

Arrakis RC Drilling Results Highlight Potential High-Grade Gold Mineralisation Continuity

RC Drilling Highlights

- Yandal has received assays from 10 of 17 RC holes drilled in late 2025.
- Significant Intercepts include:
 - 24m*¹ @ 1.3g/t Au** from 136m in **25IWBC0051**, including
 - 7m @ 2.8g/t Au** from 137m
 - 18m*¹ @ 1.6g/t Au** from 45m in **25IWBC0056**, including
 - 9m @ 2.9g/t Au** from 45m
 - 8m*¹ @ 2.7g/t Au** from 95m in **25IWBC0054**, including
 - 6m @ 3.3g/t Au** from 96m
 - 6m*¹ @ 1.8g/t Au** from 159m in **25IWBC0053**, including
 - 3m @ 3.1g/t Au** from 159m

Strategic Implications and Exploration Momentum

- The collective results demonstrate mineralisation occurs in consistent positions, where higher gold grades are associated with the eastern hanging-wall contact, providing underground exploration potential.
- Results also demonstrate the potential for shallow oxidised mineralisation close to the surface below the 4-20m of transported cover.

Next Steps - Arrakis

- Planned closer-spaced drilling will focus on defining and extending the thicker and higher-grade gold zones within the identified 2.2km-long mineralised system.
- RC and diamond drilling to re-commence in March with assays from the remaining 7 RC holes and a recent air-core program due shortly.

¹ Estimated true width is approximately 60% of the down-hole length

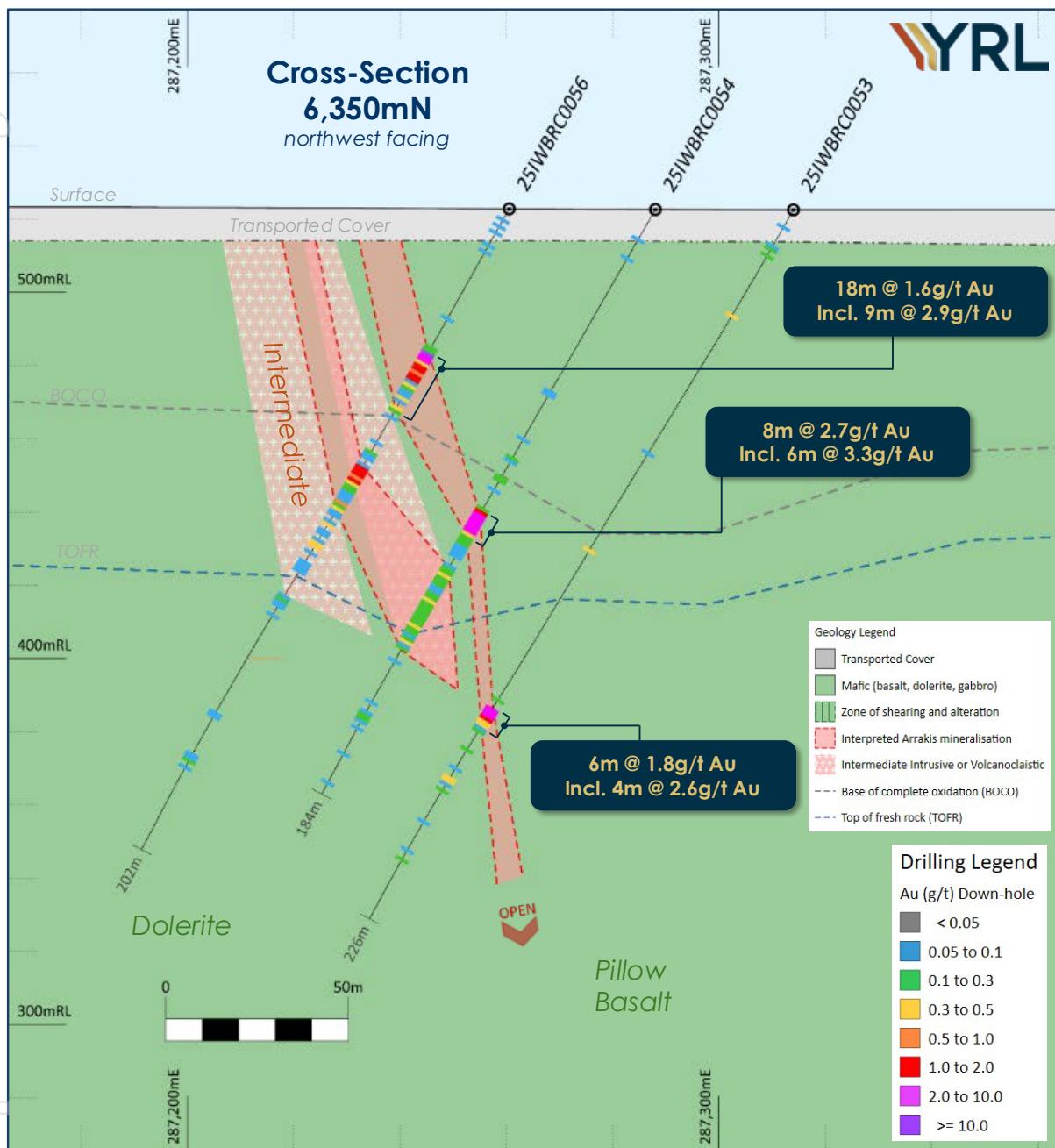
For further information or to ask questions in relation to this announcement, please visit our Investor Hub at <https://yandalresources.com.au/link/P2zNVP>

Contact Us

A: Suite 1, Level 3, 1138 Hay Street,
West Perth WA 6005
T: +61 (0)8 9389 9021
E: yandal@yandalresources.com.au
yandalresources.com.au | ASX:YRL

Board and Management

Chris Oorschot	Managing Director/CEO
Greg Evans	Non-Exec Chair
Katina Law	Non-Exec Director
Chris Newman	Non-Exec Director
Greg Fitzgerald	Company Secretary


Commenting on the new results, Yandal Resources' Managing Director, Mr. Chris Oorschot, said: "It is great to observe regular consistency in the position and continuity of higher-grade mineralisation across the Arrakis gold discovery. The higher-grade mineralisation associated with the eastern hanging-wall provides an opportunity for Yandal to target and explore for underground mineralisation.

We have also seen evidence of shallow oxide mineralisation, a strategically important outcome as we look to consolidate recent discoveries and build Mineral Resources across 2026.

The Team aims to establish the new exploration camp in February to support the recommencement of drilling by March. Programs are being finalised to advance exploration across Arrakis, Flushing Meadows and the New England Granite target area. With the strong cash position and improved infrastructure, we will be aiming to accelerate exploration following the end of the wet season."

Yandal Resources Ltd (ASX: YRL, "Yandal Resources" or the "Company") is pleased to provide an exploration update for the Arrakis Prospect within the Ironstone Well-Barwidgee Gold Project (see Figures 5 and 6). A 17-hole, 3,800m RC program was completed in mid-December across the Arrakis Prospect, testing the mineralised trend along 200m-spaced infill drill lines. Assay results from the first ten holes have been received and reported (see Figures 2 and 3). RC results confirm a mineralised system with a relatively simple, predictable geometry, with higher-grade mineralisation occurring in a consistent position along strike and down dip. Several closer-spaced holes drilled to assess mineralisation continuity and potential high-grade plunge geometries were also completed, with results showing strong mineralisation continuity along strike. Results also demonstrate the potential for shallow oxide mineralisation immediately below the unmineralised transported cover.

In addition to RC drilling results, further results from the 2025 Arrakis diamond drilling program have also been received. The diamond drilling program comprised four re-entries (diamond tails to previously reported RC holes) and four new holes drilled for a total of 1,931m. Results from a further three of the eight diamond holes have been received, with two holes yet to be reported. Results from diamond drilling have further confirmed the extensive strike nature of the Arrakis mineralised structure and provide invaluable geological and structural data to support ongoing exploration across the Arrakis gold discovery.

Figure 1: 6,350mN cross-section showing all drilling results from 25IWBC0053, 25IWBC0054 and 25IWBC0056, highlighting the strong high-grade continuity on the eastern hanging-wall contact of the Arrakis trend. The section location is shown in Figure 2. The section shows all drilling within +/- 50m of the section plane.

Arrakis RC Drilling Results

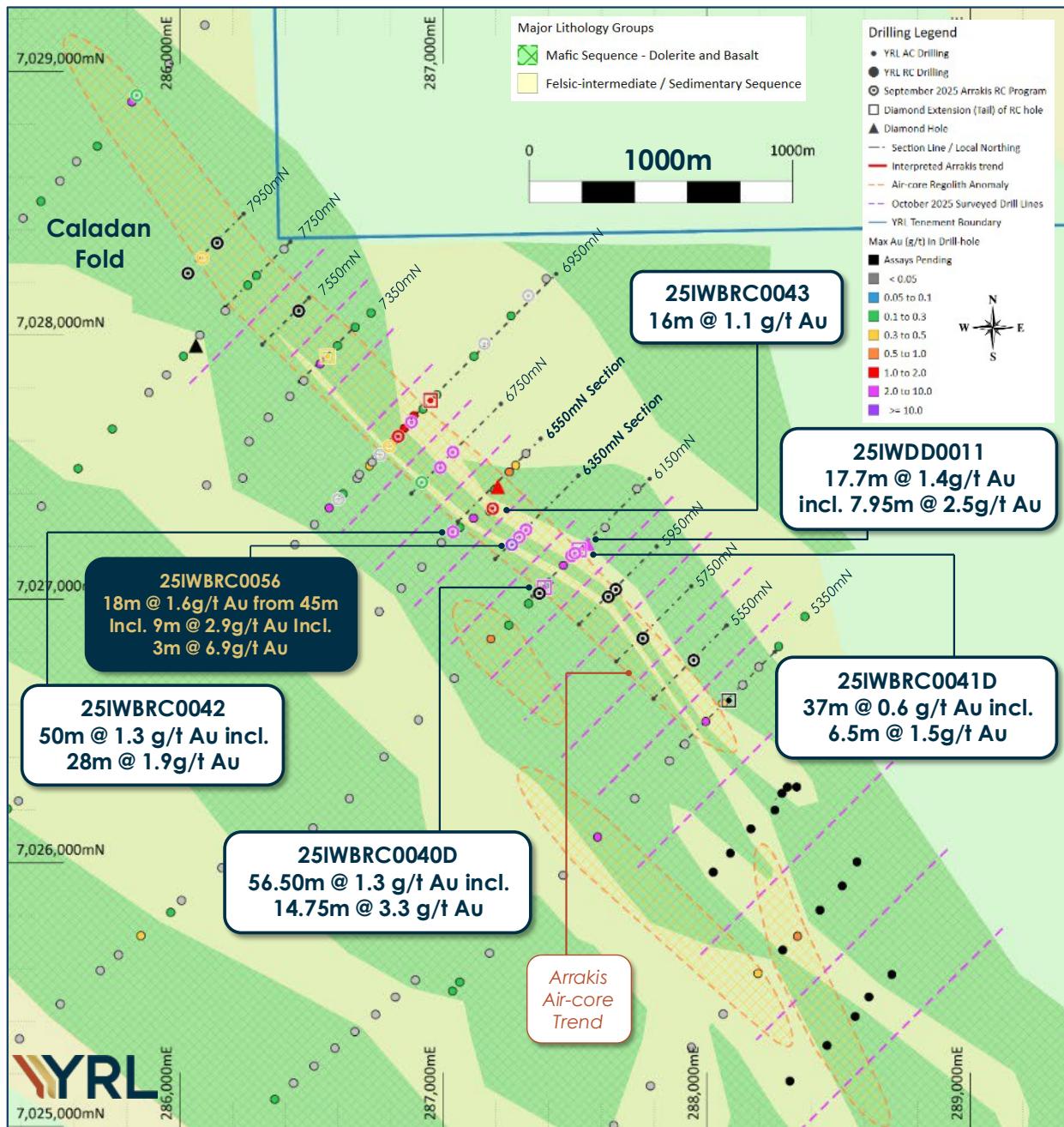
Assay results from the first ten Arrakis RC holes have been received, with results from a further seven holes yet to be received. The program was designed to map out the extent of the Arrakis mineralised system by targeting the structure and host stratigraphy across 200m spaced sections ahead of closer spaced drilling scheduled to commence in March 2026. Intercepts from the 6,350mN section (see Figures 1, 2 and 3) include:

- **6m @ 1.8g/t Au** from 159m in **25IWBC0053**, including
 - **3m @ 3.1g/t Au** from 159m
- **8m @ 2.7g/t Au** from 95m in **25IWBC0054**, including
 - **6m @ 3.3g/t Au** from 96m
- **18m @ 1.6g/t Au** from 45m in **25IWBC0056**, including
 - **9m @ 2.9g/t Au** from 45m or
 - **3m @ 6.9g/t Au** from 45m

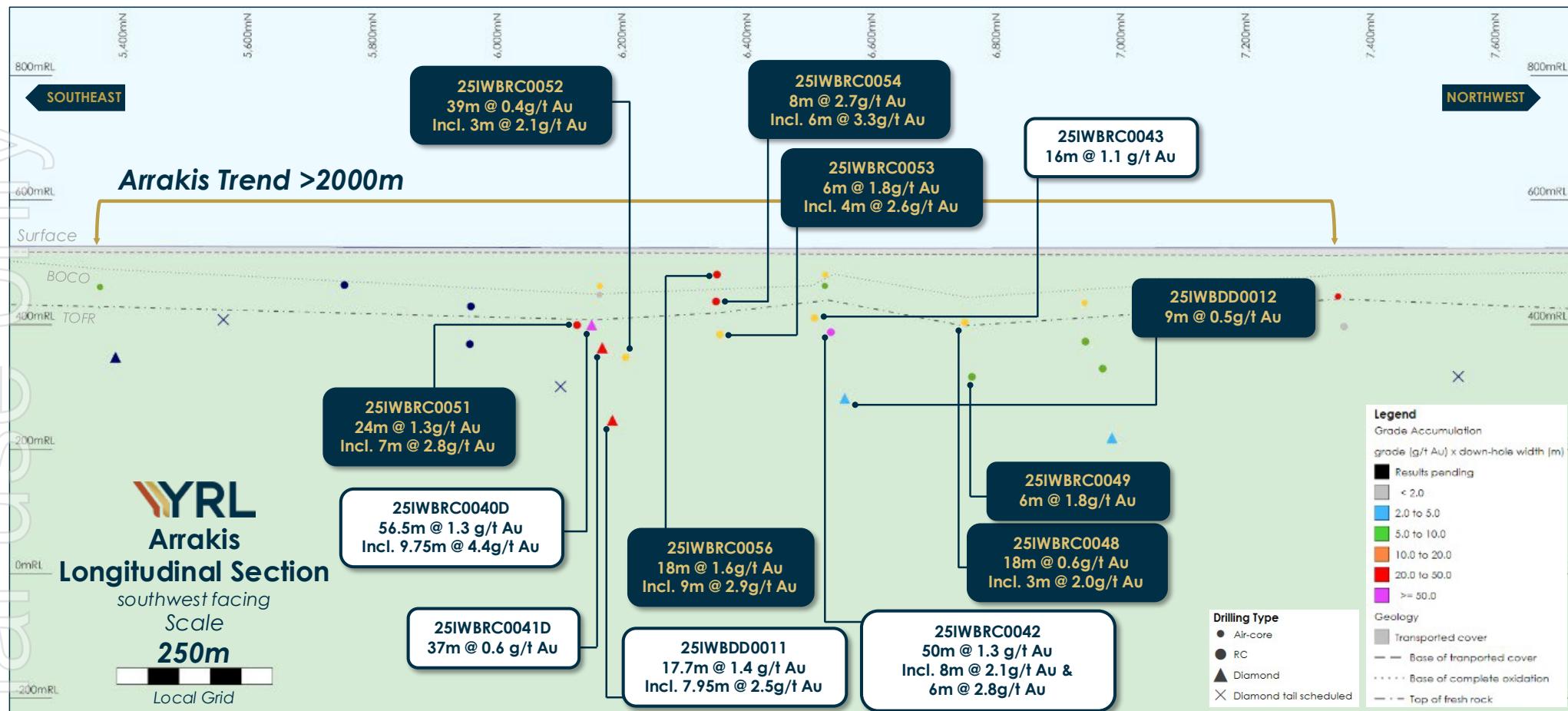
Intercepts from the 6,750mN section include:

- **18m @ 0.6g/t Au** from 127m in **25IWBC0048**, including
 - **3m @ 2.0g/t Au** from 141m
- **12m @ 0.6g/t Au** from 246m in **25IWBC0049**, including
 - **3m @ 1.6g/t Au** from 248m

Results from these two sections highlight:


- A laterally continuous northwest striking mineralised structure that maintains a consistent sub-vertical geometry.
- The potential for shallow oxide mineralisation below a thin veneer of transported cover.

The continuous nature of mineralisation and relatively simple geometry provide the Company with increased confidence in the geological model underpinning the Arrakis Prospect. Furthermore, the consistent presence of higher-grade mineralisation along the eastern margin provides an opportunity to target deeper, higher-grade mineralisation as drilling advances in 2026.


RC holes 25IWBC0049 and 25IWBC0051 are located along strike of the drilling on the previously reported **6,150mN** section (see Figure 3). These two RC holes and one diamond pre-collar were drilled in order to provide an initial assessment of mineralisation continuity along strike. Significant intercepts include:

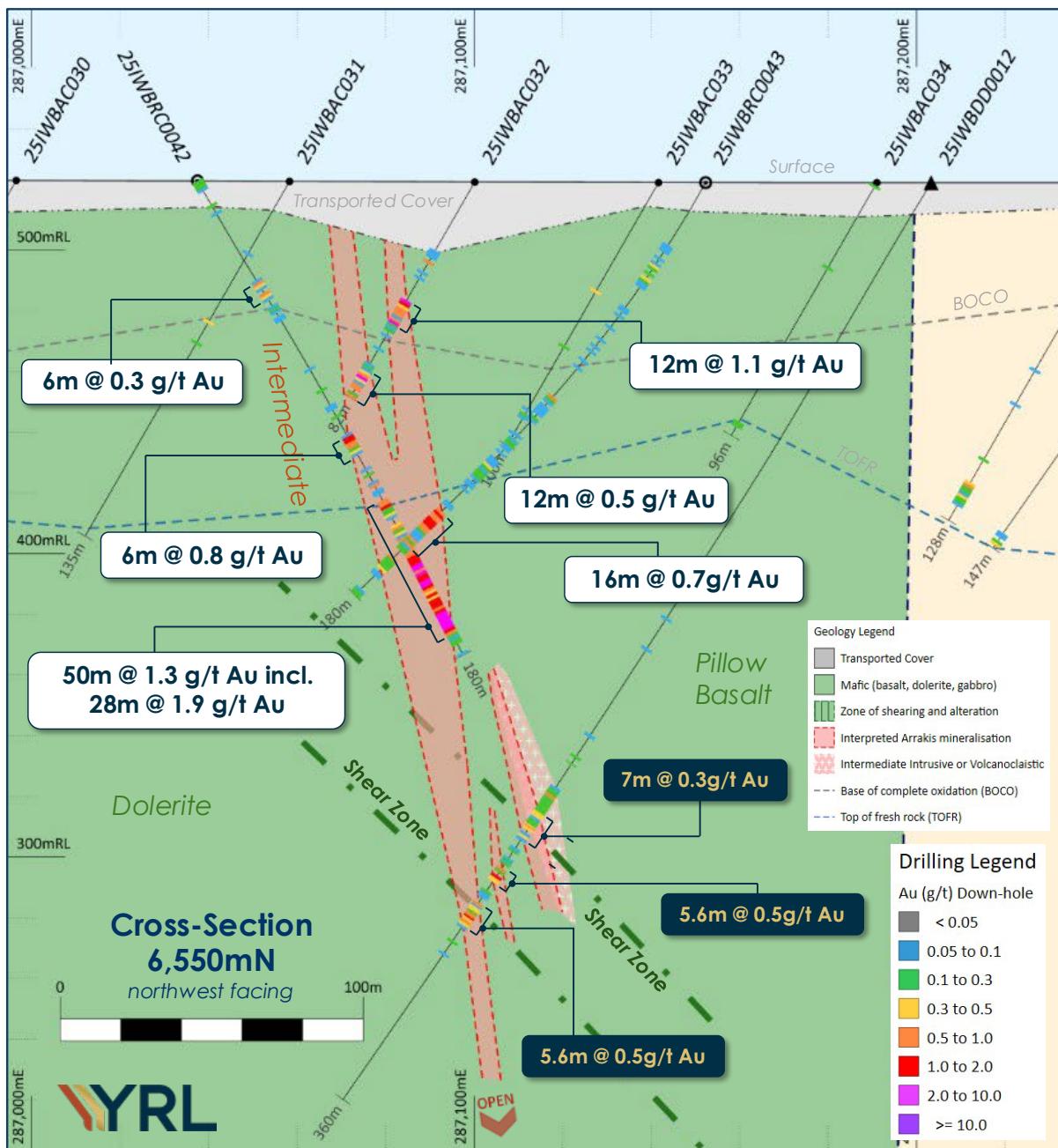
- **24m @ 1.3g/t Au** from 136m in **25IWBR0051**, including
 - **7m @ 2.8g/t Au** from 137m
- **32m @ 0.5g/t Au** from 194m in **25IWBR0049**, including
 - **3m @ 2.1g/t Au** from 194m

These results confirm strong mineralisation continuity along strike (see the longitudinal section in Figure 3). RC pre-collar 25IWBR0050 will be extended with a diamond tail in February.

Figure 2: A collar plan over the Arrakis Prospect within the Caladan target area, showing simplified bedrock geology interpretation. All Yandal drilling is plotted (historic drilling has been excluded). Collars are thematically coloured by max Au (g/t) in the hole. Dashed yellow polygons represent air-core regolith anomalies (Results include ~4m @ 0.1 g/t Au or greater, with the upper profile or the bottom-of-hole sample is 0.1g/t Au or greater). Dashed purple lines represent heritage-surveyed 100m-spaced lines to support 2026 drilling.

Figure 3: A longitudinal section displaying intercept midpoints within the main Arrakis mineralised structure (intercepts from subordinate structures are excluded). Grade accumulation (length multiplied by Au grade) is based on down-hole length, with no true width correction applied. This longitudinal section has been prepared to show the distribution of recent intercepts across the interpreted Arrakis trend. While there is some preliminary evidence of mineralisation continuity, additional drilling is needed to confirm mineralisation continuity on a larger scale. For this reason, grade contours and high-grade plunge interpretations have not been applied.

Next Steps


Results from a further seven RC holes, along with the remaining diamond holes, are anticipated over the coming weeks (see Figures 2 and 3). RC and diamond drilling are scheduled to recommence in March once the expanded field camp has been established. Drilling will then be completed on 100m-spaced drill lines across the Arrakis trend, along with preliminary metallurgical test work.

Arrakis Diamond Drilling Results

Eight diamond holes were completed across the Arrakis Prospect in late 2025, testing the Arrakis trend over more than 2km of strike. The diamond drilling program was completed to refine a geological model for Arrakis, support exploration targeting, and future drilling. Results from three more diamond holes are reported within this release, including 25IWBR0036D, 25IWBR0044D and 25IWBD0012 (see Figure 4). Significant intercepts from these diamond holes include:

- **9.0m @ 0.5g/t Au** from 281m in **25IWBD0012**,
- **5.6m @ 0.5g/t Au** from 267m in **25IWBD0012**,
- **2.8m @ 0.8g/t Au** from 375m in **25IWBR0036D**.

These diamond drilling results reaffirm the current geological model and highlight the potential for larger-scale structural controls on gold mineralisation across the more than 2.2km long Arrakis trend.

Figure 4: 6,550mN cross-section showing all drilling results from 25IWBD0012 with a simple preliminary interpretation of geology. The section location is shown in Figure 2. The section shows all drilling within +/- 50m of the section plane.

Arrakis Geology & Mineralisation

The Arrakis Prospect is located at the centre of the Ironstone Well-Barwidgee Gold Project, within the Yandal Greenstone Belt of Western Australia. The prospect is defined by a >2.2km mineralised trend defined by air-core drilling. The prospect lies beneath between 4-20m of transported cover. The depth of weathering varies along strike, with the base of fresh rock typically between 80-120m from the surface.

Arrakis mineralisation is hosted within a sequence of deformed sediments that have been variably intruded by a suite of intermediate intrusive bodies that vary in thickness both along strike and down dip. Steeply north-east dipping mineralisation is bracketed by a sequence of pillow basalts to the east and a dolerite unit to the west.

A compilation of RC and diamond drilling results and geological observations demonstrates two separate styles of mineralisation at Arrakis:

- A broad lower-grade style of mineralisation hosted within a silica-sericite altered intermediate intrusive unit that has been broadly and weakly fractured to brecciated with chlorite-biotite-filled fractures that also contain pyrite, and with fine disseminated pyrite throughout. The position and thickness of this intrusive vary along strike and down dip.
- A higher-grade style of mineralisation that is associated with a more intense level of brittle-ductile deformation and strong silica-pyrite alteration appears to be strata-bound and linked to the hanging wall or eastern margin of the host stratigraphy. This style of mineralisation can also be sheared and intercalated (mixed) with the bounding basalts and dolerites.

Structural observations from diamond drilling indicate significant strike slip, sinistral shearing. Mineral lineations broadly plunge shallowly to the northwest. Two dominant ductile shear fabrics have been observed: a subparallel fabric and a shallower-dipping, northwest-striking fabric (see Figure 4). The latter often exhibits as a mylonite and may offset or structurally thin mineralisation.

The position of the intermediate intrusion and the thickness of the higher-grade mineralisation are likely to be structurally controlled.

Looking Ahead

The Company maintains a strong cash position and a very active exploration schedule across 2026. Notable near-term activities and news flow include:

Arrakis Discovery

- Further assay results from the 2025 Arrakis RC (seven holes) and diamond drilling (two holes) program are anticipated throughout January;
- Air-core results from three 400m spaced lines southeast of Arrakis are anticipated shortly;
- RC and limited diamond drilling across 100m lines is scheduled to commence in March 2026;

New England Granite Target Area

- All results from AC drilling across the New England Granite target area are anticipated shortly;

Flushing Meadows (MRE 268koz @ 1.1g/t Au, see Table 1)

- Heritage surveys are being scheduled for the March Quarter;

Key Exploration Infrastructure

- Operational and scheduling preparations are underway for a ramp-up of exploration following the wet season in Q1 CY2026, including the establishment of a 21-person camp and the expansion of the operational team.

Authorised by the board of Yandal Resources

For further information, please contact:

Chris Oorschot
Managing Director
Yandal Resources Limited
yandal@yandalresources.com.au

Greg Fitzgerald
Company Secretary
+61 8 9389 9021
yandal@yandalresources.com.au

About Yandal Resources Limited

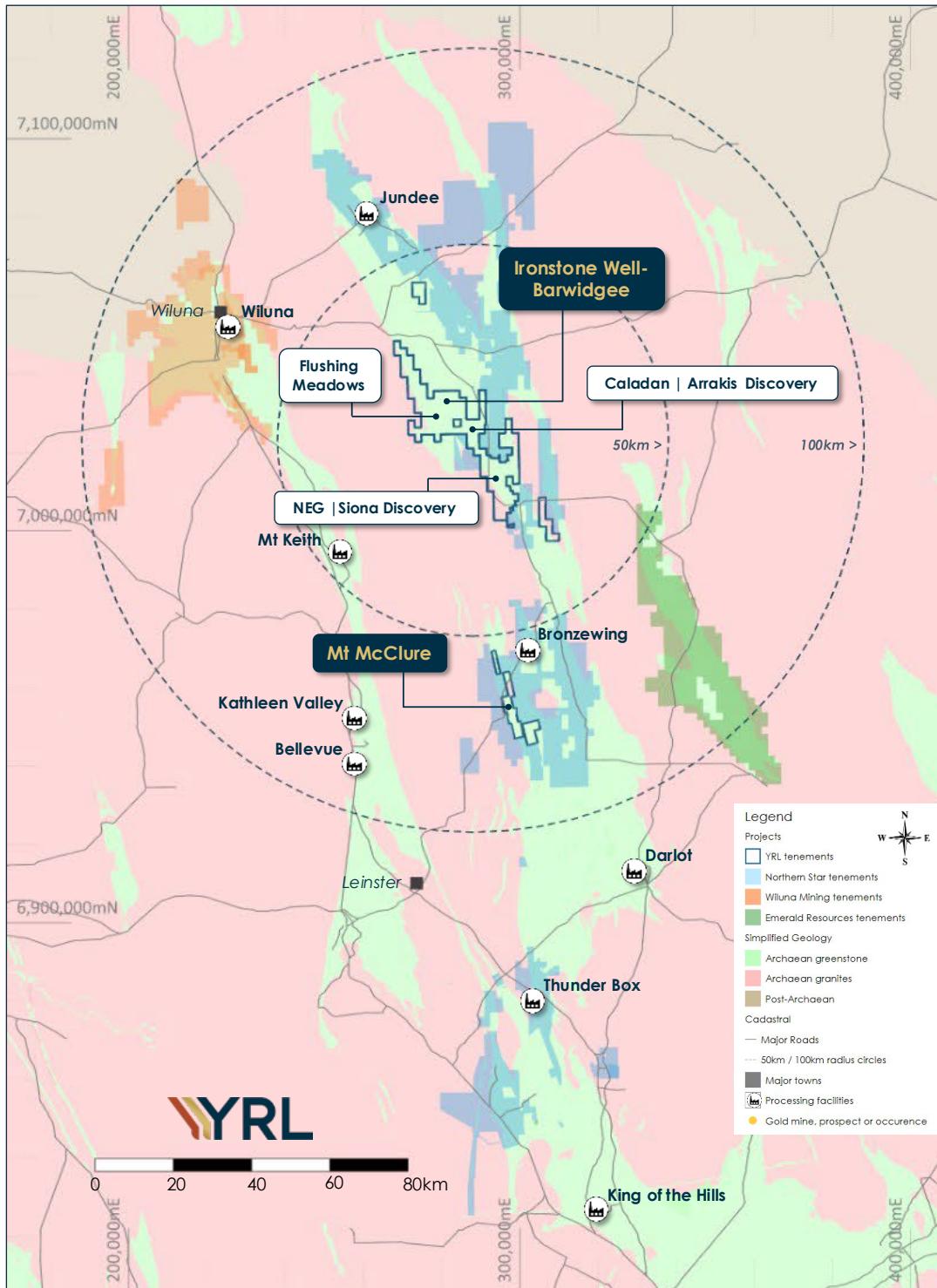
Yandal Resources has a portfolio of advanced gold exploration projects in the highly prospective Yandal and Norseman-Wiluna Greenstone Belts of Western Australia.

Ironstone Well-Barwidgee Gold Project

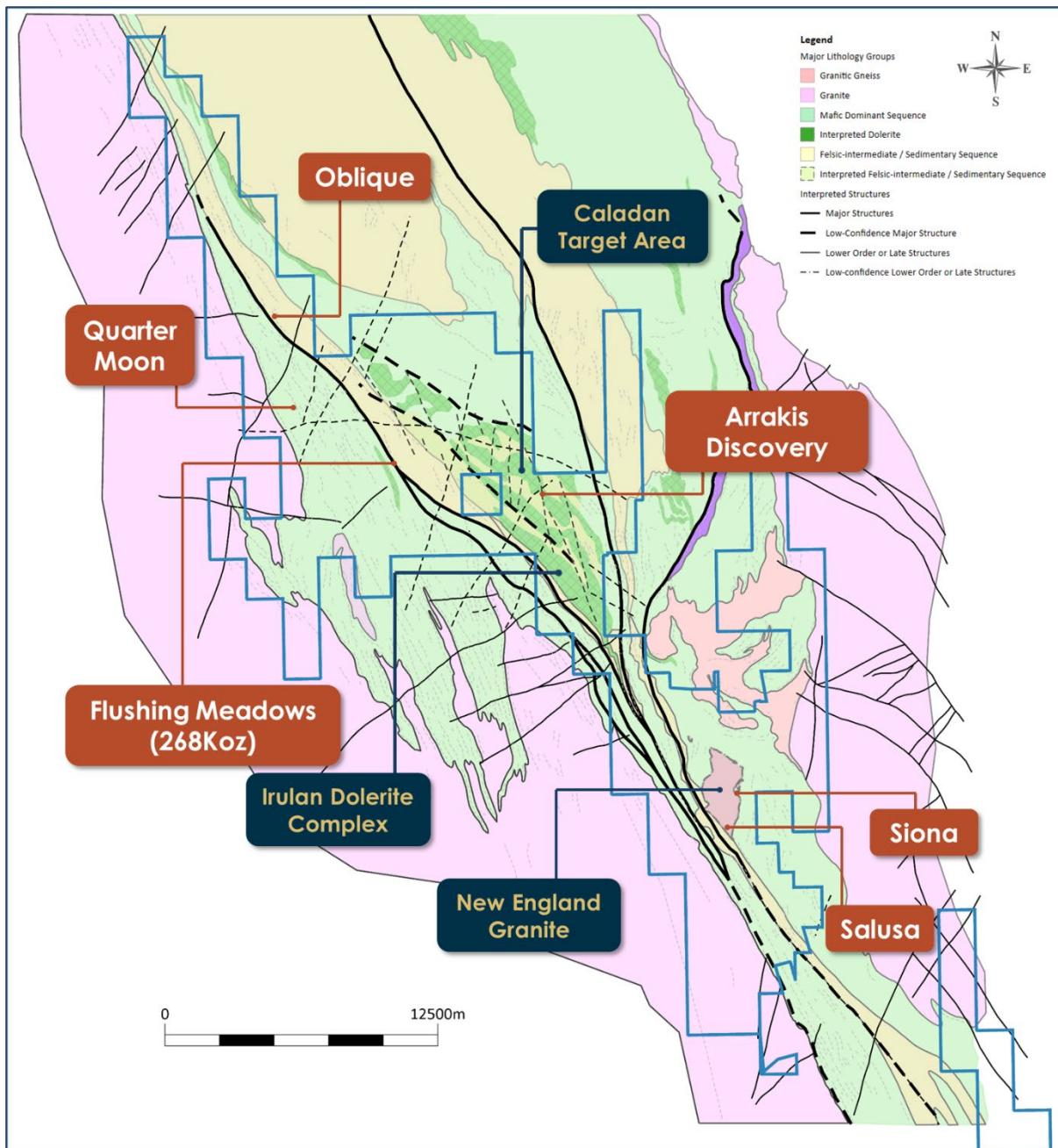
The 100% owned Ironstone Well-Barwidgee (IWB) Gold Project covers approximately 370km² of highly prospective and under-explored tenure located between the Jundee and Bronzewing mines in the northern Yandal Greenstone Belt. Yandal has an established Resource of 268,000oz of gold at Flushing Meadows (within IWB) and considers there to be strong potential to make new discoveries and expand this resource base within its extensive tenure holding. (Refer to the ASX announcement of 4 November 2020 for details of the Flushing Meadows Resource).

The IWB project area also includes two new gold discoveries, the Arrakis and Siona Prospects, both made within the last twelve months. These outcomes were driven by the execution of a targeted exploration program that followed a systematic, geologically driven strategy that was developed in early 2023. The Arrakis prospect is hosted within the Caladan fold, and the Siona prospect is hosted within the New England Granite.

Both discoveries are currently at an early stage but progressing well, with future activities focused on delineating the scale of each of the newly defined mineralised systems.


The IWB Gold Project also includes several advanced prospects, where limited historic and YRL drilling has returned robust gold intercepts, indicating the potential for shallow oxide mineralisation. Both the early-stage and more advanced prospects are the focus of ongoing exploration.

Mt McClure


The Mt McClure Gold Project, acquired in August 2022, is located ~15km southwest of the historic Bronzewing Mine and includes three mining leases with JORC 2012 Resources totalling 81,675oz Au.

The project has prospectivity for new shallow gold deposits adjacent to current Resources and in the footwall and hanging wall of the stratigraphy. Ground gravity survey data from the prior Quarter support ongoing structural/stratigraphic interpretations for 2026 targeting.

For personal use only

Figure 5: Yandal Resource exploration Project locations within the Yandal Greenstone Belt. The Arrakis Prospect is located within the Caladan target area.

Figure 6: Yandal Resource exploration target areas and prospect locations within the northern Yandal Greenstone Belt. The Arrakis Prospect is located within the Caladan target area.

Table 1 – Yandal Resources Ltd - Mineral Resource Summary

Deposit	Indicated			Inferred			Total		
	Tonnes ('000s)	Grade (g/t)	Au (oz)	Tonnes ('000)	Grade (g/t)	Au (oz)	Tonnes (000's)	Grade (g/t)	Au (Oz)
Ironstone Well									
Flushing Meadows ¹	2,141	1.3	91,000	5,245	1.1	177,000	7,386	1.1	268,000
Mt McClure									
Challenger ²				718	1.9	44,000	718	1.9	44,000
Success ³				1,255	1.9	75,000	1,255	1.9	75,000
Parmelia ⁴				252	2.1	17,000	252	2.1	17,000
HMS Sulphur ⁵				1010	1.2	39,000	1010	1.2	39,000
Gilmore ⁶				134	1.7	7,200	134	1.7	7,200
Sub-total - MMC				3,369	1.7	182,200	3,369	1.7	182,200
Grand-total⁷	2,141	1.3	91,000	8,614	1.3	359,200	10,755	1.3	450,200

Due to the effects of rounding, totals may not represent the sum of the individual components.

1. Reported above 0.5g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 4 November 2020 for full details. 2. Reported above 1.0g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 22 August 2022 for full details 3. Reported above 1.0g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 6 September 2022 for full details. 4. Reported above 1.0g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 20 September 2022 for full details. 5. Reported above 0.5g/t Au lower cut-off grade within this announcement 6. Reported above 1.0g/t Au lower cut-off grade within this announcement. 7. All Resources are reported as global estimates, not constrained by optimised pit shells.

Competent Person Statement

The information in this document related to Exploration Targets and Exploration Results, geology and data compilation is based on information reviewed or compiled by Mr Christopher Oorschot, a Competent Person who is a Member of The Australasian Institute Geoscientists. Mr Oorschot is the Managing Director of the Company, is a full-time employee and holds shares and options in the Company. Mr Oorschot has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Oorschot consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to the Flushing Meadows and Mt McClure Mineral Resource Estimates is based on information compiled and generated by Andrew Bewsher, an employee of BM Geological Services Pty Ltd ("BMGS"). Both Andrew Bewsher and BMGS hold shares in the company. BMGS consents to the inclusion, form and context of the relevant information herein as derived from the original resource reports. Mr Bewsher has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

YRL confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statements

This document may contain certain forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Yandal Resources Limited's (Yandal's) current expectations, estimates and projections about the industry in which Yandal operates, and beliefs and assumptions regarding Yandal's future performance. When used in this document, words such as "anticipate", "could", "plan", "estimate", "expects", "seeks", "intends", "may", "potential", "should", and similar expressions are forward-looking statements. Although Yandal believes that its expectations reflected in these forward-looking statements are reasonable, such statements are subject to known and unknown risks, uncertainties and other factors, some of which are beyond the control of Yandal and no assurance can be given that actual results will be consistent with these forward-looking statements. Drilling results presented indicate geological potential for mineralisation but there can be no certainty that these results will eventually form part of a Mineral Resource Estimate.

Table 2 – Arrakis RC drilling program collar location summary. Please note that collars have not yet been formally surveyed; the coordinates below are derived from a handheld GPS and are accurate to within +/- 5m.

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Total Depth (m)
25IWBR0047	RC	286919	7027443	522.7	222	-60	172
25IWBR0048	RC	286989	7027499	522.6	222	-60	238
25IWBR0049	RC	287037	7027557	522.5	222	-57	292
25IWBR0050	RC	287365	7027022	523.4	60	-57	262
25IWBR0051	RC	287487	7027164	523.2	195	-58	240
25IWBR0052	RC	287500	7027174	523.2	245	-57	252
25IWBR0053	RC	287314	7027263	522.5	225	-60	226
25IWBR0054	RC	287289	7027235	522.6	222	-60	184
25IWBR0055	RC	286086	7028293	523.1	222	-60	184
25IWBR0056	RC	287261	7027207	522.8	222	-60	202
25IWBR0057	RC	286031	7028235	523.4	222	-60	160
25IWBR0058	RC	287655	7027037	523.5	220	-60	269
25IWBR0059	RC	286142	7028350	522.9	222	-60	298
25IWBR0060	RC	287627	7027009	523.6	222	-60	232
25IWBR0061	RC	287758	7026851	524.1	222	-60	220
25IWBR0062	RC	287951	7026768	524.6	222	-60	148
25IWBR0063	RC	286452	7028092	522.5	222	-60	238

Table 3 – Arrakis diamond drilling program collar location summary. Please note that collars have not yet been formally surveyed; the coordinates below are derived from a handheld GPS and are accurate to within +/- 5m.

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Pre-collar Depth (m)	Total Depth (m)
25IWBR0040D	RCD	287381	7027046	523.3	049.6	-58.8	162	304
25IWBR0041D	RCD	287513	7027189	523.2	228.6	-57.6	186	294
25IWBR0044D	RCD	286563	7027921	523.0	230.9	-59.9	168	216
25IWBR0046D	RCD	288075	7026618	525.1	230.9	-60.1	210	370
25IWBD0011	DD	287541	7027217	523.0	229.6	-59.7	N/A	369

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Pre-collar Depth (m)	Total Depth (m)
25IWBD0012	DD	287207	7027427	522.5	230.1	-58.7	N/A	360
25IWBR0036D	RCD	286954	7027757	523.0	228.4	-60.0	138	456
25IWBD0013	DD	286061	7027962	525.0	46.9	-60.1	N/A	417

Table 4 – Arrakis Prospect - Summary of significant RC and diamond core assay results >0.3g/t Au with no more than 4m of continuous internal waste included unless otherwise stated. All intercept lengths are reported as down-hole lengths.

Hole ID	Sample type / Sub Interval	From (m)	To (m)	Interval (m)	Au (g/t)	Comment
25IWBR0036D	HQ Core	151.95	152.5	0.55	0.6	Weakly weathered
25IWBR0036D	HQ Core	156.8	161.95	5.15	0.3	Weakly weathered
25IWBR0036D	HQ Core	374.95	377.7	2.75	0.8	Fresh rock
25IWBR0044D	HQ Core	NSA				
25IWBD0012	HQ Core	238	239	1	0.8	Fresh rock
25IWBD0012	HQ Core	245	252	7	0.3	Fresh rock
25IWBD0012	HQ Core	267	272.55	5.55	0.5	Fresh rock
25IWBD0012	HQ Core	281	290.05	9.05	0.5	Fresh rock
25IWBR0048	1m RC	115	116	1	0.5	Weakly weathered
25IWBR0048	1m RC	127	133	6	0.6	Weakly weathered
25IWBR0048	1m RC	141	145	4	1.7	Weakly weathered
25IWBR0048	Alternative	127	145	18	0.6	Using a lower >0.1g/t Au lower cut-off
25IWBR0048	1m RC	154	157	3	0.7	Fresh rock
25IWBR0049	1m RC	229	231	2	0.3	Fresh rock
25IWBR0049	1m RC	238	239	1	0.4	Fresh rock
25IWBR0049	1m RC	246	258	12	0.6	Fresh rock
25IWBR0049	including	248	251	3	1.6	Fresh rock
25IWBR0047	1m RC	NSA				Drilled west of the structure
25IWBR0050	1m RC	NSA				Diamond pre-collar
25IWBR0051	1m RC	61	62	1	0.8	Moderately weathered
25IWBR0051	1m RC	66	67	1	0.3	Moderately weathered
25IWBR0051	1m RC	77	78	1	0.3	Moderately weathered
25IWBR0051	1m RC	87	91	4	1.7	Moderately weathered
25IWBR0051	1m RC	136	160	24	1.3	Fresh rock
25IWBR0051	Including	137	144	7	2.8	Fresh rock
25IWBR0051	1m RC	204	206	2	0.4	Fresh rock
25IWBR0051	1m RC	216	217	1	0.5	Fresh rock
25IWBR0052	1m RC	NSA			0	
25IWBR0053	1m RC	159	165	6	1.8	Fresh rock
25IWBR0053	Including	159	162	3	3.1	Fresh rock

Hole ID	Sample type / Sub Interval	From (m)	To (m)	Interval (m)	Au (g/t)	Comment
25IWBR0054	1m RC	95	103	8	2.7	Moderately weathered
25IWBR0054	Including	96	102	6	3.3	Moderately weathered
25IWBR0055	1m RC	97	98	1	0.3	Weakly weathered
25IWBR0056	1m RC	45	63	18	1.6	Completely weathered
25IWBR0056	Including	45	54	9	2.9	Completely weathered
25IWBR0056	1m RC	84	95	11	0.6	Moderately weathered
25IWBR0056	1m RC	105	107	2	0.4	Moderately weathered

Relevant Previous ASX Announcements

- Arrakis Diamond Drilling Delivers Strong Results, 8 December 2025
- First Arrakis Diamond Results & RC Drilling Underway, 24 November 2025
- Final Arrakis RC Results with Diamond Drilling to Commence, 13 October 2025
- Arrakis Gold Discovery Extended by 400m, 24 September 2025
- Arrakis Gold Discovery Confirmed With 54m @ 1.2g/t Au, 22 September 2025
- Arrakis RC Drilling Complete & All AC Results Now Received, 17 September 2025
- RC Drilling Commences Across Arrakis, 1 September 2025
- Arrakis Extended to Over 2.2km in Strike, 18 August 2025
- Caladan AC Results Further Extend Arrakis Mineralisation, 31 July 2025
- Caladan AC Shows Early Signs of Scale, 10 July 2025
- Caladan Air-Core Drilling Program Commences, 5 June 2025
- RIU Sydney Presentation, 7 May 2025
- Arrakis RC Drilling Results, 30 April 2025
- Ironstone Well-Barwidgee Exploration Update, 25 February 2025
- Caladan Air-Core Drilling Demonstrates Discovery Potential, 15 January 2025
- Air-core Drilling Commences Across Caladan and Irulan, 10 October 2024
- Oblique Diamond Drilling Results, 3 September 2024
- IWB Soil Results and NEG Diamond Drilling Complete, 12 August 2024
- Large-scale Gold Anomalies Across Emerging Targets, 15 July 2024
- Gold Coast Investment Showcase Presentation, 20 June 2024
- Exploration Update – IWB Ground Gravity Survey, 11 June 2024

Appendix 1 – Ironstone Well-Barwidgee Gold Project, Arrakis Diamond Drilling
JORC Code (2012) Table 1, Sections 1 and 2

Mr Christopher Oorschot, Managing Director of Yandal Resources, compiled the information in Section 1 and Section 2 of the following JORC Table 1 and is the Competent Person for those sections. The following Table and Sections are provided to ensure compliance with the JORC Code (2012 edition) requirements for the reporting of Exploration Results.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i>	<ul style="list-style-type: none"> Yandal Resources has completed RC drilling along several 200m spaced lines across the Arrakis Prospect, mineralisation associated with a >2.2km air-core trend. The drilling involved a 139mm face sampling bit down to between 148m and 292m. Holes were drilled at an angle of -60° to the southwest or northeast. Yandal Resources (YRL) RC drilling samples were collected via a rig-mounted static cone splitter, splitting approximately 12.5% of the total sample volume. Two splits are collected for each metre: a primary and a duplicate sample. The primary 1m samples are then sent to a lab for further analysis. The duplicate samples are retained on-site unless they are submitted as routine duplicates. Yandal Resources has completed diamond drilling across the Arrakis Prospect. The drilling involved a mix of RC pre-collars or rock-rolling down to fresh rock, followed by HQ (diameter of ~63.5mm) diamond core drilling to an average down-hole depth of 348m (between 216m and 465m). Holes were drilled at an angle of -60° to either the southwest or northeast. The core was halved with a core saw, with the right-hand side (looking downhole) sampled. Before sampling, a company geologist logs the core for lithology type, veining, alteration, and deformation. Sample lengths vary according to logged geological intervals of interest, with a minimum of 0.2 metres and a maximum of 1.0 metres. Sample quality is considered high.
	<i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i>	<ul style="list-style-type: none"> For YRL RC drilling, the cone splitter is regularly cleaned and inspected. The 1m bulk samples are laid out in drill order. These bulk samples are regularly inspected for contamination, and the volume of the bulk sample is monitored. These bulk samples are retained until all results are received and may be used to collect additional field duplicates to verify lab results, logged geology or any other form of analysis. If the bulk sample appears visually low in volume or weight, this is recorded with the sample details. The same applies to damp or wet samples. Two splits are collected for each drilled metre: a primary and a secondary sample. The Secondary sample is retained on-site and may be used to collect additional field duplicates to verify lab results, logged geology or any other form of analysis. For YRL diamond drilling, sample recovery of each metre drilled was measured and recorded, and high-resolution photos of each tray before cutting were obtained. The unsampled half of the drill core is also retained. Intervals where the core is unoriented have been recorded.

Criteria	JORC Code explanation	Commentary
	<p>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</p>	<ul style="list-style-type: none"> For YRL diamond drilling, when the core is cut for sampling, the same side of the core, relative to the bottom-of-hole orientation mark, is collected for analysis. For intervals without an orientation mark, the core is pieced together, and foliation or common structures are used to approximately orient the core for sampling purposes. Structural observations have also been recorded where the diamond core is oriented, and the core was routinely checked for any structures sub-parallel to the core axis. <ul style="list-style-type: none"> RC drilling was used to obtain 1m samples from which a portion, between 1-5kg in weight, was dispatched to Aurum Laboratories Pty Ltd. At the lab, samples were crushed and pulverised to produce a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination with a 0.01ppm detection limit. For all YRL diamond drilling results, HQ core was cut in half and used to obtain 0.2m to 1.0m half-core samples. These samples were submitted to a laboratory, where they were dried, weighed, and crushed. The Sample pulp was then split to produce a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination with a 0.01ppm detection limit.
Drilling techniques	<p>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</p>	<ul style="list-style-type: none"> For YRL RC drilling, a 139mm diameter face sampling bit and hammer were used. YRL diamond core was drilled using HQ (63.5mm core diameter) coring bits. For both diamond holes, diamond core drilling commenced via RC pre-collars or rock-rolling, which was completed to fresh rock. Subject to ground conditions, the core was oriented using a downhole orientation tool (Reflex ACT Mk3 NQ/HQ Core Ori kit).
Drill sample recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<ul style="list-style-type: none"> For YRL holes, RC drilling recoveries are visually assessed by the supervising geologist, and any low-volume or weight samples are recorded, along with any damp or wet samples. Drill depths are routinely verified at the completion of each drill rod (every 6m). The cone splitter is checked for each drill site to ensure it is completely upright and level. Sample collection from the splitter by drilling off-siders is monitored for any inefficiencies. No relationship or bias between sample recovery and grade within the RC drilling results has been observed. For YRL diamond drilling core recovery is measured and recorded. The length of core recovered for each metre drilled is measured to the nearest 5cm and entered into an Excel spreadsheet along with information relating to fracture frequency (driller breaks are marked with a red "X"). In addition, dry and wet core photos are collected before the core is cut and

Criteria	JORC Code explanation	Commentary
Logging	<p>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</p> <p>The total length and percentage of the relevant intersections logged.</p>	<ul style="list-style-type: none"> retained on the company server. For YRL diamond drilling, the orientation of contacts, veins and shears is regularly measured and monitored. No relationship or bias between sample recovery and grade within the diamond drilling results has been observed. <ul style="list-style-type: none"> For YRL drilling, all RC holes have been logged in full by a qualified and experienced geologist. RC chips and fines from each 1m interval drilled are inspected and logged for colour, weathering, lithology, deformation, veining and sulphide species. All 1m samples are sieved and retained in labelled and annotated chip trays. Chip trays are transported to Perth for long-term storage and are available for review. The quality of logging information is considered sufficient to support Mineral Resource Estimation studies. For YRL diamond drilling, a full log of all diamond cores was completed by the supervising geologist in the field. Intervals were logged at various intervals based on changes in lithology, deformation intensity, veining types, and alteration. Both planar and linear structural measurements were also collected using a core orientation stand and a kenometer. Logging data was captured directly into an MX Deposit database. Data captured through geological logging by a geologist is qualitative in nature. In addition to geological logging, the magnetic susceptibility of each interval is measured using a KT-10 magnetic susceptibility metre, with a sensitivity of 1×10^{-6} SI Units. Magnetic susceptibility readings are quantitative in nature.
Sub-sampling techniques and sample preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken.</p> <p>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</p> <p>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</p> <p>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</p> <p>Measures taken to ensure that the sampling is representative of the <i>in situ</i> material collected, including for instance results for field duplicate/second-half sampling.</p>	<ul style="list-style-type: none"> YRL RC drilling utilised a rig-mounted cone splitter installed directly below and in line with the rig-mounted cyclone. Two 1-3kg sub-samples are collected into calico bags labelled with a unique alpha-numeric ID. A majority of the samples collected were dry; if samples were damp or wet, this was noted in the sample records. For all YRL RC drilling, samples are dried at 100°C to constant mass, crushed to <10mm and pulverised to nominally 85%, passing 75µm. For YRL RC drilling, field duplicates were collected at an initial rate of 1 duplicate for every 50 samples collected. Standards and blanks were routinely inserted into the sample sequence For labs used by YRL, internal lab quality control measures include lab duplicates and the insertion of lab standards and blanks. For YRL diamond drilling, the HQ (63.5mm diameter) cores were halved using a core saw, and the right-hand side of the core (looking downhole) was sampled. The second half of core retains the orientation line, metre marks and is stored in annotated core trays within a secure yard. When determining sample intervals, core is sampled to contacts where observed so that material from a geological interval of interest is not included within the adjacent geological

Criteria	JORC Code explanation	Commentary
	<p>Whether sample sizes are appropriate to the grain size of the material being sampled.</p>	<p>interval.</p> <ul style="list-style-type: none"> Where narrow geological intervals of interest are observed, such as quartz veining, sample lengths are reduced so that only the feature of interest is sampled down to a minimum length of 0.2m. Diamond core samples are of high quality. Field duplicates are not collected for YRL diamond core drilling. For all drilling, samples are dried at 100°C to constant mass, crushed to <10mm and pulverised to nominally 85%, passing 75µm. Sample sizes are appropriate given the fine-to-medium-grained nature of the sampled material.
Quality of assay data and laboratory tests	<p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p> <p>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <p>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</p>	<ul style="list-style-type: none"> For YRL RC drilling, samples were assayed at the following labs using the following methods: <ul style="list-style-type: none"> Aurum Laboratories in Beckenham, Western Australia, assayed using a 50g fire assay with AAS (atomic absorption spectroscopy) finish for gold analysis with a 0.01ppm detection limit. For YRL diamond drilling, samples were assayed using a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination with a 0.01ppm detection limit by Aurum laboratory in Perth, Western Australia. This is considered a total digest and appropriate for the targeted style of mineralisation. Magnetic susceptibility measurements were taken every meter using a KT-10 V2 instrument with a sensitivity of 1×10^{-6} SI Units. YRL QAQC field protocols include the insertion of commercially prepared certified reference material (CRM) and blank material at a rate of approximately 1 CRM/blank for every 20 samples collected. CRMs used are unidentifiable by the lab when received. QAQC performance is monitored upon receipt of each batch of results and re-assessed once all samples for a program are received. Laboratory QA/QC protocols involve inserting internal lab standards using CRMs, blanks, repeat analysis of pulps and screen tests (the percentage of pulverised material passing 75µm mesh). Laboratory QAQC results are reported with each batch. Laboratory QA/QC performance is monitored upon receipt of each batch of results and reassessed once all samples for a program are received. For YRL diamond drilling, no duplicate samples were submitted for analysis. The remaining half of the core is available for further analysis.
Verification of sampling and assaying	<p>The verification of significant intersections by either independent or alternative company personnel.</p> <p>The use of twinned holes.</p>	<ul style="list-style-type: none"> Significant intercepts from YRL RC drilling are verified by YRL geologists through the visual inspection of chips, reviewing the spatial location of mineralisation relative to previous intercepts, and, in the case of high-grade gold intercepts, visually confirming gold in samples. Significant intercepts from YRL diamond drilling are verified by YRL geologists through the visual inspection of chips and core, reviewing the spatial location of mineralisation relative to

Criteria	JORC Code explanation	Commentary																				
	<p>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</p> <p>Discuss any adjustment to assay data.</p>	<p>previous intercepts, and in the case of high-grade gold intercepts, visually confirming gold in samples.</p> <ul style="list-style-type: none"> No twinned holes have been completed across Arrakis. For YRL RC drilling, primary sampling and logging data are captured directly into the MX deposit application and uploaded directly to the cloud-hosted MX Deposit database. For YRL diamond drilling, primary sampling and logging data are captured directly into the MX deposit application and uploaded directly to the cloud-hosted MX Deposit database. The first lab result for each sample is used for interrogating the data, and no adjustments have been made to the data other than adjusting values below the detection limit to a null value before review. 																				
Location of data points	<p>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</p> <p>Specification of the grid system used.</p> <p>Quality and adequacy of topographic control.</p>	<ul style="list-style-type: none"> All drill collar locations were initially pegged and surveyed using a handheld Garmin GPS, which was accurate to within 3-5m. RLs are determined using a detailed surface DTM. A final collar survey is then completed using a DGPS unit (easting, northing, and RL are accurate to within +/- 0.1m). All Diamond and RC holes were downhole surveyed using a gyroscopic survey tool, producing azimuth readings relative to true north that are then converted to UTM MGA94 Zone 51s. Readings are collected at a maximum spacing of 30m downhole or better. All spatial data presented is relative to UTM MGA94 Zone 51s. A local grid has been generated for the referencing of drill lines both in the field and in sections. This grid is referenced in the report. The local grid utilised a simple two-point translation from UTM MGA94 Zone 51s to Caladan Local, see translation points below: 																				
Data spacing and distribution	<p>Data spacing for reporting of Exploration Results.</p> <p>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity</p>	<table border="1" data-bbox="1034 867 1349 1097"> <caption>Project Grid</caption> <tr> <td>Name</td> <td>UTM MGA94</td> </tr> <tr> <td>X (1)</td> <td>288187.194</td> </tr> <tr> <td>Y (1)</td> <td>7019162.003</td> </tr> <tr> <td>X (2)</td> <td>307986.184</td> </tr> <tr> <td>Y (2)</td> <td>7040375.207</td> </tr> </table> <table border="1" data-bbox="1371 867 1641 1097"> <caption>Additional Grid</caption> <tr> <td>Name</td> <td>Cal Local</td> </tr> <tr> <td>X (1)</td> <td>0</td> </tr> <tr> <td>Y (1)</td> <td>0</td> </tr> <tr> <td>X (2)</td> <td>29000</td> </tr> <tr> <td>Y (2)</td> <td>1000</td> </tr> </table> <ul style="list-style-type: none"> Data from aerial surveys has been used to generate a topographic surface model; this model is used to validate the RL of surveyed holes. The terrain around the prospect area is relatively flat, with no severe changes in topography. YRL diamond and RC across Arrakis are variably spaced variably between 30m and 200m, across strike. All collar details/coordinates are supplied in Table 2 & 3. The hole/data spacing and distribution completed across the Arrakis prospect is NOT sufficient to establish an assessment of the degree of geological and grade continuity; and is NOT appropriate for estimating a Mineral Resource. Only significant gold intercepts have been reported, meaning all intervals >0.3 g/t Au (unless 	Name	UTM MGA94	X (1)	288187.194	Y (1)	7019162.003	X (2)	307986.184	Y (2)	7040375.207	Name	Cal Local	X (1)	0	Y (1)	0	X (2)	29000	Y (2)	1000
Name	UTM MGA94																					
X (1)	288187.194																					
Y (1)	7019162.003																					
X (2)	307986.184																					
Y (2)	7040375.207																					
Name	Cal Local																					
X (1)	0																					
Y (1)	0																					
X (2)	29000																					
Y (2)	1000																					

Criteria	JORC Code explanation	Commentary
	<p>appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</p> <p>Whether sample compositing has been applied.</p>	<p>otherwise stated). These intervals have been reported as a composite where the intercept includes more than one sample. Composites may include up to 4m of continuous internal waste unless otherwise stated, and the final composite grade must exceed 0.1g/t Au. A length weighted average has been used to calculate the average grade of the composite. Samples of variable length (between 0.3m and 1.0m) were used for the reporting of significant intercepts. The first assay result was used for all significant intercepts reported. All intercepts have been reported relative to down-hole length. All intercepts are reported in grams per tonne (g/t). If a single composite includes material with a high-grade sub-interval, this has been reported as a sub-interval. Reported composite intervals were calculated and reviewed by Mr. Christopher Oorschot. All significant intercepts are detailed in Tables 4.</p>
Orientation of data in relation to geological structure	<p>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</p> <p>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</p>	<ul style="list-style-type: none"> For YRL drilling, holes have been drilled at a -60° angle and oriented so as to be orthogonal to the targeted Arrakis trend. This includes both northeast and southwest-directed holes or scissors. Observations from diamond drilling at Arrakis suggest that mineralisation is striking to the northwest and with a sub-vertical dip. No northwest or southeast-directed diamond holes have been completed to adequately test for structure parallel to the drilling direction. Further drilling is needed to determine if sampling bias due to drilling direction is present.
Sample security	The measures taken to ensure sample security.	<ul style="list-style-type: none"> All YRL RC samples were collected on-site under the supervision of a qualified geologist. Calico bags are tied, grouped into larger poly-weave bags that are cable tied, and then placed into sealed bulka bags for transport. The labelled bulka bags are then transported directly to the laboratory for analysis via a commercial freight company or YRL geologists. Where a commercial freight company is used for transport, consignment notes and confirmation of receipt by the lab were monitored. All YRL diamond core was transported to Kalgoorlie and delivered directly to a secure yard for cutting. Cut core is then placed into sample bags with a unique numeric ID and sealed, and grouped into larger poly-weave bags sealed with cable ties. The samples were then transported directly to the laboratory in Perth for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	<ul style="list-style-type: none"> No lab audits or reviews have been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<ul style="list-style-type: none"> The Caladan target area, including the Arrakis Prospect, resides in the exploration leases E 53/1843, E 53/2304, E 53/2192 and E 53/1882. Yandal Resources Limited wholly owns these tenements. The tenements are in good standing, and no known impediments exist. The Kultju Native Title Corporation holds native title over the Project.
Exploration done by other parties	<p>Acknowledgment and appraisal of exploration by other parties.</p>	<ul style="list-style-type: none"> Previous operators who have completed exploration across the Caladan target area include Eagle Mining, Hunter Resources and Great Central Mines. Work completed by these operators included limited RAB drilling. The RAB drilling data is of reasonable quality but considered largely ineffective. For historic RAB drilling completed by Eagle Mining in 1995, derived from WAMEX Report A047408, samples were taken over discrete lithological changes of varying lengths. Holes were terminated once a recognisable saprolitic horizon was intercepted. For historic RAB drilling completed by Hunter Resources in 1995, derived from WAMEX Report A047408, samples were collected as 4m composites from the transported/residual interface to the bottom of the hole.
Geology	<p>Deposit type, geological setting and style of mineralisation.</p>	<ul style="list-style-type: none"> The Caladan target area, including the Arrakis Prospect, hosts Archaean Orogenic Gold mineralisation. The prospect is located within the Yandal Greenstone Belt, a greenstone terrain of the Yilgarn Craton. Mineralisation is hosted within an interpreted volcano-sedimentary sequence of variable width bracketed by a broad dolerite sequence to the west, and a pillow basalt sequence to the east. Mineralisation is interpreted to be structurally controlled. The Archaean rocks are overlain by 4-20m of transported cover.
Drill hole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> 	<ul style="list-style-type: none"> See Tables 2, 3 & 4. All drilling has been reported, either within this announcement or in previous announcements. No information is excluded.

Criteria	JORC Code explanation	Commentary
	<p>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</p>	
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	<ul style="list-style-type: none"> Only significant gold intercepts have been reported, meaning all intervals $>0.3 \text{ g/t Au}$ (unless otherwise stated). These intervals have been reported as a composite where the intercept includes more than one sample. Composites may include up to 4m of continuous internal waste unless otherwise stated, and the final composite grade must exceed 0.3 g/t Au. Samples of varying length were used for the reporting of significant intercepts. The first reported assay result was used for all significant intercepts reported. All intercepts have been reported relative to down-hole length. All intercepts are reported in grams per tonne (g/t). If a single composite includes a material high-grade sub-interval, this has been reported. Reported composite intervals were calculated and reviewed by Mr Christopher Oorschot. All significant intercepts are detailed in Table 4. No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</p>	<ul style="list-style-type: none"> Initial interpretations across the Arrakis Prospect suggest mineralisation is striking to the northwest and dipping steeply to the northeast. The drill direction is broadly orthogonal to the strike of mineralisation. True widths are approximately 60% of the downhole width.
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</p>	<ul style="list-style-type: none"> See Figures in the main body of this report and Tables 2, 3 & 4.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	<ul style="list-style-type: none"> • All significant intercepts have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	<ul style="list-style-type: none"> • Several larger drainage systems transect the Caladan target area. • Transported cover is well cemented, and a rock-breaker is needed to construct sumps to hold drilling water.
Further work	<p>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<ul style="list-style-type: none"> • Further work across the Caladan target area and Arrakis Prospect includes: <ul style="list-style-type: none"> ○ 100m spaced RC drilling in 2026, ○ Further diamond drilling in 2026 ○ Analysis of bottom-of-hole multi-element data from recently completed air-core drilling, ○ Routine down-hole pXRF analysis of RC sample pulps is underway ○ The submission of select samples for multi-element analysis, ○ The preparation of thin sections on select samples and petrographic analysis, ○ Infill ground gravity survey will be scheduled for early 2026. ○ Preliminary metallurgical analysis of fresh rock mineralisation. ○ Baseline flora and fauna surveys are being scheduled for early 2026.