

ASX ANNOUNCEMENT

15 January 2026

HIGH-GRADE RESULTS AT GOLDEN POLE EXPANDS WAIHI'S MINERALISATION ENVELOPE

Highlights:

- Targeted follow up exploration drilling on Waihi's Golden Pole Lode¹ has continued to expand the mineralisation area with thick, high-grade results including (see Figure 3):
 - 7.0m @ 27.4 g/t *Inc.* 2.0m @ 87.5 g/t *Golden Pole*
 - 2.2m @ 56.3 g/t *Inc.* 1.8m @ 67.7 g/t *Golden Pole*
 - 2.2m @ 36.9 g/t *Inc.* 1.9m @ 41.9 g/t *Golden Pole*
 - 5.0m @ 13.2 g/t *Inc.* 2.0m @ 24.6 g/t *Golden Pole*
 - 3.2m @ 13.9 g/t *Inc.* 0.9m @ 44.1 g/t *Golden Pole*
 - 9.0m @ 4.8 g/t *Inc.* 1.0m @ 18.7 g/t *Golden Pole*
 - 5.0m @ 8.3 g/t *Inc.* 1.0m @ 29.6 g/t *Golden Pole*
 - 6.0m @ 4.7 g/t *Inc.* *Golden Pole*
 - 2.0m @ 22.1 g/t *Inc.* 1.0m @ 40.8 g/t *Golden Pole (EOH. Intersected old workings)*
- An additional 20 holes have been designed for immediate infill and extensional drilling on the Golden Pole Lode
- In addition to the success at Golden Pole, the current 97-hole program across the broader Waihi Project continues to deliver outstanding results, with highlights including:
 - 2.0m @ 24.3 g/t *Inc.* 1.0m @ 47.2 g/t *Waihi East*
 - 3.9m @ 6.8 g/t *Inc.* 1.5m @ 15.0 g/t *Homeward Bound*
 - First intercept of potential new lode west of Golden Pole (1.1m @ 3.4 g/t), demonstrating the broader potential for mineralisation West of Golden Pole
- The Waihi deposit is located three kilometres west of Ora Banda's processing plant and is being targeted as a potential third underground with an MRE update scheduled early in the June 2026 quarter. This will include the Golden Pole lode for the first time.

Ora Banda Mining Limited (ASX: OBM) ("Ora Banda", "OBM", "Company") is pleased to provide an update on continued drilling success at its Waihi Project which has expanded the high-grade mineralisation area on the Golden Pole lode.

¹ See ASX announcement *"Outstanding Drill Results at Waihi Builds Momentum for Third Underground Mine"* dated 4 September 2025

In July 2025, Ora Banda embarked upon a 45-hole drill program, targeting depth extensions and new discoveries across the Waihi Project. Continued drill success, particularly at Golden Pole, resulted in an expansion of the program to 97 holes, with a further 20 holes now planned to solely focus on the Golden Pole lode.

Historically, the Golden Pole mine produced 81,000 tonnes @ 29.6g/t Au for ~77,000 ounces² (between 1900 and 1939), extracted via underground mining methods. Potential extensions to the Golden Pole mineralised system were poorly drill tested by previous operators, providing a significant follow-up opportunity for Ora Banda.

Initial drilling by Ora Banda, reported on 4 September 2025, confirmed the presence of a new lode in the hanging wall of Golden Pole, returning intercepts of 13.5m @ 6.1 g/t and 8.0m @ 8.7 g/t (4m Composite samples)¹. Subsequent drilling proximal to these intercepts has returned 7.0m @ 27.4 g/t including 2.0m @ 87.5 g/t.

Drilling beneath the historical Golden Pole workings has demonstrated significant down-plunge extensions to mineralisation with intercepts including 2.2m @ 56.3 g/t, 5.0m @ 13.2 g/t, 3.2m @ 13.9 g/t and 9.0m @ 4.8 g/t. Follow up drilling to further test these high grade extensions is scheduled to commence in January 2026 (Figures 2 & 3).

Drilling continues across the Waihi Project, with targets predominantly focussed on highlighting the underground mining potential of the deposit. Drilling for depth extents has returned 3.9m @ 6.8 g/t from 336.2m (Homeward Bound), with further results awaiting assay.

Ora Banda's Managing Director, Luke Creagh, said:

"These outstanding results continue to support the case for Waihi to be Ora Banda's third underground mine, with drilling right across the Waihi package returning high-grades, excellent widths and the potential for further extensions of the mineralised system, all within 3km of the Davyhurst Processing plant"

"Furthermore, the identification of a brand-new lode to the West of Golden Pole highlights the incredible opportunity within the package, opening up another exciting zone for exploration at Waihi"

Waihi Geology

Local Geology - The Waihi rock pile is composed predominantly of two volcanic units: fine-grained tholeiitic basalt and komatiitic basalt. Within the tholeiitic basalts, several units can be discriminated using pXRF readings of Zircon and chrome. The units are indistinguishable by eye. The tholeiitic units are interlayered with narrow bands of carbonaceous and interflow sediments that are rheologically weaker, effectively localising and accommodating high-strain deformation. Regional crustal shortening has resulted in the folding of the volcanic sequence into a steep, subvertical NNW striking orientation. The rock pile is overprinted by a pervasive foliation dipping 70° towards 255°.

Multiple deformational events have given rise to a network of ductile shear zones that partition strain both along lithological boundaries and within rheologically favourable units. These shear zones typically exhibit mylonitic textures and act as the primary fluid pathways and structural

² <https://minedex.dmirr.wa.gov.au/Web/home> "Golden Pole"

controls for gold mineralisation. Strain partitioning is particularly focused along the contacts between the tholeiitic and komatiitic basalts and within the interflow sediment horizons, which act as loci for shear development.

Gold mineralisation at Waihi is structurally controlled and primarily associated with these shear zones. High-grade mineralisation occurs in three key settings:

- within the ductile shear zones themselves
- at the intersection of shears with lithological contacts
- and where shears overprint early, highly deformed quartz veins.

These early quartz veins predate the main mineralising event and were initially emplaced prior to ductile deformation. They were later overprinted during transpressional deformation, undergoing intense strain, including isoclinal folding and boudinage. This deformational overprint produced strong competency contrasts and created low-strain zones within the shear system, which became ideal sites for the precipitation of gold-bearing hydrothermal fluids.

High-grade mineralised shoots such as those previously mined at Waihi, are commonly hosted within these deformed quartz vein zones and historically have represented larger, blow-out-style ore bodies. To date, these shoots exhibit moderate north-westerly plunges.

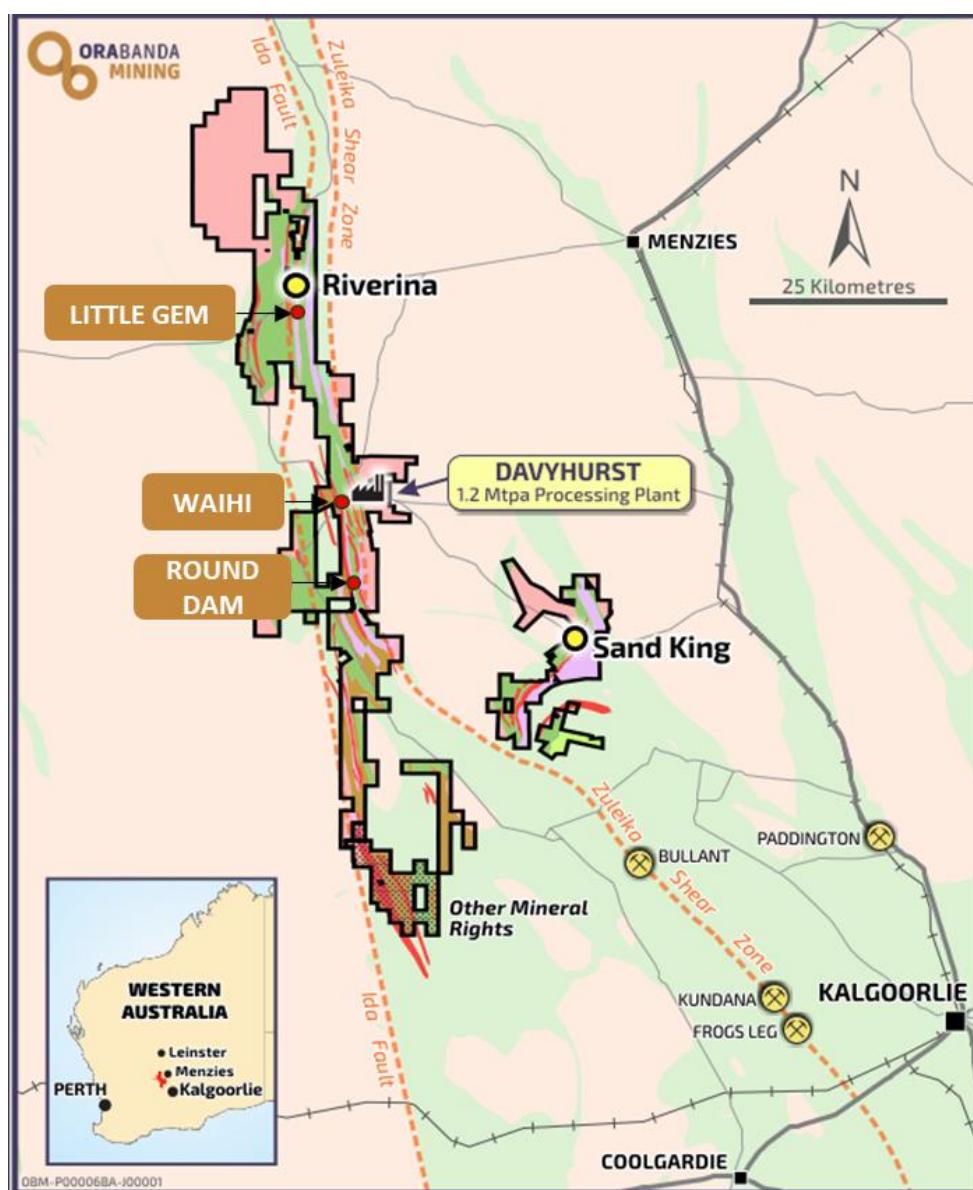


Figure 1 – Overview showing Waihi location compared to Davyhurst processing hub

For personal use only

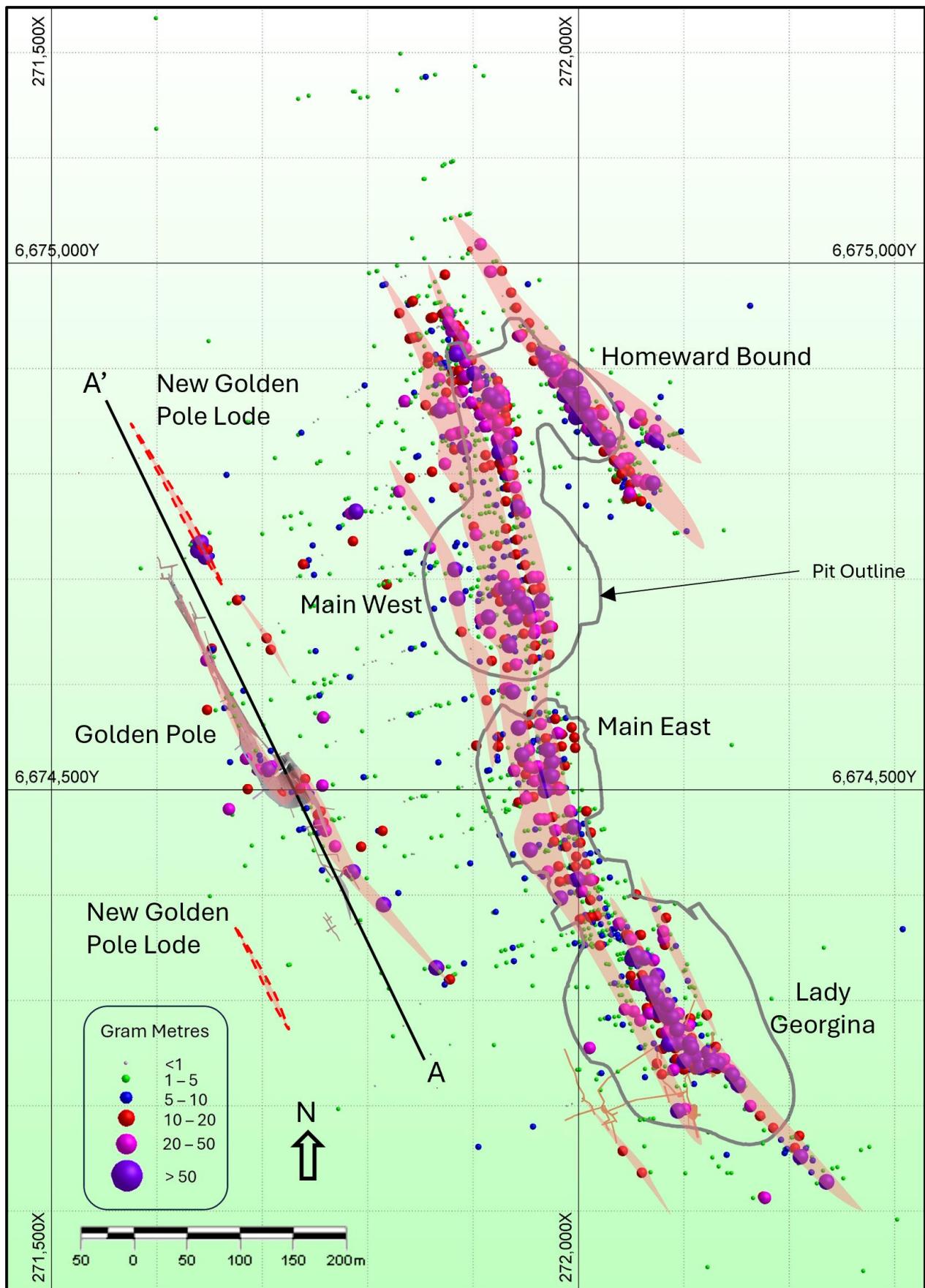


Figure 2 – Waihi and Golden Pole location Plan

Golden Pole & New Gold Lode Significant Resource Growth Potential

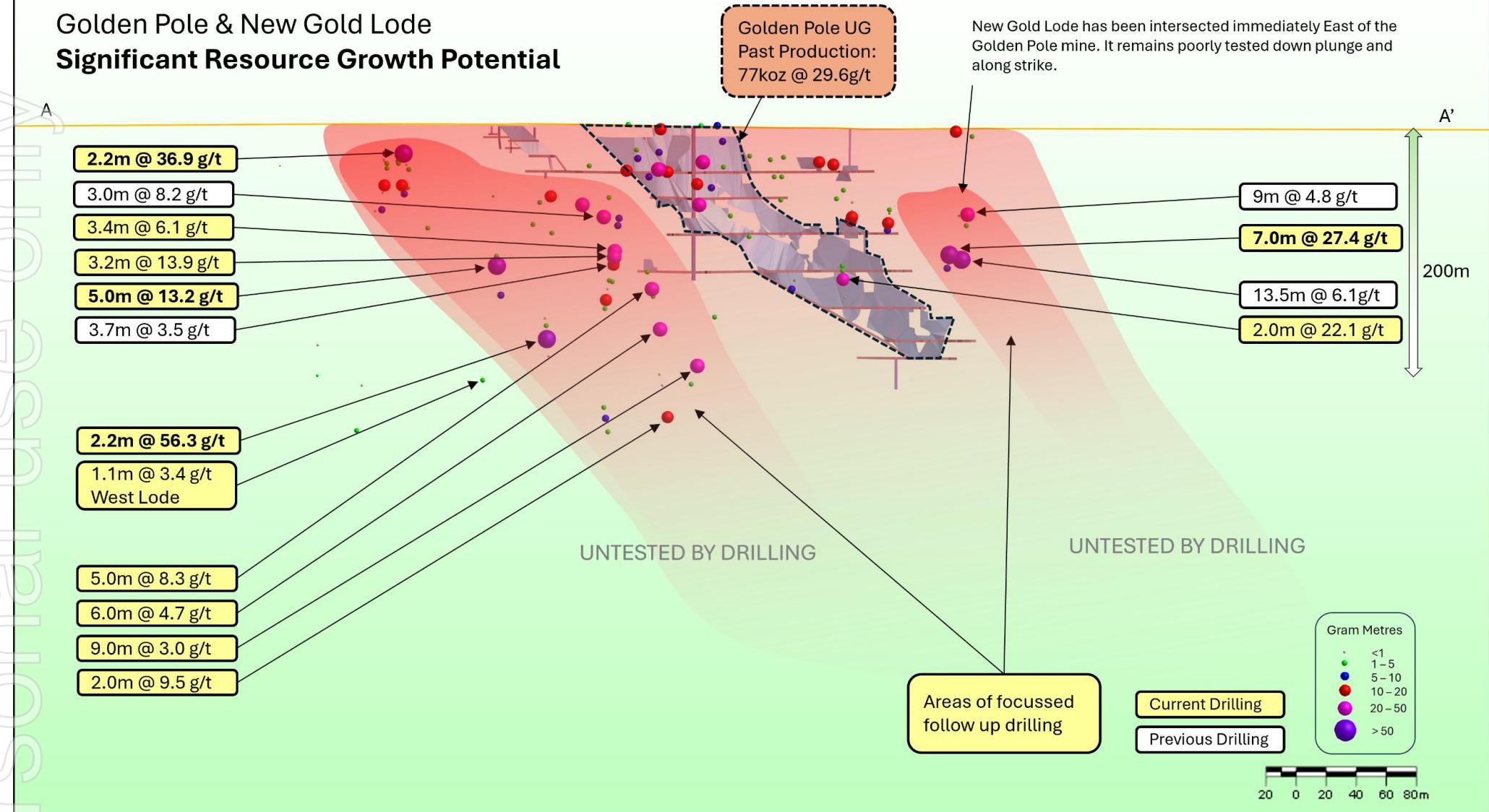


Figure 3 – Long Section Golden Pole and New Lode looking west

*Historical production figures sourced from internal Company Records and Minedex database at <https://minedex.dmirswa.gov.au/web/home> "Golden Pole"

This announcement was authorised for release to the ASX by the Ora Banda Board of Directors. For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at www.orabandamining.com.au.

Investor & Media Queries:

Luke Creagh
Managing Director
+61 8 6365 4548
admin@obmltd.com.au

Kurt Walker
Investor Relations
+61 8 6365 4548
admin@obmltd.com.au

Competent Persons Statement

The information in this announcement that relates to new exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to previous exploration results at Golden Pole is extracted from Ora Banda Mining Ltd's ASX announcement titled "*Outstanding Drill Results at Waihi Builds Momentum for Third Underground Mine*" dated 4 September 2025 which is available to view at www.asx.com.au and www.orabandamining.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward-looking Statements

This announcement contains forward-looking statements which may be identified by words such as "forecast", "guidance", "target", "outlook", "estimates", "believes", "expects", "anticipates", "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are provided as a general guide only, are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. When forecasting or providing guidance on costs and production the Company has taken into account current operating costs, design, plans for the mine, cost escalation, required personnel numbers and inputs including capital estimates, submitted tender rates from contractors and suppliers, and average industry productivity and mining specification metrics. These and other factors could cause actual results to differ materially from those expressed or implied in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law (including the ASX Listing Rules). The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1 – Significant Intersection Table

Waihi - 1.0g/t cut-off, maximum 2m internal dilution, minimum width 0.2m

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHDD018	6674510	271844	462	76	-60	319	RCDD	285.00	286.00	1.00	1.75	1.8	1.0m @ 1.8 g/t
WHDD018								290.60	291.00	0.40	1.02	0.4	0.4m @ 1.0 g/t
WHDD23003	6674379	271994	462	74	-59	50	DDH	27.15	27.50	0.35	1.28	0.4	0.4m @ 1.3 g/t
WHDD23003								35.85	37.00	1.15	1.54	1.8	1.2m @ 1.5 g/t
WHDD23003								40.20	43.27	3.07	1.14	3.5	3.1m @ 1.1 g/t
WHDD23003								48.42	49.27	0.85	3.65	3.1	0.9m @ 3.7 g/t
WHDD25005	6674801	271759	460	50	-59	479	RCDD	115.90	116.30	0.40	2.24	0.9	0.4m @ 2.2 g/t
WHDD25005								135.70	136.00	0.30	1.53	0.5	0.3m @ 1.5 g/t
WHDD25005								144.00	145.00	1.00	1.19	1.2	1.0m @ 1.2 g/t
WHDD25005								193.81	194.24	0.43	2.19	0.9	0.4m @ 2.2 g/t
WHDD25005								202.00	204.74	2.74	8.94	24.5	2.7m @ 8.9 g/t
WHDD25005								Incl 203.21	203.57	0.36	50.11	18.0	0.4m @ 50.1 g/t
WHDD25005								224.82	227.04	2.22	2.90	6.4	2.2m @ 2.9 g/t
WHDD25005								Incl 226.74	227.04	0.30	14.83	4.4	0.3m @ 14.8 g/t
WHDD25005								294.03	295.00	0.97	5.37	5.2	1.0m @ 5.4 g/t
WHDD25005								327.24	327.67	0.43	1.02	0.4	0.4m @ 1.0 g/t
WHDD25005								331.00	332.67	1.67	1.96	3.3	1.7m @ 2.0 g/t
WHDD25005								396.95	398.00	1.05	2.03	2.1	1.1m @ 2.0 g/t
WHDD25005W1	6674801	271759	460	50	-59	516	DDHW	135.00	135.84	0.84	1.88	1.6	0.8m @ 1.9 g/t
WHDD25005W1								178.90	179.21	0.31	1.04	0.3	0.3m @ 1.0 g/t
WHDD25005W1								187.46	187.92	0.46	5.18	2.4	0.5m @ 5.2 g/t
WHDD25005W1								192.84	199.00	6.16	2.44	15.0	6.2m @ 2.4 g/t
WHDD25005W1								Incl 198.00	198.40	0.40	11.71	4.7	0.4m @ 11.7 g/t
WHDD25005W1								214.42	215.00	0.58	1.70	1.0	0.6m @ 1.7 g/t
WHDD25005W1								217.09	217.60	0.51	1.63	0.8	0.5m @ 1.6 g/t
WHDD25005W1								234.36	234.84	0.48	2.63	1.3	0.5m @ 2.6 g/t
WHDD25005W1								239.00	239.80	0.80	1.18	0.9	0.8m @ 1.2 g/t
WHDD25005W1								253.98	254.61	0.63	40.68	25.6	0.6m @ 40.7 g/t
WHDD25005W1								266.00	267.00	1.00	1.58	1.6	1.0m @ 1.6 g/t
WHDD25005W1								278.02	278.63	0.61	1.17	0.7	0.6m @ 1.2 g/t
WHDD25005W1								298.60	299.32	0.72	1.44	1.0	0.7m @ 1.4 g/t
WHDD25005W1								306.94	307.60	0.66	1.00	0.7	0.7m @ 1.0 g/t
WHDD25005W1								308.60	309.19	0.59	1.41	0.8	0.6m @ 1.4 g/t
WHDD25006	6674716	271589	462	76	-62	582	RCDD	244.70	245.08	0.38	3.99	1.5	0.4m @ 4.0 g/t
WHDD25006W2	6674716	271589	462	74	-62	552	DDHW	333.66	334.18	0.52	3.71	1.9	0.5m @ 3.7 g/t
WHDD25006W2								443.15	443.50	0.35	2.36	0.8	0.4m @ 2.4 g/t
WHDD25006W2								486.55	486.85	0.30	4.12	1.2	0.3m @ 4.1 g/t
WHDD25007	6674447	271690	466	73	-58	552	DDH	0.00	0.60	0.60	1.76	1.1	0.6m @ 1.8 g/t
WHDD25007								89.22	91.35	2.13	2.59	5.5	2.1m @ 2.6 g/t
WHDD25007								97.15	98.00	0.85	6.24	5.3	0.9m @ 6.2 g/t
WHDD25007								Incl 97.15	97.60	0.45	10.61	4.8	0.5m @ 10.6 g/t
WHDD25007								127.17	130.40	3.23	13.87	44.8	3.2m @ 13.9 g/t
WHDD25007								Incl 128.60	129.50	0.90	44.15	39.7	0.9m @ 44.1 g/t
WHDD25007								133.05	136.70	3.65	3.53	12.9	3.7m @ 3.5 g/t
WHDD25007								Incl 133.05	133.70	0.65	16.33	10.6	0.7m @ 16.3 g/t
WHDD25007								140.35	140.65	0.30	1.27	0.4	0.3m @ 1.3 g/t
WHDD25007								151.00	152.30	1.30	1.36	1.8	1.3m @ 1.4 g/t
WHDD25007								281.00	282.00	1.00	2.27	2.3	1.0m @ 2.3 g/t
WHDD25007								286.75	287.10	0.35	1.61	0.6	0.4m @ 1.6 g/t
WHDD25007								290.90	291.35	0.45	1.32	0.6	0.5m @ 1.3 g/t
WHDD25007								298.10	299.00	0.90	1.40	1.3	0.9m @ 1.4 g/t
WHDD25007								322.90	323.30	0.40	1.28	0.5	0.4m @ 1.3 g/t
WHDD25007								351.90	352.70	0.80	1.72	1.4	0.8m @ 1.7 g/t

For personal use only

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHDD25007								357.40	357.77	0.37	1.64	0.6	0.4m @ 1.6 g/t
WHDD25007								397.08	397.65	0.57	3.05	1.7	0.6m @ 3.1 g/t
WHDD25007								400.60	401.14	0.54	2.59	1.4	0.5m @ 2.6 g/t
WHDD25007								432.50	437.00	4.50	1.36	6.1	4.5m @ 1.4 g/t
WHDD25007								455.00	456.00	1.00	1.01	1.0	1.0m @ 1.0 g/t
WHDD25007								502.06	502.60	0.54	2.71	1.5	0.5m @ 2.7 g/t
WHDD25007W1	6674447	271690	466	73	-58	450	DDHW	122.24	125.61	3.37	6.08	20.5	3.4m @ 6.1 g/t
WHDD25007W1								Incl 122.24	123.00	0.76	16.49	12.5	0.8m @ 16.5 g/t
WHDD25007W1								154.87	155.17	0.30	5.08	1.5	0.3m @ 5.1 g/t
WHDD25007W1								163.94	164.24	0.30	1.24	0.4	0.3m @ 1.2 g/t
WHDD25007W1								246.06	246.36	0.30	1.45	0.4	0.3m @ 1.5 g/t
WHDD25007W1								274.15	274.55	0.40	4.88	2.0	0.4m @ 4.9 g/t
WHDD25007W1								336.21	336.61	0.40	1.84	0.7	0.4m @ 1.8 g/t
WHDD25007W1								378.00	378.50	0.50	3.15	1.6	0.5m @ 3.2 g/t
WHDD25007W1								382.00	383.00	1.00	4.73	4.7	1.0m @ 4.7 g/t
WHDD25007W1								392.40	392.70	0.30	1.68	0.5	0.3m @ 1.7 g/t
WHDD25007W1								409.13	411.40	2.27	1.36	3.1	2.3m @ 1.4 g/t
WHDD25008W1	6674615	271607	464	69	-57	447	DDHW	73.75	74.12	0.37	1.06	0.4	0.4m @ 1.1 g/t
WHDD25008W1								81.25	81.55	0.30	1.46	0.4	0.3m @ 1.5 g/t
WHDD25008W1								87.20	90.00	2.80	5.36	15.0	2.8m @ 5.4 g/t
WHDD25008W1								171.00	171.55	0.55	1.59	0.9	0.6m @ 1.6 g/t
WHDD25008W1								236.00	236.45	0.45	1.70	0.8	0.5m @ 1.7 g/t
WHDD25008W1								350.00	351.20	1.20	10.28	12.3	1.2m @ 10.3 g/t
WHDD25008W1								Incl 350.00	350.60	0.60	18.53	11.1	0.6m @ 18.5 g/t
WHDD25008W1								368.70	369.21	0.51	3.19	1.6	0.5m @ 3.2 g/t
WHDD25008W1								388.50	389.00	0.50	2.03	1.0	0.5m @ 2.0 g/t
WHDD25008W1								406.60	406.90	0.30	1.84	0.6	0.3m @ 1.8 g/t
WHDD25008W1								434.80	435.40	0.60	2.24	1.3	0.6m @ 2.2 g/t
WHDD25009	6674585	271708	462	69	-60	483	RCDD	273.00	273.40	0.40	1.56	0.6	0.4m @ 1.6 g/t
WHDD25009								282.70	285.60	2.90	2.57	7.5	2.9m @ 2.6 g/t
WHDD25009								288.00	288.75	0.75	2.28	1.7	0.8m @ 2.3 g/t
WHDD25009								292.00	294.00	2.00	2.16	4.3	2.0m @ 2.2 g/t
WHDD25009								305.75	309.00	3.25	2.20	7.1	3.3m @ 2.2 g/t
WHDD25009								369.85	370.15	0.30	4.12	1.2	0.3m @ 4.1 g/t
WHDD25009								377.00	380.00	3.00	4.30	12.9	3.0m @ 4.3 g/t
WHDD25009								Incl 377.85	378.20	0.35	29.89	10.5	0.4m @ 29.9 g/t
WHDD25009								383.30	385.00	1.70	2.36	4.0	1.7m @ 2.4 g/t
WHDD25009								390.00	390.30	0.30	3.23	1.0	0.3m @ 3.2 g/t
WHDD25009W1	6674585	271708	462	69	-61	462	DDHW	136.30	136.70	0.40	1.34	0.5	0.4m @ 1.3 g/t
WHDD25009W1								280.71	284.15	3.44	1.20	4.1	3.4m @ 1.2 g/t
WHDD25009W1								323.07	323.45	0.38	2.42	0.9	0.4m @ 2.4 g/t
WHDD25009W1								340.70	341.00	0.30	2.01	0.6	0.3m @ 2.0 g/t
WHDD25009W1								353.83	354.20	0.37	1.01	0.4	0.4m @ 1.0 g/t
WHDD25009W1								360.00	360.50	0.50	1.33	0.7	0.5m @ 1.3 g/t
WHDD25010	6674497	271805	462	66	-63	378	RCDD	156.00	157.00	1.00	5.80	5.8	1.0m @ 5.8 g/t
WHDD25010								193.00	193.70	0.70	2.40	1.7	0.7m @ 2.4 g/t
WHDD25010								213.45	213.76	0.31	1.78	0.6	0.3m @ 1.8 g/t
WHDD25010								226.18	227.90	1.72	9.20	15.8	1.7m @ 9.2 g/t
WHDD25010								Incl 227.30	227.90	0.60	24.94	15.0	0.6m @ 24.9 g/t
WHDD25010								266.40	267.20	0.80	15.69	12.6	0.8m @ 15.7 g/t
WHDD25010								Incl 266.70	267.20	0.50	24.33	12.2	0.5m @ 24.3 g/t
WHDD25010								313.00	313.30	0.30	1.26	0.4	0.3m @ 1.3 g/t
WHDD25011	6674442	271860	462	61	-65	349	DDH	81.85	82.15	0.30	1.53	0.5	0.3m @ 1.5 g/t
WHDD25011								98.43	99.12	0.69	1.12	0.8	0.7m @ 1.1 g/t
WHDD25011								101.75	103.10	1.35	1.32	1.8	1.4m @ 1.3 g/t
WHDD25011								104.70	105.00	0.30	1.66	0.5	0.3m @ 1.7 g/t
WHDD25011								135.65	136.00	0.35	1.17	0.4	0.4m @ 1.2 g/t
WHDD25011								182.00	183.00	1.00	2.25	2.3	1.0m @ 2.3 g/t
WHDD25011								190.30	191.50	1.20	3.53	4.2	1.2m @ 3.5 g/t

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHDD25011								214.00	214.80	0.80	1.67	1.3	0.8m @ 1.7 g/t
WHDD25011								284.50	284.80	0.30	1.03	0.3	0.3m @ 1.0 g/t
WHDD25011								288.65	289.15	0.50	1.76	0.9	0.5m @ 1.8 g/t
WHDD25011								298.00	300.20	2.20	1.36	3.0	2.2m @ 1.4 g/t
WHDD25013	6674794	271764	460	74	-56	480	RCDD	154.00	156.00	2.00	2.99	6.0	2.0m @ 3.0 g/t
WHDD25013								159.00	159.50	0.50	12.70	6.4	0.5m @ 12.7 g/t
WHDD25013								196.55	197.00	0.45	1.12	0.5	0.5m @ 1.1 g/t
WHDD25013								266.62	267.13	0.51	1.94	1.0	0.5m @ 1.9 g/t
WHDD25013								269.00	269.30	0.30	3.05	0.9	0.3m @ 3.1 g/t
WHDD25013								300.94	303.09	2.15	1.34	2.9	2.2m @ 1.3 g/t
WHDD25013								408.00	410.00	2.00	4.86	9.7	2.0m @ 4.9 g/t
WHDD25013								435.00	437.00	2.00	2.26	4.5	2.0m @ 2.3 g/t
WHDD25013								439.64	440.13	0.49	1.04	0.5	0.5m @ 1.0 g/t
WHDD25014	6674765	271745	460	71	-58	318	RCDD	69.00	70.00	1.00	2.08	2.1	1.0m @ 2.1 g/t
WHDD25014								75.00	76.00	1.00	4.55	4.6	1.0m @ 4.6 g/t
WHDD25014								132.65	133.10	0.45	3.43	1.5	0.5m @ 3.4 g/t
WHDD25014								154.15	154.60	0.45	1.17	0.5	0.5m @ 1.2 g/t
WHDD25014								198.40	202.30	3.90	4.10	16.0	3.9m @ 4.1 g/t
WHDD25014								217.66	218.23	0.57	1.06	0.6	0.6m @ 1.1 g/t
WHDD25014								230.40	230.81	0.41	1.33	0.5	0.4m @ 1.3 g/t
WHDD25014								237.56	244.12	6.56	2.54	16.6	6.6m @ 2.5 g/t
WHDD25014								Incl 237.56	238.56	1.00	10.84	10.8	1.0m @ 10.8 g/t
WHDD25015	6674714	271736	460	67	-64	288	DDH	19.00	22.50	3.50	1.78	6.2	3.5m @ 1.8 g/t
WHDD25015								51.70	52.10	0.40	1.95	0.8	0.4m @ 2.0 g/t
WHDD25015								117.95	118.30	0.35	40.26	14.1	0.4m @ 40.3 g/t
WHDD25015								235.20	237.65	2.45	1.25	3.1	2.5m @ 1.2 g/t
WHDD25016	6674779	271692	462	65	-63	180	RCDD	164.00	165.00	1.00	1.16	1.2	1.0m @ 1.2 g/t
WHDD25016								172.00	173.00	1.00	1.72	1.7	1.0m @ 1.7 g/t
WHDD25017	6674777	271659	463	57	-58	180	RCDD	129.00	130.00	1.00	1.33	1.3	1.0m @ 1.3 g/t
WHDD25017W1	6674777	271659	463	57	-58	702	DDHW	197.11	197.63	0.52	6.52	3.4	0.5m @ 6.5 g/t
WHDD25017W1								204.47	206.40	1.93	3.47	6.7	1.9m @ 3.5 g/t
WHDD25017W1								232.60	233.20	0.60	1.52	0.9	0.6m @ 1.5 g/t
WHDD25017W1								241.00	241.40	0.40	1.00	0.4	0.4m @ 1.0 g/t
WHDD25017W1								296.82	297.35	0.53	1.88	1.0	0.5m @ 1.9 g/t
WHDD25017W1								311.50	312.00	0.50	1.02	0.5	0.5m @ 1.0 g/t
WHDD25017W1								317.10	317.60	0.50	1.15	0.6	0.5m @ 1.2 g/t
WHDD25017W1								326.25	329.00	2.75	1.95	5.4	2.8m @ 1.9 g/t
WHDD25017W1								403.77	404.43	0.66	4.98	3.3	0.7m @ 5.0 g/t
WHDD25017W1								487.33	488.00	0.67	1.59	1.1	0.7m @ 1.6 g/t
WHDD25017W1								511.00	512.00	1.00	1.16	1.2	1.0m @ 1.2 g/t
WHDD25018	6674205	271842	465	64	-50	84	RCDD	2.00	84.00				N.S.I.
WHDD25019	6674897	271842	459	66	-60	273	DDH	40.00	41.00	1.00	1.18	1.2	1.0m @ 1.2 g/t
WHDD25019								46.00	46.40	0.40	1.77	0.7	0.4m @ 1.8 g/t
WHDD25019								48.50	50.50	2.00	2.35	4.7	2.0m @ 2.3 g/t
WHDD25019								50.90	57.00	6.10	2.17	13.2	6.1m @ 2.2 g/t
WHDD25019								67.30	67.70	0.40	1.58	0.6	0.4m @ 1.6 g/t
WHDD25019								69.30	71.95	2.65	1.08	2.9	2.7m @ 1.1 g/t
WHDD25019								73.90	74.22	0.32	1.38	0.4	0.3m @ 1.4 g/t
WHDD25019								77.00	79.00	2.00	3.55	7.1	2.0m @ 3.6 g/t
WHDD25019								87.70	88.00	0.30	1.05	0.3	0.3m @ 1.1 g/t
WHDD25019								91.00	92.00	1.00	1.34	1.3	1.0m @ 1.3 g/t
WHDD25019								98.00	98.50	0.50	2.53	1.3	0.5m @ 2.5 g/t
WHDD25019								101.00	104.30	3.30	4.93	16.3	3.3m @ 4.9 g/t
WHDD25019								Incl 103.80	104.30	0.50	25.55	12.8	0.5m @ 25.6 g/t
WHDD25019								107.00	109.00	2.00	24.25	48.5	2.0m @ 24.3 g/t
WHDD25019								Incl 108.00	109.00	1.00	47.24	47.2	1.0m @ 47.2 g/t
WHDD25019								132.00	132.50	0.50	5.48	2.7	0.5m @ 5.5 g/t
WHDD25019								210.30	212.35	2.05	2.36	4.8	2.1m @ 2.4 g/t

For personal use only

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHDD25019								218.20	220.75	2.55	3.12	8.0	2.6m @ 3.1 g/t
WHDD25019								222.80	230.00	7.20	1.67	12.0	7.2m @ 1.7 g/t
WHDD25020	6674914	271815	459	64	-62	347	DDH	60.37	62.70	2.33	1.30	3.0	2.3m @ 1.3 g/t
WHDD25020								68.97	72.00	3.03	4.13	12.5	3.0m @ 4.1 g/t
WHDD25020								90.38	90.68	0.30	3.95	1.2	0.3m @ 4.0 g/t
WHDD25020								97.34	100.40	3.06	2.80	8.6	3.1m @ 2.8 g/t
WHDD25020								112.90	113.20	0.30	2.23	0.7	0.3m @ 2.2 g/t
WHDD25020								113.90	114.26	0.36	1.69	0.6	0.4m @ 1.7 g/t
WHDD25020								116.63	116.93	0.30	2.38	0.7	0.3m @ 2.4 g/t
WHDD25020								140.43	141.00	0.57	1.98	1.1	0.6m @ 2.0 g/t
WHDD25020								143.97	144.41	0.44	1.70	0.7	0.4m @ 1.7 g/t
WHDD25020								243.38	244.00	0.62	1.16	0.7	0.6m @ 1.2 g/t
WHDD25020								258.00	260.20	2.20	6.57	14.5	2.2m @ 6.6 g/t
WHDD25021	6674962	271769	458	70	-62	396	RCDD	103.00	107.00	4.00	2.31	9.3	4.0m @ 2.3 g/t
WHDD25021								110.00	115.00	5.00	1.19	6.0	5.0m @ 1.2 g/t
WHDD25021								153.32	153.65	0.33	1.39	0.5	0.3m @ 1.4 g/t
WHDD25021								163.56	164.09	0.53	1.53	0.8	0.5m @ 1.5 g/t
WHDD25021								269.00	269.31	0.31	3.12	1.0	0.3m @ 3.1 g/t
WHDD25021								313.92	315.35	1.43	6.98	10.0	1.4m @ 7.0 g/t
WHDD25021								Incl 314.30	314.84	0.54	10.17	5.5	0.5m @ 10.2 g/t
WHDD25021								336.22	340.14	3.92	6.79	26.6	3.9m @ 6.8 g/t
WHDD25021								Incl 337.00	338.46	1.46	14.99	21.9	1.5m @ 15.0 g/t
WHDD25022	6674910	271791	459	67	-66	396	RC	196.20	196.80	0.60	1.94	1.2	0.6m @ 1.9 g/t
WHDD25022								214.80	219.70	4.90	1.11	5.5	4.9m @ 1.1 g/t
WHDD25022								222.30	223.20	0.90	1.35	1.2	0.9m @ 1.4 g/t
WHDD25022								338.00	340.00	2.00	2.01	4.0	2.0m @ 2.0 g/t
WHDD25022								371.00	375.00	4.00	2.12	8.5	4.0m @ 2.1 g/t
WHDD25022								394.00	395.00	1.00	1.90	1.9	1.0m @ 1.9 g/t
WHDD25023	6674151	271883	465	67	-50	600	RCDD	35.00	39.00	4.00	1.75	7.0	4.0m @ 1.7 g/t
WHDD25023								194.68	195.00	0.32	1.34	0.4	0.3m @ 1.3 g/t
WHDD25023								203.85	204.25	0.40	2.34	0.9	0.4m @ 2.3 g/t
WHDD25023								225.50	225.90	0.40	1.03	0.4	0.4m @ 1.0 g/t
WHDD25023								260.00	262.00	2.00	2.13	4.3	2.0m @ 2.1 g/t
WHDD25023								347.00	348.00	1.00	1.76	1.8	1.0m @ 1.8 g/t
WHDD25023								485.55	486.00	0.45	1.31	0.6	0.5m @ 1.3 g/t
WHDD25024	6674188	272341	458	246	-53	174	RCDD	117.00	118.00	1.00	2.50	2.5	1.0m @ 2.5 g/t
WHDD25024								130.00	131.00	1.00	2.86	2.9	1.0m @ 2.9 g/t
WHDD25026	6674445	271861	462	253	-66	318	RCDD	45.08	45.50	0.42	1.28	0.5	0.4m @ 1.3 g/t
WHDD25026								49.91	50.21	0.30	3.20	1.0	0.3m @ 3.2 g/t
WHDD25026								67.55	68.93	1.38	2.23	3.1	1.4m @ 2.2 g/t
WHDD25026								170.00	170.60	0.60	1.03	0.6	0.6m @ 1.0 g/t
WHDD25026								177.40	177.80	0.40	11.20	4.5	0.4m @ 11.2 g/t
WHDD25026								187.71	189.93	2.22	56.29	125.0	2.2m @ 56.3 g/t
WHDD25026								Incl 188.09	189.93	1.84	67.65	124.5	1.8m @ 67.7 g/t
WHDD25026								192.86	193.26	0.40	3.53	1.4	0.4m @ 3.5 g/t
WHDD25026								204.21	204.58	0.37	1.08	0.4	0.4m @ 1.1 g/t
WHDD25027	6674624	271836	461	252	-62	268	DDH	26.50	27.00	0.50	1.37	0.7	0.5m @ 1.4 g/t
WHDD25027								27.50	28.00	0.50	1.00	0.5	0.5m @ 1.0 g/t
WHDD25027								108.00	108.30	0.30	4.21	1.3	0.3m @ 4.2 g/t
WHDD25027								149.81	150.45	0.64	4.30	2.8	0.6m @ 4.3 g/t
WHDD25027								159.23	163.00	3.77	1.18	4.4	3.8m @ 1.2 g/t
WHDD25028	6674521	271849	462	260	-61	305	DDH	88.00	89.00	1.00	2.57	2.6	1.0m @ 2.6 g/t
WHDD25028								103.70	104.50	0.80	1.46	1.2	0.8m @ 1.5 g/t
WHDD25028								109.80	111.10	1.30	5.36	7.0	1.3m @ 5.4 g/t
WHDD25028								230.25	230.75	0.50	1.41	0.7	0.5m @ 1.4 g/t
WHDD25028								241.00	241.50	0.50	1.14	0.6	0.5m @ 1.1 g/t
WHDD25028								269.50	271.50	2.00	9.52	19.0	2.0m @ 9.5 g/t
WHDD25028								Incl 270.00	270.50	0.50	19.78	9.9	0.5m @ 19.8 g/t
WHDD25050A	6674639	271802	461	63	-71	354	DDH	42.00	43.00	1.00	2.16	2.2	1.0m @ 2.2 g/t

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHDD25050A								68.00	68.82	0.82	3.14	2.6	0.8m @ 3.1 g/t
WHDD25050A								199.00	202.30	3.30	1.83	6.0	3.3m @ 1.8 g/t
WHDD25050A								289.30	291.10	1.80	1.87	3.4	1.8m @ 1.9 g/t
WHDD25050A								304.00	304.60	0.60	1.73	1.0	0.6m @ 1.7 g/t
WHDD25050A								308.15	308.75	0.60	1.16	0.7	0.6m @ 1.2 g/t
WHDD25050A								321.35	321.85	0.50	3.91	2.0	0.5m @ 3.9 g/t
WHDD25051	6674178	271742	468	58	-53	282	DDH	60.00	61.20	1.20	1.77	2.1	1.2m @ 1.8 g/t
WHDD25051								61.80	62.00	0.20	1.34	0.3	0.2m @ 1.3 g/t
WHDD25051								128.37	128.67	0.30	1.15	0.3	0.3m @ 1.2 g/t
WHDD25051								229.21	229.70	0.49	1.39	0.7	0.5m @ 1.4 g/t
WHDD25051								260.86	261.40	0.54	1.79	1.0	0.5m @ 1.8 g/t
WHDD25053	6674329	271886	463	229	-55	162	DDH	21.70	22.10	0.40	1.89	0.8	0.4m @ 1.9 g/t
WHDD25053								24.50	27.00	2.50	2.20	5.5	2.5m @ 2.2 g/t
WHDD25053								31.35	31.66	0.31	1.02	0.3	0.3m @ 1.0 g/t
WHDD25053								32.39	33.00	0.61	1.08	0.7	0.6m @ 1.1 g/t
WHDD25053								83.64	84.05	0.41	1.35	0.6	0.4m @ 1.4 g/t
WHDD25054	6674332	271890	463	224	-71	339	DDH	30.00	31.00	1.00	1.15	1.2	1.0m @ 1.2 g/t
WHDD25054								34.00	37.00	3.00	1.36	4.1	3.0m @ 1.4 g/t
WHDD25054								48.00	52.00	4.00	2.98	11.9	4.0m @ 3.0 g/t
WHDD25054								56.00	56.50	0.50	1.17	0.6	0.5m @ 1.2 g/t
WHDD25054								70.30	72.30	2.00	2.87	5.7	2.0m @ 2.9 g/t
WHDD25054								225.20	225.70	0.50	1.87	0.9	0.5m @ 1.9 g/t
WHDD25054								265.00	265.30	0.30	7.40	2.2	0.3m @ 7.4 g/t
WHDD25055	6674334	271890	463	263	-65	228	DDH	29.65	30.30	0.65	1.80	1.2	0.7m @ 1.8 g/t
WHDD25055								32.00	33.00	1.00	1.32	1.3	1.0m @ 1.3 g/t
WHDD25055								49.85	54.40	4.55	3.06	13.9	4.6m @ 3.1 g/t
WHDD25055								Incl 53.90	54.40	0.50	13.41	6.7	0.5m @ 13.4 g/t
WHDD25055								59.40	60.05	0.65	12.11	7.9	0.7m @ 12.1 g/t
WHDD25055								Incl 59.70	60.05	0.35	21.04	7.4	0.4m @ 21.0 g/t
WHDD25056A	6674333	271883	463	264	-50	335	DDH	26.80	29.00	2.20	36.91	81.2	2.2m @ 36.9 g/t
WHDD25056A								Incl 26.80	28.70	1.90	41.85	79.5	1.9m @ 41.9 g/t
WHDD25056A								29.80	30.70	0.90	10.11	9.1	0.9m @ 10.1 g/t
WHDD25056A								38.60	39.00	0.40	1.91	0.8	0.4m @ 1.9 g/t
WHDD25056A								43.22	45.27	2.05	2.02	4.1	2.1m @ 2.0 g/t
WHDD25056A								107.94	108.43	0.49	2.19	1.1	0.5m @ 2.2 g/t
WHDD25056A								273.73	274.87	1.14	3.39	3.9	1.1m @ 3.4 g/t
WHDD25058	6674717	271587	462	85	-60	630	DDH	81.00	82.00	1.00	1.03	1.0	1.0m @ 1.0 g/t
WHDD25058								110.90	111.30	0.40	1.07	0.4	0.4m @ 1.1 g/t
WHDD25058								115.00	122.00	7.00	27.45	192.1	7.0m @ 27.4 g/t
WHDD25058								Incl 119.00	121.00	2.00	87.52	175.0	2.0m @ 87.5 g/t
WHDD25058								125.00	126.00	1.00	1.43	1.4	1.0m @ 1.4 g/t
WHDD25058								129.00	133.00	4.00	1.27	5.1	4.0m @ 1.3 g/t
WHDD25058W1	6674716	271589	462	85	-60	498	DDH						N.S.I.
WHDD25064	0	0	0	81	-62	348	DDH	53.50	54.00	0.50	1.07	0.5	0.5m @ 1.1 g/t
WHDD25064								98.35	98.85	0.50	1.73	0.9	0.5m @ 1.7 g/t
WHDD25064								268.00	268.50	0.50	5.58	2.8	0.5m @ 5.6 g/t
WHDD25064								273.50	274.50	1.00	3.39	3.4	1.0m @ 3.4 g/t
WHDD25064								341.00	342.00	1.00	1.19	1.2	1.0m @ 1.2 g/t
WHDD25066	6674798	271509	456	81	-55	504	RC	0.00	60.00				N.S.I.
WHDD25069	6674744	271650	456	79	-67	390	RC	0.00	1.00	1.00	1.82	1.8	1.0m @ 1.8 g/t
WHDD25070	6674700	271704	461	84	-68	420	DDH	77.57	77.94	0.37	1.37	0.5	0.4m @ 1.4 g/t
WHDD25070								87.00	88.00	1.00	1.43	1.4	1.0m @ 1.4 g/t
WHDD25070								120.17	122.21	2.04	2.98	6.1	2.0m @ 3.0 g/t
WHDD25070								Incl 120.17	120.59	0.42	13.16	5.5	0.4m @ 13.2 g/t
WHDD25070								158.00	159.00	1.00	1.83	1.8	1.0m @ 1.8 g/t
WHDD25070								274.65	275.00	0.35	1.93	0.7	0.4m @ 1.9 g/t
WHDD25070								281.00	282.00	1.00	1.82	1.8	1.0m @ 1.8 g/t
WHDD25070								285.94	286.30	0.36	1.74	0.6	0.4m @ 1.7 g/t
WHDD25070								307.35	307.65	0.30	2.68	0.8	0.3m @ 2.7 g/t

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHDD25070								333.50	334.82	1.32	1.07	1.4	1.3m @ 1.1 g/t
WHDD25070								375.32	377.90	2.58	3.31	8.5	2.6m @ 3.3 g/t
WHDD25070								403.56	404.31	0.75	2.24	1.7	0.8m @ 2.2 g/t
WHDD25070								406.52	407.00	0.48	2.92	1.4	0.5m @ 2.9 g/t
WHDD25076	6674585	271708	462	52	-55	516	DDH	48.00	49.05	1.05	1.57	1.6	1.1m @ 1.6 g/t
WHDD25077	6674813	271565	460	83	-53	510	RCDD	0.00	59.50				N.S.I.
WHRC25001A	6674464	271871	462	74	-57	270	RC	141.00	142.00	1.00	3.21	3.2	1.0m @ 3.2 g/t
WHRC25001A								149.00	153.00	4.00	3.40	13.6	4.0m @ 3.4 g/t
WHRC25001A								186.00	188.00	2.00	1.54	3.1	2.0m @ 1.5 g/t
WHRC25001A								240.00	242.00	2.00	7.29	14.6	2.0m @ 7.3 g/t
WHRC25001A								Incl 240.00	241.00	1.00	10.38	10.4	1.0m @ 10.4 g/t
WHRC25002A	6674467	271865	462	65	-50	270	RC	34.00	38.00	4.00	1.14	4.6	4.0m @ 1.1 g/t
WHRC25002A								140.00	147.00	7.00	1.24	8.7	7.0m @ 1.2 g/t
WHRC25002A								153.00	154.00	1.00	2.03	2.0	1.0m @ 2.0 g/t
WHRC25009	6674831	272126	457	257	-67	162	RC	0.00	162.00				N.S.I.
WHRC25010A	6674909	272105	457	222	-61	300	RC	55.00	58.00	3.00	1.50	4.5	3.0m @ 1.5 g/t
WHRC25010A								87.00	90.00	3.00	2.42	7.3	3.0m @ 2.4 g/t
WHRC25010A								105.00	107.00	2.00	1.80	3.6	2.0m @ 1.8 g/t
WHRC25010A								241.00	242.00	1.00	2.86	2.9	1.0m @ 2.9 g/t
WHRC25010A								249.00	251.00	2.00	1.81	3.6	2.0m @ 1.8 g/t
WHRC25010A								254.00	259.00	5.00	3.56	17.8	5.0m @ 3.6 g/t
WHRC25011	6674747	271676	463	75	-56	360	RC	81.00	82.00	1.00	1.52	1.5	1.0m @ 1.5 g/t
WHRC25011								90.00	92.00	2.00	2.12	4.2	2.0m @ 2.1 g/t
WHRC25011								110.00	111.00	1.00	1.44	1.4	1.0m @ 1.4 g/t
WHRC25011								280.00	282.00	2.00	1.37	2.7	2.0m @ 1.4 g/t
WHRC25012	6675070	271794	458	73	-49	222	RC	115.00	117.00	2.00	1.40	2.8	2.0m @ 1.4 g/t
WHRC25012								124.00	125.00	1.00	1.47	1.5	1.0m @ 1.5 g/t
WHRC25012								127.00	128.00	1.00	1.59	1.6	1.0m @ 1.6 g/t
WHRC25013	6675054	271750	458	77	-50	324	RC	165.00	166.00	1.00	1.60	1.6	1.0m @ 1.6 g/t
WHRC25013								168.00	169.00	1.00	1.08	1.1	1.0m @ 1.1 g/t
WHRC25014A	6674997	272002	457	267	-51	258	RCDD	117.00	118.00	1.00	1.01	1.0	1.0m @ 1.0 g/t
WHRC25014A								123.00	124.00	1.00	5.22	5.2	1.0m @ 5.2 g/t
WHRC25014A								134.00	146.00	12.00	2.89	34.7	12.0m @ 2.9 g/t
WHRC25014A								Incl 140.00	141.00	1.00	11.41	11.4	1.0m @ 11.4 g/t
WHRC25015	6674722	271590	462	76	-56	156	RC	80.00	89.00	9.00	4.80	43.2	9.0m @ 4.8 g/t
WHRC25015								Incl 81.00	82.00	1.00	18.65	18.7	1.0m @ 18.7 g/t
WHRC25015								95.00	96.00	1.00	3.25	3.3	1.0m @ 3.3 g/t
WHRC25016	6674815	271578	461	76	-56	258	RC	207.00	208.00	1.00	1.29	1.3	1.0m @ 1.3 g/t
WHRC25016								212.00	213.00	1.00	1.01	1.0	1.0m @ 1.0 g/t
WHRC25017	6674902	271548	460	76	-51	252	RCDD	175.00	176.00	1.00	1.76	1.8	1.0m @ 1.8 g/t
WHRC25019	6675152	271731	457	79	-48	306	RC	81.00	82.00	1.00	1.61	1.6	1.0m @ 1.6 g/t
WHRC25019								85.00	86.00	1.00	1.70	1.7	1.0m @ 1.7 g/t
WHRC25019								178.00	179.00	1.00	1.63	1.6	1.0m @ 1.6 g/t
WHRC25019								183.00	186.00	3.00	1.94	5.8	3.0m @ 1.9 g/t
WHRC25019								198.00	199.00	1.00	2.20	2.2	1.0m @ 2.2 g/t
WHRC25019								253.00	254.00	1.00	3.71	3.7	1.0m @ 3.7 g/t
WHRC25020	6675153	271773	457	80	-49	222	RC	31.00	32.00	1.00	1.63	1.6	1.0m @ 1.6 g/t
WHRC25020								40.00	43.00	3.00	1.64	4.9	3.0m @ 1.6 g/t
WHRC25020								84.00	85.00	1.00	1.11	1.1	1.0m @ 1.1 g/t
WHRC25020								207.00	208.00	1.00	2.22	2.2	1.0m @ 2.2 g/t
WHRC25021	6675140	271679	458	74	-51	384	RC	92.00	93.00	1.00	1.36	1.4	1.0m @ 1.4 g/t
WHRC25021								111.00	112.00	1.00	3.54	3.5	1.0m @ 3.5 g/t
WHRC25021								290.00	291.00	1.00	1.54	1.5	1.0m @ 1.5 g/t
WHRC25022	6674467	271822	463	77	-52	384	RC	151.00	152.00	1.00	1.48	1.5	1.0m @ 1.5 g/t
WHRC25022								187.00	188.00	1.00	2.45	2.5	1.0m @ 2.5 g/t
WHRC25022								201.00	202.00	1.00	1.50	1.5	1.0m @ 1.5 g/t
WHRC25022								255.00	259.00	4.00	1.62	6.5	4.0m @ 1.6 g/t
WHRC25022								278.00	282.00	4.00	3.72	14.9	4.0m @ 3.7 g/t

For personal use only

Hole ID	MGA North	MGA East	RL	Azi	Dip	End Depth	Hole Type	Depth From	Depth To	Interval	Grade	Gram Metres	Au g/t interval
WHRC25022								290.00	291.00	1.00	1.00	1.0	1.0m @ 1.0 g/t
WHRC25023	6674922	272105	456	253	-59	126	RC	2.00	126.00				N.S.I.
WHRC25025	6674660	271619	463	73	-55	258	RC	84.00	85.00	1.00	1.96	2.0	1.0m @ 2.0 g/t
WHRC25025								88.00	89.00	1.00	1.02	1.0	1.0m @ 1.0 g/t
WHRC25025								96.00	100.00	4.00	2.73	10.9	4.0m @ 2.7 g/t
WHRC25025								104.00	108.00	4.00	1.62	6.5	4.0m @ 1.6 g/t
WHRC25026	6674805	271683	462	253	-58	180	RC	33.00	35.00	2.00	3.52	7.0	2.0m @ 3.5 g/t
WHRC25027	6674804	271508	460	78	-58	198	RC	1.00	192.00				N.S.I.
WHRC25028	6674650	271720	461	248	-58	146	RC	0.00	2.00	2.00	1.45	2.9	2.0m @ 1.5 g/t
WHRC25028								30.00	36.00	6.00	1.87	11.2	6.0m @ 1.9 g/t
WHRC25028								66.00	67.00	1.00	1.37	1.4	1.0m @ 1.4 g/t
WHRC25028								131.00	132.00	1.00	2.65	2.7	1.0m @ 2.7 g/t
WHRC25028								135.00	137.00	2.00	2.41	4.8	2.0m @ 2.4 g/t
WHRC25028								144.00	146.00	2.00	22.06	44.1	2.0m @ 22.1 g/t
WHRC25028								Incl 145.00	146.00	1.00	40.78	40.8	1.0m @ 40.8 g/t
WHRC25029	6674851	271761	459	68	-58	244	RC	169.00	170.00	1.00	2.29	2.3	1.0m @ 2.3 g/t
WHRC25029								205.00	207.00	2.00	2.36	4.7	2.0m @ 2.4 g/t
WHRC25029								211.00	212.00	1.00	2.28	2.3	1.0m @ 2.3 g/t
WHRC25029								225.00	230.00	5.00	3.38	16.9	5.0m @ 3.4 g/t
WHRC25030	6674446	271692	466	78	-50	120	RC	81.00	82.00	1.00	1.77	1.8	1.0m @ 1.8 g/t
WHRC25030								102.00	105.00	3.00	8.21	24.6	3.0m @ 8.2 g/t
WHRC25030								Incl 104.00	105.00	1.00	11.90	11.9	1.0m @ 11.9 g/t
WHRC25031	6674440	271820	463	246	-52	126	RC	69.00	72.00	3.00	3.80	11.4	3.0m @ 3.8 g/t
WHRC25031								107.00	108.00	1.00	1.18	1.2	1.0m @ 1.2 g/t
WHRC25032	6674441	271860	462	251	-51	180	RC	102.00	103.00	1.00	3.01	3.0	1.0m @ 3.0 g/t
WHRC25033	6674502	271803	463	231	-68	204	RC	122.00	123.00	1.00	2.05	2.1	1.0m @ 2.1 g/t
WHRC25033								149.00	154.00	5.00	2.44	12.2	5.0m @ 2.4 g/t
WHRC25033								159.00	161.00	2.00	1.45	2.9	2.0m @ 1.5 g/t
WHRC25034	6674336	271731	467	59	-50	204	RC	144.00	145.00	1.00	1.06	1.1	1.0m @ 1.1 g/t
WHRC25034								151.00	156.00	5.00	13.22	66.1	5.0m @ 13.2 g/t
WHRC25034								Incl 152.00	154.00	2.00	24.56	49.1	2.0m @ 24.6 g/t
WHRC25034								181.00	186.00	5.00	1.57	7.9	5.0m @ 1.6 g/t
WHRC25035	6674516	271850	462	263	-54	240	RC	143.00	144.00	1.00	1.57	1.6	1.0m @ 1.6 g/t
WHRC25035								158.00	163.00	5.00	8.34	41.7	5.0m @ 8.3 g/t
WHRC25035								Incl 159.00	160.00	1.00	29.62	29.6	1.0m @ 29.6 g/t
WHRC25035								168.00	169.00	1.00	1.46	1.5	1.0m @ 1.5 g/t
WHRC25035								198.00	204.00	6.00	4.65	27.9	6.0m @ 4.7 g/t
WHRC25036	6674643	271715	461	214	-67	222	RC	25.00	32.00	7.00	2.30	16.1	7.0m @ 2.3 g/t
WHRC25036								135.00	136.00	1.00	1.04	1.0	1.0m @ 1.0 g/t
WHRC25036								141.00	144.00	3.00	2.00	6.0	3.0m @ 2.0 g/t
WHRC25037	6674460	271860	462	269	-65	276	RC	111.00	115.00	4.00	4.15	16.6	4.0m @ 4.2 g/t
WHRC25037								Incl 111.00	112.00	1.00	10.30	10.3	1.0m @ 10.3 g/t
WHRC25037								121.00	126.00	5.00	1.14	5.7	5.0m @ 1.1 g/t
WHRC25037								248.00	252.00	4.00	1.12	4.5	4.0m @ 1.1 g/t
WHRC25037								258.00	263.00	5.00	1.85	9.2	5.0m @ 1.8 g/t
WHRC25037								270.00	273.00	3.00	1.51	4.5	3.0m @ 1.5 g/t
WHRC25038A	6674645	271823	461	229	-51	293	RC	84.00	87.00	3.00	2.77	8.3	3.0m @ 2.8 g/t
WHRC25038A								199.00	200.00	1.00	3.21	3.2	1.0m @ 3.2 g/t
WHRC25038A								247.00	256.00	9.00	3.05	27.4	9.0m @ 3.0 g/t
WHRC25038A								Incl 251.00	252.00	1.00	15.22	15.2	1.0m @ 15.2 g/t
WHRC25038A								271.00	272.00	1.00	1.41	1.4	1.0m @ 1.4 g/t
WHRC25039	6674635	271798	461	265	-54	306	RC	14.00	15.00	1.00	2.81	2.8	1.0m @ 2.8 g/t
WHRC25039								89.00	90.00	1.00	1.07	1.1	1.0m @ 1.1 g/t

Appendix 2 - JORC CODE, 2012 EDITION – TABLE 1 REPORT

Section 1 Sampling Techniques and Data - Waihi

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Aberfoyle/Bardoc - RC and RAB sampling methods generally undocumented however usually collected as 1m samples and composited to 2 to 4m samples when outside mineralised zones. Pre-1990 RAB holes generally sampled on 2-3m intervals and composited to 6m. Samples sent to accredited laboratories for drying, crushing and pulverising. Usually 50g fire assay for RC samples and aqua regia or 50g fire assay for RAB samples. Ashton – RAB drilling sampled at 2m intervals and composited to 6m by methods undocumented. Samples sent to laboratories for drying, crushing and pulverising. A sub sample taken for analysis by fire assay or aqua regia. Billiton - RAB and RC 1m samples with RAB being composited to 2m. Diamond core of NQ size. Assay sample techniques undocumented Consolidated Exploration (ConsEx) – RAB 1m samples usually dispatched as 3m composites but occasional 1m. RC a mix of 1m sampling or 2m composites. Lady Eileen programs RC drilling made use of roller, Blade or hammer with crossover sub all nominally 5.5 inch diameter to obtain 2-3kg sample. Composite 2m samples were hammer milled, mixed and split to 200g then pulverised. 1m samples single stage mix and ground. Sub –samples taken for aqua regia and fire assay. Cons Gold (Consolidated Gold) – RC 1m samples where alteration is visible. Remainder of hole composited to 4m. 2 to 3 kg samples, including core, sent to laboratory for crushing, pulverising and 50g Fire Assay. Croesus – RC 1m samples collected under cyclone. 5m comps assayed for gold by 50g Fire assay. NQ diamond except for geotechnical purposes (HQ triple). Delta - RAB 5 metre composites (Aqua-regia with 50g charge) with 1m re-samples (Fire assay). DPPL (Davyhurst Project Pty. Ltd.)- 4.25 to 5.5 inch RC drilling with face hammer. Potential mineralisation sampled and assayed on a metre basis otherwise 4m composites. Samples jaw crushed and pulverised before taking a 50gm charge for fire assay. Hill Minerals - 1m and 4m concurrent sampling of RC drilling. Samples analysed by Genalysis by AAS following mixed acid digestion. Intrepid - RC drilling with 1m samples in mineralised zones and varying composite lengths up to 5m elsewhere. Analysis by AAS, assumed to be Aqua regia. Unknown weight of charge. Diamond core samples predominately 0.5m of half core. Monarch - Riffle split RC samples were collected at 1m intervals and despatched for analysis by pulverisation and fire assay. Selected RAB 2m-4m scoop composites and 1m intervals were despatched for analysis, usually by aqua regia. Not all intervals were sampled. All samples dried, crushed, milled and split before taking a sub sample for analysis Kersey - RC drilling 1m samples passed through riffle splitter and composited. Resulting composite was re-split on site for a 1-2kg sample. RAB hole sample cones quartered by trowel and composited over 4m. Wet samples were grab sampled. 30g charge for AAS. Normandy - RAB 1m sampling with 4m composites dispatched for assay using 50g Aqua-regia followed by graphite furnace AAS. Pancontinental – RAB sampling methods undocumented Perilya – RAB and AC sampling methods undocumented

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Texas Gulf – Sampling methods undocumented West Coast Holdings – RAB drilling 2m intervals were passed through riffle splitter for approximately 1kg sample. Industry standard analysis completed by SGS labs, fire assay and aqua regia. WMC - RC Sampling on 1m basis, assayed by aqua regia method, unknown laboratory. Ora Banda Mining Limited (OBM) - RC samples collected from the levelled cone splitter directly off rig into calico bags. Splitter maintained on level site to ensure sample representivity. 1m samples are dried, crushed, pulverised and a 50g charge is analysed by Fire Assay. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological and/or mineralisation boundaries, or sampled to 1m. Samples are crushed, pulverized and a 40g or 50g charge is analysed by Fire Assay. For all drilling since 2022, - 1m RC samples using face sampling hammer with samples collected under cone splitter. 4m composite RC samples were taken outside of mineralised zone, collected using a scoop from the sample piles at the drill site. 1m cone spilt samples were taken within the expected mineralised zones. Core sample intervals selected by geologist and defined by geological boundaries. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay. From 7 March 2025 samples were analysed by 500g photon analysis by SGS.
<i>Drilling techniques</i>	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> Aberfoyle/Bardoc - RC, RAB and Diamond details undocumented however NQ diamond known to be used. RC drilling between 4 and 6 inch diameter with use of face sampling hammer known from 1992 onwards. Ashton RAB drilling. Details undocumented Billiton RAB and RC (Conventional hammer) diameter undocumented with use of roller/blade and hammer. NQ Diamond core ConSEX - RC drilling with roller, blade or hammer with crossover sub. Cons Gold – NQ diamond and HQ (triple) for geotechnical holes. RAB and RC. 4.25 to 5.5 inch RC drilling with stabilisers and face sampling hammers. Croesus – Diamond holes NQ2 diameter. RC and RAB details undocumented but assumed to be industry standard at the time being 5.5 inch face sampling hammers and 4 inch diameter respectively. Delta – RAB - details undocumented DPPL - NQ core and HQ for geotechnical holes. RC drilling with stabilisers and face sampling hammers. Hill Minerals - RC - details undocumented. Intrepid – RC drilling and diamond/diamond tails. Size and types undocumented. Monarch - RC samples were collected by Kennedy Drilling using a 4 inch blade and 5.5 inch face sampling hammer. RAB drill details undocumented. Kersey - Details of RC and RAB drilling details undocumented but assumed to be industry standard at the time being 5.5 inch face sampling hammers and 4 inch diameter respectively. Normandy – RAB with both hammer and blade using Schramm 42. Pancontinental – Details of RAB drilling undocumented. Perilya – Details of RAB and Aircore drilling undocumented. Texas Gulf – Conventional RC hammer, diameter undocumented West Coast Holdings – 4 inch blade, roller and open hole hammer used for RAB drilling. WMC – Conventional RC hammer, diameter unknown and RAB drilling details undocumented. OBM - HQ3 coring to approx. 40m, then NQ2 to BOH. All core oriented by reflex instrument. All core drilled from 2022 was orientated by Axis instrument. RC drilled with face sampling hammer, 5.5" – 5.625" diameter
<i>Drill sample recovery</i>	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results 	<ul style="list-style-type: none"> RC drill recoveries were not recorded by Aberfoyle/Bardoc, Annaconda, Ashton, Consolidated Gold, Croesus, Delta, DPPL, OBM, Hill Minerals, Intrepid, Monarch, Mt Kersey, Normandy, Pancontinental, Texas Gulf, West coast holdings or WMC

Criteria	JORC Code explanation	Commentary
	<p><i>assessed.</i></p> <ul style="list-style-type: none"> • <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> • <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> • Billiton – Recoveries for some RC drilling programs were examined in 1986 but raw data not available. • ConsEx – 2 metre plastic pipe inserted into cyclone vent. Cyclone washed at the end of each hole or if water injected. Sample weights measured for Homeward bound (no bias observed) and Lady Eileen prospects (generally no bias observed aside from two high grade samples perceived to be due to coarse grained gold) • Perilya - Method undocumented but quality, moisture, sample quality and % recovery logged • OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries are approximated based on the size of the bulk sample and recorded in drill log tables. • It is unknown whether a relationship exists between sample recovery and grade or whether sample bias may have occurred.
Logging	<ul style="list-style-type: none"> • <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> • <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> • <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> • Aberfoyle/Bardoc - Qualitative: lithology, colour, grainsize, structures, alteration. Quantitative: Quartz mineralisation • Ashton - Qualitative: colour, lithology, alteration, oxidation. Quantitative: Quartz • Billiton - Qualitative: lithology, alteration for Diamond and RAB. RC logging details unavailable • Consolidated Exploration- Qualitative: lithology, colour, alteration, grainsize (at times). Quantitative: Quartz mineralisation at times • Consolidated Gold/ DPPL - Qualitative: lithology , colour, oxidation, alteration, with grainsize, texture and structure often recorded in diamond drilling. Quantitative: Quartz veining. Core photographed. Logging entered directly into HPLX200 data loggers. • Croesus - Most holes photographed, geologically logged and geotechnical and magnetic susceptibility measurements were taken. Qualitative: Lithology, colour, grainsize, alteration, oxidation, texture, structures, regolith. Quantitative: Quartz veining • Delta - Qualitative: Lithology, colour, alteration, oxidation, structure, minerals/sulphides. Quantitative: Quartz veining • Hill Minerals - Qualitative: lithology, colour. Quantitative: Quartz veining • Intrepid – No detailed logging kept for RC drilling. Diamond logging: Colour, lithology, oxidation, texture, alteration, mineralisation, grain size, structure • Monarch - Qualitative: lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide percentages. Core photographed • Mt Kersey - Qualitative: lithology, colour, alteration, oxidation, fabric, hardness, BOCO, grainsize. Quantitative: minerals, quartz • Normandy – Qualitative: lithology, regolith, colour, mineralogy, oxidation • Pancontinental – logging details undocumented • Perilya - Qualitative: lithology, colour, oxidation, mineralogy, grain size, alteration, schistosity, texture, regolith at times. Quantitative: recovery, veining • Texas Gulf - Qualitative: lithology, oxidation • West coast holdings - Qualitative: colour, oxidation, lithology, alteration. Quantitative: Quartz, Iron • WMC RC: Qualitative: Lithology, Colour, Grainsize, Alteration and oxidation • Some logging detail was lost during translation from one logging system to another. This has been rectified by referring back to original logs. • OBM - Field logging was conducted using Geobank MobileTM software on Panasonic Toughbook CF-31 ruggedized laptop computers. Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Core photographed wet and dry. Magnetic susceptibility recorded for core holes. Bulk density measurements taken at regular intervals for core holes (determined by Archimedes Principle).

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> Ashton - Compositing and re splitting methods undocumented. Classic Laboratories methods undocumented. Genalysis: single stage mix and grind. Pulp duplicates taken at the pulverising stage and selective repeats conducted at the discretion of the laboratory. Billiton – Sub-sampling methods undocumented. 1m repeat fire assays of 2m RAB comps at Lady Eileen were done. Duplicates for RAB and RC inserted however frequency unknown. Aberfoyle/Bardoc – Diamond core sawn in half. RC and RAB samples with variable compositing lengths and often 1m samples. Method undocumented before 1992, but thereafter riffle split to approximately 2kg samples. RC and RAB was usually prepared by single stage mixer and grind. Diamond, when known was jaw crushed and ring milled for a 50g charge fire assay. Sample duplicate studies undertaken at times, usually with good correlation ConsEx – RC holes sampled on 1m basis and riffle split to 1-2kg samples for 3m composites or 2-3kg samples for 2m composites. Composite 2m samples were hammer milled, mixed and split to 200g then pulverised to 200#. 1m samples single stage mix and ground to 200#. Consgold - RC Samples collected via cyclone at 1m intervals and passed through 3 stage riffle splitter. A 2-3kg fraction was calico bagged for analysis, the residue collected in plastic bags and stored on site. Potentially mineralised zones were sampled at 1m intervals, the remainder composited to 4m by unknown method. Composite samples returning >0.19g/t were re submitted at 1m intervals. Samples underwent mixermill preparation (2-3kg) by Amdel Laboratories. RAB 4m composite samples using PVC spear. Samples returning >0.19g/t were re submitted at 1m intervals. Diamond drill samples were sawn into half core. One half was jaw crushed, then pulverised using a labtechnics mill. A quartz blank was pulverised between each sample to avoid contamination. Field duplicates from residues at 1 in 20 frequency submitted. Croesus RC/RAB - 1m samples collected under cyclone. 5m comps, spear sampled with 50mm PVC pipe. Wet RC drill samples were thoroughly mixed in the sample retention bag and scoop sampled to form a composite sample. 3-5kg five metre composite analytical samples, returning values greater than 0.1g/t gold, were riffle split at 1m intervals, were samples where dry, and grab sampled where wet. RAB 1m resampling method undocumented. Samples were dried, crushed and split to obtain a sample less than 3.5kg, and then fine pulverised prior to a 50gm charge being collected and analysed. Every 20th sample was duplicated in the field and submitted for analysis. Diamond tails were cut to half core and sampled based on geological boundaries and identified prospective zones. Samples size varied from 0.2m to 1m. Core samples were sent to Ultratrace Laboratories of Perth Delta – RAB: 5m composite samples were total mixer mill prepped and a 50g charge taken for aqua regia analysis. Individual 1m samples re-submitted as if composite result >0.1ppm Au. DPPL – RC 3 stage riffle split then 4m compositing. RAB 4m composites sampled using PVC spear. Both RC and RAB composites returning >0.19ppm Au re-submitted as 1m samples. Field duplicates from residues at 1 in 20 frequency submitted. Hill Minerals – RC composited by undocumented methods to 4m then 1m samples re-submitted if 4m composite was above 0.25 g/t. Intrepid – RC methods undocumented. Typically a mixture of 1m samples and 5m composites (but range from 2m to 7m). Diamond - Core cut in half in lode mineralisation or expected projections of such. 40 replicate samples of core were fire assayed with no significant differences. Monarch - RC samples were collected at 1m intervals. Composite sampling methods undocumented. Samples were riffle split and prepared with single stage mix and grinding. ALS procedure: The samples were sort and dried where necessary. The samples were split via a riffle splitter to <3 kg and round in a ring mill pulverized using a standard low chrome steel ring set to >85% passing 75 micron. If sample was >3 kg it was split prior to pulverising and the remainder retained or discarded. Then a 250g representative split sample was taken and the remaining residue sample stored. Ultra Trace procedures: The samples were sorted and dried where necessary. 2.5 – 3kg sample was pulverized using a

Criteria	JORC Code explanation	Commentary
		<p>vibrating disc then split into a 200 -300g charge and the residue sample stored. Duplicates are taken 1 in 25 when taking 1m splits straight from the rig. When doing re-splits on composite results 1 in 20 duplicate with occasional triplicates (about 1 every 50 re-splits)</p> <ul style="list-style-type: none"> • Mt Kersey - RC drilling 1m samples passed through riffle splitter and composited. Resulting composite was re-split on site for a 1-2kg sample. Wet samples were grab sampled. RAB - Cones quartered by trowel and composited over 4m. Wet samples were grab sampled. Samples oven dried the pulverised to nominal 75 microns, 400-500g is then split and residue stored. • Normandy - RAB, 4m composites, sample method undocumented. Assays analysed for low level gold (ppb) • Pancontinental - No methods or measures known • Perilya - No methods or measures known • Texas Gulf - Whole metres placed in plastic sacks and were then split to approximately 500g samples. Split method undocumented. Samples crushed, disc pulverized then split to 250g. Petrographic study completed by Mintek Services. • West coast holdings - 2m intervals collected through a cyclone and passed through riffle splitter for approximately 1kg sample. • WMC - RC Sampling on 1m basis, methods undocumented. Assay by aqua regia method, unknown laboratory. • OBM - RC samples were submitted either as individual samples taken from the onsite cone splitter or as four metres composite samples taken by metal scoop. Core sample intervals selected by geologist and defined by geological boundaries, cut by saw and submitted as half core. All samples were dispatched to the SGS laboratory at the Davyhurst site for pulverising. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO_FAP50V10). Field duplicates, blanks and standards were submitted for QAQC analysis. From 10 March 2025 samples were analysed by 500g photon analysis by SGS. Field duplicates, blanks and standards were submitted for QAQC analysis.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<ul style="list-style-type: none"> • Aberfoyle/Bardoc – multiple analysis methods at Sheen, Amdel, Genalysis, Classic, Comlabs and Australian Laboratories. Usually 50g fire assay for RC and aqua regia or 50g fire assay for RAB. Aberfoyle conducted assay QAQC studies periodically, usually on a deposit basis, however these were not well documented. • Ashton - Fire assay and AAS at Classic Labs and Genalysis. Genalysis involved single stage mix and grind. Genalysis utilised internal FA stds. • Billiton - Laboratory and methods undocumented. Standards for RAB and RC inserted however frequency unknown • ConsEx - Genalysis composite 2m samples were hammer milled, mixed and split to 200g then pulverised to 200#. 1m samples single stage mix and ground to 200#. Phase 1 standard wet chemical multi acid digestion and AAS. Second phase were also pre-roasted. Results of >1g/t re-assayed by fire assay. Check assays at umpire lab (Classic labs) for Lady Eileen drilling - significant differences in high grade samples, otherwise considered good. • Consolidated Gold/ DPPL – RC and RAB - Mixer mill prep with fire assay 50g charge at AMDEL, Minilab or Analabs Laboratories in Kalgoorlie. Half core was diamond sawn, jaw crushed, milled using LABTECHNICS mill at AMDEL for 50g charge by fire assay. Gannet standards submitted to monitor lab accuracy for infill resource drilling. Pulp umpire analysis was done but frequency unknown (1995). Screen fire assays of selected high grade samples. Quartz blanks submitted between each diamond core sample. • Croesus samples analysed for Au by Fire Assay/ICPOES by Ultratrace in Perth. Gannet standards and blank samples made by Croesus were submitted with split sample submissions. QAQC analysis of repeats was analysed by Croesus Mining NL. for their drilling completed during 2000. • Delta - Analysis at Genalysis, Kalgoorlie. Total mixer mill prep, Aqua-regia with 50g charge, 0.01ppm detection limit. 1m re-samples: as above but with 50g charge fire assay. Standards submitted although frequency and certification undocumented. • Hill Minerals - AAS following mixed acid digestion at Genalysis, Perth.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Intrepid - Samples assayed by atomic absorption (Aqua regia?) at Kalgoorlie Assay Labs. Monarch - ALS Laboratory procedures: A 50g sample charge was taken from the 250g representative sample, fused with a lead concentrate using the laboratory digestion method FA-Fusion, then digested and analysed by Atomic Absorption Spectroscopy (Au-AA26) against matrix matched standards. Ultra Trace procedures: A 40g sample charge is taken and analysed for gold (Au) by lead collection fire assay. Mt Kersey - RAB and RC samples: 30g charge with 0.02 ppm DL by qua regia with a D.I.B.K and Ortho Phosphoric acid extraction. AAS at AAL group. Normandy - Amdel Laboratories, Perth using 50g Aqua-regia followed by graphite furnace AAS. Also by IC2E - digesting 1g subsample of pulp in aqua regia, bulked with water, then passed through an ICP-OES. Duplicate samples were sent to a different, undocumented lab. Pancontinental - Method undocumented. 2 RC holes were re-split and fire assayed and some screen fire assayed Perilya - 10ppb Au detection limit at Analabs Perth by Method P649, 50g Aqua Regia, DIBK, Carbon Rod (10ppb D.L.) Texas Gulf - Samples crushed, disc pulverized then split to 250g. Bromine digest followed by ketone extraction at Pilbara Labs, Kalgoorlie. Noted as not suitable in presence of sulphides. Values greater than 0.8g/t re-assayed by fire assay. West coast holdings Assayed by both AAS (Aqua Regia) and Fire Assay at SGS labs WMC drill samples were assayed by aqua regia method, unknown laboratory. Fire assay is considered a total technique and aqua regia is considered a partial technique. Historic operators assayed by "AAS". This is assumed to be aqua regia. OBM – Up to 2022 Samples sent to Nagrom in Perth. The samples have been analysed by Firing a 50gm portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:25 for standards and 1:25 for blanks. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. Duplicate samples are submitted for RC holes only at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. For all drilling from 2022, All samples were sent to the accredited onsite SGS laboratory at Davyhurst for sample preparation. Prepared samples were then despatched to SGS laboratories in Kalgoorlie for a 50g charge Fire Assay (GO_FAP50V10) with MP-AES finish or 500g Photon analysis. Commercially prepared standard samples and blanks are inserted in the sample stream at an average rate of 1:25. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 20 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:12. Duplicates were submitted at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> OBM geologists have viewed selected diamond holes from certain deposits, including Waihi and verified the location of mineralised intervals. Twinned holes were occasionally used by previous operators but this practice was not common. Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory OBM - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) using Geobank Mobile. Data is exported onto company servers and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Data entry, verification and storage protocols for remaining operators is unknown. No adjustments have been made to assay data

Criteria	JORC Code explanation	Commentary
<i>Location of data points</i>	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> RAB and AC holes are/were not routinely collar surveyed or downhole surveyed due to their limited use in resource estimation. To this end, discussion of RAB and AC drilling is omitted from this section. RC/GC (grade control) and shallow RC holes are/were not routinely downhole surveyed due to their shallow nature reducing the chance of significant deviation. Barren exploration RC holes not routinely downhole surveyed or collar surveyed. DD holes routinely collar and downhole surveyed by most operators or have been re-surveyed by subsequent operators. The influence of magnetic rocks on the azimuths of magnetic down hole surveys is minor. Early holes surveyed in AMG zone 51 and converted to MGA using Geobank and or Datashed data management software. Aberfoyle/Bardoc (RC, RC/DD, DD) Various local grids which have undergone 2 point transformations. RC collars and downhole surveys known to be surveyed at times, presumably when anomalous gold intersected. DD holes downhole surveyed by Eastman single shot (25m interval average) or Multishot (5m interval average) Billiton (RC, DD) Local Lights of Israel grid undergone 2 point transformation. Downhole surveys when performed were by undocumented method with a 25m interval average ConsEx (RC). Drilled on local grids (possibly truncated AMG84, zone 51). Holes appear to have been surveyed using AMG, zone 51 grid at a later stage. Numerous vertical holes not down-hole surveyed. Downhole surveys when performed were by undocumented method with a 9m interval average Cons Gold/DPPL (RC, DD) Local grids and AMG84 zone 51 used. RC and DD Collars surveyed by licensed surveyors to respective grids. Holes of all types routinely collar surveyed whilst RC resource holes routinely downhole surveyed by various methods including gyro and EMS with average intervals ranging between 10-25m. Croesus (RC, DD) Various local grids and AMG zone 51. RC, DD holes routinely collar surveyed and downhole surveyed using Electronic Multishot (EMS), GRYO, Eastman single shot or combination thereof at 10-15m average interval. Hills (RC) Local grid used. Monarch(RC) -Various local grids and MGA. Holes routinely collar surveyed and downhole surveyed using EMS, or GYRO at 5m interval average or Eastman single shot (28m interval average). Mt Kersey(RC) Truncated AMG grid used Prospector (DD). Unknown Texasgulf (RC) Local grid: MC30/1317 based on 351.5°baseline, parallel to tenement boundary. MC30/1327 based on 355.5° WMC (RC, DD) - Digital data provided by ConsGold. (Wamex report a50226). Downhole surveys when performed were by undocumented method with a 16m interval average OBM (RC, DD) MGA94, zone 51. Drill hole collar positions were picked up by a contract surveyor using RTKGPS subsequent to drilling. Drill-hole, downhole surveys are recorded every 30m using a reflex digital downhole camera. Some RC holes not surveyed if holes short and/or drilling an early stage exploration project. For all drilling from 2022 Drill hole collar positions were picked up by an OBM mining surveyor using RTKGPS subsequent to drilling. All downhole surveys were taken every 10m by Gyro.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been</i> 	<ul style="list-style-type: none"> Data spacing highly variable from wide spaced ~800m x ~80m regional RAB to close spaced resource drilling ~10m x ~10m and grade control drilling at ~5m x ~5m. Drill hole spacing is adequate to establish geological and grade continuity for the deposits that currently have resources reported. Drill intercepts are length weighted, 1g/t lower cut-off, not top-cut, maximum 2m internal dilution

Criteria	JORC Code explanation	Commentary
	<i>applied.</i>	
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> For most of the deposits in and around Davyhurst the prevailing geological and structural trend is approx. North-South. Once the orientation of mineralisation was established drilling was mostly oriented at 90° to the strike of mineralisation. Drillhole inclinations range from -50 to -75°. It is unknown whether the orientation of sampling achieves unbiased sampling, though it is considered unlikely OBM – RC and DD drilling is predominately inclined at between -50 and -60 degrees towards the East. Drilling inclined to the West is only done when lodes are deemed to be vertical or if local landforms prevent access.
<i>Sample security</i>	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> Undocumented for most operators. ConsGold – RC residues stored onsite Monarch - Pre-numbered sample bags were put into numbered plastic bags. These numbers were written on the submission forms which were checked by the geologist. Plastic bags were then securely cable tied and placed in a secure location. Samples were then picked up by the Lab in Kalgoorlie or delivered to Perth via courier. A work order conformation was emailed to Monarch personnel for each sample submission once samples were received by the Laboratory. West coast holdings - Residues stored on site but security measures undocumented Texas Holdings - Residues stored on site but security measures undocumented OBM – Samples are bagged into cable-tied polyweave bags and stored in bulk bags in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> OBM has reviewed historic digital data and compared it to hardcopy and digital (wamex) records. No audits of sampling techniques have been done.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary												
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> All tenure pertaining to this report is listed below <table border="1" data-bbox="920 420 2055 634"> <thead> <tr> <th data-bbox="920 420 1066 452">TENEMENT</th><th data-bbox="1066 420 1358 452">HOLDER</th><th data-bbox="1358 420 1493 452">Expiry Date</th><th data-bbox="1493 420 2055 452">AGREEMENTS</th></tr> </thead> <tbody> <tr> <td data-bbox="920 515 1066 547">M30/255</td><td data-bbox="1066 515 1358 547">CARNEGIE GOLD PTY LTD.</td><td data-bbox="1358 515 1493 547">10/01/2038</td><td data-bbox="1493 515 2055 547">Farm-in and JV with Davyston Exploration Pty Ltd for all minerals other than gold and its byproducts (portion of tenement only)</td></tr> <tr> <td></td><td></td><td></td><td data-bbox="1493 563 2055 610">Davyston Exploration Pty Ltd holds a consent caveat and a mortgage</td></tr> </tbody> </table> <ul style="list-style-type: none"> Carnegie Gold PTY LTD is a wholly owned subsidiary of OBM. There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area. 	TENEMENT	HOLDER	Expiry Date	AGREEMENTS	M30/255	CARNEGIE GOLD PTY LTD.	10/01/2038	Farm-in and JV with Davyston Exploration Pty Ltd for all minerals other than gold and its byproducts (portion of tenement only)				Davyston Exploration Pty Ltd holds a consent caveat and a mortgage
TENEMENT	HOLDER	Expiry Date	AGREEMENTS											
M30/255	CARNEGIE GOLD PTY LTD.	10/01/2038	Farm-in and JV with Davyston Exploration Pty Ltd for all minerals other than gold and its byproducts (portion of tenement only)											
			Davyston Exploration Pty Ltd holds a consent caveat and a mortgage											
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Modern exploration commenced at the Davyhurst sites in the 1980s. Three companies, Jones Mining, Western Mining Corporation (WMC) and Hill Minerals pegged claims surrounding the historic Davyhurst sites. In 1986, WMC established a 300,000 tonne per annum carbon-in-pulp (CIP) treatment plant at Davyhurst and commenced open pit mining at Golden Eagle and Waihi. In 1988 WMC's and Jones Mining's assets were acquired by Consolidated Exploration Ltd. Consolidated Exploration then developed open cut mines at Great Ophir, Lady Eileen, Lady Eileen South and Homeward Bound. At about the same time Aberfoyle Resources / Hill Minerals commenced open-pit mining at the Lights of Israel Deposit and trucked the ore 80 km to the Bardoc processing plant. During 1995/96 Consolidated Exploration Ltd. restructured as Consolidated Gold NL (CGNL) and commenced tenement acquisition and exploration activities in the area. This resulted in the consolidation of holdings in the district. In December 1996 CGNL acquired the assets of Aberfoyle Resources in the area, including the Bardoc Processing plant, in an equity transaction. The Bardoc plant was relocated to the Davyhurst site and upgraded to 1.2 Mt/y. In October 1998 Davyhurst Project Pty Ltd (DPPL), a subsidiary of NM Rothschild and Sons (Australia), acquired the project. In 2000, Croesus Mining NL ("Croesus") acquired the Davyhurst Project and continued operations until 2005. In January 2006, Monarch Gold Mining Company Limited (Monarch) acquired Davyhurst and operated the project until 2008. Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex reports and hard copy records are considered acceptable and to industry standards of the time. There is sufficient understanding of drilling, sampling and assay methodologies for the majority of drilling in the Davyhurst area. The company is confident that previous operators completed work to standards considered acceptable for the time. As part of each resource upgrade, OBM will commit to additional drilling to confirm the style, widths and tenor of mineralisation at each deposit. 												
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> Regional Geology - Rocks of the Coolgardie domain (Kalgoorlie Terrane) are prevalent in the Davyhurst area. Rocks of the Coolgardie Domain are not well exposed at Davyhurst and the distribution of rock types suggests that it is mainly represented by the upper part of the stratigraphic sequence, namely basalts, felsic volcanics and sedimentary rocks. The abundant ultramafic-mafic sills of the Ora Banda Domain do not occur in the Coolgardie Domain. Granitoids in the Davyhurst Project area can be classified by magnetic signature into three types: low, medium and high magnetic response. 												

Criteria	JORC Code explanation	Commentary
		<p>Binns et al. (1976) distinguished 'static style' and 'dynamic style' regional metamorphism. Static style areas generally occupy the central, low-strain part of the greenstone regions away from the granitoids and typically have lower metamorphic grades (prehnite–pumpellyite to upper greenschist facies). Strain is concentrated in narrow zones so that textures are well preserved in more massive and competent rocks. Dynamic-style areas of greenstone have higher metamorphic grades (upper greenschist to upper amphibolite facies) and are characterized by more pervasive foliation, particularly along the contacts with large granitoid terrains. There appears to be two major controls on mineralisation in the Davyhurst area. Both mineralisation styles rely on mineralisation taking place during reactivation of earlier ductile shear zones. In the case of the Lights of Israel group of deposits, the early shears are moderately to gently west dipping, whereas in the Federal Flag – Lady Eileen group of deposits, the early shear is steeply west dipping. In the northern portion of the Davyhurst tenements most gold mineralisation is aligned in planar corridors that have N- to NW-trends. The overall dip of the mineralised corridors is mostly steep ($>75^\circ$) E- or W-dipping with moderate to steep ($\sim 60^\circ$) and shallow-dipping ($\sim 15^\circ$) ore zones at the Federal Flag and Lady Gladys deposits, respectively. Within these planar corridors of mineralisation linear trends to gold distribution are mostly shallowly plunging. Internal variations within the corridors at individual deposits are common and discussed later. Mineralisation at the Lights of Israel and Makai deposits differs from the other examined deposits in that mineralisation has a linear form that plunges moderately ($\sim 20^\circ$) to the NNW.</p> <ul style="list-style-type: none"> Local Geology - The Waihi rock pile is composed predominantly of two volcanic units: fine-grained tholeiitic basalt and komatiitic basalt. Within the tholeiitic basalts, several units can be discriminated using pXRF readings of Zircon and chrome. The units are indistinguishable by eye. The tholeiitic units are interlayered with narrow bands of carbonaceous and interflow sediments that are rheologically weaker, effectively localising and accommodating high-strain deformation. Regional crustal shortening has resulted in the folding of the volcanic sequence into a steep, subvertical NNW striking orientation. The rock pile is overprinted by a pervasive foliation dipping 70° towards 255°. <p>Multiple deformational events have given rise to a network of ductile shear zones that partition strain both along lithological boundaries and within rheologically favourable units. These shear zones typically exhibit mylonitic textures and act as the primary fluid pathways and structural controls for gold mineralisation. Strain partitioning is particularly focused along the contacts between the tholeiitic and komatiitic basalts and within the interflow sediment horizons, which act as loci for shear development.</p> <ul style="list-style-type: none"> Gold mineralisation at Waihi is structurally controlled and primarily associated with these shear zones. High-grade mineralisation occurs in three key settings: <ul style="list-style-type: none"> within the ductile shear zones themselves at the intersection of shears with lithological contacts and where shears overprint early, highly deformed quartz veins. <p>These early quartz veins predate the main mineralising event and were initially emplaced prior to ductile deformation. They were later overprinted during transpressional deformation, undergoing intense strain, including isoclinal folding and boudinage. This deformational overprint produced strong competency contrasts and created low-strain zones within the shear system, which became ideal sites for the precipitation of gold-bearing hydrothermal fluids.</p> <ul style="list-style-type: none"> High-grade mineralised shoots such as those previously mined at Waihi, are commonly hosted within these deformed quartz vein zones and historically have represented larger, blow-out-style ore bodies. To date, these shoots exhibit moderate north-westerly plunges.
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> 	<ul style="list-style-type: none"> See list of drill intercepts. Widths reported in the Significant Intercepts table are all down hole lengths.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> ○ <i>easting and northing of the drill hole collar</i> ○ <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> ○ <i>dip and azimuth of the hole</i> ○ <i>down hole length and interception depth</i> ○ <i>hole length.</i> <ul style="list-style-type: none"> ● <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	
Data aggregation methods	<ul style="list-style-type: none"> ● <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> ● <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> ● <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> ● Original assays are length weighted. Grades are not top cut. Intercepts are reported at a Lower cut off of nominally 1.0g/t. Due to the narrow nature of mineralisation a minimum sample length of 0.2m was accepted when calculating intercepts. Maximum 2m internal dilution. ● No metal equivalents reported
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> ● <i>These relationships are particularly important in the reporting of Exploration Results.</i> ● <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> ● <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> ● Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at each deposit/prospect mentioned in the report. ● The geometry of the mineralisation at Waihi is approx. 345° and sub vertical. Drilling is oriented perpendicular to the strike of the mineralisation (075° and to a lesser extent 255°).

Criteria	JORC Code explanation	Commentary
<i>Diagrams</i>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> See plans and sections.
<i>Balanced reporting</i>	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Results reported include both low and high gram metre (g/t x down hole length) values. The significant intercept table provides details of drill hole intercepts shown on diagrams. There is no lower cut-off grade, the holes listed include those with NSI (no significant intercept). Holes in the significant intercept table are shown on diagrams coloured according to gram metre grade bins. This provides spatial context to the number of holes in the project area with significant gold intercepts versus the number of holes with lesser or no significant intercepts
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> Metallurgical and geotechnical work has been completed for numerous previously mined deposits, including Waihi. Waihi deposit was previously mined and processed at Davyhurst plant with no known metallurgical issues. Ongoing geological/ structural evaluation to determine the controls on mineralisation
<i>Further work</i>	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Data evaluation and geological assessment of all deposits, including Waihi, followed by additional resource drilling and updated JORC 2012 compliant Mineral Resources. Further resource definition drilling will be conducted Regional exploration targeting for new green-fields deposits.