


EMA FIELD TRIAL REE SOLUTIONS GENERATE HIGH PURITY SEPARATED OXIDES

Rare Earth Technologies Inc (RETi) has successfully upgraded the Ema field pregnant liquor solution grade (PLS) 200 times prior to producing cleanly separated individual REE oxides of high purity

Highlights

- **PLS Upgrade:** Achieved a **200x upgrade** in rare earth concentration from **930 ppm** to **186,000 ppm (18.6%) TREO-Ce**, utilising RETi's proprietary processing equipment and expertise developed in Cincinnati, USA
- **100% Recovery:** Enrichment was achieved with no loss of rare earth elements, concentrating all REEs into a small acid volume
- **High-Purity Oxides:** The system cleanly separated all major rare earth oxides into individual products over a **24-minute cycle time, achieving minimum 99.9% purity for each oxide**
- **Commercially Proven Technology:** The separation system is currently in **commercial use in Europe**, offering a simple, automated process with low chemical consumption and high REE enrichment efficiency
- **Superior Processing Advantage:** The technology is technically superior for recovering and separating REEs from process liquor feedstocks, maximising recoverable value and revenue potential

Brazilian Critical Minerals Limited (**ASX: BCM**) ("BCM" or the "Company") is pleased to report that an initial bench scale test to enrich PLS solution and then individually extract the major rare earth elements as high purity separated oxides has been successfully completed through the Rare Earth Technologies Inc plant in Cincinnati, Ohio.

Figure 1. RETi chromatograph showing clear peaks of concentrated separated rare earth elements of high purity which could be delivered to market. Minimum purity achieved was 99.9%.

Andrew Reid, Managing Director, commented:

“The RETi bench-scale test indicated the technology is capable of achieving up to a 200x upgrade from feed to product, delivering cleanly separated rare earth oxides with minimal impurity carryover in a single processing route.

RETi has developed this proprietary separation and purification technology for rare-earth elements utilising 100% environmentally safe, non-toxic solvents and proprietary column chemistry able to achieve very high purity (up to ~99.999%) with a system designed to be cleaner and faster than other traditional methods.

This process further adds to the already high ESG credentials of the Ema ISR project and BCM plans further additional testwork to determine potential scale, commercial applicability and independent validation in 2026.”

Steve Levin, RETi President & COO, commented:

“The BCM PLS solution is an excellent candidate for RETi’s two midstream rare earth processing solutions, demonstrating the ability to deliver highly purified light and heavy rare earth elements to the marketplace. The successful upgrading of the BCM PLS liquor via RETi’s solid phase extraction technology favourably indicates scaling to the next step, pilot-scale extraction.

Output will be separated on RETi’s tonne-scale high-performance liquid chromatography (HPLC) process, which has been operational since August 2024. We look forward to rapidly, yet conservatively, expanding scale with BCM with the goal of sending light and heavy rare earths to the marketplace.”

To view the video of MD, Andrew Reid, discussing this announcement, click on the link below

<https://braziliancriticalminerals.com/link/Pwbdwr>

Comments on Results

The Company recently sent a small 20l sample of PLS to RETi in the US for testing through their proprietary technology. The PLS averaged 930 ppm total rare earth oxides (TREO), with approximately 50% of the solution being processed through this first phase of testing.

RETi’s proprietary Cerium (Ce) depletion protocol removed 99.4% of Ce as the first step followed by significant enrichment or elution of the remaining REE’s into minimal acid volume achieving a 200x concentration, resulting in a grade of **186,000ppm (18.6%) TREO-Ce**.

This resulted in recoveries of near-total REE capture from the liquor, but where also highly selective and effective in the rejection of alkali/alkaline-earth impurities (e.g. Magnesium). This process is highly efficient, faster, with fewer steps, and lower energy/chemical consumption compared to traditional methods.

About the Technology

RETi's environmentally responsible technology integrates Solid-Phase Extraction (SPE) and High-Performance Liquid Chromatography (HPLC) to extract, separate, and purify rare-earth elements (REEs). The proprietary SPE sorbent selectively extracts REEs at parts-per-million levels, remaining inert to non-REEs and impurities, enabling both group extraction and enrichment.

HPLC then uses proprietary column chemistry to separate individual REEs based on subtle differences in their interactions within the column, achieving high purity. The process uses mineral acid as the eluent, eliminating the need for toxic, flammable organic solvents and providing significant environmental and safety benefits. The method can also be optimized to isolate specific REEs, streamlining the separation process.

This announcement has been authorised for release by the Board of Directors.

Enquiries

For more information please contact:

Andrew Reid

Managing Director

Brazilian Critical Minerals Limited

Andrew.reid@braziliancriticalminerals.com

Brazilian Critical Minerals Limited (BCM) is a mineral exploration company listed on the Australian Securities Exchange.

Its major exploration focus is Brazil, in the Apuí region, where BCM has discovered a world class Ionic Adsorbed Clay (IAC) Rare Earth Elements deposit. The Ema IAC project is contained within the 781 km² of exploration tenements within the Colider Group and adjacent sediments.

BCM has defined an indicated and inferred MRE of 943Mt of REE's with metallurgical recoveries averaging 68% MREO, representing some of the highest for these types of deposits anywhere in the world.

The Company has commenced a bankable feasibility study due for completion in Q1 2026, is engaging with regulators regarding permitting approvals and has

commenced a resource extension drilling program which will inform the BFS economic analysis.

Ema REE Global Mineral Resource Estimate @COG 500ppm TREO

JORC Category	cut-off ppm TREO	Tonnes Mt	TREO ppm	NdPr ppm	DyTb ppm	MREO ppm	MREO: TREO %
Indicated	500	248	759	176	16	192	25
Inferred	500	695	701	165	16	181	26
Total	500	943	716	168	16	184	26

The information in this announcement relates to previously reported exploration results and mineral resource estimates for the Ema Project released by the Company to ASX on 22 May 2023, 17 July 2023, 19 July 2023, 31 July 2023, 13 Sep 2023, 19 Oct 2023, 06 Dec 2023, 06 Feb 2024, 22 Feb 2024, 13 Mar 2024, 02 Apr 2024, 08 Oct 2024 19 Nov 2024, 21 Jan 2025, 17th Feb 2025, 26th Feb 2025, 10th March 2025, 13th March 2025, 28th April 2025, 27th May 2025, 28th May, 13 June 2025, 01 July 2025, 18 August 2025, 01 Sep 2025, 22 Sep 2025, 20 Oct 2025, 23 Oct 2025, 01 Dec 2025, and 17 Dec 2025. The Company confirms that is not aware of any new information or data that materially affects the information included in the above-mentioned releases and CONTINUES TO APPLY and have not materially changed in accordance with listing Rule 5.23.2.

Competent Person Statement

The scientific and technical information that relates to process metallurgy is based on information reviewed by Mr Andrew Reid (Managing Director and CEO) of Brazilian Critical Minerals Pty Ltd. Mr Hazelden is a Fellow of the AusIMM and has sufficient experience relevant to hydrometallurgical processes to qualify as a Competent Person as defined by the JORC Code. Mr Reid owns shares in the Company and participates in the Company's employee securities incentive plan. Mr Reid consents to the inclusion in this announcement of the matters based on their information in the form and context in which it appears.

Appendix 1

The following Table and Sections are provided to ensure compliance with JORC Code (2012 Edition).

JORC (2012) Table 1 – Section 1: Sampling Techniques and Data for auger hole drilling

Item	JORC code explanation	Comments
Sampling Techniques	<ul style="list-style-type: none">Nature and quality of sampling (eg cut channels. random chips. or specific specialised industry standard measurement tools appropriate to the minerals under investigation. such as down hole gamma sondes. or handheld XRF instruments. etc). These examples should not be taken as limiting the broad meaning of sampling.Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used.Aspects of the determination of mineralisation that are Material to the Public Report.In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required. such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	<ul style="list-style-type: none">Exploration results are based on auger drilling conducted by BCM's exploration team.The data presented is based on the assay of soils and saprolite by auger drilling at 1m sample intervals.Sampling was supervised by a GE21 geologist or a GE21 field assistant.Every 1-metre sample was collected in a big plastic bag in the field and transported to the exploration shed to be dried in the muffle. prior to homogenisation.Samples were homogenised and subsequently riffle split with about 1 kg sent to SGS for analysis and a similar amount stored.1 certified blank sample. 1 certified reference material (standard) samples and 1 field duplicate sample were inserted into the sample sequence for each 25 samples.
Drilling Techniques	<ul style="list-style-type: none">Drill type (eg core. reverse circulation. open-hole hammer. rotary air blast. auger. Bangka. sonic. etc) and details (eg core diameter. triple or standard tube. depth of diamond tails. face-sampling bit or other type. whether core is oriented and if so. by what method. etc).	<ul style="list-style-type: none">Auger drilling was completed by a hand held-mechanical auger with a 3" auger bit. The drilling is an open hole. meaning there is a significant chance of contamination from surface and other parts of the auger hole. Holes are vertical and not oriented.
Drill Sample Recovery	<ul style="list-style-type: none">Method of recording and assessing core and chip sample recoveries and results assessed.Measures taken to maximise sample recovery and ensure representative nature of the samples.Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	<ul style="list-style-type: none">No recoveries are recorded.The operator observes the volume of each metre and notes any discrepancy.No relationship is believed to exist between recovery and grade.

Item	JORC code explanation	Comments
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation. mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean. channel. etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> All holes were logged by GE21 geologist. detailing the colour. weathering. alteration. texture and any geological observations. Care is taken to identify transported cover from in-situ saprolite/clay zones and the moisture content. Logging was done to a level that would support a Mineral Resource Estimate. Qualitative logging with systematic photography of the stored box. The entire auger hole is logged.
Sub-Sampling Techniques and Sampling Procedures	<ul style="list-style-type: none"> If core. whether cut or sawn and whether quarter. half or all core taken. If non-core. whether riffled. tube sampled. rotary split. etc and whether sampled wet or dry. For all sample types. the nature. quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected. including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Auger sampling procedure is completed in the exploration shed in Apui. The entire one metre sample is bagged on site. in a big plastic bag which is transported to the exploration shed. where it is dried at 70-90C prior to homogenisation. then quartered to about 1kg to go to SGS and another 1kg to store on site. Sample preparation for the auger samples was conducted at SGS Vespasiano (greater Belo Horizonte) comprising oven drying at 100C. crushing of entire sample to 75% < 3mm followed by rotary splitting and pulverisation of 250 to 300 grams at 95% minus 150# The <3mm rejects and the 250-300 grams pulverised sample were returned to BCM for storage. Only the last 10 metres of each hole were sent to assay. the samples above will be send if required.
Quality of Assay Data and Laboratory Tests	<ul style="list-style-type: none"> The nature. quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools. spectrometers. handheld XRF instruments. etc. the parameters used in determining the analysis including instrument make and model. reading times. calibrations factors applied and their derivation. etc. Nature of quality control procedures adopted (eg standards. blanks. duplicates. external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established 	<p>RETI upgraded the PLS to produce a Mixed Rare Earth Solution by selectively extracting and enriching REEs. Chromatographic separation then yielded high-purity individual Rare earth Oxides (REOs), supporting the development of the final demonstration and marketing product.</p> <ul style="list-style-type: none"> The process for producing a Mixed Rare Earth solution and subsequently high-purity individual Rare Earth Oxides (REOs) consists of the following sequential steps: RETI selectively extracts REEs as a group from the PLS using its proprietary Solid Phase Extraction (SPE) sorbent. REEs are quantitatively recovered from the loaded sorbent using a small acid volume, resulting in approximately 200-fold enrichment of REE concentration. RETI chromatographically separates individual REEs using its proprietary column chemistry. High-temperature calcination of REE salts yields high-purity individual REOs, with purities approaching 99.99%.

Item	JORC code explanation	Comments																																																				
<p>Field Samples:</p> <ul style="list-style-type: none">1 blank sample. 1 certified reference material (standard) sample and 1 field duplicate sample were inserted by BBX into each 25-sample sequence.Standard laboratory QA/QC procedures were followed. including inclusion of standard, duplicate and blank samples.The assay results of the standards fall within acceptable tolerance limits and no material bias is evident.The assay technique used for REE was Lithium Metaborate Fusion ICP-MS (SGS code ICP95A and IMS95A). This is a recognised industry standard analysis technique for REE suite and associated elements. <p>Elements analysed at ppm levels:</p> <table border="1"><tr><td>Ba</td><td>Ce</td><td>Cr</td><td>Cs</td><td>Dy</td><td>Er</td><td>Eu</td><td>Ga</td></tr><tr><td>Gd</td><td>Hf</td><td>Ho</td><td>La</td><td>Lu</td><td>Nb</td><td>Nd</td><td>Pr</td></tr><tr><td>Rb</td><td>Sm</td><td>Sn</td><td>Sr</td><td>Ta</td><td>Tb</td><td>Th</td><td>Tm</td></tr><tr><td>U</td><td>V</td><td>W</td><td>Y</td><td>Yb</td><td>Zr</td><td>Zn</td><td>Co</td></tr><tr><td>Cu</td><td>Ni</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></table> <p>The sample preparation and assay techniques used are industry standard and provide total analysis.</p> <p>The ICP95A reports the major elements oxides used to calculate the Chemical Index of Alteration (CIA) at % levels included:</p> <table border="1"><tr><td>Al₂O₃</td><td>CaO</td><td>Cr₂O₃</td><td>F₂O₃</td></tr><tr><td>K₂O</td><td>MgO</td><td>MnO</td><td>Na₂O</td></tr><tr><td>P₂O₅</td><td>SiO₂</td><td>TiO₂</td><td></td></tr></table>			Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Ho	La	Lu	Nb	Nd	Pr	Rb	Sm	Sn	Sr	Ta	Tb	Th	Tm	U	V	W	Y	Yb	Zr	Zn	Co	Cu	Ni							Al ₂ O ₃	CaO	Cr ₂ O ₃	F ₂ O ₃	K ₂ O	MgO	MnO	Na ₂ O	P ₂ O ₅	SiO ₂	TiO ₂	
Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga																																															
Gd	Hf	Ho	La	Lu	Nb	Nd	Pr																																															
Rb	Sm	Sn	Sr	Ta	Tb	Th	Tm																																															
U	V	W	Y	Yb	Zr	Zn	Co																																															
Cu	Ni																																																					
Al ₂ O ₃	CaO	Cr ₂ O ₃	F ₂ O ₃																																																			
K ₂ O	MgO	MnO	Na ₂ O																																																			
P ₂ O ₅	SiO ₂	TiO ₂																																																				
<ul style="list-style-type: none">The SGS laboratory used for the RRE assays is ISO 9001 and 14001 and 17025 accredited.Analytical standard for REE ITAK-713 and 714 were used as CRM material in the batches sent to SGS.The assay results for the standards were consistent with the certified levels of accuracy and precision and no bias is evident.The blanks used contain some REE. with critical elements Ce. Nd. Dy and Y present in small quantities.Duplicate samples were allocated separate sample numbers and submitted with the same analytical batch as the primary sample. Variability between duplicate results is considered acceptable and no sampling bias is evident.Laboratory inserted standards. blanks and duplicates were analysed as per industry standard practice. There is no evidence of bias from these results.																																																						
<p>Verification of Sampling and Assaying</p> <ul style="list-style-type: none">The verification of significant intersections by either independent or alternative company personnel.The use of twinned holes.Documentation of primary data. data entry procedures. data verification. data storage (physical and electronic) protocols.Apart from the routine QA/QC procedures by the Company and the laboratory. there was no other independent or alternative verification of sampling and assaying procedures.Analytical results for REE were supplied digitally. directly from the SGS laboratory in Vespasiano to the BCMs Exploration Manager in Rio de Janeiro.No twinned holes were used.																																																						

Item	JORC code explanation	Comments
	<ul style="list-style-type: none">Discuss any adjustment to assay data.	<ul style="list-style-type: none">Geological data was logged onto paper and transferred to Excel spreadsheets at end of the day and then transferred into the drill hole database. Microsoft Access is used for database storage and management and incorporates numerous data validation and data integrity checks. All assay data is imported directly into the Microsoft Access database.No adjustments were made to the data.All REE assay data received from the laboratory in element form is unadjusted for data entry.Conversion of elements analysis (REE) to stoichiometric oxide (REO) was undertaken by spreadsheet using defined conversion factors. (Source:https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors).

For personal use only

Element ppm	Conversion Factor	Oxide Form
Ce	1.2284	CeO ₂
Dy	1.1477	Dy ₂ O ₃
Er	1.1435	Er ₂ O ₃
Eu	1.1579	Eu ₂ O ₃
Gd	1.1526	Gd ₂ O ₃
Ho	1.1455	Ho ₂ O ₃
La	1.1728	La ₂ O ₃
Lu	1.1371	Lu ₂ O ₃
Nd	1.1664	Nd ₂ O ₃
Pr	1.2082	Pr ₆ O ₁₁
Sm	1.1596	Sm ₂ O ₃
Tb	1.1762	Tb ₄ O ₇
Tm	1.1421	Tm ₂ O ₃
Y	1.2699	Y ₂ O ₃
Yb	1.1387	Yb ₂ O ₃

Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups:

TREO (Total Rare Earth Oxide) = La₂O₃ + CeO₂ + Pr₆O₁₁ + Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Y₂O₃ + Lu₂O₃

LREO (Light Rare Earth Oxide) = La₂O₃ + CeO₂ + Pr₆O₁₁ + Nd₂O₃

HREO (Heavy Rare Earth Oxide) = Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Y₂O₃ + Lu₂O₃

CREO (Critical Rare Earth Oxide) = Nd₂O₃ + Eu₂O₃ + Tb₄O₇ + Dy₂O₃ + Y₂O₃

(From U.S. Department of Energy. Critical Material Strategy. December 2011)

MREO (Magnetic Rare Earth Oxide) = Nd₂O₃ + Pr₆O₁₁ + Tb₄O₇ + Dy₂O₃

NdPr = Nd₂O₃ + Pr₆O₁₁

DyTb = Dy₂O₃ + Tb₄O₇

In elemental form the classifications are:

Item	JORC code explanation	Comments
		<p>TREE: La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Tb+Lu+Y</p> <p>HREE: Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Tb+Lu+Y</p> <p>CREE: Nd+Eu+Tb+Dy+Y</p> <p>LREE: La+Ce+Pr+Nd</p>
Location of Data Points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> The UTM WGS84 zone 21S grid datum is used for current reporting. The drill holes collar coordinates for the holes reported are currently controlled by hand-held GPS.
Data Spacing and Distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> Auger holes were over 200m to 400m apart, designed for testing iREE mineralization over the mapped felsic volcanics. The data spacing and distribution is sufficient to establish the level of REE elements present in the target area and its continuity along the regolith profile appropriate for a Mineral Resource. No sample composition was applied.
Orientation of Data in relation to Geological Structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> The location and depth of the sampling is appropriate for the deposit type. Relevant REE values are compatible with the exploration model for ionic REEs. No relationship between mineralisation and drilling orientation is known at this stage.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> The auger samples in sealed plastic bags were sent directly to SGS by bus and then airfreight. The Company has no reason to believe that sample security poses a material risk to the integrity of the assay data.
Audit or Reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> The sampling techniques and data have been reviewed by the Competent Person and are found to be of industry standard.

JORC (2012) Table 1 - Section 2: Reporting of Exploration Results

Criteria	JORC code explanation	Commentary
Mineral	<ul style="list-style-type: none">Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	<ul style="list-style-type: none">The EMA and EMA EAST leases are 100% owned by BCM with no issues in respect to native title interests, historical sites, wilderness or national park and environmental settings.
Tenement and Land		
Tenure Status	<ul style="list-style-type: none">The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	<ul style="list-style-type: none">The company is not aware of any impediment to obtain a licence to operate in the area.
Exploration done by Other Parties	<ul style="list-style-type: none">Acknowledgment and appraisal of exploration by other parties.	<ul style="list-style-type: none">No exploration by other parties has been conducted in the region.
Geology	<ul style="list-style-type: none">Deposit type, geological setting and style of mineralisation.	<ul style="list-style-type: none">The REE mineralisation at EMA is contained within the tropical lateritic weathering profile developed on top of felsic rocks, rhyolites as per the Chinese deposits.The REE mineralisation is concentrated in the weathered profile where it has dissolved from the primary mineral, such as monazite and xenotime, then adsorbed on to the neo-forming fine particles of aluminosilicate clays (e.g. kaolinite, illite, smectite).This adsorbed iREE is the target for extraction and production of REO.
Drill Hole Information	<ul style="list-style-type: none">A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:<ul style="list-style-type: none">easting and northing of the drill hole collarelevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collardip and azimuth of the holedown hole length and interception depthhole length.If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	<ul style="list-style-type: none">Auger locations and diagrams are presented in this announcement.Details are tabulated in the announcement.

Criteria	JORC code explanation	Commentary
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> Weighted averages were calculated for all intercepts. 500ppm TREO cut-off grade was applied to define the relevant intersections. No metal equivalent values reported.
Relationship between mineralization widths and intercepted lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Significant values of REE were reported for the auger samples. Mineralisation orientation is not known at this stage, although assumed to be flat. The downhole depths are reported, true widths are not known at this stage.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Maps and tables of the soil auger holes location and target location are inserted.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Relevant REE mineralisation with grades higher than 500ppm TREO in auger holes was reported with confirmation of IAC (Ionic Adsorbed Clay) type mineralisation obtained in almost all the auger holes from phase 1, in this same geological setting.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater; geotechnical and rock characteristics; 	<ul style="list-style-type: none"> No other significant exploration data has been acquired by the Company.

Criteria	JORC code explanation	Commentary
	potential deleterious or contaminating substances.	
Further Work	<ul style="list-style-type: none">The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	<ul style="list-style-type: none">Specific Densities collection at Intermediate and Low weathered horizons for the upcoming MRE.Additional metallurgical test work with magnesium sulphate leach.Permeability test works under WSP co-ordinationSS in progress under Ausenco coordination