstone sequences. At Redcastle Reef, mineralisation has been historically recorded as being dominated by sigmoidal quartz veins within a quartz dolerite host. The highest grades and largest
			tonnages mined were associated with an east plunging 25 degrees (plunge) at 120 degrees (to the east). Fold closure has been mined down plunge from surface to -8m.
			 Mineralisation observed during the 2024-2025 drilling and surface mapping has identified quartz stockworks hosted by dolerite / quartz-dolerite lithologies and also within a felsic intrusive, which is considered to possibly be a pre-mineralisation event.
	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar	Drill hole information is tabulated and attached to this report in Annexure A. .

Criteria	JORC Code explanation	Commentary
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole	
	down hole length and interception depth hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No data aggregation methods or metal equivalent values have been utilised in reporting of grade control results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 RC drill holes were inclined at -60° towards true north, orthogonal to the main mineralisation trends. The quartz veins form a stockwork style of mineralisation and the drill direction was optimised to intersect all major orientations of the veins. Although the veins are multi-directional, the drilling orientation is generally considered to provide unbiased sampling of the mineralised zones.
		 As a consequence of the various orientations of the quartz veins, true widths are not necessarily known for individual veins however the widths of the stockwork zones are considered to be close to being true widths
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being	Plan view of sampling locations and results are included in the

Balanced reporting by the process of	Crit	eria	JORC Code explanation	Commentary
reporting practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other substantive exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. Further work The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions,				One drill cross section is included in the main body of this report
substantive exploration data reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. Further work The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions,			practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading	·
lateral extensions or depth extensions or large-scale step-out definitive mine planning. drilling). Diagrams clearly highlighting the areas of possible extensions,	sub exp	stantive oloration	reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating	•
areas, provided this information is not commercially sensitive.	Furt	her work	lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling	