

Work advances on maiden Mineral Resource Estimate for the Red Mountain Lithium Project, USA following return of final drill assays

Maiden MRE expected within three weeks against a backdrop of rebounding lithium prices

Highlights

- **Final assay results received** from the October 2025 drilling campaign at the Red Mountain Lithium Project, Nevada, USA.
- Drill-hole RMRC016 intersected a combined **10.6m of lithium mineralisation**, including:
 - **6.1m @ 2,130ppm Li** from 32m, including **3m @ 3,550ppm Li** from 33.5m
- Drill-hole RMRC017 intersected a combined **9.1m of lithium mineralisation**, including:
 - **3m @ 2,770ppm Li** from 33.5m
- Drill-hole RMRC018 intersected a combined **9.1m of lithium mineralisation**, including:
 - **4.6m @ 1,320ppm Li** from 22.9m
- Results add to previous high-grade intersections in the Project's northern area⁹, where lithium mineralisation grading >2,000ppm has now been intersected in drill-holes over a >1km strike.
- Receipt of these results concludes the full drill dataset for the Red Mountain Project.
- Work has commenced on a maiden Mineral Resource Estimate (MRE), which is expected to be delivered to market within three weeks.
- The imminent delivery of a maiden MRE comes as lithium prices continue to surge, with the Shanghai Metal Market Battery-Grade Lithium Carbonate Price more than doubling over the past five months to US\$20,000/t¹¹.
- Investment banks such as Morgan Stanley and UBS are predicting a lithium supply deficit in 2026¹².

Venari Minerals NL (ASX: VMS) ("Venari", "the Company" or "VMS") is pleased to advise that work has commenced on a maiden Mineral Resource Estimate (MRE) for its 100%-owned Red Mountain Lithium Project in Nevada, USA, following receipt of the final assay results from the 13-hole Reverse Circulation (RC) drilling campaign completed in October 2025.

The latest assays, from holes drilled in the northern project area, reveal a similar high tenor of mineralisation as the previous holes drilled in that part of the deposit, with two of the three holes intersecting lithium mineralisation grades exceeding 2,000ppm Li (Figures 1 and 2).

The receipt of assays for these three holes completes the drill-hole dataset for the Red Mountain Lithium Project, paving the way for reporting a maiden MRE within three weeks.

Venari Chairman, Tony Leibowitz, said:

“With all results now received from last year’s drilling campaign, the full dataset has been sent to our consultants and work is underway on the maiden Mineral Resource Estimate. Thanks to our counter-cyclical commitment to this project over the past few years, we are now in an outstanding position to deliver this significant milestone at a time when the lithium sector is rebounding strongly.

“Lithium prices have more than doubled in the past five months, and there are widespread expectations of a market deficit this calendar year. As prices return to incentive levels, we are in the unique and enviable position of having ownership of one of the largest new lithium projects in North America at a time of enormous strategic interest in new, large-scale critical minerals assets.”

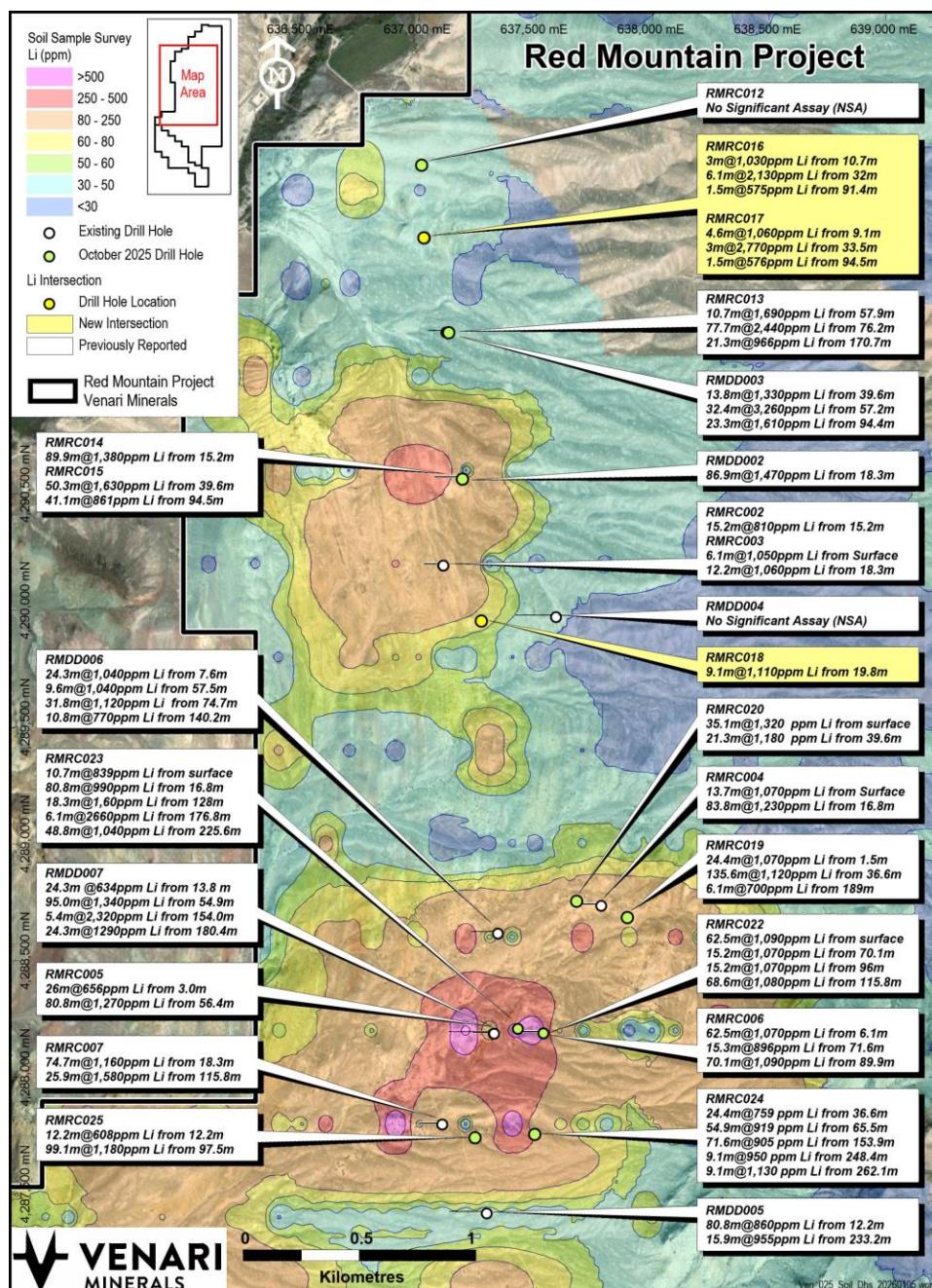
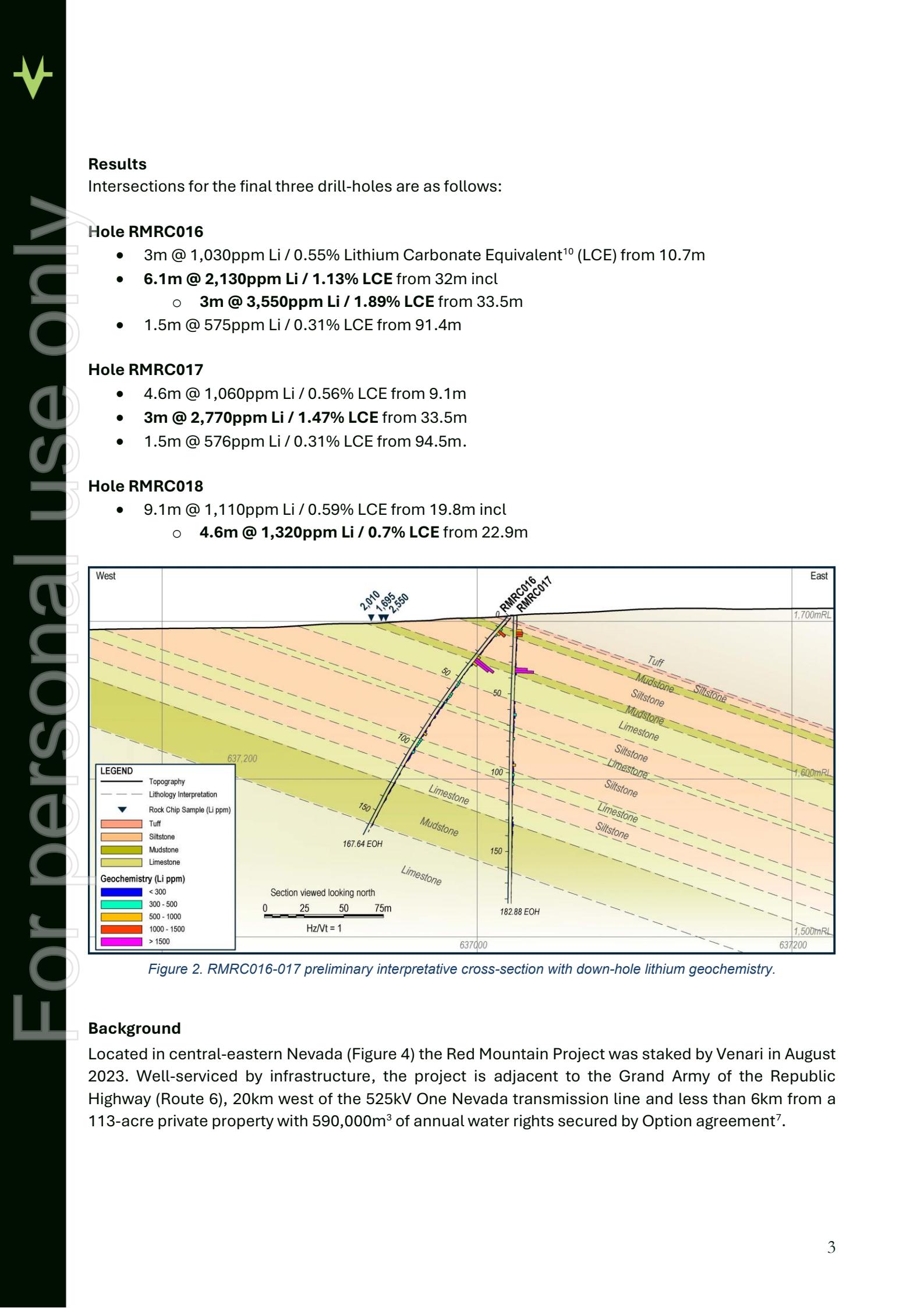



Figure 1. Red Mountain north and central (down-hole) drill intersections over gridded soil geochemistry image.

The Project area has broad mapped tertiary lacustrine (lake) sedimentary rocks known locally as the Horse Camp Formation. Elsewhere in Nevada, equivalent rocks host large lithium deposits (see Figure 4) such as Lithium Americas' (NYSE: LAC) 62.1Mt LCE Thacker Pass Project³ and American Battery Technology Corporation's (NASDAQ: ABAT) 18.7Mt LCE Tonopah Flats deposit⁴.

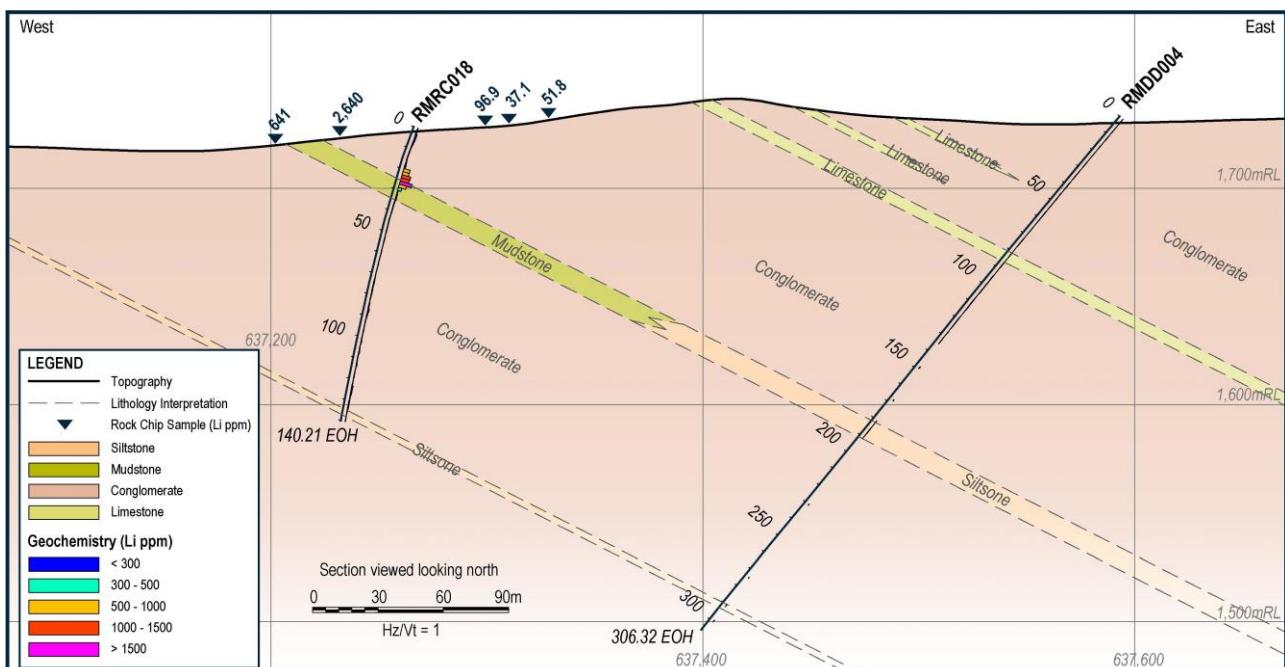


Figure 3. RMRC018-RMDD004 preliminary interpretative cross-section with down-hole lithium geochemistry.

A total of 32 drill holes have been completed at the project to date for a combined 6,015m of drilling across four campaigns. These campaigns have been highly successful, intersecting strong lithium mineralisation in almost every hole^{6,9}.

Scoping leachability testwork on mineralised material from Red Mountain indicates high leachability of lithium of up to 98%, varying with temperature, acid strength and leaching duration⁵, and beneficiation test-work has indicated the potential to upgrade the Red Mountain mineralisation^{1,2,8}.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Azimuth (°)	Dip (°)	Depth (m)
RMRC016	637019.9	4291604.7	1703.7	270.5	-50	167.64
RMRC017	637023.2	4291604.7	1704	0	-90	182.88
RMRC018	637266.1	4289961.9	1728.5	270.5	-70	140.208

Table 1. Drill collar details

About Lithium Carbonate Equivalent (LCE)

Unlike spodumene concentrate, which is a feedstock, Lithium Carbonate is a downstream product that may be used directly in battery material production or converted to other battery products such as lithium hydroxide.

The Shanghai Metal Market Battery Grade Lithium Carbonate USD Price closed at US\$20,001/t as of 9 January 2026¹¹, having more than doubled over the past 5 months.

Lithium Carbonate may be produced directly from lithium clay deposits, such as Lithium Americas' (NYSE: LAC) Thacker Pass Project³, which is currently under construction. Accordingly, exploration results for Red Mountain have been reported as both the standard parts-per-million (ppm) and as % Lithium Carbonate Equivalent (LCE)¹⁰.

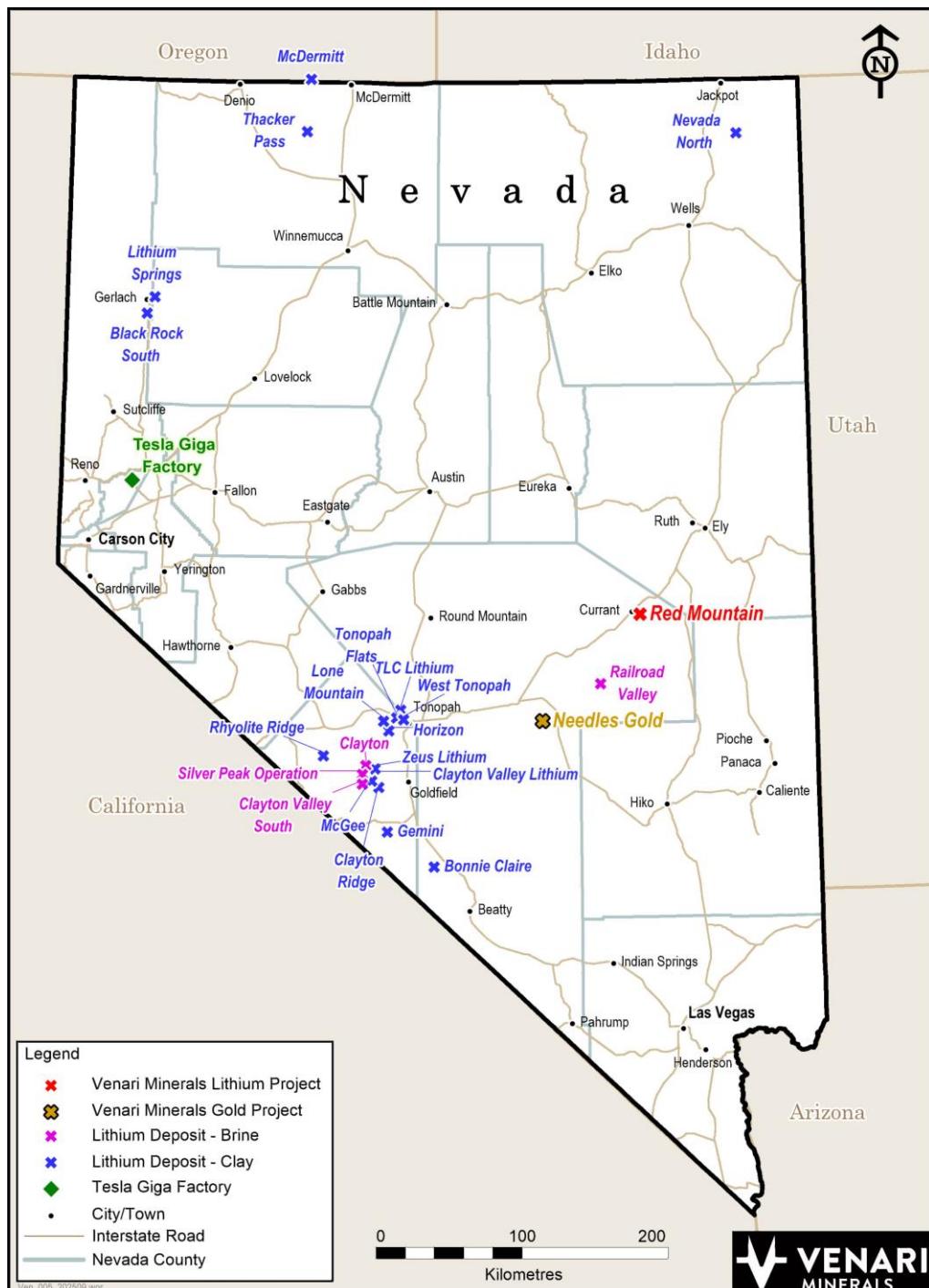


Figure 4. Location of Red Mountain and other Nevada Lithium projects.

References

- 1 - ASX: ASE, 22 April 2025, *Beneficiation testwork successfully upgrades mineralisation at Red Mountain*
- 2 - ASX: ASE, 10 June 2025, *Beneficiation Delivers 4,480ppm Lithium Clay Concentrate at Red Mountain*
- 3 - NYSE: LAC, 31 December 2024, *Updated NI 43-101 Technical Report for the Thacker Pass Project*
- 4 - NASDAQ: ABAT, 4 September 2025, *Tonopah Flats Lithium Project S-K 1300 Technical Report and Preliminary Feasibility Study*
- 5 - ASX: ASE, 9 December 2024, *Positive initial metallurgical results from Red Mountain*
- 6 - ASX: ASE, 25 June 2025, *Exceptional Drill-hole Intersects combined 170m of Lithium Mineralisation at Red Mountain*
- 7 - ASX: VMS, 10 December 2025, *Red Mountain Lithium Project De-Risked with Water Rights Secured*
- 8 - ASX: VMS, 15 October 2025, *Metallurgical test-work delivers 132% upgrade to lithium mineralisation at Red Mountain, Nevada*
- 9 - ASX: VMS, 16 December 2025, *Highest-Grade lithium intersection to date at Red Mountain*
- 10 - *Lithium Carbonate Equivalent wt%(LCE) has been calculated from Lithium parts-per-million (ppm) by the formula LCE = Li (ppm) x 5.323 / 10,000*
- 11 - SMM, 9 January 2026, *Battery-Grade Lithium Carbonate Index, USD/mt* (<https://www.metal.com/Lithium/202212050001>)
- 12 - Reuters, 5 January 2026, *Energy storage boom strengthens demand outlook for beaten-down lithium*

Authorisation

This announcement has been authorised for release by the Board of Venari Minerals NL.

Join the Venari Minerals Investor Hub

Engage with Venari Minerals through accessing reports, presentations, interviews and other Company content. Ask Questions and browse responses to other investors' questions. Click [here](#) and follow the prompts to sign up.

For further information, please contact:

Matthew Healy
Executive Director & CEO
T: +61 (0) 431 683 952
E: matt@venariminerals.com

Nicholas Read
Media & Investor Relations
T: +61 (0) 419 929 046
E: nicholas@readcorporate.com.au

Competent Persons

The information in this report that relates to Sampling Techniques and Data (Section 1) is based on information compiled by Mr. Matthew Healy, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member number 303597). Mr Healy is a full-time employee of Venari Minerals NL and is eligible to participate in share-based incentive schemes of the Company. Mr Healy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Healy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Reporting of Exploration Results (Section 2) is based on information compiled by Mr. Richard Newport, principal partner of Richard Newport & Associates –

Consultant Geoscientists. Mr. Newport is a member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Newport consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

For personal use only

APPENDIX 1 - JORC Code, 2012 Edition – Table 1

SECTION 1 - SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	<p>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</p> <p>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</p> <p>Aspects of the determination of mineralisation that are Material to the Public Report.</p> <p>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</p>	<p>5.5" reverse circulation drilling was undertaken for drill sample collection. Samples were collected on a 5-foot basis in calico bags, with approximate 30% split retained from a rotary cone splitter for lab assay. Water was injected throughout the hole.</p> <p>Nominal small drill sample was collected for chip tray records</p> <p>Samples were air dried on elevated grid mesh until practical to transport</p> <p>Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Inputs of lithium from geothermal sources have also been proposed.</p>
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	5.5" Reverse Circulation drilling methods employed using a cross-over sub immediately behind the hammer.

Drill sample recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<p>Sample recoveries to be measured by dry sample weight at the laboratory prior to assay.</p> <p>Some instances of poor recovery noted.</p> <p>Instances of poor recovery are not expected to materially impact interpretation of results</p>
Logging	<p>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</p> <p>The total length and percentage of the relevant intersections logged.</p>	<p>Drill cuttings of entire hole logged for lithology by consultant geologist</p> <p>Logging is qualitative with selective quantitative logging (e.g. quartz veining)</p> <p>Chip tray photography undertaken on all full drill holes</p>
Sub-sampling techniques and sample preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken.</p> <p>If non-core, whether riffled, tube sampled, rotarysplit, etc. and whether sampled wet or dry.</p> <p>For all sample types, the nature, quality and appropriateness of the sample preparationtechnique.</p> <p>Quality control procedures adopted for all sub-sampling stages to maximise representivityof samples.</p> <p>Measures taken to ensure that the sampling isrepresentative of the in-situ material collected,including for instance results for field duplicate/second-half sampling.</p>	<p>Samples 30% split using a rotary cone splitter and submitted to ALS Laboratories in Elko for preparation and analysis.</p>

For personal use only

Quality of assay data and laboratory tests	<p>Whether sample sizes are appropriate to the grain size of the material being sampled.</p> <p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p> <p>For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <p>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</p>	<p>Samples analysed by method ME-MS61 which is an ICP-MS method employing a 4-acid digest.</p> <p>A comparison of aqua-regia and 4-acid digests was undertaken for Red Mountain mineralisation, with no material difference in lithium results identified.</p> <p>Assay quality was monitored using pulp blanks, as well as certified reference materials (CRMs) at a range of lithium grades. Pulp blank results indicated no material contamination of samples from sample preparation or during the analytical process. CRM results were within 3 standard deviations of certified values. No material systematic bias nor other accuracy related issues were identified.</p>
Verification of sampling and assaying	<p>The verification of significant intersections by either independent or alternative company personnel.</p> <p>The use of twinned holes.</p> <p>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</p> <p>Discuss any adjustment to assay data.</p>	<p>Sample intervals assigned a unique sample identification number prior to sample despatch</p> <p>Lithium-mineralised claystone Certified Reference Materials (standards), pulp blanks and coarse blanks inserted into the sample stream at regular intervals to monitor lab accuracy and potential contamination during sample prep and analysis.</p>
Location of data points	<p>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</p> <p>Specification of the grid system used.</p> <p>Quality and adequacy of topographic control.</p>	<p>Drill collar locations determined using hand held GPS with location reported in NAD83 UTM Zone 11 with expected accuracy of +/- 10m</p> <p>Downhole surveys conducted on drill holes at nominal 100ft intervals, with drill rigs lined up by compass and clinometer at start of hole.</p>

APPENDIX 1 - JORC Code, 2012 Edition – Table 1

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	<p>Data spacing for reporting of Exploration Results.</p> <p>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</p> <p>Whether sample compositing has been applied.</p>	Drill spacing appropriate for early stage exploration
Orientation of data in relation to geological structure	<p>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</p> <p>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</p>	Claystone beds are regionally shallow-dipping at ~20°-45° to the east and varying locally across the Project with some evidence of faulting and potential folding. Most holes are drilled approximately perpendicular to bedding, with some having a down-dip component due to drill pad location and allowable disturbance limitations. These holes have estimated true width intersections included in the body release as well as down hole intersections.
Sample security	The measures taken to ensure sample security.	Samples stored at secured yard and shed located in township of Currant until delivered by staff or contractors to the ALS labs
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not applicable

APPENDIX 1 - JORC Code, 2012 Edition – Table 1

SECTION 2 - REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</p> <p>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</p>	Red Mountain Claims held in 100% subsidiary Needles Holdings Inc. Claims located on Federal (BLM) Land Drilling conducted on claims certified by the Bureau of Land Management (BLM)
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	<p>No known previous lithium exploration conducted at Red Mountain.</p> <p>Exploration conducted elsewhere in Nevada by other explorers referenced in body text.</p>
Geology	Deposit type, geological setting and style of mineralisation.	<p>The principal target deposit style is claystone hosted lithium mineralisation. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit.</p> <p>Lacustrine environments formed as a result of extensional tectonic regime that produced 'basin and range' topography observed across the state of Nevada. Inputs of lithium from geothermal sources have also been proposed.</p>

Drill hole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. <p>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</p>	<p>Drill hole information is tabulated in body text and/or shown in relevant maps.</p>
Data Aggregation Methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated</p>	<p>Intersections, where quoted are weighted by length. Lengths originally recorded in feet are quoted to the nearest 10cm.</p> <p>Estimates of ‘true width’ intersections given where drilling is interpreted to have a significant down-dip component.</p> <p>Rounding is conducted to 3 significant figures</p> <p>A 500ppm Li cut-off was used to quote headline intersections, with allowance for 10ft of internal dilution by lower grade material.</p> <p>Low grade mineralisation (300-500ppm Li) is present outside of the quoted intersections</p> <p>Intersections are quoted in both lithium ppm and as wt% Lithium Carbonate Equivalent (LCE). LCE is calculated as $LCE = Li (ppm) \times 5.323 / 10,000$, as per industry conventions</p>

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</p>	Insufficient information available due to early exploration status, although interpretation to date is that intersections in this hole approximate true width unless otherwise indicated.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in ASX announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	This release describes all relevant information
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This release describes all relevant information
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	The Red Mountain lithium project is emerging as a significant lithium discovery in Nevada and is being advanced toward a maiden Mineral Resource Estimate later this year. It is the Company's intent to advance the project beyond this to technical studies.

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC016	0	5	79.9	0.04	RMRC016	210	215	338	0.18
RMRC016	5	10	90.2	0.05	RMRC016	215	220	293	0.16
RMRC016	10	15	64.3	0.03	RMRC016	220	225	342	0.18
RMRC016	15	20	164	0.09	RMRC016	225	230	222	0.12
RMRC016	20	25	83.2	0.04	RMRC016	230	235	260	0.14
RMRC016	25	30	82.1	0.04	RMRC016	235	240	256	0.14
RMRC016	30	35	350	0.19	RMRC016	240	245	141.5	0.08
RMRC016	35	40	1440	0.77	RMRC016	245	250	200	0.11
RMRC016	40	45	619	0.33	RMRC016	250	255	254	0.14
RMRC016	45	50	319	0.17	RMRC016	255	260	57.7	0.03
RMRC016	50	55	116	0.06	RMRC016	260	265	282	0.15
RMRC016	55	60	103.5	0.06	RMRC016	265	270	82.1	0.04
RMRC016	60	65	172	0.09	RMRC016	270	275	77.6	0.04
RMRC016	65	70	157	0.08	RMRC016	275	280	104.5	0.06
RMRC016	70	75	116	0.06	RMRC016	280	285	216	0.11
RMRC016	75	80	123	0.07	RMRC016	285	290	40.1	0.02
RMRC016	80	85	112	0.06	RMRC016	290	295	60.1	0.03
RMRC016	85	90	105.5	0.06	RMRC016	295	300	269	0.14
RMRC016	90	95	179.5	0.10	RMRC016	300	305	575	0.31
RMRC016	95	100	173.5	0.09	RMRC016	305	310	201	0.11
RMRC016	100	105	49.4	0.03	RMRC016	310	315	82.7	0.04
RMRC016	105	110	523	0.28	RMRC016	315	320	414	0.22
RMRC016	110	115	3970	2.11	RMRC016	320	325	378	0.20
RMRC016	115	120	3130	1.67	RMRC016	325	330	344	0.18
RMRC016	120	125	877	0.47	RMRC016	330	335	337	0.18
RMRC016	125	130	217	0.12	RMRC016	335	340	144.5	0.08
RMRC016	130	135	63.5	0.03	RMRC016	340	345	274	0.15
RMRC016	135	140	45.5	0.02	RMRC016	345	350	472	0.25
RMRC016	140	145	92.6	0.05	RMRC016	350	355	240	0.13
RMRC016	145	150	80.8	0.04	RMRC016	355	360	198.5	0.11
RMRC016	150	155	100	0.05	RMRC016	360	365	287	0.15
RMRC016	155	160	39.4	0.02	RMRC016	365	370	247	0.13
RMRC016	160	165	111.5	0.06	RMRC016	370	375	96	0.05
RMRC016	165	170	46.2	0.02	RMRC016	375	380	45.8	0.02
RMRC016	170	175	332	0.18	RMRC016	380	385	167	0.09
RMRC016	175	180	386	0.21	RMRC016	385	390	40.5	0.02
RMRC016	180	185	359	0.19	RMRC016	390	395	40.2	0.02
RMRC016	185	190	217	0.12	RMRC016	395	400	51.4	0.03
RMRC016	190	195	178	0.09	RMRC016	400	405	190.5	0.10
RMRC016	195	200	118.5	0.06	RMRC016	405	410	65.8	0.04
RMRC016	200	205	393	0.21	RMRC016	410	415	75.1	0.04
RMRC016	205	210	430	0.23	RMRC016	415	420	60.8	0.03

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC016	420	425	187.5	0.10
RMRC016	425	430	184	0.10
RMRC016	430	435	156.5	0.08
RMRC016	435	440	126.5	0.07
RMRC016	440	445	210	0.11
RMRC016	445	450	177	0.09
RMRC016	450	455	79.4	0.04
RMRC016	455	460	94.8	0.05
RMRC016	460	465	213	0.11
RMRC016	465	470	133	0.07
RMRC016	470	475	80.9	0.04
RMRC016	475	480	53.5	0.03
RMRC016	480	485	57.7	0.03
RMRC016	485	490	61.2	0.03
RMRC016	490	495	64.8	0.03
RMRC016	495	500	72.6	0.04
RMRC016	500	505	106	0.06
RMRC016	505	510	48.3	0.03
RMRC016	510	515	36	0.02
RMRC016	515	520	90.3	0.05
RMRC016	520	525	159	0.08
RMRC016	525	530	35.8	0.02
RMRC016	530	535	20	0.01
RMRC016	535	540	35.6	0.02
RMRC017	0	5	69.5	0.04
RMRC017	5	10	78.1	0.04
RMRC017	10	15	80.3	0.04
RMRC017	15	20	62.7	0.03
RMRC017	20	25	109.5	0.06
RMRC017	25	30	57.7	0.03
RMRC017	30	35	979	0.52
RMRC017	35	40	1150	0.61
RMRC017	40	45	1055	0.56
RMRC017	45	50	232	0.12
RMRC017	50	55	119.5	0.06
RMRC017	55	60	66	0.04
RMRC017	60	65	161.5	0.09
RMRC017	65	70	145.5	0.08
RMRC017	70	75	180	0.10
RMRC017	75	80	78.8	0.04
RMRC017	80	85	71.3	0.04
RMRC017	85	90	66.6	0.04
Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC017	90	95	50.5	0.03
RMRC017	95	100	108	0.06
RMRC017	100	105	174.5	0.09
RMRC017	105	110	125.5	0.07
RMRC017	110	115	2200	1.17
RMRC017	115	120	3340	1.78
RMRC017	120	125	287	0.15
RMRC017	125	130	66.4	0.04
RMRC017	130	135	68.5	0.04
RMRC017	135	140	33.6	0.02
RMRC017	140	145	51	0.03
RMRC017	145	150	11.3	0.01
RMRC017	150	155	37.9	0.02
RMRC017	155	160	35.9	0.02
RMRC017	160	165	28.2	0.02
RMRC017	165	170	17	0.01
RMRC017	170	175	37.9	0.02
RMRC017	175	180	31.2	0.02
RMRC017	180	185	212	0.11
RMRC017	185	190	75.1	0.04
RMRC017	190	195	113.5	0.06
RMRC017	195	200	185	0.10
RMRC017	200	205	243	0.13
RMRC017	205	210	482	0.26
RMRC017	210	215	284	0.15
RMRC017	215	220	105	0.06
RMRC017	220	225	187.5	0.10
RMRC017	225	230	153.5	0.08
RMRC017	230	235	169.5	0.09
RMRC017	235	240	191.5	0.10
RMRC017	240	245	151.5	0.08
RMRC017	245	250	68.2	0.04
RMRC017	250	255	84.9	0.05
RMRC017	255	260	309	0.16
RMRC017	260	265	77.7	0.04
RMRC017	265	270	53.9	0.03
RMRC017	270	275	42.1	0.02
RMRC017	275	280	47	0.03
RMRC017	280	285	69.7	0.04
RMRC017	285	290	52.9	0.03
RMRC017	290	295	50.3	0.03
RMRC017	295	300	33.8	0.02

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC017	300	305	71.4	0.04
RMRC017	305	310	232	0.12
RMRC017	310	315	576	0.31
RMRC017	315	320	219	0.12
RMRC017	320	325	244	0.13
RMRC017	325	330	207	0.11
RMRC017	330	335	363	0.19
RMRC017	335	340	235	0.13
RMRC017	340	345	224	0.12
RMRC017	345	350	111.5	0.06
RMRC017	350	355	316	0.17
RMRC017	355	360	123	0.07
RMRC017	360	365	103.5	0.06
RMRC017	365	370	163	0.09
RMRC017	370	375	158	0.08
RMRC017	375	380	71.2	0.04
RMRC017	380	385	48.5	0.03
RMRC017	385	390	38.5	0.02
RMRC017	390	395	16.8	0.01
RMRC017	395	400	27.1	0.01
RMRC017	400	405	34.2	0.02
RMRC017	405	410	33.9	0.02
RMRC017	410	415	42.1	0.02
RMRC017	415	420	23.6	0.01
RMRC017	420	425	205	0.11
RMRC017	425	430	84.8	0.05
RMRC017	430	435	246	0.13
RMRC017	435	440	291	0.15
RMRC017	440	445	146.5	0.08
RMRC017	445	450	115.5	0.06
RMRC017	450	455	218	0.12
RMRC017	455	460	173.5	0.09
RMRC017	460	465	90.1	0.05
RMRC017	465	470	82	0.04
RMRC017	470	475	70.8	0.04
RMRC017	475	480	84	0.04
RMRC017	480	485	111.5	0.06
RMRC017	485	490	45.1	0.02
RMRC017	490	495	45.7	0.02
RMRC017	495	500	43.1	0.02
RMRC017	500	505	50	0.03
RMRC017	505	510	51.1	0.03
Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC017	510	515	53.9	0.03
RMRC017	515	520	40.8	0.02
RMRC017	520	525	32.4	0.02
RMRC017	525	530	43.7	0.02
RMRC017	530	535	45	0.02
RMRC017	535	540	49.3	0.03
RMRC017	540	545	70.2	0.04
RMRC017	545	550	47.9	0.03
RMRC017	550	555	25.3	0.01
RMRC017	555	560	28	0.01
RMRC017	560	565	5.4	0.00
RMRC017	565	570	2.2	0.00
RMRC017	570	575	3.2	0.00
RMRC017	575	580	5.8	0.00
RMRC017	580	585	4.7	0.00
RMRC017	585	590	14.4	0.01
RMRC017	590	595	14.1	0.01
RMRC017	595	600	9	0.00
RMRC018	0	5	73.4	0.04
RMRC018	5	10	84.1	0.04
RMRC018	10	15	217	0.12
RMRC018	15	20	226	0.12
RMRC018	20	25	158.5	0.08
RMRC018	25	30	136.5	0.07
RMRC018	30	35	63.6	0.03
RMRC018	35	40	59.3	0.03
RMRC018	40	45	63.3	0.03
RMRC018	45	50	83.1	0.04
RMRC018	50	55	97.8	0.05
RMRC018	55	60	145	0.08
RMRC018	60	65	165	0.09
RMRC018	65	70	880	0.47
RMRC018	70	75	823	0.44
RMRC018	75	80	1195	0.64
RMRC018	80	85	1110	0.59
RMRC018	85	90	1645	0.88
RMRC018	90	95	977	0.52
RMRC018	95	100	455	0.24
RMRC018	100	105	100	0.05
RMRC018	105	110	149.5	0.08
RMRC018	110	115	163.5	0.09
RMRC018	115	120	102	0.05

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC018	120	125	64.4	0.03
RMRC018	125	130	88.5	0.05
RMRC018	130	135	90.9	0.05
RMRC018	135	140	65	0.03
RMRC018	140	145	53.7	0.03
RMRC018	145	150	58.6	0.03
RMRC018	150	155	61.4	0.03
RMRC018	155	160	68.3	0.04
RMRC018	160	165	62.8	0.03
RMRC018	165	170	67.3	0.04
RMRC018	170	175	67.4	0.04
RMRC018	175	180	63.9	0.03
RMRC018	180	185	55.7	0.03
RMRC018	185	190	50.8	0.03
RMRC018	190	195	44	0.02
RMRC018	195	200	54.4	0.03
RMRC018	200	205	59.1	0.03
RMRC018	205	210	39	0.02
RMRC018	210	215	26.2	0.01
RMRC018	215	220	46.1	0.02
RMRC018	220	225	42.5	0.02
RMRC018	225	230	38.7	0.02
RMRC018	230	235	42.5	0.02
RMRC018	235	240	65.9	0.04
RMRC018	240	245	85.7	0.05
RMRC018	245	250	92.6	0.05
RMRC018	250	255	80.2	0.04
RMRC018	255	260	93.2	0.05
RMRC018	260	265	85.4	0.05
RMRC018	265	270	65.1	0.03
RMRC018	270	275	53.5	0.03
RMRC018	275	280	98.2	0.05
RMRC018	280	285	120	0.06
RMRC018	285	290	202	0.11
RMRC018	290	295	134.5	0.07
RMRC018	295	300	99.3	0.05
RMRC018	300	305	58	0.03
RMRC018	305	310	57.3	0.03
RMRC018	310	315	57.4	0.03
RMRC018	315	320	56.8	0.03
RMRC018	320	325	60.5	0.03
RMRC018	325	330	58.5	0.03

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMRC018	330	335	64	0.03
RMRC018	335	340	100.5	0.05
RMRC018	340	345	49.5	0.03
RMRC018	345	350	82.4	0.04
RMRC018	350	355	130	0.07
RMRC018	355	360	61.4	0.03
RMRC018	360	365	50.3	0.03
RMRC018	365	370	55.6	0.03
RMRC018	370	375	107	0.06
RMRC018	375	380	53.8	0.03
RMRC018	380	385	44.1	0.02
RMRC018	385	390	49.2	0.03
RMRC018	390	395	61.9	0.03
RMRC018	395	400	58.6	0.03
RMRC018	400	405	62.1	0.03
RMRC018	405	410	162	0.09
RMRC018	410	415	143.5	0.08
RMRC018	415	420	143	0.08
RMRC018	420	425	96.4	0.05
RMRC018	425	430	106	0.06
RMRC018	430	435	114.5	0.06
RMRC018	435	440	111	0.06
RMRC018	440	445	90.2	0.05
RMRC018	445	450	53.5	0.03
RMRC018	450	455	47.3	0.03
RMRC018	455	460	42.6	0.02

For personal use only