

22 December 2025

HIGH-TECH INTERSECTS MULTIPLE ZONES OF VISIBLE GOLD IN DRILLING AT HIGH-GRADE WAGTAIL DEPOSIT

HIGHLIGHTS

- **Visible¹** gold intersected in multiple zones during drilling, associated with sulphide-bearing quartz veins, consistent with historical high-grade mineralisation at Wagtail
- Sample logging and processing underway, with first expedited assay results expected in mid-January
- Infill and grade-control RC drilling at Wagtail designed to refine and potentially grow the existing JORC (2012) Mineral Resource located on an existing mining lease
- Strong historical grades reaffirm high-grade potential, including¹:
 - Wagtail: 5m @ 41.13 g/t Au (incl. 3m @ 67.94 g/t Au) and 3m @ 55.14 g/t Au (incl. 2m @ 81.6 g/t Au)².
- Drilling paused for the Christmas break, with the rig scheduled to remobilise in early January to complete the program.
- Scoping-level mining assessment for Mt Fisher and Wagtail continuing in collaboration with SSH, supported by active workstreams including metallurgical testwork, mine design, permitting and toll-treatment discussions with nearby processors.

High-Tech Metals Ltd (ASX: HTM) ("High-Tech", "HTM" or "the Company") is pleased to provide an update on drilling activities at its high-grade Wagtail gold deposit, where reverse circulation ("RC") drilling completed to date has intersected quartz-sulphide veining with visible gold observed in multiple holes.

The drilling program is being managed and funded by SSH Mining Australia Pty Ltd ("SSH"), a subsidiary of SSH Group Ltd (ASX: SSH), under the Mining Agreement announced in September³. Under this agreement, SSH is funding all pre-feasibility works and associated drilling required to advance Wagtail toward a potential Final Investment Decision ("FID").

To date, 31 holes for 1,271 metres have been completed, with the program temporarily paused for the Christmas period and scheduled to recommence in early January to complete the planned program.

High-Tech's CEO, James Merrillees, commented:

"Visible gold observed in the RC drilling at Wagtail is an encouraging outcome and is consistent with the coarse, high-grade nature of mineralisation defined by historic drilling and production. The program has progressed well to date, and we're looking forward to remobilising to site early

¹ In relation to the disclosure of visible mineralisation, the Company cautions that visual estimates off mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the actual grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available, expected in January 2026.

² Refer HTM ASX Announcement 26/02/25

³ Refer HTM ASX Announcement 01/09/25

+61 08 9388 0051

info@hightechmetals.com.auwww.hightechmetals.com.au22 Townshend Road
Subiaco WA 6008 Australia

HIGH-TECH METALS
LIMITED

in the New Year to complete the remaining drilling. Samples from completed holes have been dispatched for expedited assay, with initial results expected in mid-January."

SSH Mining's COO, Sam Baker, commented:

"SSH has developed a strong and constructive working relationship with the High-Tech Metals team, with both groups aligned on safely and efficiently advancing the Wagtail deposit. The consistency of mineralisation observed to date, combined with Wagtail's existing mining lease, established infrastructure and proximity to processing facilities, reinforces our view that the deposit has clear potential to be progressed toward a near-term production decision."

Figure 1: Visible gold intersected in 25WTRC014 from 33-34m (approximate size of fragment is ~10mm)

For personal use only

For personal use only

Figure 2: Visible gold in a quartz-sulfide (goethite after pyrite) vein, 25WTRC014 from 33-34m.

In relation to the disclosure of visible mineralisation, the Company cautions that visual estimates off mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the actual grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available, expected in January 2026.

Figure 3: SSH geologist logging drill chips at Wagtail, December 2025.

HIGH-TECH METALS
LIMITED

WAGTAIL PROJECT

Background

Wagtail hosts a JORC (2012) Mineral Resource of 14,600 ounces at 7.11 g/t Au located on a granted mining lease⁴. The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resource, and that all material assumptions and technical parameters underpinning the estimate continue to apply.

Wagtail forms a key component of High-Tech Metals' strategy to fast-track gold production from existing resources within the Mt Fisher and Mt Eureka Projects. The deposit benefits from established access and infrastructure, together with proximity to several operating processing facilities within trucking distance via existing road networks, providing a clear pathway to near-term development (refer Figure 4).

In support of this strategy, the Company has entered a strategic alliance with ASX-listed mining services provider SSH Group Limited (ASX: SSH). Scoping and pre-feasibility studies are underway across the Mt Fisher and Wagtail deposits to assess development options, refine project parameters and support progression toward potential mining decisions.

As part of this work, drilling at Wagtail is being undertaken to de-risk the deposit and generate key technical inputs to inform development studies and future exploration planning across the broader Mt Fisher–Mt Eureka portfolio.

⁴ Refer HTM ASX Announcement 26/02/2025

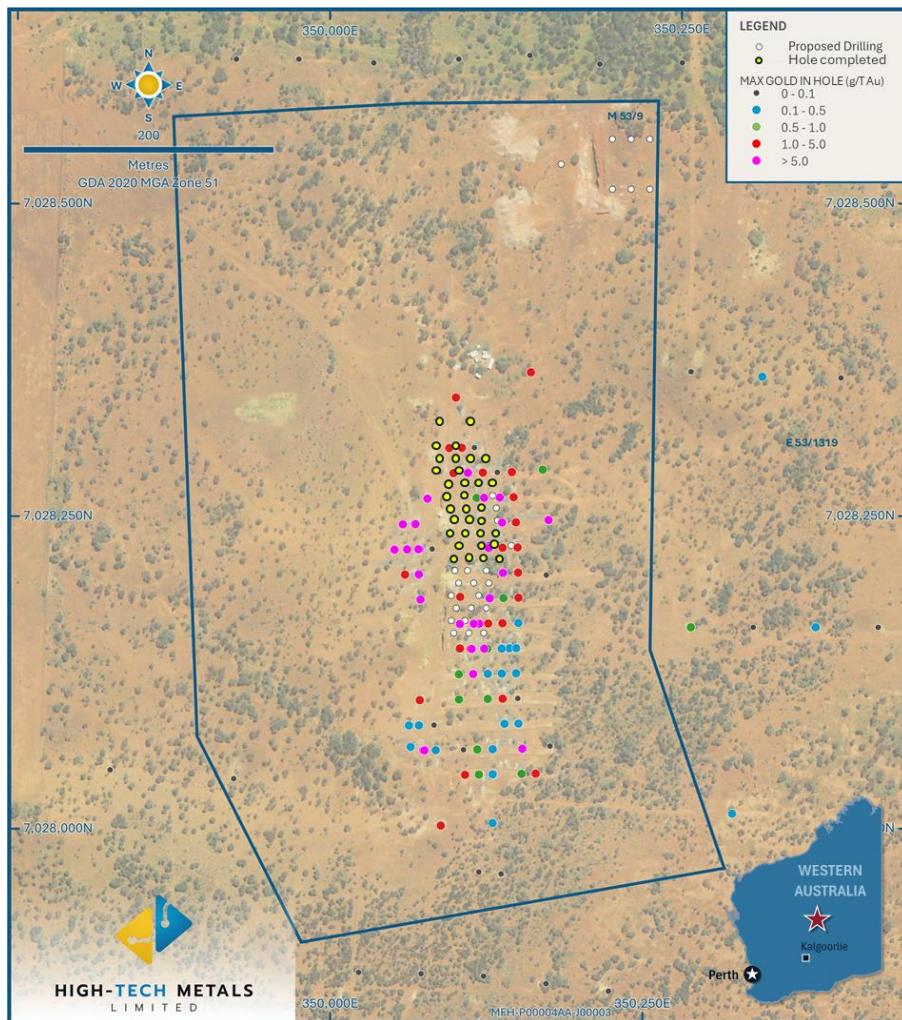


Figure 4: HTM's Mt Fisher and Mt Eureka Gold Project, Northern Goldfields, Western Australia.

Drilling Update

The ~3,000 m infill RC drilling program at Wagtail commenced in early December 2025 and was designed to increase geological confidence within the existing Mineral Resource, locally test extensions to known mineralisation and collect samples for metallurgical testwork to support ongoing development studies.

To date, 31 holes for 1,271 metres have been completed (refer Figure 5). Drilling progress was slower than anticipated due to challenging ground conditions and extreme heat, with additional operational controls implemented to ensure the safety of site personnel. Drilling has now paused for the Christmas period, with the field team scheduled to remobilise in early January to complete the remainder of the program.

Figure 5: Wagtail drilling December 2025 with planned and completed holes.

All holes drilled to date have intersected variably weathered to fresh mafic host rocks, with quartz-sulphide veining encountered at the expected mineralised positions. Visible gold was observed in four holes, consistent with the known coarse-grained nature of gold mineralisation at Wagtail (refer Figure 5 and Tables 1 & 2).

In relation to the disclosure of visible mineralisation, the Company cautions that visual estimates off mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the actual grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available, expected in January 2026.

HIGH-TECH METALS
LIMITED

NEXT STEPS

Exploration and development work at Wagtail and Mt Fisher continue to focus on advancing the deposits toward potential near-term development.

Activities are being undertaken in parallel to support resource confidence, metallurgical understanding and mine planning, consistent with the Company's strategy to fast-track production opportunities on granted mining leases.

Key upcoming activities include:

- Completion of **Wagtail infill and grade control drilling** to support resource refinement and mining studies (restarting early January);
- Ongoing **metallurgical testwork on Wagtail and Mt Fisher** bulk samples;
- **Diamond drilling** to obtain bulk metallurgical samples at Wagtail (late January);
- **Permitting, mine design and site infrastructure studies** (ongoing);
- Engagement with nearby processing facilities regarding **toll treatment and offtake options** (ongoing);
- Completion of the **PGN Geoscience integrated targeting study** (expected late January 2026); and
- **Drill testing of priority regional targets**, subject to final permitting (anticipated January–February).

The above programs are designed to provide the technical and economic inputs required to assess the potential near-term mining opportunity at Wagtail and Mt Fisher, while continuing to advance exploration upside across the broader Mt Fisher–Mt Eureka portfolio.

AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

For further information:

James Merrillees

CEO

info@hightechmetals.com.au

+61 08 9388 0051

Quinton Meyers

Non-executive Director

info@hightechmetals.com.au

+61 08 9388 0051

About High-Tech Metals Ltd

High-Tech Metals Ltd (High-Tech, ASX:HTM) is an Australian gold exploration and development company positioned for strong growth through the advancement of a significant gold project portfolio in Western Australia.

The recent acquisition of the Mt Fisher and Mt Eureka Gold Projects represents a transformational step in HTM's evolution. Together, these projects deliver a commanding 1,150 km² landholding in the heart of the prolific Yilgarn Craton, one of the world's premier gold provinces.

The Mt Fisher and Mt Eureka projects are located in a proven and mining-friendly jurisdiction, with secure tenure and no known impediments to land access, providing a strong foundation for future development.

Our Goal

HTM's strategy is to rapidly advance near-term production opportunities on existing mining leases to establish early cash flow, creating a self-funded pathway for high-impact exploration targeting world-class gold discoveries across one of Western Australia's last under-explored greenstone belts.

Our Team

HTM is supported by an experienced and respected technical and corporate team with a proven record of discovery and development success. The team is actively advancing exploration across both Mt Fisher and Mt Eureka, focused on unlocking the full potential of these highly prospective gold projects.

Cautionary Note – Visual Estimates

The Company stresses that the references above (and in Table 2) to visual or visible mineralisation relate specifically to the abundance of those minerals logged in the drill chips is not an estimate of metal grade for any interval. In relation to the disclosure of visible mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole lengths and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative only. Quantitative assays will be completed by ALS Laboratories, with the results for intersections discussed in this release expected late mid-January 2026.

Competent Person's Statement

Exploration Results

The information in this report that relates to Exploration Results is based upon and fairly represents information compiled by Mr James Merrillees, a Competent Person who is a Member of the AusIMM. Mr Merrillees is a full-time employee of the Company. Mr Merrillees has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Merrillees consents to the inclusion in the report of the matter based on his information in the form and context in which it appears.

HIGH-TECH METALS
LIMITED

Forward - Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning High-Tech Metals Limited planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements

ASX LR 5.23 Statement

High-Tech Metals Ltd confirms that the information in this announcement relating to previously reported Exploration Results and Mineral Resources is extracted from the Company's prior ASX announcements, as referenced herein. The Company confirms that it is not aware of any new information or data that materially affects the information included in those original market announcements, and that all material assumptions and technical parameters underpinning the Exploration Results and Mineral Resource Estimates in those announcements continue to apply and have not materially changed.

For Personal Use Only

Table 1: Drill Collar details

RC – Reverse Circulation

EOH – End of Hole

RL –Reduced level

Hole ID	Prospect	Hole Type	East MGA94 Z51	North MGA94 Z51	RL (m)	EOH (m)	Dip	Azimuth	Ten ID
25WTRC001	Wagtail	RC	350086	7028325	556.58	20	-60	270	M53/9
25WTRC002	Wagtail	RC	350110	7028325	556.56	60	-60	270	M53/9
25WTRC003	Wagtail	RC	350084	7028305	557	24	-57	270	M53/9
25WTRC004	Wagtail	RC	350100	7028305	557	48	-59	270	M53/9
25WTRC005	Wagtail	RC	350087	7028295	557.28	25	-60	270	M53/9
25WTRC006	Wagtail	RC	350100	7028295	557.24	50	-60	270	M53/9
25WTRC007	Wagtail	RC	350112	7028295	557.21	66	-60	270	M53/9
25WTRC008	Wagtail	RC	350085	7028285	557.48	27	-60	270	M53/9
25WTRC009	Wagtail	RC	350102	7028285	557.49	55	-59	270	M53/9
25WTRC010	Wagtail	RC	350094	7028275	557.77	23	-59	270	M53/9
25WTRC011	Wagtail	RC	350106	7028275	557.72	48	-60	270	M53/9
25WTRC012	Wagtail	RC	350117	7028275	557.59	67	-60	270	M53/9
25WTRC013	Wagtail	RC	350092	7028265	557.99	16	-59	270	M53/9
25WTRC014	Wagtail	RC	350106	7028265	557.89	37	-60	270	M53/9
25WTRC015	Wagtail	RC	350124	7028295	557.15	84	-60	270	M53/9
25WTRC016	Wagtail	RC	350095	7028255	558.22	19	-59	270	M53/9
25WTRC017	Wagtail	RC	350108	7028255	558.06	34	-60	270	M53/9
25WTRC018	Wagtail	RC	350120	7028255	557.95	63	-60	270	M53/9
25WTRC019	Wagtail	RC	350098	7028245	558.33	19	-60	270	M53/9
25WTRC020	Wagtail	RC	350110	7028245	558.23	36	-60	270	M53/9
25WTRC021	Wagtail	RC	350095	7028235	558.68	19	-60	270	M53/9
25WTRC022	Wagtail	RC	350107	7028235	558.4	23	-60	270	M53/9
25WTRC023	Wagtail	RC	350102	7028225	558.6	23	-60	270	M53/9
25WTRC024	Wagtail	RC	350098	7028215	559.08	24	-60	270	M53/9
25WTRC025	Wagtail	RC	350110	7028215	558.87	25	-60	270	M53/9
25WTRC026	Wagtail	RC	350121	7028245	558.12	67	-60	270	M53/9
25WTRC027	Wagtail	RC	350099	7028205	559.17	27	-60	270	M53/9
25WTRC028	Wagtail	RC	350109	7028205	558.94	45	-60	270	M53/9
25WTRC029	Wagtail	RC	350102	7028195	559.43	24	-60	270	M53/9
25WTRC030	Wagtail	RC	350114	7028195	559.08	49	-60	270	M53/9
25WTRC031	Wagtail	RC	350126	7028195	559.08	70	-60	270	M53/9

For Personal Use Only

Table 2: Summary drill logs for mineralised intervals (note these are visual only and grades will be confirmed by laboratory analyses)

VG Visible Gold (Y)es or (N)o

* Downhole interval only

Hole ID	From (m)	To (m)	Interval* (m)	Veining (%)	Sulfide Mineral	Style	%	VG	Geology
25WTRC001	10	11	1	90	goethite after pyrite	Vein	1	N	Veining in Saprolitic Clay
	11	12	1	10	goethite after pyrite	Vein	0.5	N	Saprolitic Clay
	14	15	1	90	goethite after pyrite	Vein	1	N	Veining in Saprolitic Clay
25WTRC002	54	55	1	5	pyrite	Vein	1	Y	Fresh Mafic Dolerite
25WTRC003	7	11	4	60	goethite after pyrite	Vein	0.5	N	Veining in Saprolitic Clay
25WTRC004	12	14	2	60	goethite after pyrite	Vein	0.5	N	Veining in Saprolitic Clay
25WTRC005	37	38	1	10	goethite after pyrite	Vein	0.5	N	Veining in Saprolitic Clay
25WTRC006	16	17	1	40	goethite after pyrite	Vein		N	Veining in Saprolitic Clay
25WTRC007	35	36	1	-	goethite after pyrite	Vein	10	N	Veining in Saprolitic Clay
	44	45	1	0.1	pyrite	Vein	1	N	Fresh Mafic Dolerite
	53	54	1	30	pyrite	Vein	0.1	N	Fresh Mafic Dolerite
25WTRC008	4	6	2	80	goethite after pyrite	Vein	1	N	Veining in Saprolitic Clay
	10	11	1	90	goethite after pyrite	Vein	1	N	Veining in Saprolitic Clay
25WTRC009	46	47	1	20	pyrite and pyrrhotite	Vein	1	N	Fresh Mafic Dolerite
	49	50	1	0.1	pyrite	Vein	1	N	Fresh Mafic Dolerite
25WTRC010	19	21	2	80	goethite after pyrite	Vein	1	N	Veining in Saprolitic Clay
25WTRC011	35	36	1		goethite after pyrite	Vein	0.5	N	Veining in Saprolitic Clay
25WTRC012	52	53	1	30	pyrite	Vein	0.1	Y	Fresh Mafic Dolerite
	53	54	1	-	pyrite	Disseminated	0.1	N	Fresh Mafic Dolerite
	54	55	1	10	pyrite	Vein	0.1	N	Fresh Mafic Dolerite
25WTRC013	5	6	1	10	goethite after pyrite	Vein	0.5	N	Veining in Saprolitic Clay
25WTRC014	31	33	2					N	Backfilled Stope
	33	34	1	90	goethite after pyrite	Vein	1	Y	Mafic Dolerite Saprocks
25WTRC015	78	79	1	0.1	pyrite and pyrrhotite	Vein	0.5	N	Fresh Mafic Dolerite
25WTRC016	11	14	3						Open Stope
25WTRC018	54	55	1	90	goethite after pyrite	Vein	1	N	Mafic Dolerite Saprocks
25WTRC019	13	16.5	3.5						Open Stope
25WTRC020	36	37	1						Open Stope
25WTRC021	8	9	1	90	goethite after pyrite	Vein	1		Veining in Saprolitic Clay
25WTRC022	29	30.5	1.5						Open Stope
25WTRC023	19	21	2						Open Stope
	21	22	1	60	goethite after pyrite	Vein	1		Veining in Saprolitic Clay
25WTRC025	32	33	1	90	goethite after pyrite	Vein	1		Mafic Dolerite Saprocks
25WTRC026	47	48	1	5	goethite after pyrite	Vein	1		Mafic Dolerite Saprocks
	48	50	2	20	goethite after pyrite	Vein	1		Mafic Dolerite Saprocks
	50	51	1	40	goethite after pyrite	Vein	1		Mafic Dolerite Saprocks
	51	52	1	0.1	goethite after pyrite	Vein	1		Mafic Dolerite Saprocks
	52	53	1	40	goethite after pyrite	Vein	1	Y	Mafic Dolerite Saprocks
25WTRC027	14	15	1	90	goethite after pyrite	Vein	1		Veining in Saprolitic Clay
25WTRC028	33	34	1	90	goethite after pyrite	Vein	1		Mafic Dolerite Saprocks
25WTRC029	20	22	2						Open Stope
	22	23	1	90	goethite after pyrite	Vein	1		Veining in Saprolitic Clay
25WTRC030	40	41	1	90	goethite after pyrite	Vein	1		Veining in Saprolitic Clay
25WTRC031	58	59	1	10	pyrite	Vein	1		Mafic Dolerite Saprocks

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"><i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i>	<ul style="list-style-type: none">Reverse Circulation (RC) samples are collected into calico bags over 1m intervals using a cone splitter. The residual bulk samples are placed in piles on the ground, except in pre-determined intervals based on previous resource model and associated geological modelling, where the residual material was put into green plastic bags for use in future metallurgical test work.
	<ul style="list-style-type: none"><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i>	<ul style="list-style-type: none">QAQC samples, blank, standards and duplicates, are included routinely at a nominal rate of 1:33 samples.
	<ul style="list-style-type: none"><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done, this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i>	<ul style="list-style-type: none">Samples have been collected by SSH Mining staff for submittal to ALS Laboratory in Perth.Reverse circulation drilling was used to obtain 1m samples over logged mineralised intervals from which a minimum 600gkg sample was collected and sent to ALS laboratory in PerthAt the lab samples will be crushed to ~90% passing 3.15mm and rotary split to produce an ~500g sample for photon analysis.The photon analytical technique is considered a more accurate and robust technique for high-grade, coarse gold as encountered at Wagtail.Samples are considered representative for this level of study.
Drilling techniques	<ul style="list-style-type: none"><i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).</i>	<ul style="list-style-type: none">Industry standard drilling methods and equipment are utilised.Reverse Circulation (RC) drilling was undertaken by DSS Drilling using a 146mm diameter face sampling drill bit.RC drilling employed face sampling hammers ensuring contamination during sample extraction was minimised.
Drill sample recovery	<ul style="list-style-type: none"><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i>	<ul style="list-style-type: none">Sample recovery and moisture content was qualitatively assessed by the field geologist and recorded
	<ul style="list-style-type: none"><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i>	<ul style="list-style-type: none">The cyclone was cleaned at the end of each 6m rod whilst drilling pre-determined depths for composite sampling, and every metre for pre-determined depths associated with mineralisation based on the previous resource model and geological modelling to ensure no material build up and sample material and minimise potential for downhole contamination.The drilling sample recoveries and quality are considered acceptable and appropriate for the style

Criteria	JORC Code explanation	Commentary
		of mineralisation.
	<ul style="list-style-type: none">• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	<ul style="list-style-type: none">• No sample recovery biases or biases related to loss or gain of fines are identified.
Logging	<ul style="list-style-type: none">• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.• The total length and percentage of the relevant intersections logged.	<ul style="list-style-type: none">• No Mineral Resource is estimated.• All drill chips are qualitatively logged by SSH field geologist on 1m intervals with chips washed and stored in chip trays.• Field logs are inputted directly into a laptop onsite using Company-standard logging codes.• Logging is qualitative with chips logged for lithology, colour, weathering, texture, minerals and alteration.• All holes are logged on site at intervals determined by changes in lithology, colour, weathering, texture, minerals and alteration.
Subsampling techniques and sample preparation	<ul style="list-style-type: none">• If core, whether cut or sawn and whether quarter, half or all core taken.• If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.• For all sample types, the nature, quality and appropriateness of the sample preparation technique.• Quality control procedures adopted for all subsampling stages to maximise representivity of samples.• Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	<ul style="list-style-type: none">• N/A no core drilling completed.• RC drilling single 1 metre split are taken by a rotary cone splitter attached to the cyclone• 4m composite samples are taken from sample piles using a 650ml metal scoop which was cleaned after each sample was collected.• All samples are dried before analysis.• Sample collection, size and analytical methods are deemed appropriate for the style of exploration.• OREAS 'Standard' Photon Specific Certified Reference Material (CRM) has been sent to ALS and will be inserted by ALS personnel at nominal rate of 1 in 33 samples.• Routine 'blank' material was inserted at a nominal rate of 1 in 33 samples.• Duplicate samples were taken at a nominal rate of 1 in 33 samples.• At this stage, no umpire checks have been planned.• ALS (Perth) will provide their own routine quality controls within their own practices.• 1m samples are automatically bagged from the cyclone, field duplicates are taken from a second shute off the splitter and weighed, when there was notable difference in weight of the original and duplicate samples, the drillers were asked to adjust the cyclone to ensure future duplicates would contain the same amount of material.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none">• Whether sample sizes are appropriate to the grain size of the material being sampled.	<ul style="list-style-type: none">• All RC samples are approximately 0.6 - 5 kg• The sample sizes taken are appropriate relative to the style of mineralisation and analytical methods undertaken.
Quality of assay data and laboratory tests	<ul style="list-style-type: none">• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.• For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.• Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	<ul style="list-style-type: none">• The analytical methods and quality control protocols are considered appropriate for the style of mineralisation being tested and the stage of assessment being undertaken with the focus on 'infill' drilling of the Wagtail deposit to increase resource confidence and provide samples for metallurgical test work.• N/A No geophysical measurements taken• OREAS 'Standard' Photon Specific Certified Reference Material (CRM) has inserted at a nominal rate of 1 in 33 samples.• Routine 'blank' material was inserted at a nominal rate of 1 in 33 samples.• Duplicate samples are taken at a nominal rate of 1 in 33 samples.• At this stage, no umpire checks have been planned.• ALS (Perth) provide their own routine quality controls within their own practices.
Verification of sampling and assaying	<ul style="list-style-type: none">• The verification of significant intersections by either independent or alternative company personnel.• The use of twinned holes.• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.• Discuss any adjustment to assay data.	<ul style="list-style-type: none">• N/A no analytical results are reported• One twinned hole was drilled as a part of this program.• Data was captured directly into specific geological logging software• Assay files will be sent directly from the lab to HTM's database manager• All physical sampling sheets are filed and scanned electronically and submissions to the lab checked to check samples are accounted for• N/A no analytical results are reported
Location of data points	<ul style="list-style-type: none">• Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.• Specification of the grid system used.• Quality and adequacy of topographic control.	<ul style="list-style-type: none">• Hole collars are marked out using a digital GPS (DGPS), a survey will be conducted once the drilling program has been completed by a registered surveyor using real-time kinetic (RTK) survey equipment with is accurate to +/-10mm.• All locations and maps are reported in GDA1994, MGA Zone 51• Topography is based on 50cm resolution Light Detection and Ranging (LiDAR) survey.
Data spacing and distribution	<ul style="list-style-type: none">• Data spacing for reporting of Exploration Results.	<ul style="list-style-type: none">• N/A no exploration results reported.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none">• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.• Whether sample compositing has been applied.	<ul style="list-style-type: none">• No mineral resource estimation is reported.• Composite samples were generated by collecting sample material using a 650ml metal scoop and placing them in calico bags with a specific number sequence.
Orientation of data in relation to geological structure	<ul style="list-style-type: none">• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	<ul style="list-style-type: none">• All holes were drilled at between -58 to -60° to the west (270°) which is orthogonal to the steeply east dipping Wagtail mineralisation.• Currently unknown, but all holes were drilled orthogonal to the dip and strike of the mineralised lode.• Future diamond geotechnical and metallurgical drilling will enable this to be discerned.
Sample security	<ul style="list-style-type: none">• The measures taken to ensure sample security.	<ul style="list-style-type: none">• Each sample was put into a tied off calico bag and then placed into a polyweave bag, with a maximum of 5 samples put in each bag, which were then zip tied closed.• Samples are being delivered directly to ALS in Perth by SSH Mining staff.
Audits or reviews	<ul style="list-style-type: none">• The results of any audits or reviews of sampling techniques and data.	<ul style="list-style-type: none">• No audits have yet been completed.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none">• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	<p>HTM owns 100% of the Mt Fisher gold project tenements E53/1061, E53/1106, E53/1319, E53/1788, E53/1836, E53/2002, E53/2075, E53/2095, E53/2102, L53/262, M53/0009, M53/0127, E53/2199, E53/2201, E53/2307, E53/2354, E53/2355, and E53/2356.</p> <p>Cannon Resources entered into a split commodity agreement in respect of E53/1218 where HTM retains gold rights, and Cannon retains rights to all other minerals.</p> <p>HTM holds 75% in a Joint Venture Agreement with Cullen Resources. The tenements in the Cullen JV consist of E53/1209, E53/1299, E53/1637, E53/1893, E53/1957, E53/1958, E53/1959, E53/1961, E53/2052, E53/2101 (Pending), E53/2358 (Pending), and E53/2063.</p> <p>Rox Resources holds 1% NSR on all Tenements excluding E53/1319.</p> <p>Aurora holds a 1.5% NSR on Tenements from the Windidda Project Area.</p> <p>Pegasus Gold Australia Pty Ltd holds a 2.5% NPI on E53/568 Eureka North and E53/645 White Well</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	The tenements are in good standing, and no known impediments exist to obtaining a licence to operate in the area.
Exploration done by other parties	<ul style="list-style-type: none"><i>Acknowledgment and appraisal of exploration by other parties.</i>	<p>Several companies have completed exploration for base metals and gold within the regional Mt Fisher area. These companies include Minops Pty Ltd (1968 to 1971), Tenneco Australia (1971 to 1973), Sundowner (1985 to 1989), ACM Gold Ltd (1988 to 1992), Aztec Mining Company Ltd (1993 to 1994) and Pegasus Gold Australia Pty Ltd (1994 to 1996).</p> <p>Work conducted included aeromagnetic surveys, ground magnetic surveys, regional mapping, rock chip sampling, soil geochemistry (including BLEG and stream sediment sampling) and rotary air blast (RAB) drilling.</p> <p>The Mt Fisher deposit was first discovered in 1936 and mining between 1937 and 1949 produced approximately 4,500 tonnes of ore at 28 g/t gold (Powell, 1990). In 1980, a small deposit was defined by percussion drilling around the historical workings. Further drilling from 1984 to 1986 defined a larger deposit to the south of the old workings with Sundowner acquiring a 100% interest in the project in January 1986.</p> <p>Sundowner completed a historic estimate of 252,000 tonnes at 5.4 g/t gold to a pit depth of 100 m. Following a period of study, a 250,000 tpa carbon-in-pulp treatment plant was built with completion in September 1987. Open pit mining commenced in April 1987 and continued through to September 1988, and processing finished in late November 1988. Total production from the Mt Fisher open pit was reportedly 218,000 tonnes at 4.3 g/t gold.</p> <p>Following completion of treatment, the plant was dismantled and moved to Sundowner's Darlot mine 140 km to the south (Leandri P.S., 1989. Mt Fisher Mt Fisher Mine End of Operations Report. March 1989. Sundowner Minerals NL). (Bright, D.V., 1990. Mt Fisher ML53/127. Annual Technical Report. July 1989 – June 1990. Sundowner Minerals NL).</p> <p>Norgold Ltd and BHP Ltd (BHP) conducted gold exploration in the same area in the 1980s and exploration included rock chip sampling and mapping. BHP followed up with RAB and RC drilling reporting several gold anomalies in what was later named the Dam prospect.</p> <p>From 1993 to 1997, CRAE completed extensive exploration with work largely focusing on the Dam prospect where gold anomalism was identified over a 7 km by 1 km area. Work completed included RAB and aircore (AC) drilling with a small amount of RC and diamond drilling follow-up. Delta acquired the Project in 1998 and explored it until 2001. They completed additional RAB, AC, RC and diamond drilling. CRAE and Delta defined extensive regolith gold anomalies but were unable to identify any substantial bedrock sources to gold mineralisation.</p> <p>From 1996, Cullen Resources NL (Cullen) in joint venture with Newmont Mining Corporation (Newmont) conducted exploration in the Mt Eureka area for gold and were also involved in a nickel joint venture with BHP.</p> <p>Avoca Resources Ltd (Avoca) acquired the Mt Fisher Gold Project in 2004 and completed geological mapping and soil and rock chip sampling over much of the tenement area. Drilling was focused on defining further mineralisation along the Dam- Damsel-Dirk gold corridor and extending known mineralisation at Moray Reef, with the internal reporting of Mineral Resources for both the Dam and Moray Reef prospects. From 2004 to 2011, Avoca completed a total of 158 RAB/AC drill holes for 9,111 m and 64 shallow RC drill holes for 5,188 m.</p>

Criteria	JORC Code explanation	Commentary
Geology	<ul style="list-style-type: none"><i>Deposit type, geological setting and style of mineralisation.</i>	The geological setting is Archean greenstone-hosted gold, with host rocks and structures related to mesothermal orogenic gold mineralisation typical to that found throughout the Yilgarn Craton of Western Australia.
Drillhole information	<ul style="list-style-type: none"><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:</i><ul style="list-style-type: none"><i>easting and northing of the drillhole collar</i><i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar</i><i>dip and azimuth of the hole</i><i>downhole length and interception depth</i><i>hole length.</i><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i>	<ul style="list-style-type: none">Tables containing this information are included in the body of the announcement.
Data aggregation methods	<ul style="list-style-type: none"><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i>	<ul style="list-style-type: none">N/A no exploration results reported
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"><i>These relationships are particularly important in the reporting of Exploration Results.</i><i>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</i><i>If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').</i>	<ul style="list-style-type: none">N/A no exploration results reported
Diagrams	<ul style="list-style-type: none"><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.</i>	Refer to Figures and Tables in the text.

Criteria	JORC Code explanation	Commentary
Balanced reporting	<ul style="list-style-type: none">Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	<ul style="list-style-type: none">N/A no exploration results reported
Other substantive exploration data	<ul style="list-style-type: none">Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	<p>Plutonic Operations Limited, (1995 Annual Report M53/127, Technical Report No. 420. A45087) determined a:</p> <ul style="list-style-type: none">SG of 2.5kg/m³ and a bulking factor of 1.4 for the low-grade stockpileSG of 2.4kg/m³ and a bulking factor of 1.6 for the carbonaceous ore stockpile <p>Rox Resources completed metallurgical test work in 2012 on two selected samples from the low-grade dump with reported recoveries of 95.7%. (RXL internal report, 2012, Metallurgical test work report on Mt. Fisher low grade ore and Mt. Fisher tailings)</p> <p>All meaningful and material information has been included in the body of the announcement.</p>
Further work	<ul style="list-style-type: none">The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	<p>Further work is outlined in the body of the announcement and will include:</p> <ul style="list-style-type: none">Completion of the Phase 1 drill programUpdated mineral resource once all assays are received and assessed by HTM's resource geologistFurther drilling (including geotechnical and metallurgical)Systematic follow-up metallurgical test work of RC chips and diamond drill core.