

22 December 2025 - ASX Announcement

Results from Dadjan and Tolé show potential for large gold system

Shallow and wide-spaced RC drilling returns encouraging results from the first ever drill program completed at Dadjan and Tolé

Initial results suggest that the Company's 470km² gold package in the South-central Siguiri has potential to contain a large gold mineralised system

Importantly, the expedited drilling programs demonstrated to the Guinea authorities DeSoto's commitment to exploring its ground rapidly, supporting the Company's efforts to hold and expand its ground position

Dadjan Highlights

- Initial reconnaissance drilling was designed to test for gold bearing lodes under artisanal workings at Dadjan. Better results from shallow and wide-spaced RC drilling from include:
 - 1m at 318 g/t Au from 13m (DJNRC10015)**
 - 1m at 2.54 g/t Au from 113m (DJNRC10012)**
 - 1m at 7.99 g/t Au from 10m (DJNRC10021)**
 - 5m at 5.15 g/t Au from 64m (DJNRC10021)**
 - 1m at 32.4 g/t Au from 88m (DJNRC10030)**
 - 1m at 2.44 g/t Au from 107m (DJNRC10032)**
 - 3m at 1.38 g/t Au from 8m (DJNRC10037)**
 - 2m at 5.35 g/t Au from 21m (DJNRC10037)**

Tolé Highlights

- Initial reconnaissance drilling was designed to test for gold bearing lodes under artisanal workings at Tolé. Better results from shallow RC drilling from Tolé Main Zone Prospect include:

- **7m at 0.65 g/t Au from 39m (TLRC30005)**
- **2m at 3.64 g/t Au from 55m (TLRC30005)**
- **5m at 1.76 g/t Au from 83m (TLRC30008)**
- **3m at 1.61 g/t Au from 94m (TLRC30008)**
- **4 m at 0.95 g/t Au from 30 m (TLRC30010)**
- Power auger results from NE Tole (Bofani Prospect) include:
 - **3m at 0.79 g/t Au from 14m (TLAU0259)**
 - **2m at 1.08 g/t Au from 6m (TLAU0287)**
 - **2m at 4.81 g/t Au from 14m (TLAU0296)**
 - **2m at 1.33 g/t Au from 4m (TLAU0380)**
 - **2 m at 0.9 g/t Au from 4 m (TLAU0386)**
 - **2 m at 1.86 g/t Au from 10 m (TLAU0508)**

Next Steps

- Power auger drilling nearing completion at Tolé.
- Infill soil sampling (200m x 200m) covering entire Permit areas (not previously sampled) at Dadjan and Tolé.
- Airborne magnetics to be flown over Dadjan and Tolé to help identify gold-bearing structures, intrusives and lithological contacts to support future drill targeting.
- First-pass BLEG soil sampling underway across Koba, Nerekole Sud, Kassa Est and Mini.
- Further drilling to be undertaken once further drill targets have been delineated.
- Further updates from Timbakouna with a 200m x 200m soil sampling program covering the whole permit ahead of planned drilling.

Commenting on the results, Managing Director Chris Swallow:

"These first-pass drilling results from Dadjan and Tolé are encouraging. Importantly, this work represents the first modern drilling ever undertaken across a very large and previously underexplored land position, with shallow, wide-spaced drilling delivering gold intersections beneath extensive artisanal workings.

While the drilling completed to date has tested only a very small fraction of our 470km² contiguous package, it has provided a strong foundation for systematic follow-up work.

Equally critical, the early execution of drilling and geochemical programs ensured DeSoto was able to retain and expand its ground position during recent reforms to Guinea's Mining Cadastre, securing strategic tenure in one of West Africa's most prospective gold belts. We

now move forward with confidence as we scale up regional geochemistry, geophysics and target generation across the broader Siguiri landholding."

DeSoto Resources Limited (ASX:DES) ("DES" or the "Company") is pleased to announce assay results from its Dadjan and Tolé Projects.

Dadjan Project: Results and Further Work Plans

The RC drilling program at Dadjan Main Zone and Grand Plateau was completed during the quarter with all results now received. A total of 42 holes were drilled totalling 4,810 metres (Figure 1).

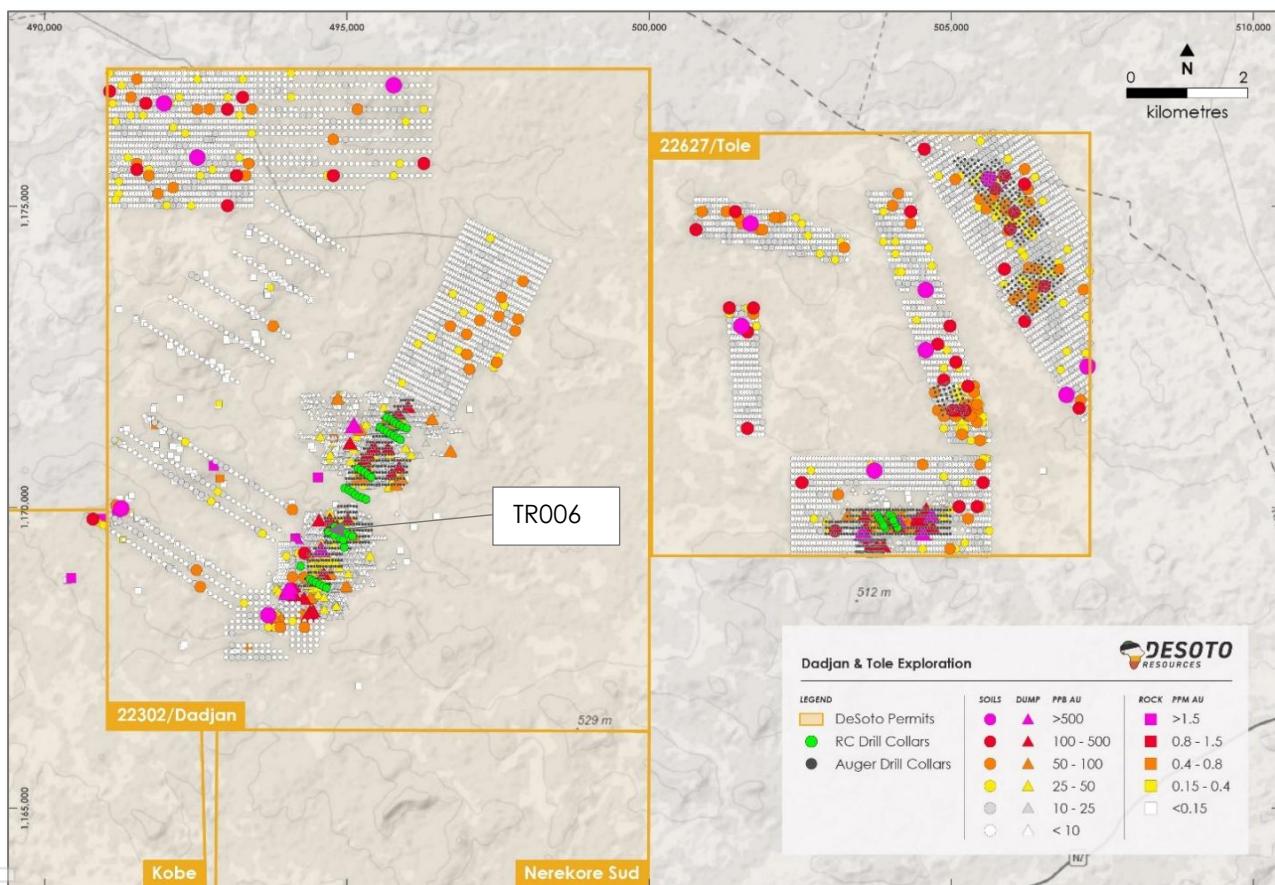


Figure 1 - Location of RC drillhole collars at Dadjan and Tole, power auger collar locations at Tole, and location of additional trench TR006 overlain with previously reported assay results. ^(1,2,3,4,5,6,7,8,9)

Results continued to confirm the presence of gold mineralisation at Dadjan with peak values of 318 g/t Au over 1m received (Figure 2).

¹ DES ASX Announcement dated 5 May 2025.
² DES ASX Announcement dated 9 May 2025.
³ DES ASX Announcement dated 19 May 2025.
⁴ DES ASX Announcement dated 24 June 2025.
⁵ DES ASX Announcement dated 21 July 2025.
⁶ DES ASX Announcement dated 24 July 2025.
⁷ DES ASX Announcement dated 12 September 2025.
⁸ DES ASX Announcement dated 30 September 2025.
⁹ DES ASX Announcement dated 17 October 2025.

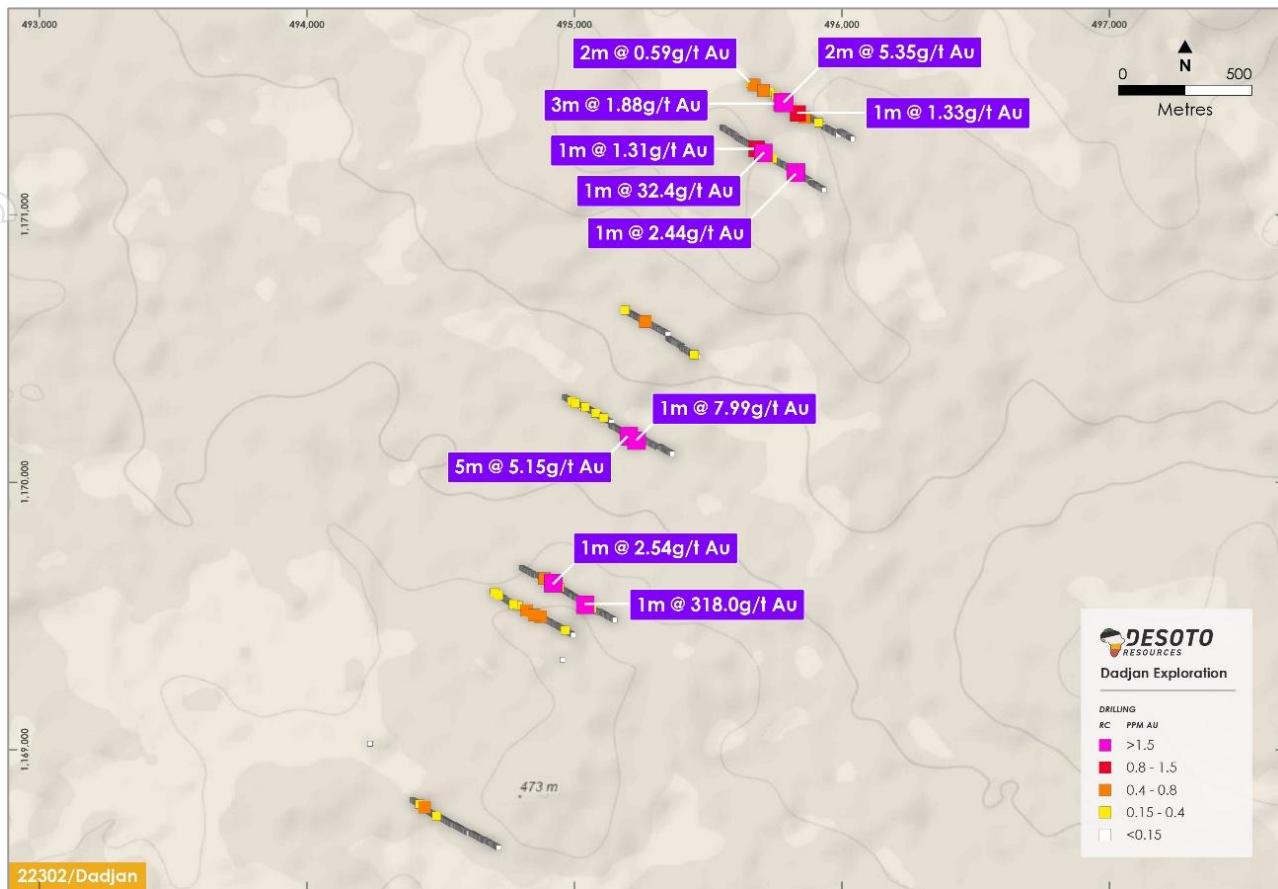


Figure 2: Plan view of Dadjan RC drilling results.

An additional trench (TR006) was excavated at Dadjan Main Zone, which produced results up to 2m at 2.27 g/t Au (Figure 3).

While having seen no modern-day exploration, including drilling, Dadjan has more than 50 years of recorded artisanal mining on its tenure, with numerous permanent camps and villages set up around the tenure supporting a local non-mechanised gold industry.

DeSoto retains a positive relationship with the local community and as part of the current drilling program has upgraded local tracks and roads and drilled new water bores.

The results from Dadjan and Tolé provide a strong foundation for expanded follow-up programs across DeSoto's broader South-Central Siguiri landholding, which remains largely untested by modern exploration.

With only a small fraction of the 470km² contiguous package drilled to date, upcoming regional soil geochemistry, BLEG sampling and drone magnetics are expected to rapidly refine priority targets and define structural controls at a district scale.

This phased, low-cost approach positions the Company to efficiently advance multiple prospects within a large gold system in one of West Africa's most highly endowed gold belts.

Regional soil sampling over the remainder of the tenement on a 200m by 200m spacing is currently underway. Drill hole collar locations and assay results can be found in the Appendices of this announcement.

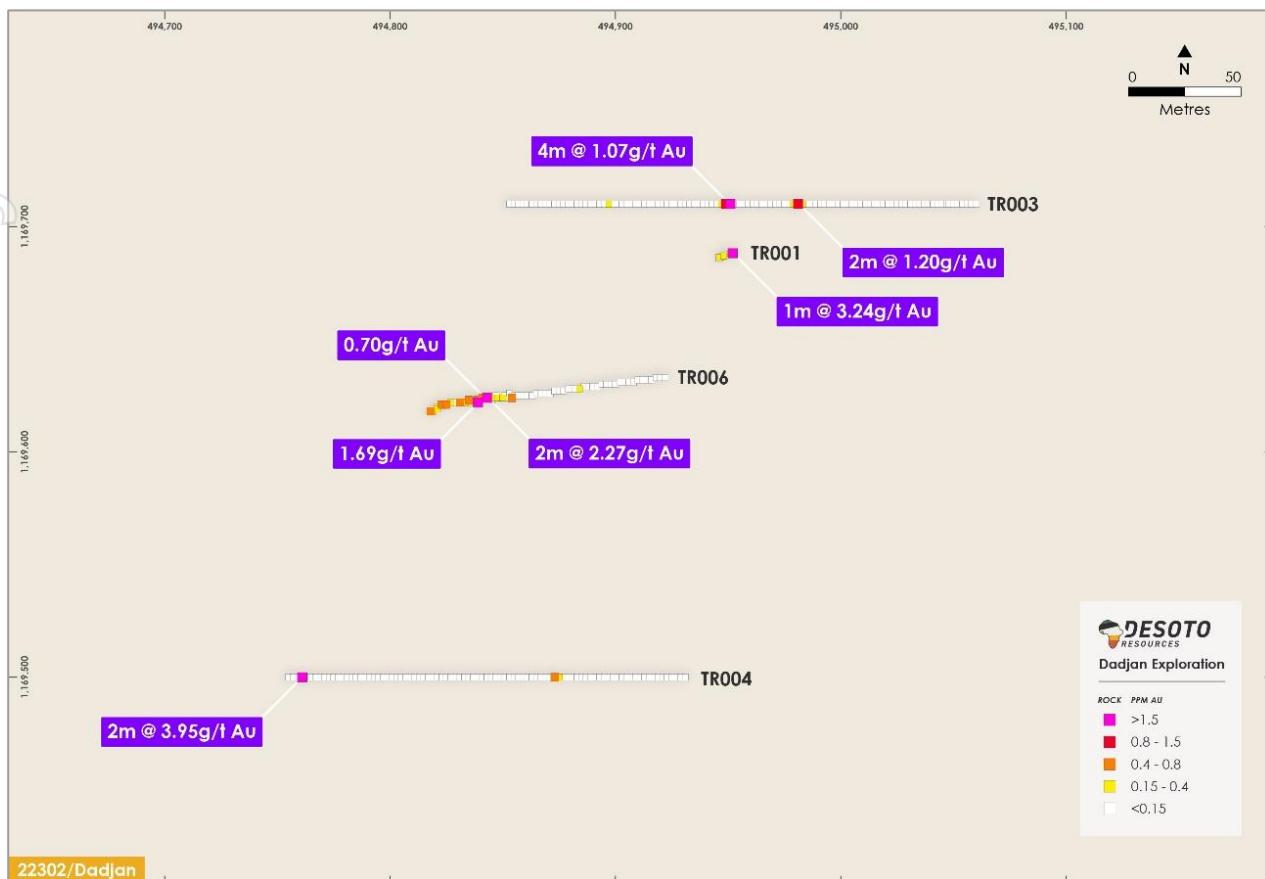


Figure 3: Plan view of TR006. Note: figure includes previously reported results¹⁰

Tole Project: Results and Current Work Plans

A 7,500 metre Power Auger drilling program is nearing completion at NE Tole and Central Tole (Figure 4) with 301 holes totalling 5,347 metres drilled.

Results continued to confirm the presence of gold mineralisation at Tole with values of up to 4.81 g/t Au received (Figure 4).

In addition, a 12 hole RC drilling program totalling 1,257 metres of has been completed Tole Main Zone which produced results up to 2m at 3.64 g/t Au (Figure 4).

Drill hole collar locations and assay results can be found in the Appendices of this announcement. Regional soil sampling over the remainder of the tenement on a 200m by 200m spacing is currently underway.

Regional Exploration

The Company has commenced regional bulk leach extractable gold (BLEG) stream sediment sampling on the Koba, Mini, Nérékoro Sud, and Kassa Est Projects (Figure 5). Samples will be sent to Bureau Veritas in Perth, Western Australia for analysis.

The Company will continue to explore its 1,000 km² project tenure (Figure 6) with low-cost, early-stage programs such as regional BLEG stream sediment sampling, detailed soil

¹⁰ DES ASX Announcement dated 4 September 2025

For personal use only

geochemistry and geological mapping to refine target areas. Where regolith conditions allow, power auger drilling is used to sample beneath surface cover directly into the weathered bedrock, providing a rapid and low-cost indication of bedrock mineralisation.

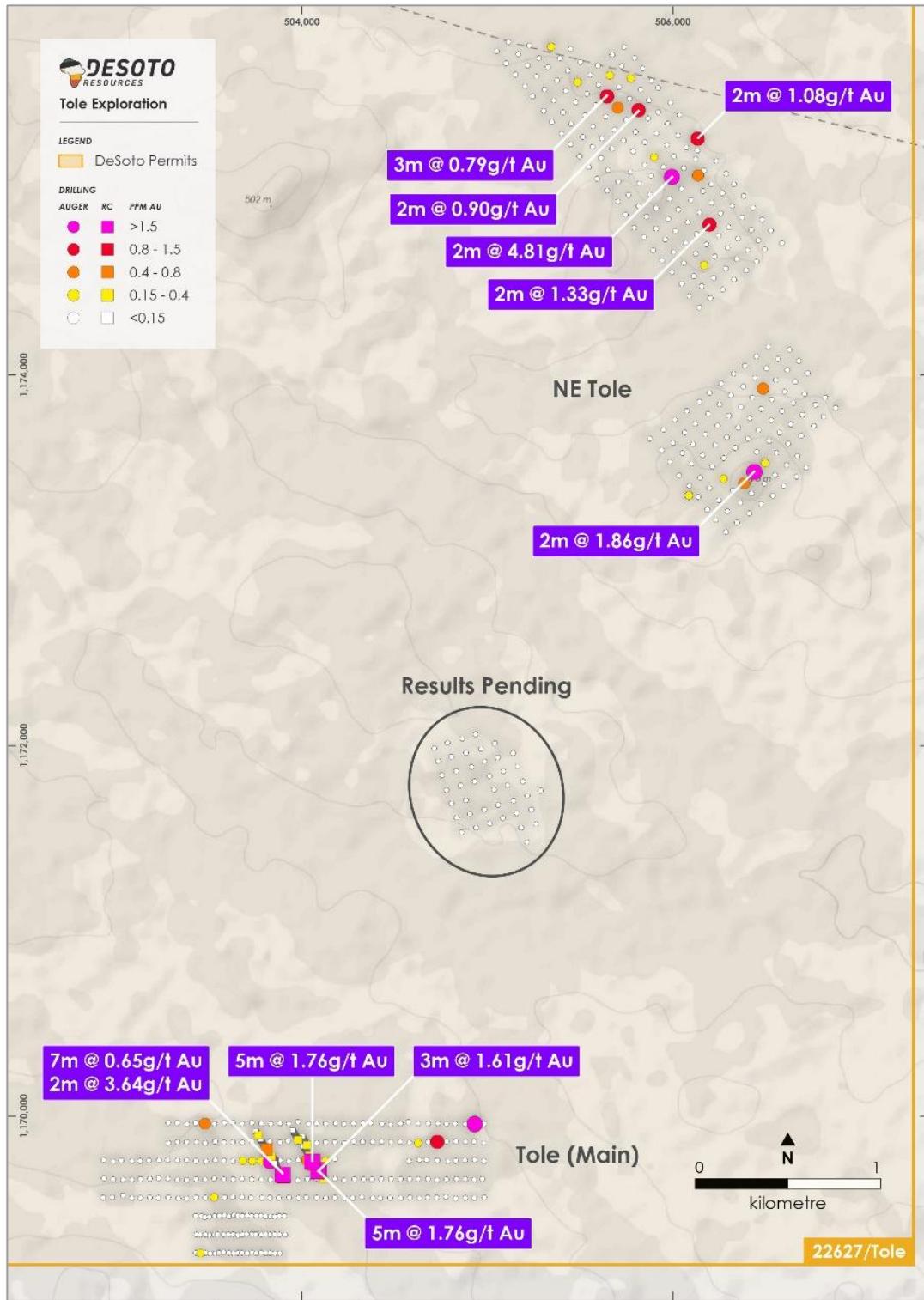


Figure 4: Plan view of RC and power auger drill results at Tole. NOTE: figure contains some previously reported auger results from Tole (main).¹¹

¹¹DES ASX Announcement dated 21 July 2025

For personal use only

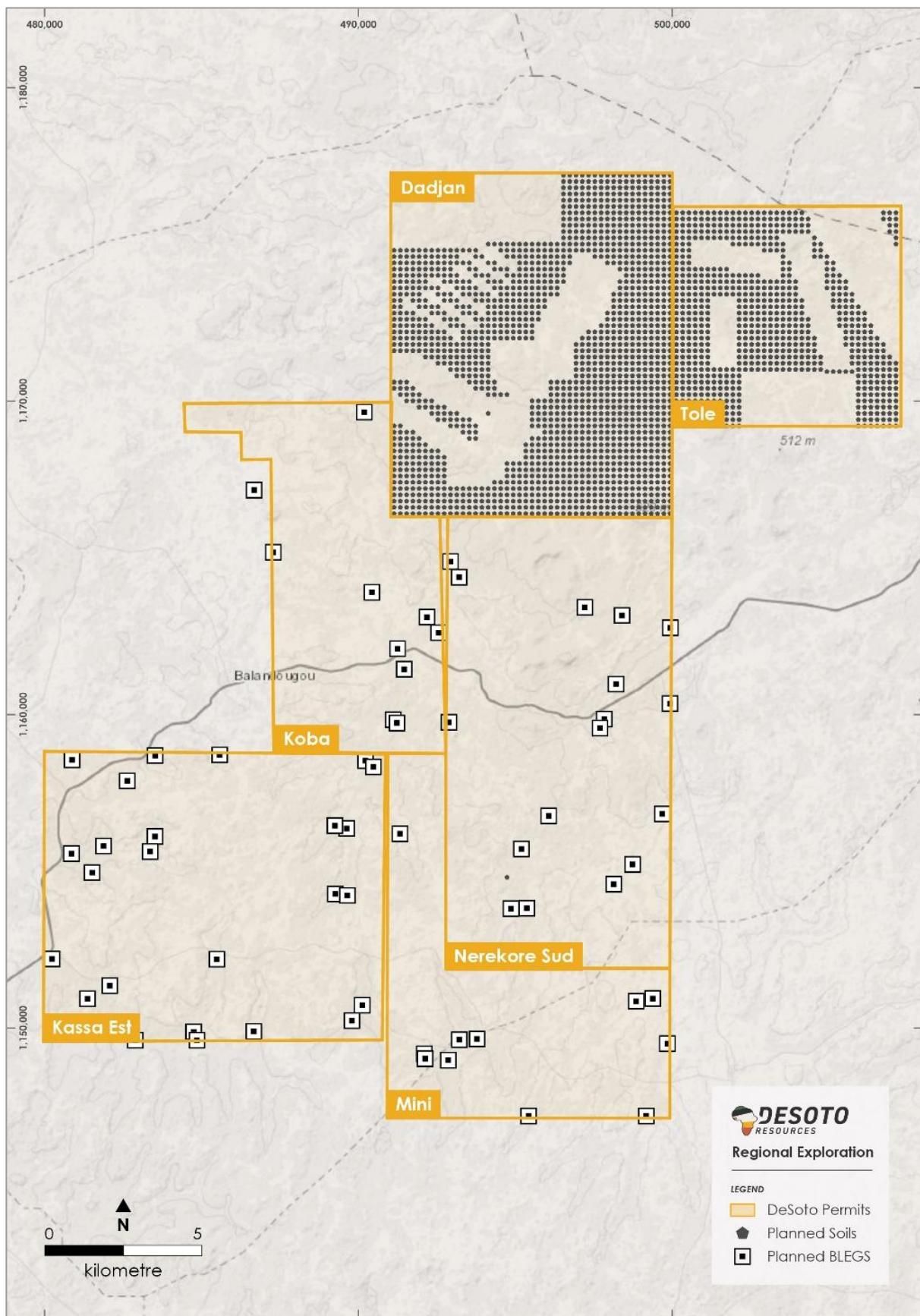


Figure 5: Plan view of planned soil sampling and BLEG sampling over the Dadjan, Tolé, Koba, Nerekore Sud, Kassa Est, and Mini licences.

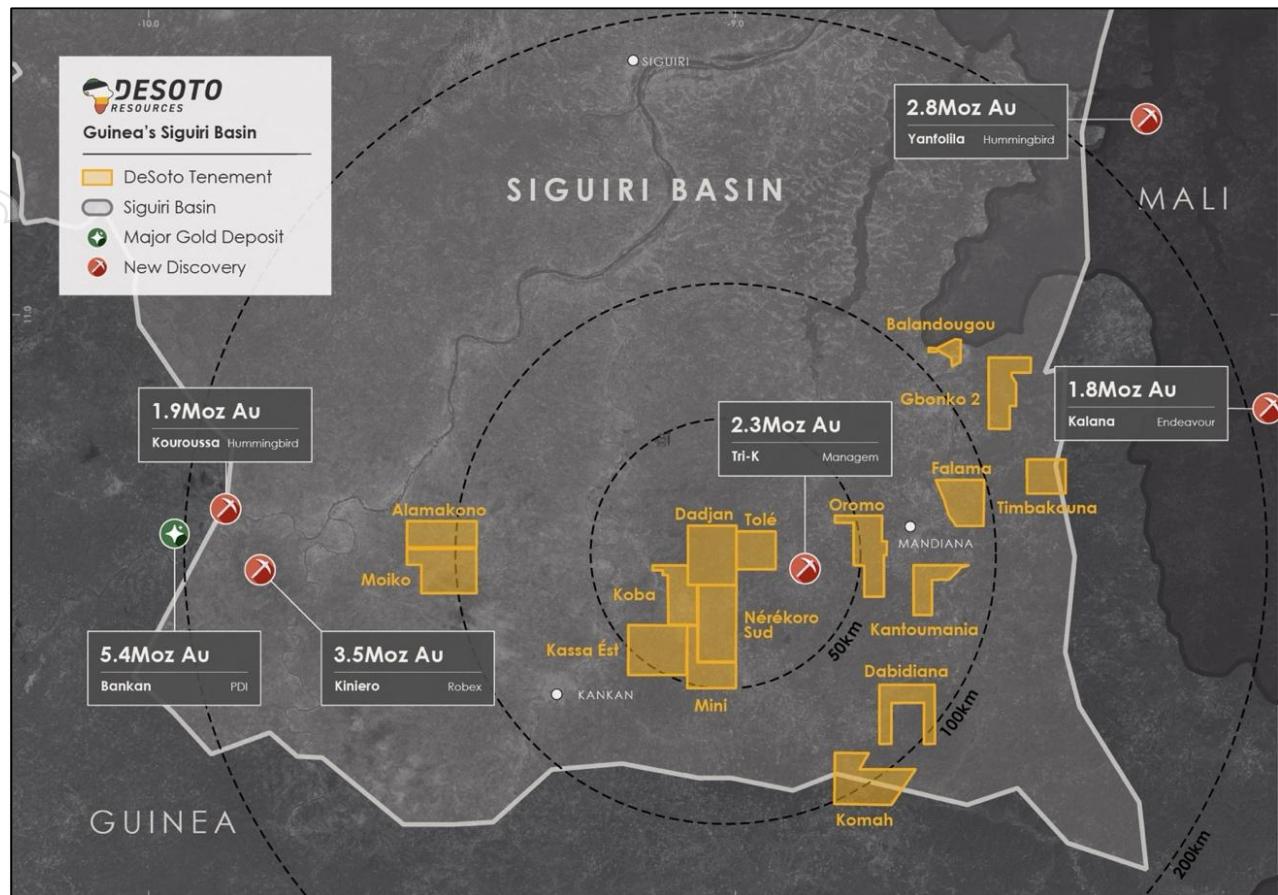


Figure 6: DeSoto's Siguiri Basin Projects, with the Koba and Nérékoro Sud Projects consolidating the ground to the south of Dadjan and Tolé.

-END-

This release is authorised by the Board of Directors of DeSoto Resources Limited.

For further information visit our website at Desotoresources.com or contact:

Chris Swallow

Managing Director

P: +61 412 174 882

E: cs@desotoresources.com

COMPETENT PERSONS STATEMENT

The information in this report that relates to exploration results is based on and fairly represents information and supporting documentation prepared by Ms Rebecca Morgan. Ms Morgan is a consultant to the company, is a member of the Australian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ms Morgan consents to the inclusion in this report of the matters based on this information in the form and context in which they appear.

APPENDIX 1: Dadjan Trench Assay Results

PROJECT	Sample ID	Easting	Northing	mRL	Type	Trench ID	From (m)	To (m)	Sample Width (m)	Au (ppm)
Dadjan	RK10999	494818	1169618	424	Rockchip	TR006	n/a	n/a	n/a	0.67
Dadjan	RK11000	494821	1169620	425	Rockchip	TR006	n/a	n/a	n/a	0.18
Dadjan	RK11001	494831	1169622	424	Rockchip	TR006	n/a	n/a	n/a	0.45
Dadjan	RK11002	494835	1169623	426	Rockchip	TR006	n/a	n/a	n/a	0.42
Dadjan	RK11003	494843	1169624	424	Rockchip	TR006	n/a	n/a	n/a	0.7
Dadjan	RK11004	494846	1169624	425	Rockchip	TR006	n/a	n/a	n/a	0.29
Dadjan	RK11005	494848	1169624	420	Rockchip	TR006	n/a	n/a	n/a	0.37
Dadjan	RK11006	494850	1169624	420	Rockchip	TR006	n/a	n/a	n/a	0.19
Dadjan	RK11007	494851	1169624	421	Rockchip	TR006	n/a	n/a	n/a	0.06
Dadjan	RK11008	494852	1169624	420	Rockchip	TR006	n/a	n/a	n/a	0.05
Dadjan	RK11009	494832	1169622	422	Rockchip	TR006	n/a	n/a	n/a	0.12
Dadjan	RK11010	494833	1169622	419	Rockchip	TR006	n/a	n/a	n/a	0.08
Dadjan	RK11011	494834	1169622	420	Rockchip	TR006	n/a	n/a	n/a	0.07
Dadjan	RK11012	494836	1169622	415	Rockchip	TR006	n/a	n/a	n/a	0.32
Dadjan	RK11013	494839	1169623	418	Rockchip	TR006	n/a	n/a	n/a	0.19
Dadjan	RK11014	494839	1169623	419	Rockchip	TR006	n/a	n/a	n/a	0.26
Dadjan	RK11015	494839	1169622	420	Rockchip	TR006	n/a	n/a	n/a	1.69
Dadjan	RK11016	494854	1169624	423	Rockchip	TR006	n/a	n/a	n/a	0.44
Dadjan	RK11017	494857	1169625	422	Rockchip	TR006	n/a	n/a	n/a	0.04
Dadjan	RK11018	494819	1169618	423	Channel	TR006	0	2	2	0.39
Dadjan	RK11019	494819	1169619	419	Channel	TR006	2	4	2	0.1
Dadjan	RK11020	494821	1169619	418	Channel	TR006	4	6	2	0.21
Dadjan	RK11021	494823	1169621	419	Channel	TR006	6	8	2	0.51
Dadjan	RK11022	494825	1169621	420	Channel	TR006	8	10	2	0.46
Dadjan	RK11023	494827	1169622	419	Channel	TR006	10	12	2	0.16
Dadjan	RK11024	494829	1169622	421	Channel	TR006	12	14	2	0.06
Dadjan	RK11025	494831	1169622	419	Channel	TR006	14	16	2	0.09
Dadjan	RK11026	494833	1169622	408	Channel	TR006	16	18	2	0.21
Dadjan	RK11027	494835	1169623	420	Channel	TR006	18	20	2	0.18
Dadjan	RK11028	494837	1169623	421	Channel	TR006	20	22	2	0.16
Dadjan	RK11029	494839	1169623	419	Channel	TR006	22	24	2	0.45
Dadjan	RK11030	494841	1169624	420	Channel	TR006	24	26	2	0.52
Dadjan	RK11031	494843	1169624	419	Channel	TR006	26	28	2	2.27
Dadjan	RK11032	494845	1169623	420	Channel	TR006	28	30	2	0.14
Dadjan	RK11033	494847	1169625	421	Channel	TR006	30	32	2	0.13
Dadjan	RK11034	494849	1169624	419	Channel	TR006	32	34	2	0.04
Dadjan	RK11035	494851	1169625	420	Channel	TR006	34	36	2	0.02
Dadjan	RK11036	494853	1169626	419	Channel	TR006	36	38	2	0.03
Dadjan	RK11037	494855	1169625	421	Channel	TR006	38	40	2	0.04
Dadjan	RK11038	494857	1169625	420	Channel	TR006	40	42	2	0.01
Dadjan	RK11039	494859	1169625	420	Channel	TR006	42	44	2	0.02
Dadjan	RK11040	494861	1169625	420	Channel	TR006	44	46	2	0.03
Dadjan	RK11041	494863	1169625	420	Channel	TR006	46	48	2	0.01
Dadjan	RK11042	494865	1169626	420	Channel	TR006	48	50	2	0.02
Dadjan	RK11043	494867	1169626	421	Channel	TR006	50	52	2	0.03
Dadjan	RK11044	494869	1169626	421	Channel	TR006	52	54	2	0.03
Dadjan	RK11045	494871	1169626	421	Channel	TR006	54	56	2	0.04
Dadjan	RK11046	494873	1169627	421	Channel	TR006	56	58	2	0.03
Dadjan	RK11047	494875	1169627	421	Channel	TR006	58	60	2	0.02
Dadjan	RK11048	494877	1169627	421	Channel	TR006	60	62	2	0.01
Dadjan	RK11049	494879	1169628	421	Channel	TR006	62	64	2	0.01
Dadjan	RK11050	494881	1169628	421	Channel	TR006	64	66	2	0.01
Dadjan	RK11051	494882	1169628	421	Channel	TR006	66	68	2	0.05
Dadjan	RK11052	494884	1169628	421	Channel	TR006	68	70	2	0.28
Dadjan	RK11053	494886	1169629	422	Channel	TR006	70	72	2	0.04
Dadjan	RK11054	494888	1169629	422	Channel	TR006	72	74	2	0.03
Dadjan	RK11055	494890	1169629	422	Channel	TR006	74	76	2	0.08
Dadjan	RK11056	494892	1169629	422	Channel	TR006	76	78	2	0.05
Dadjan	RK11057	494894	1169630	422	Channel	TR006	78	80	2	0.09
Dadjan	RK11058	494896	1169630	422	Channel	TR006	80	82	2	0.1

PROJECT	Sample ID	Easting	Northing	mRL	Type	Trench ID	From (m)	To (m)	Sample Width (m)	Au (ppm)
Dadjan	RK11059	494898	1169630	422	Channel	TR006	82	84	2	0.07
Dadjan	RK11060	494900	1169630	422	Channel	TR006	84	86	2	0.03
Dadjan	RK11061	494902	1169631	422	Channel	TR006	86	88	2	0.02
Dadjan	RK11062	494904	1169631	422	Channel	TR006	88	90	2	0.02
Dadjan	RK11063	494906	1169631	422	Channel	TR006	90	92	2	0.02
Dadjan	RK11064	494908	1169631	423	Channel	TR006	92	94	2	0.01
Dadjan	RK11065	494910	1169632	423	Channel	TR006	94	96	2	0.01
Dadjan	RK11066	494912	1169632	423	Channel	TR006	96	98	2	0.03
Dadjan	RK11067	494914	1169632	423	Channel	TR006	98	100	2	0.01
Dadjan	RK11068	494916	1169632	423	Channel	TR006	100	102	2	0.01
Dadjan	RK11069	494918	1169633	423	Channel	TR006	102	104	2	0.02
Dadjan	RK11070	494920	1169633	423	Channel	TR006	104	106	2	0.03
Dadjan	RK11071	494922	1169633	423	Channel	TR006	106	108	2	0.01

APPENDIX 2: RC and Power Auger Collars

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Dadjan	DJNRC10001	RC	494872	1169498	441	125	-50	120
Dadjan	DJNRC10002	RC	494783	1169543	433	135	-50	120
Dadjan	DJNRC10003	RC	494693	1169593	425	144	-50	120
Dadjan	DJNRC10004	RC	494939	1169462	455	100	-50	120
Dadjan	DJNRC10005	RC	494393	1168813	442	112	-55	120
Dadjan	DJNRC10006	RC	494438	1168779	437	112	-55	120
Dadjan	DJNRC10007	RC	494489	1168752	417	120	-55	120
Dadjan	DJNRC10008	RC	494551	1168719	429	112	-55	120
Dadjan	DJNRC10009	RC	494613	1168689	438	111	-55	120
Dadjan	DJNRC10010	RC	494663	1168664	442	111	-55	120
Dadjan	DJNRC10011	RC	494802	1169681	424	115	-55	120
Dadjan	DJNRC10012	RC	494861	1169654	415	123	-55	120
Dadjan	DJNRC10013	RC	494924	1169617	425	130	-55	120
Dadjan	DJNRC10014	RC	494980	1169584	435	125	-55	120
Dadjan	DJNRC10015	RC	495034	1169545	427	114	-55	120
Dadjan	DJNRC10016	RC	495092	1169518	433	120	-55	120
Dadjan	DJNRC10017	RC	494963	1170318	390	125	-55	120
Dadjan	DJNRC10018	RC	495028	1170288	390	117	-55	120
Dadjan	DJNRC10019	RC	495085	1170255	386	110	-55	120
Dadjan	DJNRC10020	RC	495137	1170213	373	114	-55	120
Dadjan	DJNRC10021	RC	495199	1170175	400	105	-55	120
Dadjan	DJNRC10022	RC	495257	1170161	398	120	-55	120
Dadjan	DJNRC10023	RC	495183	1170647	424	111	-55	120
Dadjan	DJNRC10024	RC	495234	1170618	410	110	-55	120
Dadjan	DJNRC10025	RC	495290	1170587	408	117	-55	120
Dadjan	DJNRC10026	RC	495350	1170539	429	120	-55	120
Dadjan	DJNRC10027	RC	495402	1170502	418	115	-55	120
Dadjan	DJNRC10028	RC	495551	1171327	435	117	-55	120
Dadjan	DJNRC10029	RC	495605	1171291	433	111	-55.31	120.35
Dadjan	DJNRC10030	RC	495663	1171257	438	111	-55	120
Dadjan	DJNRC10031	RC	495722	1171220	440	111	-55.1	120.28
Dadjan	DJNRC10032	RC	495776	1171190	444	111	-54.98	120
Dadjan	DJNRC10033	RC	495829	1171156	423	111	-55	120
Dadjan	DJNRC10034	RC	495883	1171122	434	105	-55.3	120.4
Dadjan	DJNRC10035	RC	495657	1171493	439	111	-55.05	120.19
Dadjan	DJNRC10036	RC	495729	1171459	434	110	-55	120
Dadjan	DJNRC10037	RC	495774	1171423	428	111	-55.4	120.2
Dadjan	DJNRC10038	RC	495818	1171389	417	105	-55.3	120.4
Dadjan	DJNRC10039	RC	495878	1171365	430	105	-55.41	120.42
Dadjan	DJNRC10040	RC	495933	1171329	429	111	-55.2	119.8
Dadjan	DJNRC10041	RC	495990	1171313	432	105	-55.1	120
Dadjan	DJNRC10042	RC	495317	1170134	396	102	-55.3	120.1
Tole	TLRC30001	RC	503782	1169868	432	102	-55.03	330.03
Tole	TLRC30002	RC	503808	1169819	419	111	-55.3	329.8

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Tole	TLRC30003	RC	503838	1169779	448	105	-55	330
Tole	TLRC30004	RC	503864	1169737	437	105	-55	330
Tole	TLRC30005	RC	503913	1169656	436	102	-55	330
Tole	TLRC30006	RC	503980	1169872	429	105	-55	330
Tole	TLRC30007	RC	504090	1169695	445	102	-55	330
Tole	TLRC30008	RC	504115	1169661	441	105	-55	330
Tole	TLRC30009	RC	503884	1169696	438	105	-55	330
Tole	TLRC30010	RC	504064	1169738	448	105	-55	330
Tole	TLRC30011	RC	504030	1169838	436	105	-55	330
Tole	TLRC30012	RC	504040	1169784	445	105	-55.35	330.05
Tole	TLAU0251	Auger	505567	1175232	442	20.00	-90	0
Tole	TLAU0252	Auger	505497	1175181	430	20.00	-90	0
Tole	TLAU0253	Auger	505514	1175285	421	11.00	-90	0
Tole	TLAU0254	Auger	505570	1175343	431	20.00	-90	0
Tole	TLAU0255	Auger	505449	1175246	434	7.00	-90	0
Tole	TLAU0256	Auger	505547	1175123	441	20.00	-90	0
Tole	TLAU0257	Auger	505591	1175059	446	9.00	-90	0
Tole	TLAU0258	Auger	505526	1175403	411	12.00	-90	0
Tole	TLAU0259	Auger	505645	1175504	426	17.00	-90	0
Tole	TLAU0260	Auger	505710	1175555	424	20.00	-90	0
Tole	TLAU0261	Auger	505773	1175602	420	12.00	-90	0
Tole	TLAU0262	Auger	505826	1175540	424	16.00	-90	0
Tole	TLAU0263	Auger	505766	1175492	428	20.00	-90	0
Tole	TLAU0264	Auger	505703	1175443	433	18.00	-90	0
Tole	TLAU0265	Auger	505745	1174867	409	8.00	-90	0
Tole	TLAU0266	Auger	505584	1175457	419	18.00	-90	0
Tole	TLAU0267	Auger	505599	1175566	412	20.00	-90	0
Tole	TLAU0268	Auger	505660	1175618	420	9.00	-90	0
Tole	TLAU0269	Auger	505536	1175518	424	8.00	-90	0
Tole	TLAU0270	Auger	505477	1175473	426	11.00	-90	0
Tole	TLAU0271	Auger	505408	1175418	434	20.00	-90	0
Tole	TLAU0272	Auger	505348	1175367	436	16.00	-90	0
Tole	TLAU0273	Auger	505304	1175426	436	18.00	-90	0
Tole	TLAU0274	Auger	505357	1175482	419	19.00	-90	0
Tole	TLAU0275	Auger	505423	1175534	413	14.00	-90	0
Tole	TLAU0276	Auger	505486	1175581	414	20.00	-90	0
Tole	TLAU0277	Auger	505554	1175620	418	6.00	-90	0
Tole	TLAU0278	Auger	505596	1175670	419	8.00	-90	0
Tole	TLAU0279	Auger	505673	1175730	417	20.00	-90	0
Tole	TLAU0280	Auger	505737	1175771	420	4.00	-90	0
Tole	TLAU0281	Auger	505794	1175712	422	6.00	-90	0
Tole	TLAU0282	Auger	505724	1175666	421	7.00	-90	0
Tole	TLAU0283	Auger	505986	1175470	423	20.00	-90	0
Tole	TLAU0284	Auger	506035	1175404	425	20.00	-90	0
Tole	TLAU0285	Auger	506086	1173350	414	20.00	-90	0
Tole	TLAU0286	Auger	505885	1175589	405	8.00	-90	0
Tole	TLAU0287	Auger	506133	1175276	420	20.00	-90	0
Tole	TLAU0288	Auger	506132	1175212	425	18.00	-90	0
Tole	TLAU0289	Auger	506122	1175166	433	16.00	-90	0
Tole	TLAU0290	Auger	506072	1175229	438	20.00	-90	0
Tole	TLAU0291	Auger	505968	1175243	444	20.00	-90	0
Tole	TLAU0292	Auger	506028	1175294	434	20.00	-90	0
Tole	TLAU0293	Auger	506058	1175117	420	20.00	-90	0
Tole	TLAU0294	Auger	506005	1175181	428	20.00	-90	0
Tole	TLAU0295	Auger	505949	1175124	439	20.00	-90	0
Tole	TLAU0296	Auger	505994	1175069	439	20.00	-90	0
Tole	TLAU0297	Auger	505883	1175076	448	20.00	-90	0
Tole	TLAU0298	Auger	505847	1175134	448	20.00	-90	0
Tole	TLAU0299	Auger	505617	1175277	418	20.00	-90	0
Tole	TLAU0300	Auger	505672	1175222	424	16.00	-90	0
Tole	TLAU0301	Auger	505612	1175171	427	20.00	-90	0
Tole	TLAU0302	Auger	505650	1175107	438	20.00	-90	0
Tole	TLAU0303	Auger	505645	1174996	446	20.00	-90	0
Tole	TLAU0304	Auger	505706	1175044	447	20.00	-90	0
Tole	TLAU0305	Auger	505770	1175096	452	20.00	-90	0

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Tole	TLAU0306	Auger	505912	1175305	429	20	-90	0
Tole	TLAU0307	Auger	505849	1175257	430	20	-90	0
Tole	TLAU0308	Auger	505785	1175208	431	20	-90	0
Tole	TLAU0309	Auger	505734	1175266	436	20	-90	0
Tole	TLAU0310	Auger	505971	1175358	434	20	-90	0
Tole	TLAU0311	Auger	505921	1175419	433	19	-90	0
Tole	TLAU0312	Auger	505871	1175483	428	20	-90	0
Tole	TLAU0313	Auger	505899	1175176	442	20	-90	0
Tole	TLAU0314	Auger	506233	1175156	420	20	-90	0
Tole	TLAU0315	Auger	506287	1175087	413	10	-90	0
Tole	TLAU0316	Auger	506168	1175104	416	18	-90	0
Tole	TLAU0317	Auger	506207	1175030	416	20	-90	0
Tole	TLAU0318	Auger	506136	1175077	428	10	-90	0
Tole	TLAU0319	Auger	506046	1175006	440	20	-90	0
Tole	TLAU0320	Auger	505983	1174951	439	16	-90	0
Tole	TLAU0321	Auger	505940	1175012	451	20	-90	0
Tole	TLAU0322	Auger	506162	1174993	434	16	-90	0
Tole	TLAU0323	Auger	505637	1175395	434	20	-90	0
Tole	TLAU0324	Auger	506267	1174981	415	12	-90	0
Tole	TLAU0325	Auger	506320	1174913	424	20	-90	0
Tole	TLAU0326	Auger	506209	1174930	434	6	-90	0
Tole	TLAU0327	Auger	506097	1174944	442	20	-90	0
Tole	TLAU0328	Auger	506258	1174873	437	20	-90	0
Tole	TLAU0329	Auger	506300	1174798	432	20	-90	0
Tole	TLAU0330	Auger	506528	1174780	406	20	-90	0
Tole	TLAU0331	Auger	506481	1174839	402	20	-90	0
Tole	TLAU0332	Auger	506432	1174903	403	20	-90	0
Tole	TLAU0333	Auger	506382	1174966	417	20	-90	0
Tole	TLAU0334	Auger	506329	1175030	420	20	-90	0
Tole	TLAU0335	Auger	506351	1174737	429	7	-90	0
Tole	TLAU0336	Auger	506403	1174675	433	20	-90	0
Tole	TLAU0337	Auger	505920	1175550	391	20	-90	0
Tole	TLAU0338	Auger	505875	1174974	455	20	-90	0
Tole	TLAU0339	Auger	505819	1175034	451	20	-90	0
Tole	TLAU0340	Auger	505815	1174913	445	20	-90	0
Tole	TLAU0341	Auger	505791	1174796	437	20	-90	0
Tole	TLAU0342	Auger	506294	1174687	426	20	-90	0
Tole	TLAU0343	Auger	506422	1174784	423	20	-90	0
Tole	TLAU0344	Auger	506460	1174727	418	14	-90	0
Tole	TLAU0345	Auger	506451	1174613	419	20	-90	0
Tole	TLAU0346	Auger	506374	1174851	418	8	-90	0
Tole	TLAU0347	Auger	506495	1174679	423	20	-90	0
Tole	TLAU0348	Auger	506344	1174626	422	20	-90	0
Tole	TLAU0349	Auger	506286	1174575	418	20	-90	0
Tole	TLAU0350	Auger	506395	1174566	413	12	-90	0
Tole	TLAU0351	Auger	506588	1174712	396	15	-90	0
Tole	TLAU0352	Auger	506329	1174515	403	20	-90	0
Tole	TLAU0353	Auger	506226	1174640	414	20	-90	0
Tole	TLAU0354	Auger	506169	1174593	424	20	-90	0
Tole	TLAU0355	Auger	506113	1174534	423	20	-90	0
Tole	TLAU0356	Auger	506047	1174493	422	18	-90	0
Tole	TLAU0357	Auger	506220	1174524	423	20	-90	0
Tole	TLAU0358	Auger	506155	1174480	424	20	-90	0
Tole	TLAU0359	Auger	506201	1174415	410	20	-90	0
Tole	TLAU0360	Auger	506143	1174365	412	12	-90	0
Tole	TLAU0361	Auger	506089	1174426	418	18	-90	0
Tole	TLAU0362	Auger	506269	1174462	413	20	-90	0
Tole	TLAU0363	Auger	506123	1174655	425	20	-90	0
Tole	TLAU0364	Auger	506059	1174605	423	14	-90	0
Tole	TLAU0365	Auger	506182	1174705	424	20	-90	0
Tole	TLAU0366	Auger	506068	1174714	424	20	-90	0
Tole	TLAU0367	Auger	506128	1174761	422	20	-90	0
Tole	TLAU0368	Auger	506002	1174664	420	20	-90	0
Tole	TLAU0369	Auger	505995	1174555	426	18	-90	0
Tole	TLAU0370	Auger	505894	1174673	432	20	-90	0

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Tole	TLAU0371	Auger	505941	1174619	422	20	-90	0
Tole	TLAU0372	Auger	505909	1174791	439	20	-90	0
Tole	TLAU0373	Auger	505845	1174744	430	16	-90	0
Tole	TLAU0374	Auger	505858	1174856	426	20	-90	0
Tole	TLAU0375	Auger	505975	1174843	432	20	-90	0
Tole	TLAU0376	Auger	505909	1174902	442	20	-90	0
Tole	TLAU0377	Auger	506029	1174894	438	20	-90	0
Tole	TLAU0378	Auger	506014	1174778	431	20	-90	0
Tole	TLAU0379	Auger	505958	1174732	427	20	-90	0
Tole	TLAU0380	Auger	506197	1174812	433	16	-90	0
Tole	TLAU0381	Auger	506248	1174752	426	20	-90	0
Tole	TLAU0382	Auger	506081	1174825	440	20	-90	0
Tole	TLAU0383	Auger	506144	1174879	429	20	-90	0
Tole	TLAU0384	Auger	505799	1175313	432	20	-90	0
Tole	TLAU0385	Auger	505866	1175385	428	18	-90	0
Tole	TLAU0386	Auger	505815	1175430	430	20	-90	0
Tole	TLAU0387	Auger	505750	1175378	430	20	-90	0
Tole	TLAU0388	Auger	505308	1175541	428	12	-90	0
Tole	TLAU0389	Auger	505244	1175505	435	20	-90	0
Tole	TLAU0390	Auger	505376	1175591	430	18	-90	0
Tole	TLAU0391	Auger	505434	1175643	422	19	-90	0
Tole	TLAU0392	Auger	505202	1175559	422	12	-90	0
Tole	TLAU0393	Auger	505151	1175622	422	14	-90	0
Tole	TLAU0394	Auger	505703	1174937	450	9	-90	0
Tole	TLAU0395	Auger	505761	1174972	439	20	-90	0
Tole	TLAU0396	Auger	505400	1175304	434	20	-90	0
Tole	TLAU0397	Auger	505452	1175356	430	18	-90	0
Tole	TLAU0398	Auger	505265	1175612	428	20	-90	0
Tole	TLAU0399	Auger	505217	1175671	422	18	-90	0
Tole	TLAU0400	Auger	505167	1175732	414	13	-90	0
Tole	TLAU0401	Auger	505326	1175662	395	20	-90	0
Tole	TLAU0402	Auger	505278	1175711	405	10	-90	0
Tole	TLAU0403	Auger	505225	1175779	408	4	-90	0
Tole	TLAU0404	Auger	505391	1175710	417	10	-90	0
Tole	TLAU0405	Auger	505114	1175799	414	4	-90	0
Tole	TLAU0406	Auger	505051	1175748	413	7	-90	0
Tole	TLAU0407	Auger	505100	1175683	416	12	-90	0
Tole	TLAU0408	Auger	505344	1175772	417	10	-90	0
Tole	TLAU0409	Auger	505449	1175760	417	8	-90	0
Tole	TLAU0410	Auger	505501	1175690	419	20	-90	0
Tole	TLAU0411	Auger	505686	1175326	434	15	-90	0
Tole	TLAU0412	Auger	505836	1175655	415	5	-90	0
Tole	TLAU0413	Auger	506812	1173775	418	20	-90	0
Tole	TLAU0414	Auger	506759	1173725	431	20	-90	0
Tole	TLAU0415	Auger	506768	1173840	436	20	-90	0
Tole	TLAU0416	Auger	506821	1173879	423	20	-90	0
Tole	TLAU0417	Auger	506877	1173823	419	14	-90	0
Tole	TLAU0418	Auger	506718	1173500	440	20	-90	0
Tole	TLAU0419	Auger	506667	1173452	441	20	-90	0
Tole	TLAU0420	Auger	506598	1173402	454	20	-90	0
Tole	TLAU0421	Auger	506538	1173349	455	20	-90	0
Tole	TLAU0422	Auger	506475	1173305	459	20	-90	0
Tole	TLAU0423	Auger	506412	1173253	460	20	-90	0
Tole	TLAU0424	Auger	506345	1173204	448	17	-90	0
Tole	TLAU0425	Auger	506286	1173153	444	18	-90	0
Tole	TLAU0426	Auger	506672	1173564	445	20	-90	0
Tole	TLAU0427	Auger	506613	1173515	443	20	-90	0
Tole	TLAU0428	Auger	506551	1173461	456	20	-90	0
Tole	TLAU0429	Auger	506692	1173672	456	20	-90	0
Tole	TLAU0430	Auger	506699	1173786	429	20	-90	0
Tole	TLAU0431	Auger	506635	1173733	428	20	-90	0
Tole	TLAU0432	Auger	506621	1173630	446	20	-90	0
Tole	TLAU0433	Auger	506558	1173581	448	20	-90	0
Tole	TLAU0434	Auger	506575	1173689	442	20	-90	0
Tole	TLAU0435	Auger	506519	1173644	451	20	-90	0

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Tole	TLAU0436	Auger	506452	1173586	454	20	-90	0
Tole	TLAU0437	Auger	506649	1173849	404	20	-90	0
Tole	TLAU0438	Auger	506603	1173911	410	20	-90	0
Tole	TLAU0439	Auger	506588	1173806	428	20	-90	0
Tole	TLAU0440	Auger	506530	1173756	439	20	-90	0
Tole	TLAU0441	Auger	506497	1173526	454	20	-90	0
Tole	TLAU0442	Auger	506493	1173414	467	20	-90	0
Tole	TLAU0443	Auger	506424	1173362	465	20	-90	0
Tole	TLAU0444	Auger	506442	1173985	389	20	-90	0
Tole	TLAU0445	Auger	506327	1174007	404	20	-90	0
Tole	TLAU0446	Auger	506261	1173954	413	20	-90	0
Tole	TLAU0447	Auger	506313	1173891	417	20	-90	0
Tole	TLAU0448	Auger	506367	1173828	429	20	-90	0
Tole	TLAU0449	Auger	506352	1173716	433	16	-90	0
Tole	TLAU0450	Auger	506302	1173780	429	20	-90	0
Tole	TLAU0451	Auger	506380	1173939	423	14	-90	0
Tole	TLAU0452	Auger	506427	1173879	421	20	-90	0
Tole	TLAU0453	Auger	506486	1173927	391	20	-90	0
Tole	TLAU0454	Auger	506532	1173868	414	20	-90	0
Tole	TLAU0455	Auger	506475	1173817	427	20	-90	0
Tole	TLAU0456	Auger	506414	1173767	426	20	-90	0
Tole	TLAU0457	Auger	506291	1173664	430	20	-90	0
Tole	TLAU0458	Auger	506228	1173621	437	20	-90	0
Tole	TLAU0459	Auger	506240	1173727	426	20	-90	0
Tole	TLAU0460	Auger	506190	1173790	422	20	-90	0
Tole	TLAU0461	Auger	506144	1173857	390	20	-90	0
Tole	TLAU0462	Auger	506197	1173904	406	18	-90	0
Tole	TLAU0463	Auger	506252	1173842	413	20	-90	0
Tole	TLAU0464	Auger	506121	1173737	427	20	-90	0
Tole	TLAU0465	Auger	506175	1173680	433	20	-90	0
Tole	TLAU0466	Auger	506063	1173689	440	20	-90	0
Tole	TLAU0467	Auger	506109	1173627	451	20	-90	0
Tole	TLAU0468	Auger	506160	1173568	441	20	-90	0
Tole	TLAU0469	Auger	506100	1173522	443	20	-90	0
Tole	TLAU0470	Auger	506033	1173459	447	20	-90	0
Tole	TLAU0471	Auger	506405	1173656	423	20	-90	0
Tole	TLAU0472	Auger	506336	1173607	431	20	-90	0
Tole	TLAU0473	Auger	506274	1173552	436	14	-90	0
Tole	TLAU0474	Auger	506212	1173506	438	12	-90	0
Tole	TLAU0475	Auger	506147	1173446	449	16	-90	0
Tole	TLAU0476	Auger	506088	1173402	449	16	-90	0
Tole	TLAU0477	Auger	506197	1173389	466	20	-90	0
Tole	TLAU0478	Auger	506137	1173342	459	20	-90	0
Tole	TLAU0479	Auger	506460	1173703	422	20	-90	0
Tole	TLAU0480	Auger	506248	1173324	445	20	-90	0
Tole	TLAU0481	Auger	506273	1173440	438	20	-90	0
Tole	TLAU0482	Auger	506323	1173376	548	20	-90	0
Tole	TLAU0483	Auger	506384	1173416	481	20	-90	0
Tole	TLAU0484	Auger	506364	1173311	456	20	-90	0
Tole	TLAU0485	Auger	506293	1173265	453	20	-90	0
Tole	TLAU0486	Auger	506232	1173218	449	20	-90	0
Tole	TLAU0487	Auger	506388	1174050	421	9	-90	0
Tole	TLAU0488	Auger	506449	1174101	416	6	-90	0
Tole	TLAU0489	Auger	506514	1174152	410	4	-90	0
Tole	TLAU0490	Auger	506566	1174087	408	6	-90	0
Tole	TLAU0491	Auger	506679	1174076	408	8	-90	0
Tole	TLAU0492	Auger	506628	1174137	407	6	-90	0
Tole	TLAU0493	Auger	506617	1174027	408	8	-90	0
Tole	TLAU0494	Auger	506660	1173965	410	20	-90	0
Tole	TLAU0495	Auger	506726	1174010	412	20	-90	0
Tole	TLAU0496	Auger	506554	1173974	417	20	-90	0
Tole	TLAU0497	Auger	506185	1173274	459	20	-90	0
Tole	TLAU0498	Auger	506075	1173807	427	20	-90	0
Tole	TLAU0499	Auger	506011	1173759	403	20	-90	0
Tole	TLAU0500	Auger	505984	1173532	444	20	-90	0

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Tole	TLAU0501	Auger	506051	1173579	451	20	-90	0
Tole	TLAU0502	Auger	506000	1173633	441	20	-90	0
Tole	TLAU0503	Auger	505940	1173594	438	20	-90	0
Tole	TLAU0504	Auger	505876	1173656	429	20	-90	0
Tole	TLAU0505	Auger	505949	1173705	432	20	-90	0
Tole	TLAU0506	Auger	506504	1174036	418	16	-90	0
Tole	TLAU0508	Auger	506439	1173477	471	20	-90	0
Tole	TLAU0509	Auger	506710	1173898	414	16	-90	0
Tole	TLAU0510	Auger	504865	1172037	431	20	-90	0
Tole	TLAU0511	Auger	504885	1171961	432	20	-90	0
Tole	TLAU0512	Auger	504966	1171982	433	20	-90	0
Tole	TLAU0513	Auger	505040	1172012	431	13	-90	0
Tole	TLAU0514	Auger	504937	1172061	428	20	-90	0
Tole	TLAU0515	Auger	504785	1172015	437	20	-90	0
Tole	TLAU0516	Auger	504714	1171985	435	19	-90	0
Tole	TLAU0517	Auger	504734	1171915	430	20	-90	0
Tole	TLAU0518	Auger	504755	1171839	401	18	-90	0
Tole	TLAU0519	Auger	504781	1171759	412	20	-90	0
Tole	TLAU0520	Auger	504807	1171688	412	18	-90	0
Tole	TLAU0521	Auger	504834	1171611	415	12	-90	0
Tole	TLAU0522	Auger	504861	1171532	416	20	-90	0
Tole	TLAU0523	Auger	504939	1171556	416	20	-90	0
Tole	TLAU0524	Auger	505013	1171580	420	20	-90	0
Tole	TLAU0525	Auger	505084	1171609	421	20	-90	0
Tole	TLAU0526	Auger	505158	1171634	421	20	-90	0
Tole	TLAU0527	Auger	504806	1171940	407	20	-90	0
Tole	TLAU0528	Auger	504833	1171863	414	20	-90	0
Tole	TLAU0529	Auger	504915	1171884	421	20	-90	0
Tole	TLAU0530	Auger	504856	1171785	421	19	-90	0
Tole	TLAU0531	Auger	504932	1171807	430	20	-90	0
Tole	TLAU0532	Auger	505012	1171835	433	20	-90	0
Tole	TLAU0533	Auger	504986	1171914	435	20	-90	0
Tole	TLAU0534	Auger	505057	1171936	436	16	-90	0
Tole	TLAU0535	Auger	505139	1171959	434	20	-90	0
Tole	TLAU0536	Auger	505163	1171887	431	20	-90	0
Tole	TLAU0537	Auger	505086	1171861	411	20	-90	0
Tole	TLAU0538	Auger	505037	1171763	413	20	-90	0
Tole	TLAU0539	Auger	504885	1171705	413	20	-90	0
Tole	TLAU0540	Auger	504906	1171630	412	20	-90	0
Tole	TLAU0541	Auger	504983	1171654	420	20	-90	0
Tole	TLAU0542	Auger	505059	1171679	426	20	-90	0
Tole	TLAU0543	Auger	505141	1171702	426	20	-90	0
Tole	TLAU0544	Auger	505191	1171807	426	18	-90	0
Tole	TLAU0545	Auger	505108	1171787	426	20	-90	0
Tole	TLAU0546	Auger	505182	1171556	409	20	-90	0
Tole	TLAU0547	Auger	505213	1171478	415	20	-90	0
Tole	TLAU0548	Auger	505262	1171577	419	20	-90	0
Tole	TLAU0549	Auger	505237	1171654	424	20	-90	0
Tole	TLAU0550	Auger	505215	1171730	426	20	-90	0
Tole	TLAU0551	Auger	505287	1171757	432	16	-90	0
Tole	TLAU0552	Auger	504964	1171737	422	20	-90	0
Tole	TLAU0553	Auger	505262	1171836	429	20	-90	0
Tole	TLAU0554	Auger	505240	1171905	422	20	-90	0
Tole	TLAU0555	Auger	505218	1171985	425	20	-90	0
Tole	TLAU0556	Auger	505114	1172036	428	20	-90	0
Tole	TLAU0557	Auger	505188	1172061	428	20	-90	0
Tole	TLAU0558	Auger	505168	1172137	421	20	-90	0
Tole	TLAU0559	Auger	505094	1172109	431	20	-90	0
Tole	TLAU0560	Auger	505018	1172088	429	20	-90	0
Tole	TLAU0561	Auger	505264	1172085	425	20	-90	0
Tole	TLAU0562	Auger	505240	1172157	406	20	-90	0
Tole	TLAU0563	Auger	505316	1172191	412	20	-90	0
Tole	TLAU0564	Auger	505348	1172112	423	20	-90	0
Tole	TLAU0565	Auger	505367	1172041	425	20	-90	0
Tole	TLAU0566	Auger	505288	1172006	429	20	-90	0

Project	BHID	Hole Type	Easting	Northing	mRL	Depth	Dip	Azi
Tole	TLAU0567	Auger	505319	1171940	434	20	-90	0
Tole	TLAU0568	Auger	505388	1171960	427	20	-90	0
Tole	TLAU0569	Auger	505418	1171882	430	20	-90	0
Tole	TLAU0570	Auger	505339	1171863	429	20	-90	0
Tole	TLAU0571	Auger	505363	1171786	436	20	-90	0
Tole	TLAU0572	Auger	504960	1171481	420	18	-90	0
Tole	TLAU0573	Auger	504881	1171460	419	20	-90	0
Tole	TLAU0574	Auger	504907	1171377	419	10	-90	0

APPENDIX 3: RC Assay Results

NOTE: only results >0.2 ppm Au are reported here. All other sampled intervals returned values of <0.2 ppm Au

Project	HoleID	From (m)	To (m)	Width (m)	Au (ppm)
Dadjan	DJNRC10001	3	4	1	0.420
Dadjan	DJNRC10002	68	69	1	0.670
Dadjan	DJNRC10002	69	70	1	0.320
Dadjan	DJNRC10002	118	119	1	0.230
Dadjan	DJNRC10002	120	121	1	0.430
Dadjan	DJNRC10003	16	17	1	0.250
Dadjan	DJNRC10005	57	58	1	0.320
Dadjan	DJNRC10005	96	97	1	0.430
Dadjan	DJNRC10012	51	52	1	0.520
Dadjan	DJNRC10012	54	55	1	0.270
Dadjan	DJNRC10012	55	56	1	0.350
Dadjan	DJNRC10012	56	57	1	0.240
Dadjan	DJNRC10012	92	93	1	0.750
Dadjan	DJNRC10012	94	95	1	0.270
Dadjan	DJNRC10012	104	105	1	0.200
Dadjan	DJNRC10012	113	114	1	2.540
Dadjan	DJNRC10012	114	115	1	0.240
Dadjan	DJNRC10013	42	43	1	0.360
Dadjan	DJNRC10015	2	3	1	0.240
Dadjan	DJNRC10015	7	8	1	0.420
Dadjan	DJNRC10015	12	13	1	0.290
Dadjan	DJNRC10015	13	14	1	318
Dadjan	DJNRC10015	17	18	1	0.230
Dadjan	DJNRC10015	64	65	1	0.390
Dadjan	DJNRC10017	56	57	1	0.290
Dadjan	DJNRC10018	24	25	1	0.340
Dadjan	DJNRC10021	10	11	1	7.990
Dadjan	DJNRC10021	26	27	1	0.240
Dadjan	DJNRC10021	64	65	1	0.790
Dadjan	DJNRC10021	65	66	1	3.840
Dadjan	DJNRC10021	66	67	1	3.680
Dadjan	DJNRC10021	67	68	1	3.730
Dadjan	DJNRC10021	68	69	1	13.710
Dadjan	DJNRC10021	69	70	1	0.220
Dadjan	DJNRC10024	63	64	1	0.610
Dadjan	DJNRC10024	65	66	1	0.320

For personal use only

Project	HoleID	From (m)	To (m)	Width (m)	Au (ppm)
Dadjan	DJNRC10027	91	92	1	0.270
Dadjan	DJNRC10030	37	38	1	1.310
Dadjan	DJNRC10030	86	87	1	0.220
Dadjan	DJNRC10030	87	88	1	0.370
Dadjan	DJNRC10030	88	89	1	32.400
Dadjan	DJNRC10030	89	90	1	0.260
Dadjan	DJNRC10030	90	91	1	0.420
Dadjan	DJNRC10030	91	92	1	0.320
Dadjan	DJNRC10030	110	111	1	0.240
Dadjan	DJNRC10031	11	12	1	0.220
Dadjan	DJNRC10031	12	13	1	0.240
Dadjan	DJNRC10031	14	15	1	0.270
Dadjan	DJNRC10031	36	37	1	0.260
Dadjan	DJNRC10032	107	108	1	2.440
Dadjan	DJNRC10033	2	3	1	0.370
Dadjan	DJNRC10035	5	6	1	0.340
Dadjan	DJNRC10035	29	30	1	0.550
Dadjan	DJNRC10035	30	31	1	0.630
Dadjan	DJNRC10035	92	93	1	0.230
Dadjan	DJNRC10035	94	95	1	0.380
Dadjan	DJNRC10035	99	100	1	0.560
Dadjan	DJNRC10035	100	101	1	0.260
Dadjan	DJNRC10036	6	7	1	0.280
Dadjan	DJNRC10037	7	8	1	0.500
Dadjan	DJNRC10037	8	9	1	2.010
Dadjan	DJNRC10037	9	10	1	1.490
Dadjan	DJNRC10037	10	11	1	0.660
Dadjan	DJNRC10037	20	21	1	0.240
Dadjan	DJNRC10037	21	22	1	1.140
Dadjan	DJNRC10037	22	23	1	9.570
Dadjan	DJNRC10037	68	69	1	0.290
Dadjan	DJNRC10038	35	36	1	0.320
Dadjan	DJNRC10038	36	37	1	1.330
Dadjan	DJNRC10038	38	39	1	0.280
Dadjan	DJNRC10038	87	88	1	0.410
Dadjan	DJNRC10038	88	89	1	0.210
Dadjan	DJNRC10039	71	72	1	0.310
Tole	TLRC30003	1	2	1	0.290
Tole	TLRC30003	4	5	1	0.330
Tole	TLRC30003	85	86	1	0.530
Tole	TLRC30005	39	40	1	1.260
Tole	TLRC30005	42	43	1	0.880
Tole	TLRC30005	44	45	1	0.920
Tole	TLRC30005	45	46	1	1.080
Tole	TLRC30005	51	52	1	0.300
Tole	TLRC30005	52	53	1	0.300
Tole	TLRC30005	55	56	1	0.710
Tole	TLRC30005	56	57	1	6.570
Tole	TLRC30007	14	15	1	0.860
Tole	TLRC30007	30	31	1	0.530

For personal use only

Project	HoleID	From (m)	To (m)	Width (m)	Au (ppm)
Tole	TLRC30007	73	74	1	0.310
Tole	TLRC30007	87	88	1	0.740
Tole	TLRC30007	88	89	1	0.550
Tole	TLRC30007	89	90	1	0.210
Tole	TLRC30007	91	92	1	0.250
Tole	TLRC30008	82	83	1	0.250
Tole	TLRC30008	83	84	1	1.250
Tole	TLRC30008	84	85	1	2.670
Tole	TLRC30008	85	86	1	2.930
Tole	TLRC30008	86	87	1	0.390
Tole	TLRC30008	87	88	1	1.560
Tole	TLRC30008	94	95	1	0.980
Tole	TLRC30008	95	96	1	2.910
Tole	TLRC30008	96	97	1	0.950
Tole	TLRC30008	97	98	1	0.450
Tole	TLRC30010	22	23	1	0.210
Tole	TLRC30010	29	30	1	0.380
Tole	TLRC30010	30	31	1	0.660
Tole	TLRC30010	31	32	1	0.510
Tole	TLRC30010	32	33	1	1.840
Tole	TLRC30010	33	34	1	0.800
Tole	TLRC30010	48	49	1	0.310
Tole	TLRC30011	8	9	1	0.230

APPENDIX 4: Power Auger Assay Results

NOTE: only results >0.2 ppm Au are reported here. All other sampled intervals returned values of <0.2 ppm Au

Project	HoleID	From (m)	To (m)	Width (m)	Au (ppm)
Tole	TLAU0259	14	16	2	0.650
Tole	TLAU0259	16	17	1	1.080
Tole	TLAU0261	4	6	2	0.200
Tole	TLAU0264	8	10	2	0.480
Tole	TLAU0264	10	12	2	0.310
Tole	TLAU0264	12	14	2	0.200
Tole	TLAU0264	14	16	2	0.340
Tole	TLAU0264	16	17	1	0.380
Tole	TLAU0268	0	2	2	0.200
Tole	TLAU0287	6	8	2	1.080
Tole	TLAU0296	14	16	2	4.810
Tole	TLAU0318	8	10	2	0.610
Tole	TLAU0354	14	16	2	0.250
Tole	TLAU0380	4	6	2	1.330
Tole	TLAU0386	4	6	2	0.900
Tole	TLAU0441	10	12	2	0.260
Tole	TLAU0453	0	2	2	0.670
Tole	TLAU0481	14	16	2	0.220
Tole	TLAU0483	8	10	2	0.420
Tole	TLAU0483	10	12	2	0.350
Tole	TLAU0508	10	12	2	1.860

JORC 2012 Table 1 Section 1 and Section 2

Section 1: Sampling Techniques and Data – Exploration Results		
Criteria	JORC Code Explanation	Commentary
Sampling Technique	<p>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.</p> <p>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</p>	<p>Soil samples were collected on a regular grids. Samples were collected in-situ and are generally 2 kg in weight.</p> <p><u>Trench samples</u> Trench sampling included spot sample, and channel sampling along the wall of the trench. The channel samples were composited over 1 or 2 metre intervals</p> <p><u>Power Auger Drilling</u> Samples were collected on a 1m basis into a pan surrounding the auger drill with all of the returned sample collected. All of the sample was then transferred to a plastic bucket. At the completion of each hole, 2m composite samples were taken by thoroughly mixing the 1m samples together and taking a 2 – 3kg representative sample. Each sample was weighed to ensure a sufficient sample weight was achieved. The surface laterite was composited to 2m until the mottled clay zone was intercepted which was sampled separately often resulting in a 1m sample. The saprolite was sampled on a 2m composite basis and each hole was terminated after it passed through 4m of saprolite.</p> <p><u>RC Drilling</u> Samples were collected continuously per meter drilled. The cuttings, raised by the return column under air pressure, are recovered via a cyclone. The total sample of each 1-meter interval is then homogenized and divided using a riffle splitter (typical division of 1/8). A representative fraction of approximately 2 à 3 kg is taken and placed in a bag.</p>
Drilling	<p>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</p>	<p>Drilling consists of Reverse Circulation (RC) drillholes and power auger drillholes.</p> <p><u>Power Auger Drilling</u> The drilling method was a 4WD mounted power auger rig which used a 6 inch spiral blade.</p> <p><u>RC Drilling</u> Drilling was carried out with a drill Reverse Circulation (RC) mounted on a truck, model Selema. The machine is equipped with a down-the-hole hammer (DTH) and a high-capacity compressor ensuring efficient lifting of cuttings.</p>
Drill Sample Recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<p><u>Power Auger Drilling</u> Auger samples were collected on a 1m basis into pans surrounding the auger blade which captured all of the returned samples. At the completion of each drilled metre the drilling rotation was stopped to allow the sample pans to be transferred to plastic buckets. All of the sample collected was transferred to the buckets. The sample pans were cleaned after each metre so as to minimise sample contamination. At the completion of each hole the auger blades were cleaned. It is assumed that 100% of the returned sample is collected for sampling purposes. It is not possible to accurately measure the sample recovery. No significant sampling issues were noted that could introduce a sampling bias and the sample recovery and quality is considered suitable for assessing near surface gold anomalism. The results are no intended</p>

		<p>to quantify gold content nor can they be used in any mineral resource estimation.</p> <p><u>RC Drilling</u></p> <p>The recovery was systematically evaluated for each 1-meter interval:</p> <ol style="list-style-type: none"> 1. Real-time monitoring: The operator and geologist monitored the flow rate and continuity of cuttings at the cyclone. 2. Quantitative assessment: The volume or weight of the total sample recovered before division was estimated and compared to the theoretical volume. A recovery percentage was calculated and recorded for each interval. 3. Consignment: This percentage, as well as any observations on the quality of the sample, was noted on the field sheets in connection with the depth and sample number.
Logging	<p>Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography.</p> <p>The total length and percentage of the relevant intersections logged.</p>	<p>Samples were geologically logged by lithology type, and any other relevant details were also recorded.</p> <p>The trenches were mapped</p> <p>Logging is both qualitative and quantitative in nature.</p> <p><u>Power Auger Drilling</u></p> <p>Auger samples were laid out on a 1m basis for visual logging. Lithology, oxidation state, colour, alteration and any vein mineralogy were recorded. The logging aimed to clearly define the surface laterite, the underlying mottled clay zone and then the saprolite. Where any relict rock fragments or quartz veining was evident this was also recorded.</p> <p>All intervals were logged.</p> <p><u>RC Drilling</u></p> <p>The logging geological logging was carried out as follows:</p> <ol style="list-style-type: none"> 1. Examination of cuttings: A portion of the samples from each meter drilled recovered is washed and placed in the "chip trays" to be examined visually in detail. 2. Recorded parameters (per meter): A geologist logged the lithology, the degree and type of alteration, the mineralization (sulphides, visible gold, quartz), the colouring, as well as the texture and structures (veins, breccias). 3. Data entry: All geological, technical and recovery observations were entered in real time on digital or paper media, ensuring complete traceability. <p>All intervals were logged.</p>
Sub-Sampling Technique and Sample Preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</p> <p>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</p> <p>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</p> <p>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.</p>	<p>Soil is dug down to 4 to 50 cm. Samples are sieved to collect 2-3kg in plastic bags with individual tags (identifier numbers) and dispatched to the lab for assays. Field duplicates were collected every 50 samples as part of the soil sampling program.</p> <p><u>Trench samples</u></p> <p>Channel samples were collected along the wall of the trenches as either 1m or 2m composite samples. In addition, spot sampling was undertaken within and around the trenches. Sample weights ranged from 2 to 9 kg, and averaged 4.5 kg.</p> <p>Trench and soil samples were submitted for assay. These samples were first dried at 110°C and then whole crushed and with a 50g sub-sample taken for assay.</p> <p><u>Power Auger Drilling</u></p> <p>A 2-3 kg representative sample was submitted for assay. These samples were first dried at 110°C and</p>

		<p>then whole crushed and with a 50g sub-sample taken for assay. A field duplicate was taken every 25 samples and submitted for assay.</p> <p>RC Drilling</p> <p>A 2-3 kg representative sample was submitted for assay. These samples were first dried at 110°C and then whole crushed and with a 50g sub-sample taken for assay. A field duplicate was taken every 25 samples and submitted for assay.</p> <p>The remaining material (reject) is kept on the site in secure bags for reanalysis if required.</p>
Quality of Assay Data and Laboratory Tests	<p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p> <p>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <p>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</p>	<p>Analysis was conducted by Proslabs in Kouroussa, Guinea, using a standard Fire-Assay 50 followed by ICP-MS method for gold with an upper detection limit of 1000 ppb.</p> <p>Field duplicates have been collected (in the soil, RC, and auger programs). No field duplicates were collected during trench sampling.</p> <p>Standards and blanks were also included in the RC drilling program sampling. Standards were inserted at a rate of 1 in 50, and blanks were inserted at a rate of 1 in 75.</p> <p>1 in 50 samples were repeated by the laboratory and blanks and standards were used (by the lab) at a rate of 1 in 50 samples.</p> <p>Results indicate an acceptable levels of and precision for a nuggety gold system.</p>
Verification of Sampling and Assaying	<p>The verification of significant intersections by either independent or alternative company personnel.</p> <p>The use of twinned holes.</p> <p>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</p> <p>Discuss any adjustment to assay data</p>	<p>No verification of significant intersections by independent persons has been undertaken.</p> <p>There are no twin holes.</p> <p>All assay results in the database have been checked against the original laboratory assay certificates (PDF's)</p> <p>There has been no adjustment to assay data.</p>
Location of Data points	<p>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</p> <p>Specification of the grid system used Quality and adequacy of topographic control</p>	<p>The coordinate system used is WGS84/UTM zone 29N.</p> <p>A handheld Garmin GPS was used to record soil samples, trench samples, RC collar, and power auger collar co-ordinates.</p>
Data Spacing and Distribution	<p>Data spacing for reporting of Exploration Results</p> <p>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</p> <p>Whether sample compositing has been applied</p>	<p>Soil samples were collected on a variety of grids which included:</p> <ul style="list-style-type: none"> • 50 m by 100 m grid • 100 m by 400 m grid • 100 m by 200 m grid • 100 m by 500, 600 or 700m spaced lines <p>The spacing of the power auger drilling is approximately 80m by 80m.</p> <p>The spacing of RC drillholes is approximately 50 m (along a fenceline) and lines are spaced between 125 to 725 m apart.</p> <p>There is no Mineral Resource and Ore Reserve estimation reported here.</p>

Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not known whether the orientation of the soil sampling, RC drilling, trenching, or power auger drilling has created a bias at this stage.
Sample Security	The measures taken to ensure sample security	All samples taken were hand delivered to the laboratory in Kouroussa. The laboratory checked the samples delivered against the sample dispatch sheet and verified this was correct before commencing analysis.
Audits or reviews.	The results of any audits or reviews of sampling techniques and data	No external audits have been done.

Section 2 Reporting of Exploration Results

Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Siguiri Project comprises 14 tenements which range from reconnaissance applications, granted reconnaissance permits and granted exploration permits (see Table 1). Reconnaissance permits allow prospecting and non-ground disturbing activity such as surface sampling. Exploration permits allow ground disturbing activity such as auger or RC drilling. Reconnaissance permits can be converted to exploration permits upon justification of results. All permits are valid and registered in the Guinea mining cadastre system. Timbakouna is a Reconnaissance Authorisation which was approved for renewal on the 27 th August 2025. The application for renewal contained within a work program which included an RC drill program. The work program was approved as with the renewal. The Angex agreement with Wassolon Mining Group is detailed in previous reports
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	There has been very little exploration conducted within the tenement areas. The only historic exploration of note is RC drilling in the Timbakouna tenement and soil sampling in the Kantoumanina. The results of this are discussed in previous ASX announcements. There is no known exploration in the Dadjan and Tole permits.
Geology	Deposit type, geological setting and style of mineralisation.	The Siguiri Basin projects are situated in rocks of the Birimian Supergroup which consists of meta-sediments (shale, greywacke, cherts) and mafic to intermediate volcanics variably intruded by felsic intrusives such as granite and tonalite. The basin has been multiply deformed with basin wide NW and NE trending faults/shears. Orogenic gold mineralisation is typically hosted within these structural corridors, generally in close proximity to the felsic intrusives which are postulated to be the heat and fluid source for gold mineralisation. Gold mineralisation is typically quartz vein hosted with pyrite, pyrrhotite and hematite and associated sericite and chlorite alteration the main accessory minerals. The Siguiri Basin is deeply weathered with a strong laterite surface developed with nodular to pisolithic hard cap which is a host to

		remobilised gold mineralisation and the target for artisanal gold miners.
Drill Hole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<p>Drillhole information is provided in the appendices of this announcement.</p> <p>NOTE: only auger and RC samples that returned assay values of >0.2 ppm Au are include in the appendices of this announcement.</p> <p>Due to the high number of samples, all samples that returned values <0.2 ppm Au have not been included within the tables of this announcement.</p>
Data Aggregation Methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	<p>No data aggregation methods have been applied to soil, rock chip or dump samples. All results received have been reported as is.</p> <p>Data aggregation of trench samples, RC samples, and power auger samples are length weighted.</p>
Relationship Between Mineralisation Widths and Intercept Lengths	<p>These relationships are particularly important in the reporting of Exploration Results</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</p>	<p>No assumption of true widths of the mineralised zones is made in reported results and assays should not be interpreted to be representative sampling of the reported interval – true width not known.</p>
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</p>	<p>Diagrams including plan maps with sample results are provided in the body of this announcement.</p>
Balanced Reporting	<p>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</p>	<p>The company believes this announcement is a balanced report, and that all material information has been reported.</p>
Other Substantive Exploration Data	<p>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</p>	<p>All substantive historical exploration data has been discussed in previous reports by the company.</p>
Further Work	<p>The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<p>Planned further work includes regional 200m by 200m spaced soil sampling and BLEG sampling.</p>