

ASX / MEDIA ANNOUNCEMENT

16 JANUARY 2026

## MOUNT IDA GOLD ANOMALY OUTCROP CHANNEL SAMPLING

### HIGHLIGHTS

- Rock chip channel sampling on outcrops and wider spaced soil sampling completed on previous unsampled areas.
- Channel samples taken across quartz vein systems, significant values returned,
  - 5.17 g/t Au – JQV1\_XS4\_02
  - 1.08 g/t Au – JQV1\_XS6\_05
  - 6.60 g/t Au – JQV4A\_XS1\_04
- The soil sampling results are expected late January.
- From the channel sampling, a first pass shallow drill program will be planned.

Juno Minerals Limited (ASX: JNO) ('**Juno**' or '**the Company**') is pleased to announce that in mid-December a second field trip was undertaken by BMGS out of Kalgoorlie to follow up the anomalous gold areas previously identified, (See ASX announcement Mount Ida Gold-in-Soil Anomalies Identified – 27 November 2025 and Figure 1). This involved rock chip cross sectional channel sampling across identified outcrops and further wide spaced soil sampling across previously unsampled areas on approximate 500 m x 100 m grid to support target generation and to identify additional gold anomalies and prospective structures not recognised in earlier programs. The results of this program are expected to be received late January.

The field program was designed to better define the style, extent, and continuity of gold mineralisation, identify auriferous quartz veins, characterise vein geometry and alteration halos within the host basalts, and confirm the true surface expression of mineralised structures. Detailed outcrop mapping and channel sampling were completed across seven quartz vein systems, with a total of 23 channel samples collected. Channel samples were taken using hand tools (hammers and chisels) and oriented as close as practicable to perpendicular to vein strike. Gold anomalism was identified over multiple sections of the primary target; **QV1**, (See Figure 2) significant assay results returned from the program include:

- 5.17 g/t Au over 0.32 m
- 1.08 g/t Au over 0.30 m
- 6.60 g/t Au over 0.05 m

Based on the results of surface mapping and channel sampling, Juno is planning shallow RC drilling to test:

- Down-dip extensions of mineralised quartz veins
- Along-strike continuity of QV1
- Sub-outcropping vein segments not directly observed or sampled at surface.

In addition, once soil sampling assay results are received and interpreted, (See Figure 3) infill soil sampling may be undertaken over any areas of anomalous identified, to refine priority ground truthing targets and to support further drill targeting.

Quartz vein widths vary from discrete single lodes up to 2.0 metres wide to zones comprising multiple narrow, bifurcating lodes approximately 0.4 metres thick over composite widths of up to 4.0 metres.

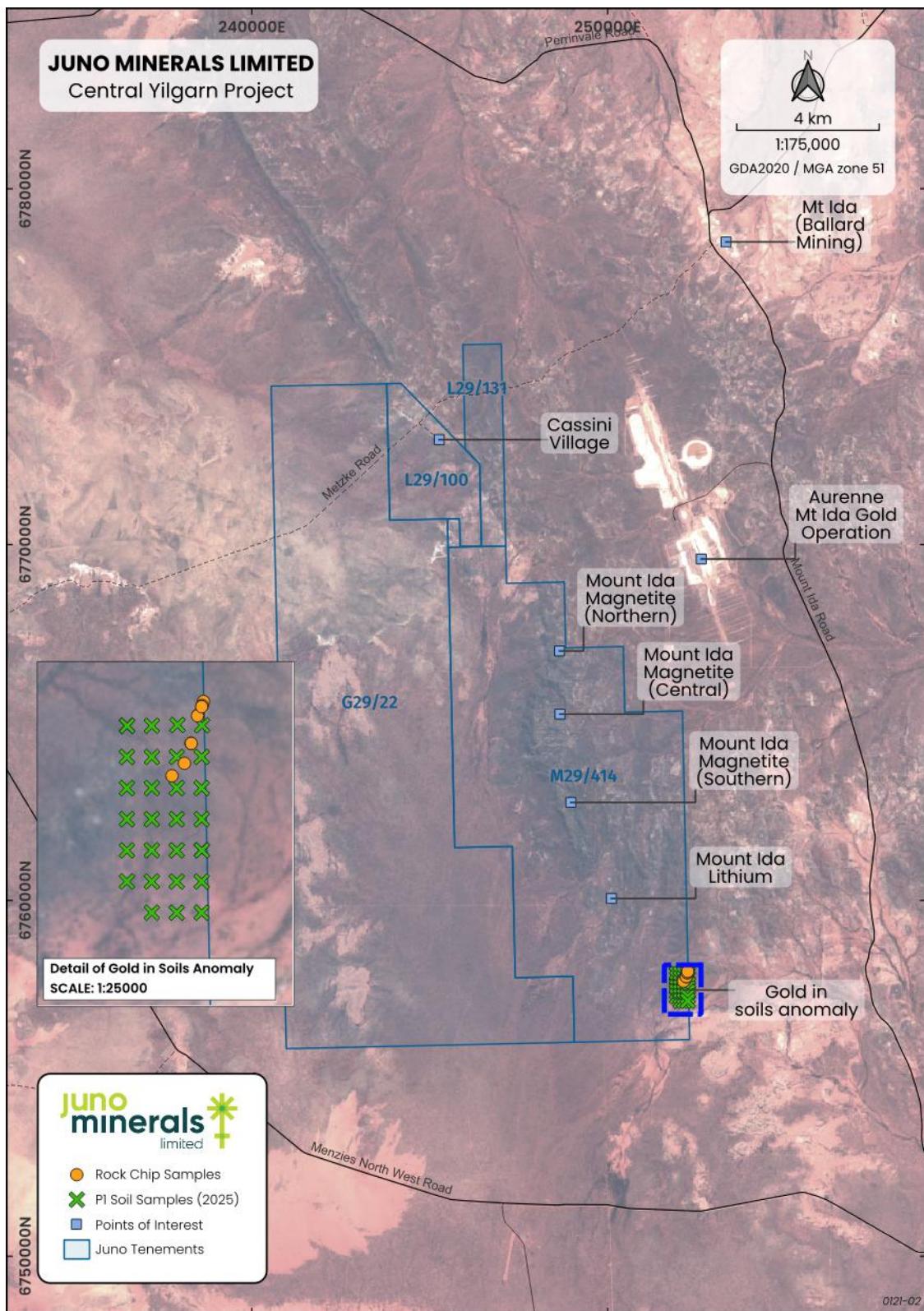
A total of 23 channel cross-sections were completed across the vein systems, with section lengths ranging from approximately 1.0 m to 5.2 m, and individual quartz vein intersections ranging from 0.1 m to 3.05 m.

The host lithology comprises predominantly foliated basalts. Gold mineralisation is interpreted to be orogenic in style, largely confined to quartz veins and the immediate vein–basalt contacts. Alteration of the host basalts is generally weak and spatially restricted to the vein margins.

At QV1, a northeast–southwest trending quartz vein, auriferous mineralisation has been confirmed over approximately 160 metres and a further 50 metres of exposed outcrop. An additional ~180 metres of sub-outcropping quartz vein between sampled sections was interpreted but not sampled during this program.

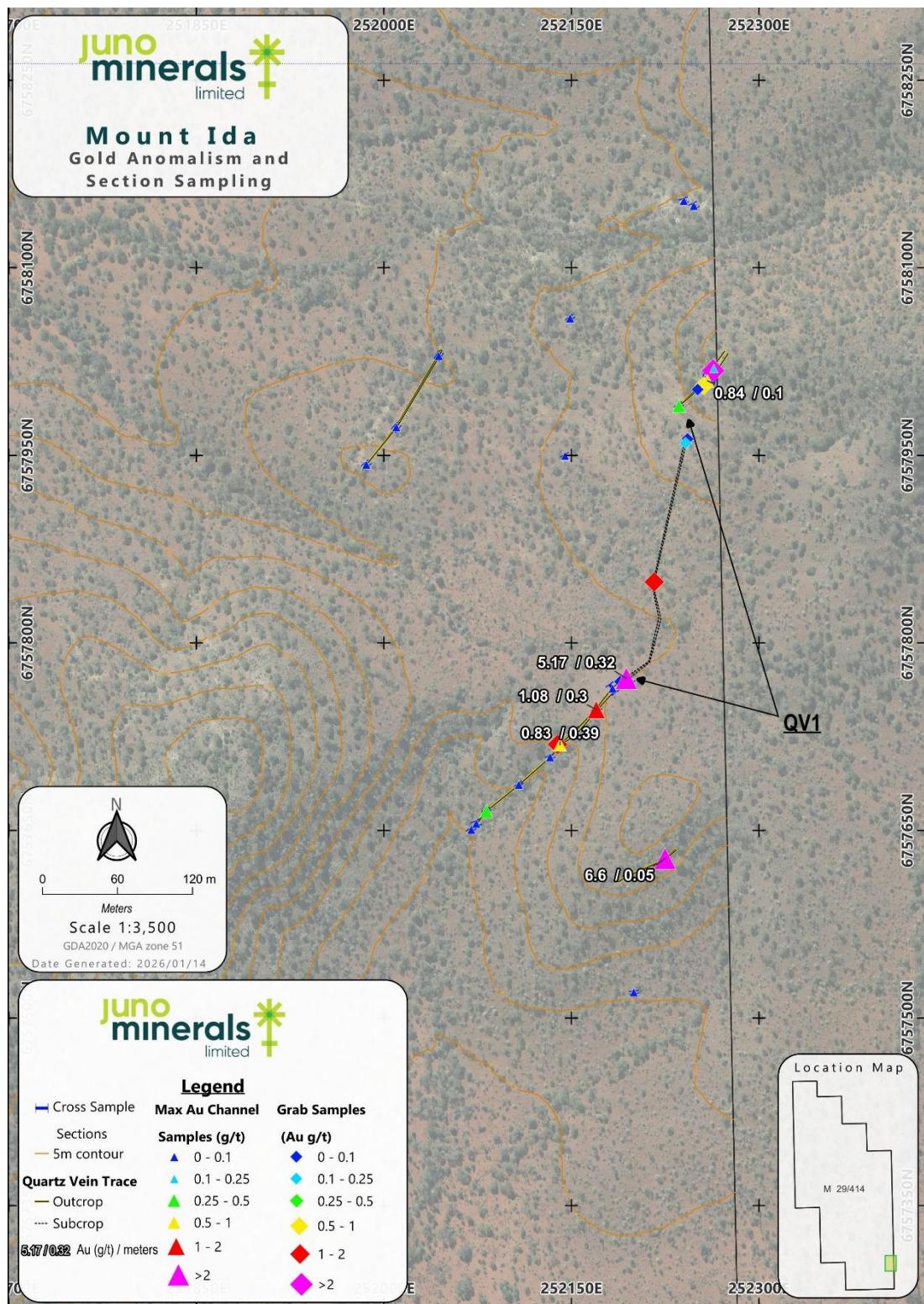
Juno will now plan a Heritage Clearance program to undertake a first pass drill program, with Juno having a significant cash balance and impending royalty income stream from the sale of the Mount Mason DSO Hematite Project, and with gold projects and an operating gold mine nearby this presents a great opportunity for Juno to progress as expeditiously as possible.

This announcement has been approved for release by Greg Durack on behalf of the Board.

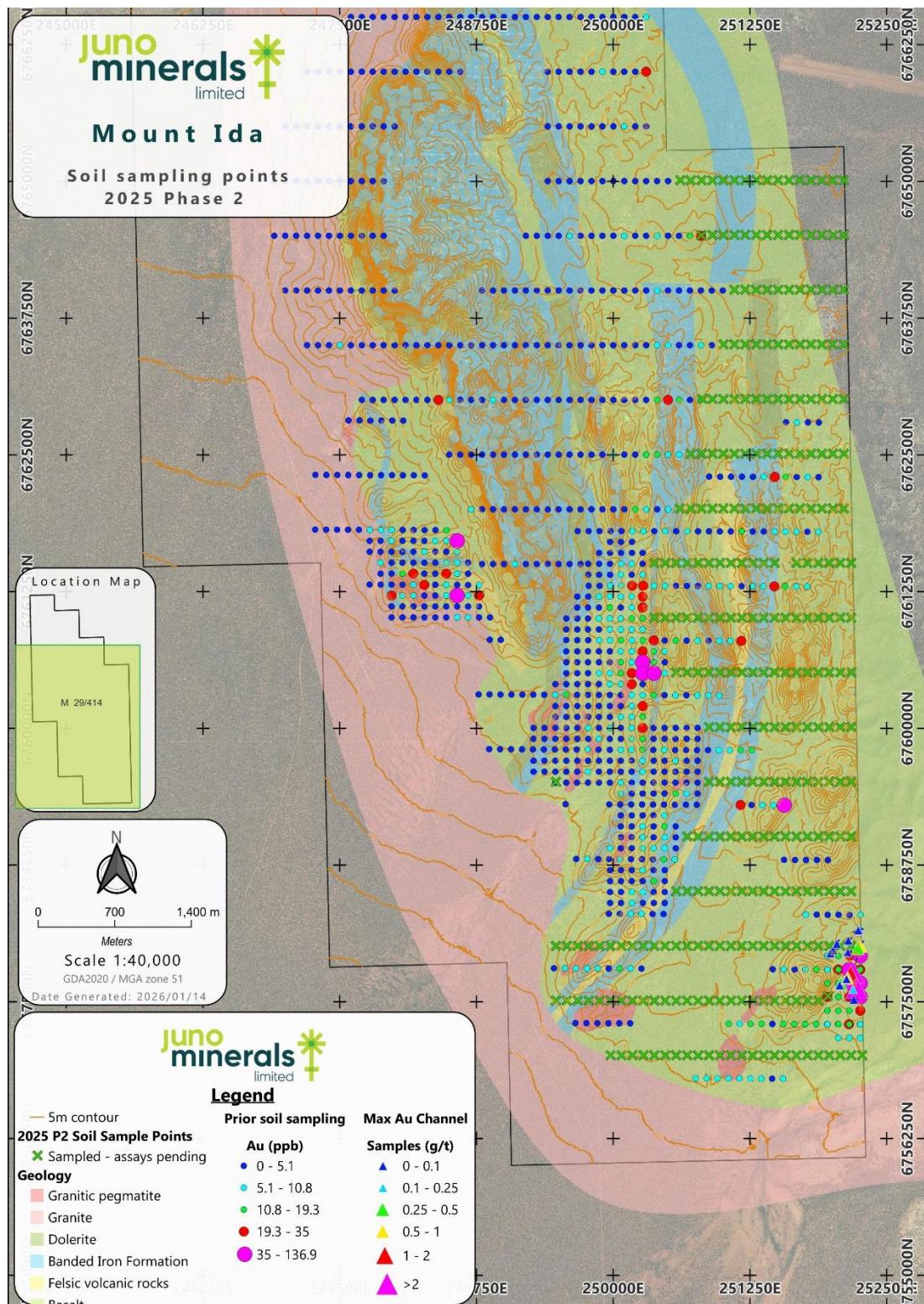

## CONTACTS

### Investor Relations

Greg Durack – Managing Director and CEO


P: + 61(0)8 9346 5599

E: [investorrelations@junominerals.com.au](mailto:investorrelations@junominerals.com.au)




**Figure 1: Southern gold-in-soils anomaly.**

For personal use only



**Figure 2: Channel Sampling Across Identified Quartz Veins.**



**Figure 3: Gold Phase 2 Soil Sample Points (Assay Results Awaited).**

## **APPENDIX 1 – Competent Persons**

### **Andrew Bewsher – BM Geological Services Pty Ltd**

The information in this report that relates to exploration results is based on and fairly represents information reviewed by Andrew Bewsher, a Competent Person who is a Member of the Australasian Institute of Geoscientists. Andrew Bewsher is a full-time employee of BM Geological Services Pty Ltd who provide geological consultancy services to Juno Minerals Limited. Andrew Bewsher has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code"). Andrew Bewsher consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

All parties have consented to the inclusion of their work for the purposes of this announcement. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the author at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however might be, they make no claim for absolute certainty. Any economic decisions which might be taken on the basis of the interpretations or conclusions contained in this presentation will therefore carry an element of risk.

## APPENDIX 2 – CHANNEL SAMPLES

| Section ID | Section Midpoint Easting | Section Midpoint Northing | Lode Strike | Lode Dip | Sample ID   | Sample Type | Date Sampled | From (cm) | To (cm) | Interval Width (cm) | Lithology         | Au (g/t) | Description                                                                                               |
|------------|--------------------------|---------------------------|-------------|----------|-------------|-------------|--------------|-----------|---------|---------------------|-------------------|----------|-----------------------------------------------------------------------------------------------------------|
| JQV1_XS1   | 252263                   | 6758018                   | 211         |          | JQV1_XS1_01 | CS          | 11/12/2025   | 0         | 70      | 70                  | Fol Mba           | 0.005    | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
|            |                          |                           |             |          | JQV1_XS1_02 | CS          | 11/12/2025   | 70        | 100     | 30                  | Fol Mba, Calcrete | 0.04     | Foliated, fine grained, mafic basalt protolith gneiss and calcrete (Footwall)                             |
|            |                          |                           |             |          | JQV1_XS1_03 | CS          | 11/12/2025   | 100       | 125     | 25                  | Qtz               | 0.005    | 25cm, semi opalescent, saccharoidal, vuggy milky quartz. Vugs are gossan filled                           |
|            |                          |                           |             |          | JQV1_XS1_04 | CS          | 11/12/2025   | 125       | 145     | 20                  | Fol Mba           | 0.005    | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
|            |                          |                           |             |          | JQV1_XS1_05 | CS          | 11/12/2025   | 145       | 170     | 25                  | Qtz               | 0.005    | Semi opalescent, saccharoidal, vuggy milky quartz. Boxwork fractures. Vugs are gossan filled              |
|            |                          |                           |             |          | JQV1_XS1_06 | CS          | 11/12/2025   | 170       | 252     | 82                  | Fol Mba           | 0.01     | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
|            |                          |                           |             |          | JQV1_XS1_07 | CS          | 11/12/2025   | 252       | 277     | 25                  | Qtz               | 0.11     | Semi opalescent, saccharoidal, vuggy ferrous milky quartz. Boxwork fractures. Vugs are gossan filled      |
|            |                          |                           |             |          | JQV1_XS1_08 | CS          | 11/12/2025   | 277       | 322     | 45                  | Qtz               | 0.03     | Semi opalescent, saccharoidal, ferrous milky quartz. Boxwork fractures. Vugs are gossan filled            |
|            |                          |                           |             |          | JQV1_XS1_09 | CS          | 11/12/2025   | 322       | 347     | 25                  | Qtz               | 0.09     | Semi opalescent, saccharoidal, vuggy ferrous milky quartz. Boxwork fractures. Vugs are gossan filled - 2% |
|            |                          |                           |             |          | JQV1_XS1_10 | CS          | 11/12/2025   | 347       | 377     | 30                  | Fol Mba           | 0.005    | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
|            |                          |                           |             |          | JQV1_XS1_11 | CS          | 11/12/2025   | 377       | 447     | 70                  | Fol Mba           | 0.005    | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
|            |                          |                           |             |          | JQV1_XS1_12 | BLANK       |              |           |         |                     | Coarse Blank      | 0.005    | Pass                                                                                                      |
|            |                          |                           |             |          | JQV1_XS1_13 | BLANK       |              |           |         |                     | Fine Blank        | 0.005    | Pass                                                                                                      |
|            |                          |                           |             |          | JQV1_XS1_14 | CRM         |              |           |         |                     | G399-4            | 0.91     | Pass                                                                                                      |
| JQV1_XS2   | 252259                   | 6758009                   | 200         | 70       | JQV1_XS2_01 | CS          | 12/12/2025   | 0         | 170     | 170                 | Fol Mba           | 0.03     | Fine grained foliated mafic basalt protolith gneiss                                                       |
|            |                          |                           |             |          | JQV1_XS2_02 | CS          | 12/12/2025   | 170       | 180     | 10                  | Qtz               | 0.84     | saccharoidal, vuggy milky quartz, contact with HW, vugs are gossan filled                                 |
|            |                          |                           |             |          | JQV1_XS2_03 | CS          | 12/12/2025   | 180       | 280     | 100                 | Qtz               | 0.005    | 100cm, saccharoidal, massive milky quartz                                                                 |
|            |                          |                           |             |          | JQV1_XS2_04 | CS          | 12/12/2025   | 280       | 290     | 10                  | Calcrete, Qtz     | 0.43     | saccharoidal, vuggy ferrous milky quartz. Vugs are gossan filled. Footwall contact                        |
|            |                          |                           |             |          | JQV1_XS2_05 | CS          | 12/12/2025   | 290       | 520     | 230                 | Fol Mba           | 0.03     | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
| JQV1_XS3   | 252235                   | 6757988                   | 236         |          | JQV1_XS3_01 | CS          | 12/12/2025   | 0         | 70      | 70                  | Fol Mba           | 0.03     | Foliated, fine grained, mafic basalt protolith gneiss                                                     |
|            |                          |                           |             |          | JQV1_XS3_02 | CS          | 12/12/2025   | 70        | 90      | 20                  | Qtz               | 0.27     |                                                                                                           |

|           |        |         |     |    |               |    |            |     |     |    |                        |       |                                                                                                                                                                                           |
|-----------|--------|---------|-----|----|---------------|----|------------|-----|-----|----|------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |        |         |     |    | JQV1_XS3_03   | CS | 12/12/2025 | 90  | 160 | 70 | Fol Mba                | 0.03  | Foliated, fine grained, mafic basalt protolith gneiss                                                                                                                                     |
| JQV2_XS1  | 252009 | 6757971 | 220 | 70 | JQV2_XS1_01   | CS | 12/12/2025 | 0   | 60  | 60 | Fol Mba                | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                       |
|           |        |         |     |    | JQV2_XS1_02   | CS | 12/12/2025 | 60  | 90  | 30 | Qtz                    | 0.005 | saccharoidal, massive milky quartz. Minor ferrous alteration                                                                                                                              |
|           |        |         |     |    | JQV2_XS1_03   | CS | 12/12/2025 | 90  | 115 | 25 | Calcrete, Fol Mba      | 0.005 | Brecciated calcrete, angular fragments of foliated basalt within the matrix                                                                                                               |
|           |        |         |     |    | JQV2_XS1_04   | CS | 12/12/2025 | 115 | 140 | 25 | Qtz                    | 0.02  | saccharoidal, massive milky quartz. Minor ferrous alteration                                                                                                                              |
|           |        |         |     |    | JQV2_XS1_05   | CS | 12/12/2025 | 140 | 210 | 70 | Fol Mba                | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                       |
| JQV2_XS2  | 251985 | 6757941 | 230 | 70 | JQV2_XS2_01   | CS | 12/12/2025 | 0   | 60  | 60 | Calcrete, Qtz, Fol Mba | 0.02  | 3cm wide milky quartz vein, brecciated calcrete with angular fragments of foliated basalt                                                                                                 |
|           |        |         |     |    | JQV2_XS2_02   | CS | 12/12/2025 | 60  | 90  | 30 | Calcrete, Fol Mba      | 0.02  | Fine grained foliated mafic basalt protolith gneiss, calcrete is observed. Hanging wall                                                                                                   |
|           |        |         |     |    | JQV2_XS2_03   | CS | 12/12/2025 | 90  | 100 | 10 | Calcrete, Qtz          | 0.005 | 20cm, saccharoidal, massive milky quartz. Minor ferrous alteration                                                                                                                        |
|           |        |         |     |    | JQV2_XS2_04   | CS | 12/12/2025 | 100 | 120 | 20 | Qtz, Fol Mba           | 0.005 | saccharoidal, massive milky quartz. Possibly a fault plain                                                                                                                                |
|           |        |         |     |    | JQV2_XS2_05   | CS | 12/12/2025 | 120 | 190 | 70 | Fol Mba                | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                       |
| JQV2_XS3  | 252043 | 6758028 | 208 |    | JQV2_XS3_01   | CS | 12/12/2025 | 0   | 30  | 30 | Fol Mba                | 0.04  | Fine grained, moderately foliated, grey, moderately weathered basalt gneiss                                                                                                               |
|           |        |         |     |    | JQV2_XS3_02   | CS | 12/12/2025 | 30  | 60  | 30 | Qtz                    | 0.005 | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Evidence of trace sulphide oxidation on fractures,                                                                             |
|           |        |         |     |    | JQV2_XS3_03   | CS | 12/12/2025 | 60  | 130 | 70 | Qtz                    | 0.005 | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Evidence of trace sulphide oxidation on fractures,                                                                             |
|           |        |         |     |    | JQV2_XS3_04   | CS | 12/12/2025 | 130 | 160 | 30 | Qtz                    | 0.005 | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Evidence of trace sulphide oxidation on fractures. Contact edges are highly fractured and mixed with heavily weathered basalt. |
|           |        |         |     |    | JQV2_XS3_05   | CS | 12/12/2025 | 160 | 210 | 50 | Fol Mba                | 0.005 | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Up to 2% sulphide oxidation on vuggy HW and FW contacts - oil slick mineral on unweathered fractures, possibly bornite?        |
| JQV3A_XS1 | 252144 | 6757948 | 240 | 80 | JQV3A_XS1_01  | CS | 12/12/2025 | 0   | 40  | 40 | Fol Mba                | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                       |
|           |        |         |     |    | JQV3A_XS1_02  | CS | 12/12/2025 | 40  | 65  | 25 | Qtz                    | 0.06  | 20cm, saccharoidal, massive ferrous milky quartz.                                                                                                                                         |
|           |        |         |     |    | JQV3A_XS1_02D | CS | 12/12/2025 | 65  | 65  | 0  | Qtz                    | 0.02  | 20cm, saccharoidal, massive ferrous milky quartz.                                                                                                                                         |
|           |        |         |     |    | JQV3A_XS1_03  | CS | 12/12/2025 | 65  | 105 | 40 | Fol Mba                | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                       |
| JQV1_XS4  | 252196 | 6757767 | 227 | 72 | JQV1_XS4_01   | CS | 16/12/2025 | 0   | 30  | 30 | Fol Mba                | 0.005 | Foliated, fine grained, mafic basalt protolith gneiss . Hanging wall                                                                                                                      |
|           |        |         |     |    | JQV1_XS4_02   | CS | 16/12/2025 | 30  | 62  | 32 | Qtz                    | 5.17  | saccharoidal, vuggy ferrous milky quartz. Vugs are gossan filled. HW contact                                                                                                              |
|           |        |         |     |    | JQV1_XS4_03   | CS | 16/12/2025 | 62  | 85  | 23 | Qtz                    | 0.1   | saccharoidal, massive milky quartz. Minor ferrous alteration                                                                                                                              |

|                 |        |         |     |    |             |       |            |     |     |    |              |       |                                                                                                                                                                                    |
|-----------------|--------|---------|-----|----|-------------|-------|------------|-----|-----|----|--------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |        |         |     |    | JQV1_XS4_04 | CS    | 16/12/2025 | 85  | 105 | 20 | Qtz          | 0.13  | saccharoidal, massive milky quartz.                                                                                                                                                |
|                 |        |         |     |    | JQV1_XS4_05 | CS    | 16/12/2025 | 105 | 120 | 15 | Qtz          | 0.005 | saccharoidal, vuggy ferrous milky quartz. Vugs are gossan filled. Footwall contact                                                                                                 |
|                 |        |         |     |    | JQV1_XS4_06 | CS    | 16/12/2025 | 120 | 145 | 25 | Fol Mba      | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                |
| <b>JQV1_XS5</b> | 252182 | 6757762 | 234 | 74 | JQV1_XS5_01 | CS    | 16/12/2025 | 0   | 40  | 40 | Fol Mba      | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                |
|                 |        |         |     |    | JQV1_XS5_02 | CS    | 16/12/2025 | 40  | 70  | 30 | Qtz, Fol Mba | 0.005 | saccharoidal, vuggy ferrous milky quartz. Vugs are gossan filled. HW contact                                                                                                       |
|                 |        |         |     |    | JQV1_XS5_03 | CS    | 16/12/2025 | 70  | 130 | 60 | Qtz          | 0.005 | saccharoidal, ferrous milky quartz.                                                                                                                                                |
|                 |        |         |     |    | JQV1_XS5_04 | CS    | 16/12/2025 | 130 | 177 | 47 | Qtz          | 0.005 | saccharoidal, massive milky quartz                                                                                                                                                 |
|                 |        |         |     |    | JQV1_XS5_05 | CS    | 16/12/2025 | 177 | 230 | 53 | Qtz          | 0.005 | saccharoidal, massive milky quartz. Minor ferrous alteration                                                                                                                       |
|                 |        |         |     |    | JQV1_XS5_06 | CS    | 16/12/2025 | 230 | 250 | 20 | Qtz          | 0.005 | saccharoidal, massive milky quartz. Minor ferrous alteration. Contact footwall                                                                                                     |
|                 |        |         |     |    | JQV1_XS5_07 | CS    | 16/12/2025 | 250 | 310 | 60 | Fol Mba      | 0.005 | Foliated, fine grained, mafic basalt protolith gneiss                                                                                                                              |
|                 |        |         |     |    | JQV1_XS5_08 | CS    | 16/12/2025 | 310 | 345 | 35 | Qtz          | 0.005 | 10cm, saccharoidal milky quartz                                                                                                                                                    |
|                 |        |         |     |    | JQV1_XS5_09 | CS    | 16/12/2025 | 345 | 385 | 40 | Fol Mba      | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                                                                |
|                 |        |         |     |    | JQV1_XS5_10 | BLANK |            |     |     |    | Coarse Blank | 0.005 | Pass                                                                                                                                                                               |
|                 |        |         |     |    | JQV1_XS5_11 | BLANK |            |     |     |    | Fine Blank   | 0.005 | Pass                                                                                                                                                                               |
|                 |        |         |     |    | JQV1_XS5_12 | CRM   |            |     |     |    | G399-4       | 0.84  | Pass                                                                                                                                                                               |
| <b>JQV1_XS6</b> | 252169 | 6757745 | 224 | 70 | JQV1_XS6_01 | CS    | 16/12/2025 | 0   | 45  | 45 | Fol Mba      | 0.005 | Fine grained, moderately foliated, grey, moderately weathered basalt gneiss                                                                                                        |
|                 |        |         |     |    | JQV1_XS6_02 | CS    | 16/12/2025 | 45  | 100 | 55 | Fol Mba      | 0.01  | Fine grained, moderately to heavily foliated, grey, moderately to heavily weathered basalt gneiss                                                                                  |
|                 |        |         |     |    | JQV1_XS6_03 | CS    | 16/12/2025 | 100 | 120 | 20 | Qtz          | 0.04  | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Evidence of trace sulphide oxidation on fractures,                                                                      |
|                 |        |         |     |    | JQV1_XS6_04 | CS    | 16/12/2025 | 120 | 150 | 30 | Fol Mba      | 0.02  | Fine grained, strongly foliated, heavily weathered, brownish grey basalt gneiss                                                                                                    |
|                 |        |         |     |    | JQV1_XS6_05 | CS    | 16/12/2025 | 150 | 180 | 30 | Qtz          | 1.08  | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Up to 2% sulphide oxidation on vuggy HW and FW contacts - oil slick mineral on unweathered fractures, possibly bornite? |
|                 |        |         |     |    | JQV1_XS6_06 | CS    | 16/12/2025 | 180 | 210 | 30 | Qtz, Fol Mba | 0.04  | Interbedded thin quartz stringers up to 15mm and highly weathered basalt - unit is heavily fractured with the strongly foliated basalts being light greenish grey                  |
|                 |        |         |     |    | JQV1_XS6_07 | CS    | 16/12/2025 | 210 | 240 | 30 | Fol Mba      | 0.005 | Fine grained, moderately foliated, grey, moderately weathered basalt gneiss                                                                                                        |
| <b>JQV1_XS7</b> | 252153 | 6757727 | 245 | 55 | JQV1_XS7_01 | CS    | 16/12/2025 | 0   | 30  | 30 | Fol Mba      | 0.005 | Fine grained, moderately foliated, brown to grey, moderately to heavily weathered basalt gneiss                                                                                    |

|                  |        |         |     |    |              |       |            |     |     |     |              |       |                                                                                                                                           |
|------------------|--------|---------|-----|----|--------------|-------|------------|-----|-----|-----|--------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                  |        |         |     |    | JQV1_XS7_02  | CS    | 16/12/2025 | 30  | 50  | 20  | Qtz          | 0.005 | Milky, slightly ferrous, saccharoidal quart vein, Minor signs of sulphide oxidation                                                       |
|                  |        |         |     |    | JQV1_XS7_03  | CS    | 16/12/2025 | 50  | 180 | 130 | Fol Mba      | 0.005 | Fine grained, moderately foliated, brown to grey, moderately to heavily weathered basalt gneiss                                           |
|                  |        |         |     |    | JQV1_XS7_04  | CS    | 16/12/2025 | 180 | 190 | 10  | Qtz          | 0.005 | Narrow, milky, slightly ferrous, saccharoidal quartz vein, Minor signs of sulphide oxidation                                              |
|                  |        |         |     |    | JQV1_XS7_05  | CS    | 16/12/2025 | 190 | 280 | 90  | Fol Mba      | 0.005 | Fine grained, moderately foliated, brown to grey, moderately to heavily weathered basalt gneiss                                           |
|                  |        |         |     |    | JQV1_XS7_06  | CS    | 16/12/2025 | 280 | 300 | 20  | Qtz          | 0.005 | Narrow, milky, slightly ferrous, saccharoidal quartz vein, Moderate signs of sulphide oxidation                                           |
|                  |        |         |     |    | JQV1_XS7_07  | CS    | 16/12/2025 | 300 | 340 | 40  | Fol Mba      | 0.005 | Fine grained, moderately foliated, brown to grey, moderately to heavily weathered basalt gneiss                                           |
| <b>JQV1_XS8</b>  | 252140 | 6757717 | 223 | 71 | JQV1_XS8_01  | CS    | 16/12/2025 | 0   | 40  | 40  | Fol Mba      | 0.005 | Fine grained, very foliated mafic basalt protolith gneiss                                                                                 |
|                  |        |         |     |    | JQV1_XS8_02  | CS    | 16/12/2025 | 40  | 72  | 32  | Qtz          | 0.005 | 20cm, saccharoidal,                                                                                                                       |
|                  |        |         |     |    | JQV1_XS8_03  | CS    | 16/12/2025 | 72  | 105 | 33  | Fol Mba      | 0.03  | Fine grained foliated mafic basalt protolith gneiss                                                                                       |
|                  |        |         |     |    | JQV1_XS8_04  | CS    | 16/12/2025 | 105 | 144 | 39  | Qtz          | 0.83  | saccharoidal, vuggy ferrous milky quartz. Vugs are gossan filled.                                                                         |
|                  |        |         |     |    | JQV1_XS8_05  | CS    | 16/12/2025 | 144 | 207 | 63  | Fol Mba      | 0.17  | Fine grained, very foliated mafic basalt protolith gneiss                                                                                 |
| <b>JQV1_XS9</b>  | 252132 | 6757707 | 250 | 50 | JQV1_XS9_01  | CS    | 16/12/2025 | 0   | 50  | 50  | Fol Mba      | 0.005 | Fine grained, moderately to heavily foliated, grey, moderately to heavily weathered basalt gneiss                                         |
|                  |        |         |     |    | JQV1_XS9_02  | CS    | 16/12/2025 | 50  | 75  | 25  | Qtz          | 0.005 | Milky, slightly ferrous, semi opaque, saccharoidal quartz. Evidence of trace sulphide oxidation on fractures,                             |
|                  |        |         |     |    | JQV1_XS9_03  | CS    | 16/12/2025 | 75  | 140 | 65  | Fol Mba      | 0.03  | Fine grained, moderately to heavily foliated, grey, moderately to heavily weathered basalt gneiss                                         |
| <b>JQV4A_XS1</b> | 252223 | 6757625 | 247 | 32 | JQV4A_XS1_01 | CS    | 17/12/2025 | 0   | 45  | 45  | Fol Mba      | 0.005 | Fine grained, moderately weathered, moderately foliated basalt gneiss                                                                     |
|                  |        |         |     |    | JQV4A_XS1_02 | CS    | 17/12/2025 | 45  | 55  | 10  | Qtz          | 0.005 | Saccharoidal, ferrous, laminated contact milky quartz vein. No signs of mineralisation                                                    |
|                  |        |         |     |    | JQV4A_XS1_03 | CS    | 17/12/2025 | 55  | 105 | 50  | Fol Mba      | 0.005 | Fine grained, moderately weathered, moderately foliated basalt gneiss - significant increase in foliation within 5cm of vein contacts     |
|                  |        |         |     |    | JQV4A_XS1_04 | CS    | 17/12/2025 | 105 | 110 | 5   | Qtz          | 6.6   | Saccharoidal, ferrous, laminated contact milky quartz vein. No signs of mineralisation. Vein opens and closes regularly across 6m outcrop |
|                  |        |         |     |    | JQV4A_XS1_05 | CS    | 17/12/2025 | 110 | 155 | 45  | Fol Mba      | 0.04  | Fine grained, moderately weathered, moderately foliated basalt gneiss                                                                     |
|                  |        |         |     |    | JQV4A_XS1_06 | BLANK |            |     |     |     | Coarse Blank | 0.005 | Pass                                                                                                                                      |
|                  |        |         |     |    | JQV4A_XS1_07 | BLANK |            |     |     |     | Fine Blank   | 0.005 | Pass                                                                                                                                      |
|                  |        |         |     |    | JQV4A_XS1_08 | CRM   |            |     |     |     | G399-4       | 0.86  | Pass                                                                                                                                      |
| <b>JQV4A_XS2</b> | 252194 | 6757612 | 248 | 36 | JQV4A_XS2_01 | CS    | 17/12/2025 | 0   | 55  | 55  | Fol Mba      | 0.005 | Fine grained, moderately weathered, moderately foliated basalt gneiss. Single 20mm unmineralised quartz vein                              |

|                  |        |         |     |    |              |       |            |     |     |    |                |       |                                                                                                                      |
|------------------|--------|---------|-----|----|--------------|-------|------------|-----|-----|----|----------------|-------|----------------------------------------------------------------------------------------------------------------------|
|                  |        |         |     |    | JQV4A_XS2_02 | CS    | 17/12/2025 | 55  | 77  | 22 | Qtz, Felsic QV | 0.13  | Upper contact of QV appears to contain a fine grained felsic unit- not mica or k-feldspar. No clear mineralisation   |
|                  |        |         |     |    | JQV4A_XS2_03 | CS    | 17/12/2025 | 77  | 97  | 20 | Qtz            | 0.005 | Saccharoidal, semi opalescent milky quartz vein with no signs of sulphide mineralisation                             |
|                  |        |         |     |    | JQV4A_XS2_04 | CS    | 17/12/2025 | 97  | 147 | 50 | Fol Mba        | 0.005 | Fine grained, moderately weathered, moderately foliated basalt gneiss                                                |
| <b>JQV4B_XS1</b> | 252199 | 6757519 | 263 | 28 | JQV4B_XS1_01 | CS    | 17/12/2025 | 0   | 40  | 40 | Fol Mba        | 0.005 | Heavily weathered, weakly foliated, aphanitic basalt gneiss                                                          |
|                  |        |         |     |    | JQV4B_XS1_02 | CS    | 17/12/2025 | 40  | 50  | 10 | Qtz            | 0.005 | Narrow, 8cm flat dipping saccharoidal quartz vein. No signs of mineralisation                                        |
|                  |        |         |     |    | JQV4B_XS1_03 | CS    | 17/12/2025 | 50  | 110 | 60 | Fol Mba        | 0.005 | Heavily weathered, weakly foliated, aphanitic basalt gneiss                                                          |
| <b>JQV1_XS10</b> | 252107 | 6757685 | 232 | 68 | JQV1_XS10_01 | CS    | 17/12/2025 | 0   | 25  | 25 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss, hanging wall.                                                   |
|                  |        |         |     |    | JQV1_XS10_02 | CS    | 17/12/2025 | 25  | 65  | 40 | Qtz            | 0.005 | 20 cm wide, saccharoidal , vuggy milky quartz vein. Vugs are gossan filled. Minor ferrous oxidation                  |
|                  |        |         |     |    | JQV1_XS10_03 | CS    | 17/12/2025 | 65  | 95  | 30 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss. Footwall.                                                       |
| <b>JQV1_XS11</b> | 252081 | 6757664 | 236 | 66 | JQV1_XS11_01 | CS    | 17/12/2025 | 0   | 20  | 20 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss, hanging wall.                                                   |
|                  |        |         |     |    | JQV1_XS11_02 | CS    | 17/12/2025 | 20  | 45  | 25 | Qtz            | 0.27  | Saccharoidal, vuggy milky quartz vein, vugs are gossan filled. Moderate ferrous oxidation. Contact with hanging wall |
|                  |        |         |     |    | JQV1_XS11_03 | CS    | 17/12/2025 | 45  | 55  | 10 | Qtz            | 0.005 | Saccharoidal, vuggy milky quartz vein. Vugs are gossan filled. Minor ferrous oxidation. Internal vein sample         |
|                  |        |         |     |    | JQV1_XS11_04 | CS    | 17/12/2025 | 55  | 90  | 35 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss, Foot wall                                                       |
| <b>JQV1_XS12</b> | 252073 | 6757654 | 244 | 70 | JQV1_XS12_01 | CS    | 17/12/2025 | 0   | 20  | 20 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss, hanging wall                                                    |
|                  |        |         |     |    | JQV1_XS12_02 | CS    | 17/12/2025 | 20  | 55  | 35 | Qtz            | 0.005 | Saccharoidal, vuggy milky quartz vein. Vugs are gossan filled. Strong ferrous oxidation. Contact with hanging wall.  |
|                  |        |         |     |    | JQV1_XS12_03 | CS    | 17/12/2025 | 55  | 85  | 30 | Qtz            | 0.08  | Saccharoidal, vuggy milky quartz. Vugs are gossan filled. Low Ferrous oxidation                                      |
|                  |        |         |     |    | JQV1_XS12_04 | CS    | 17/12/2025 | 85  | 126 | 41 | Qtz            | 0.005 | Saccharoidal, vuggy milky quartz vein. Abundant gossan filling vugs and fractures.                                   |
|                  |        |         |     |    | JQV1_XS12_05 | CS    | 17/12/2025 | 126 | 180 | 54 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss, Foot wall                                                       |
| <b>JQV1_XS13</b> | 252069 | 6757649 | 233 | 67 | JQV1_XS13_01 | CS    | 17/12/2025 | 0   | 15  | 15 | Fol Mba        | 0.04  | Fine grained foliated mafic basalt protolith gneiss, hanging wall.                                                   |
|                  |        |         |     |    | JQV1_XS13_02 | CS    | 17/12/2025 | 15  | 50  | 35 | Qtz            | 0.005 | 15 cm wide saccharoidal, vuggy milky quartz vein,                                                                    |
|                  |        |         |     |    | JQV1_XS13_03 | CS    | 17/12/2025 | 50  | 80  | 30 | Qtz, Fol Mba   | 0.005 | Quartz boxwork intruding fine grained foliated basalt, strong ferrous oxidation. Gossan filling vugs.                |
|                  |        |         |     |    | JQV1_XS13_04 | CS    | 17/12/2025 | 80  | 140 | 60 | Fol Mba        | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                  |
|                  |        |         |     |    | JQV3_XS1_04  | BLANK |            |     |     |    | Coarse Blank   | 0.005 | Pass                                                                                                                 |
|                  |        |         |     |    | JQV3_XS1_05  | BLANK |            |     |     |    | Fine Blank     | 0.005 | Pass                                                                                                                 |

|                 |        |         |     |    |             |     |            |     |     |    |                  |       |                                                                                                                                                |
|-----------------|--------|---------|-----|----|-------------|-----|------------|-----|-----|----|------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |        |         |     |    | JQV3_XS1_06 | CRM |            |     |     |    | G399-4           | 0.86  | Pass                                                                                                                                           |
| <b>JQV3_XS2</b> | 252247 | 6758148 | 245 | 74 | JQV3_XS2_01 | CS  | 18/12/2025 | 0   | 20  | 20 | Fol Mba          | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                            |
|                 |        |         |     |    | JQV3_XS2_02 | CS  | 18/12/2025 | 20  | 50  | 30 | Qtz              | 0.005 | 6 cm wide sacchroidal ferrous milky quartz vein. Strong ferrous oxidation filling fractures.                                                   |
|                 |        |         |     |    | JQV3_XS2_03 | CS  | 18/12/2025 | 50  | 100 | 50 | Fol Mba          | 0.005 | Fine grained foliated mafic basalt protolith gneiss                                                                                            |
|                 |        |         |     |    | JQV3_XS2_04 | CS  | 18/12/2025 | 100 | 150 | 50 | Qtz              | 0.005 | 15 cm wide sacchroidal ferrous massive milky quartz vein.                                                                                      |
|                 |        |         |     |    | JQV3_XS2_05 | CS  | 18/12/2025 | 150 | 190 | 40 | Snd Fol Mba      | 0.005 | Unconsolidated, loose sandy material of foliated basalt, fine to medium grained sand, composed mainly of basalt grains with calcrete material. |
|                 |        |         |     |    | JQV3_XS2_06 | CS  | 18/12/2025 | 190 | 200 | 10 | Fol Mba          | 0.005 | Fine grained foliated mafic basalt protolith gneiss, Foot wall                                                                                 |
| <b>JQV3_XS3</b> | 252239 | 6758152 | 251 | 71 | JQV3_XS3_01 | CS  | 18/12/2025 | 0   | 30  | 30 | Fol Mba          | 0.005 | Fine grained foliated mafic basalt protolith gneiss, Hanging wall                                                                              |
|                 |        |         |     |    | JQV3_XS3_02 | CS  | 18/12/2025 | 30  | 70  | 40 | Qtz              | 0.005 | Sacchroidal vuggy ferrous milky quartz vein. Vugs are gossan filled. Strong ferrous oxidation. Contact Quartz-Hanging wall                     |
|                 |        |         |     |    | JQV3_XS3_03 | CS  | 18/12/2025 | 70  | 120 | 40 | Qtz              | 0.005 | Sacchroidal milky quartz vein. Minor ferrous oxidation. Internal sample                                                                        |
|                 |        |         |     |    | JQV3_XS3_04 | CS  | 18/12/2025 | 120 | 180 | 60 | Fol Mba          | 0.005 | Fine grained foliated mafic basalt protolith gneiss, Foot wall                                                                                 |
| <b>JQV3_XS4</b> | 252148 | 6758058 | 235 | 68 | JQV3_XS4_01 | CS  | 18/12/2025 | 0   | 30  | 30 | Calcrete Fol Mba | 0.005 | Fine grain calcrete with smal fragments of foliated basalt, hanging wall                                                                       |
|                 |        |         |     |    | JQV3_XS4_02 | CS  | 18/12/2025 | 30  | 76  | 46 | Qtz              | 0.005 | Sacchroidal, vuggy and ferrous milky quartz vein. Vugs are gossan filled. Strong ferrous oxidation filling fractures.                          |
|                 |        |         |     |    | JQV3_XS4_03 | CS  | 18/12/2025 | 76  | 120 | 44 | Calcrete Fol Mba | 0.005 | Fine grain calcrete with smal fragments of foliated basalt. Footwall                                                                           |

## JORC Code, 2012 Edition – Table 1 report template

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sampling techniques</b> | <ul style="list-style-type: none"> <li><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></li> <li><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></li> <li><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></li> </ul> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i></p> | <ul style="list-style-type: none"> <li>Rock chip and channel samples were collected from outcrop using hand tools (hammer and chisel). <ul style="list-style-type: none"> <li>Channel samples were taken where practicable perpendicular to vein strike to approximate true vein width; rock chips were collected from exposed mineralised quartz and immediate vein–host contacts.</li> <li>Channel lengths were recorded in the field and sample intervals were defined by geological boundaries and/or consistent material along the channel.</li> <li>Samples were placed in pre numbered calico bags; the mass of the samples ranged between 0.5kg to 1.5kg.</li> <li>Samples were submitted to Bureau Veritas Kalgoorlie</li> </ul> </li> <li>Bureau Veritas Kalgoorlie used industry standard fire assay with AAS finish for gold analysis</li> <li>Rock chip channel samples are hand collected by the mapping geologist dislodged from in-situ outcrop using a Geo Pick, hammer and chisel.</li> <li>Channel lengths were recorded in the field and sample intervals were defined by geological boundaries and/or consistent material along the channel.</li> <li>Sampling was designed to provide indicative grade information and support geological interpretation of vein-hosted mineralisation.</li> </ul> |

| Criteria                                              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Drilling techniques</b>                            | <ul style="list-style-type: none"> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                           | <ul style="list-style-type: none"> <li>N/A, no drilling is being reported</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Drill sample recovery</b>                          | <ul style="list-style-type: none"> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                        | <ul style="list-style-type: none"> <li>N/A, no drilling is being reported</li> <li>N/A, no drilling is being reported</li> <li>N/A, no drilling is being reported</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Logging</b>                                        | <ul style="list-style-type: none"> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                              | <ul style="list-style-type: none"> <li>All sample sites were logged geologically, including vein style, host lithology, structural measurements (where applicable), and the nature/strength of alteration and mineralisation.</li> <li>Logging is primarily qualitative, supported by recorded coordinates and sample dimensions.</li> <li>Outcrop mapping and field observations were documented; representative site photographs were taken</li> <li>Sample sections covered the entirety of the veins and proportionately into the hanging and footwall zones</li> </ul>                                                                                                                                                                                                      |
| <b>Sub-sampling techniques and sample preparation</b> | <ul style="list-style-type: none"> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field</li> </ul> | <ul style="list-style-type: none"> <li>Samples were collected as either channel cuts or rock chips and placed directly into pre-labelled sample bags.</li> <li>All samples were dry during collection.</li> <li>Samples were dried, crushed and pulverized to at least 85% passing &lt;75μm to produce a homogenous representative sub-sample for analysis by Bureau Veritas.</li> <li>Acceptable levels of accuracy for these rock chips were concluded.</li> <li>The samples and sample locations were weathered, the influence of the weathering of the sample and assaying outcomes are unknown at this stage.</li> <li>Sampling criteria included: <ul style="list-style-type: none"> <li>The sample was a fair representation of the actual outcrop</li> </ul> </li> </ul> |

| Criteria                                          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | <p><i>duplicate/second-half sampling.</i></p> <ul style="list-style-type: none"> <li>• Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <p>mapped and logged.</p> <ul style="list-style-type: none"> <li>○ The sample being in-situ outcrop that has not been transported by mass wasting or human activity.</li> <li>○ Sample mass was at least 300g per sample.</li> </ul> <ul style="list-style-type: none"> <li>• Rock chips were large enough to ensure adequate representivity of the sampled outcrops.</li> <li>• The sample sizes are considered to be appropriate to screen for gold mineralisation and associated geology.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Quality of assay data and laboratory tests</b> | <ul style="list-style-type: none"> <li>• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> </ul> <p><i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established</i></p> | <ul style="list-style-type: none"> <li>• Gold was analysed by fire assay at Bureau Veritas, Kalgoorlie, which is an industry-accepted total digestion technique for Au. Final determination was by AAS finish</li> <li>• N/A</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   | <ul style="list-style-type: none"> <li>• The verification of significant intersections by either independent or alternative company personnel.</li> <li>• The use of twinned holes.</li> <li>• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> </ul>                                                                                                                                                                                                                                                                                                                                       | <ul style="list-style-type: none"> <li>• Coarse blank material, fine blank material and Geostats certified reference material (CRMs) were submitted with the samples. <ul style="list-style-type: none"> <li>○ Evaluation of the CRMs and blanks showed acceptable levels of laboratory accuracy.</li> </ul> </li> <li>• Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. <ul style="list-style-type: none"> <li>○ Bureau veritas used internal CRMs and pulp duplicates</li> </ul> </li> <li>• Significant assays are verified by the Company's Technical Director and Consulting Geologists.</li> <li>• N/A, no drilling is being reported</li> <li>• Primary data was captured onto a geodatabase including geological observations, sample information and QA/QC information and transformed into the applicable GIS files.</li> </ul> |

| Criteria                             | JORC Code explanation                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | <ul style="list-style-type: none"> <li>Discuss any adjustment to assay data</li> </ul>                                                                                                                                        | <ul style="list-style-type: none"> <li>No data adjustment to assay results was applied</li> </ul>                                                                                                                                                                                                                                                              |
| <b>Location of data points</b>       | <ul style="list-style-type: none"> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> </ul> | <ul style="list-style-type: none"> <li>The sample locations were determined using handheld GPS systems, due to the relative lack of thick tree cover the accuracy can be expected to be within +/- 3m on the easting and northing and +/- 5m on the elevation.</li> <li>This is considered adequate for the type and purpose of the mapping survey.</li> </ul> |
|                                      | <ul style="list-style-type: none"> <li>Specification of the grid system used.</li> </ul>                                                                                                                                      | <ul style="list-style-type: none"> <li>The grid system used is GDA2020, MGA Zone 51.</li> </ul>                                                                                                                                                                                                                                                                |
|                                      | <ul style="list-style-type: none"> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                | <ul style="list-style-type: none"> <li>Z values quoted in this report are from the handheld GPS. Historical LIDAR surveys will enable very accurate topographic correlation</li> </ul>                                                                                                                                                                         |
| <b>Data spacing and distribution</b> | <ul style="list-style-type: none"> <li>Data spacing for reporting of Exploration Results.</li> </ul>                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |

| Criteria                 | JORC Code explanation                                                                                                          | Commentary                                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Audits or reviews</b> | <ul style="list-style-type: none"> <li><i>The results of any audits or reviews of sampling techniques and data.</i></li> </ul> | <ul style="list-style-type: none"> <li>Sampling techniques and procedures are regularly internally reviewed by consulting geologists.</li> </ul> |

## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Mineral tenement and land tenure status</b> | <ul style="list-style-type: none"> <li><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></li> <li><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></li> </ul> | <ul style="list-style-type: none"> <li>The Au target area falls within Mining Lease M29/414, which is wholly owned by Juno Minerals Limited, it was granted on 25 November 2011 and expires on 24 November 2032. This tenement has been cleared of Native Title interests</li> <li>The tenement is in good standing with the WA DMP.</li> <li>The main environmental risk for the project relates to nationally significant threatened species, predominantly Mallee fowl. Although there is currently unlikely to be any direct impact to this species, the project will be referred for assessment under the EPBC Act for potential impacts, and subsequent management conditions will need to be implemented.</li> </ul> |
| <b>Exploration done by other parties</b>       | <ul style="list-style-type: none"> <li><i>Acknowledgment and appraisal of exploration by other parties.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | <ul style="list-style-type: none"> <li>The tenement and surrounding area has had extensive hematite exploration since its initial discovery in 1912. Limited augur soil sampling target gold mineralisation over portions of tenement M29/414 was conducted by historical parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Geology</b>                                 | <ul style="list-style-type: none"> <li><i>Deposit type, geological setting and style of mineralisation.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | <ul style="list-style-type: none"> <li>The Juno Minerals Mount Ida project lies in the easternmost part of the Southern Cross domain of the Archean Youanmi Terrane, just west of the Ida fault.</li> <li>Youanmi Terrane greenstone banded iron formation and basalt units dominate the majority of the tenement with the western flank of the tenement hosting Tuckanarra Suite granitoids and Walganna Suite granitoids in the south.</li> <li>Interconnected intrusions of granitic pegmatite up to 20m thick crop out extensively in the south of tenement M29/414. The granitic pegmatite intrusions are heavily modified by ductile deformation and voluminous late-stage injections of aplite.</li> </ul>           |

| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul style="list-style-type: none"> <li>Mineralisation is interpreted to be orogenic gold in style, hosted within quartz veins occurring in predominantly foliated basalts. Gold mineralisation appears largely confined to the quartz veins and immediate vein–basalt contacts. Alteration of the basalt host is generally weak and spatially restricted to vein margins.</li> </ul>                                                                                                                                                                               |
| Drill hole Information                                           | <ul style="list-style-type: none"> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul style="list-style-type: none"> <li>N/A, no drilling is being reported</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data aggregation methods                                         | <ul style="list-style-type: none"> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                                             | <ul style="list-style-type: none"> <li>N/A, no drilling is being reported nor has any resource estimation work been done.</li> <li>N/A, no drilling is being reported nor has any resource estimation work been done.</li> <li>N/A, no drilling is being reported nor has any resource estimation work been done.</li> </ul>                                                                                                                                                                                                                                       |
| Relationship between mineralisation widths and intercept lengths | <ul style="list-style-type: none"> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                                                                                         | <ul style="list-style-type: none"> <li>Channel sampling was oriented as close as practicable to perpendicular to vein strike to approximate true width. Reported sample lengths represent the sample interval along the channel. True width may vary depending on local vein orientation, dip, and exposure; accordingly, reported widths should be considered approximate and are suitable for exploration targeting rather than resource estimation. Narrow high-grade intervals may be subject to nugget effect typical of vein-hosted gold systems.</li> </ul> |

| Criteria                           | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagrams                           | <ul style="list-style-type: none"> <li>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</li> </ul>                                                                                                                    | <ul style="list-style-type: none"> <li>Appropriate maps with scale are included within the body of the accompanying document.</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |
| Balanced reporting                 | <ul style="list-style-type: none"> <li>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</li> </ul>                                                                                                                                                             | <ul style="list-style-type: none"> <li>The accompanying document is considered to represent a balanced report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             |
| Other substantive exploration data | <ul style="list-style-type: none"> <li>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</li> </ul> | <ul style="list-style-type: none"> <li>The program comprised outcrop mapping and channel/rock chip sampling across 23 cross-sections on seven quartz vein systems, including QV1 (NE-SW trending). Auriferous mineralisation has been identified over approximately 160 m and 50 m of exposed outcrop on QV1, with an additional ~180 m of sub-outcropping vein between sections noted but not sampled during the program.</li> <li>Prior soil sampling targeting Li showed elevated gold,</li> </ul> |
| Further work                       | <ul style="list-style-type: none"> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                       | <ul style="list-style-type: none"> <li>A follow soil sampling program is planned to generate further drill targets.</li> <li>Drilling targeting shallow down dip extension of the anomalous gold bearing veins are planned</li> </ul>                                                                                                                                                                                                                                                                 |

### Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                  | JORC Code explanation                                                                                                                                                                                                                                                                                               | Commentary                                                                       |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Database integrity        | <ul style="list-style-type: none"> <li>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul>                         | <ul style="list-style-type: none"> <li>Insert your commentary here...</li> </ul> |
| Site visits               | <ul style="list-style-type: none"> <li>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why this is the case.</li> </ul>                                                                                     | <ul style="list-style-type: none"> <li></li> </ul>                               |
| Geological interpretation | <ul style="list-style-type: none"> <li>Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> <li>The effect, if any, of alternative interpretations on Mineral Resource estimation.</li> </ul> | <ul style="list-style-type: none"> <li></li> </ul>                               |

| Criteria                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                         |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                     | <ul style="list-style-type: none"> <li><i>The use of geology in guiding and controlling Mineral Resource estimation.</i></li> <li><i>The factors affecting continuity both of grade and geology.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| Dimensions                          | <ul style="list-style-type: none"> <li><i>The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul style="list-style-type: none"> <li></li> </ul> |
| Estimation and modelling techniques | <ul style="list-style-type: none"> <li><i>The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</i></li> <li><i>The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.</i></li> <li><i>The assumptions made regarding recovery of by-products.</i></li> <li><i>Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).</i></li> <li><i>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</i></li> <li><i>Any assumptions behind modelling of selective mining units.</i></li> <li><i>Any assumptions about correlation between variables.</i></li> <li><i>Description of how the geological interpretation was used to control the resource estimates.</i></li> <li><i>Discussion of basis for using or not using grade cutting or capping.</i></li> <li><i>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.</i></li> </ul> | <ul style="list-style-type: none"> <li></li> </ul> |
| Moisture                            | <ul style="list-style-type: none"> <li><i>Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul style="list-style-type: none"> <li></li> </ul> |
| Cut-off parameters                  | <ul style="list-style-type: none"> <li><i>The basis of the adopted cut-off grade(s) or quality parameters applied.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul style="list-style-type: none"> <li></li> </ul> |
| Mining factors or assumptions       | <ul style="list-style-type: none"> <li><i>Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul style="list-style-type: none"> <li></li> </ul> |

| Criteria                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                      | <p><i>methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.</i></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Metallurgical factors or assumptions | <ul style="list-style-type: none"> <li><i>The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.</i></li> </ul>                                                                                                                                                       |            |
| Environmental factors or assumptions | <ul style="list-style-type: none"> <li><i>Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.</i></li> </ul> |            |
| Bulk density                         | <ul style="list-style-type: none"> <li><i>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</i></li> <li><i>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.</i></li> <li><i>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</i></li> </ul>                                                                                       |            |
| Classification                       | <ul style="list-style-type: none"> <li><i>The basis for the classification of the Mineral Resources into varying confidence categories.</i></li> <li><i>Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</i></li> <li><i>Whether the result appropriately reflects the Competent Person's view of the deposit.</i></li> </ul>                                                                                                                                                                                               |            |

| Criteria                                          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                          |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| <i>Audits or reviews</i>                          | <ul style="list-style-type: none"> <li><i>The results of any audits or reviews of Mineral Resource estimates.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul style="list-style-type: none"> <li>•</li> </ul> |
| <i>Discussion of relative accuracy/confidence</i> | <ul style="list-style-type: none"> <li><i>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</i></li> <li><i>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</i></li> <li><i>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</i></li> </ul> | <ul style="list-style-type: none"> <li>•</li> </ul> |

#### Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

| Criteria                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                         |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <i>Mineral Resource estimate for conversion to Ore Reserves</i> | <ul style="list-style-type: none"> <li><i>Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve.</i></li> <li><i>Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.</i></li> </ul>                                                                                                                                                                                                                       | <ul style="list-style-type: none"> <li>• Insert your commentary here...</li> </ul> |
| <i>Site visits</i>                                              | <ul style="list-style-type: none"> <li><i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i></li> <li><i>If no site visits have been undertaken indicate why this is the case.</i></li> </ul>                                                                                                                                                                                                                                                                        | <ul style="list-style-type: none"> <li>•</li> </ul>                                |
| <i>Study status</i>                                             | <ul style="list-style-type: none"> <li><i>The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves.</i></li> <li><i>The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered.</i></li> </ul> | <ul style="list-style-type: none"> <li>•</li> </ul>                                |

| Criteria                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                         |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Cut-off parameters                   | <ul style="list-style-type: none"> <li><i>The basis of the cut-off grade(s) or quality parameters applied.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li></li> </ul> |
| Mining factors or assumptions        | <ul style="list-style-type: none"> <li><i>The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design).</i></li> <li><i>The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.</i></li> <li><i>The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling.</i></li> <li><i>The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate).</i></li> <li><i>The mining dilution factors used.</i></li> <li><i>The mining recovery factors used.</i></li> <li><i>Any minimum mining widths used.</i></li> <li><i>The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.</i></li> <li><i>The infrastructure requirements of the selected mining methods.</i></li> </ul> | <ul style="list-style-type: none"> <li></li> </ul> |
| Metallurgical factors or assumptions | <ul style="list-style-type: none"> <li><i>The metallurgical process proposed and the appropriateness of that process to the style of mineralisation.</i></li> <li><i>Whether the metallurgical process is well-tested technology or novel in nature.</i></li> <li><i>The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.</i></li> <li><i>Any assumptions or allowances made for deleterious elements.</i></li> <li><i>The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole.</i></li> <li><i>For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?</i></li> </ul>                                                                                                                                                                                                                                                               | <ul style="list-style-type: none"> <li></li> </ul> |
| Environmental                        | <ul style="list-style-type: none"> <li><i>The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul style="list-style-type: none"> <li></li> </ul> |

| Criteria          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Infrastructure    | <ul style="list-style-type: none"> <li><i>The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                 | <ul style="list-style-type: none"> <li>•</li> </ul> |
| Costs             | <ul style="list-style-type: none"> <li><i>The derivation of, or assumptions made, regarding projected capital costs in the study.</i></li> <li><i>The methodology used to estimate operating costs.</i></li> <li><i>Allowances made for the content of deleterious elements.</i></li> <li><i>The source of exchange rates used in the study.</i></li> <li><i>Derivation of transportation charges.</i></li> <li><i>The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc.</i></li> <li><i>The allowances made for royalties payable, both Government and private.</i></li> </ul> | <ul style="list-style-type: none"> <li>•</li> </ul> |
| Revenue factors   | <ul style="list-style-type: none"> <li><i>The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc.</i></li> <li><i>The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products.</i></li> </ul>                                                                                                                                                                                                                                      | <ul style="list-style-type: none"> <li>•</li> </ul> |
| Market assessment | <ul style="list-style-type: none"> <li><i>The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.</i></li> <li><i>A customer and competitor analysis along with the identification of likely market windows for the product.</i></li> <li><i>Price and volume forecasts and the basis for these forecasts.</i></li> <li><i>For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.</i></li> </ul>                                                                                      | <ul style="list-style-type: none"> <li>•</li> </ul> |
| Economic          | <ul style="list-style-type: none"> <li><i>The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc.</i></li> <li><i>NPV ranges and sensitivity to variations in the significant assumptions and inputs.</i></li> </ul>                                                                                                                                                                                                                                                                                        | <ul style="list-style-type: none"> <li>•</li> </ul> |
| Social            | <ul style="list-style-type: none"> <li><i>The status of agreements with key stakeholders and matters leading to social licence to operate.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul style="list-style-type: none"> <li>•</li> </ul> |
| Other             | <ul style="list-style-type: none"> <li><i>To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves:</i></li> <li><i>Any identified material naturally occurring risks.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    | <ul style="list-style-type: none"> <li>•</li> </ul> |

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                                            | <ul style="list-style-type: none"> <li><i>The status of material legal agreements and marketing arrangements.</i></li> <li><i>The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| Classification                             | <ul style="list-style-type: none"> <li><i>The basis for the classification of the Ore Reserves into varying confidence categories.</i></li> <li><i>Whether the result appropriately reflects the Competent Person's view of the deposit.</i></li> <li><i>The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li></li> </ul> |
| Audits or reviews                          | <ul style="list-style-type: none"> <li><i>The results of any audits or reviews of Ore Reserve estimates.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul style="list-style-type: none"> <li></li> </ul> |
| Discussion of relative accuracy/confidence | <ul style="list-style-type: none"> <li><i>Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate.</i></li> <li><i>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</i></li> <li><i>Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.</i></li> <li><i>It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</i></li> </ul> | <ul style="list-style-type: none"> <li></li> </ul> |

## Section 5 Estimation and Reporting of Diamonds and Other Gemstones

(Criteria listed in other relevant sections also apply to this section. Additional guidelines are available in the 'Guidelines for the Reporting of Diamond Exploration Results' issued by the Diamond Exploration Best Practices Committee established by the Canadian Institute of Mining, Metallurgy and Petroleum.)

| Criteria                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                       |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Indicator minerals               | <ul style="list-style-type: none"> <li>Reports of indicator minerals, such as chemically/physically distinctive garnet, ilmenite, chrome spinel and chrome diopside, should be prepared by a suitably qualified laboratory.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul style="list-style-type: none"> <li>Insert your commentary here...</li> </ul> |
| Source of diamonds               | <ul style="list-style-type: none"> <li>Details of the form, shape, size and colour of the diamonds and the nature of the source of diamonds (primary or secondary) including the rock type and geological environment.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul style="list-style-type: none"> <li></li> </ul>                               |
| Sample collection                | <ul style="list-style-type: none"> <li>Type of sample, whether outcrop, boulders, drill core, reverse circulation drill cuttings, gravel, stream sediment or soil, and purpose (eg large diameter drilling to establish stones per unit of volume or bulk samples to establish stone size distribution).</li> <li>Sample size, distribution and representivity.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    | <ul style="list-style-type: none"> <li></li> </ul>                               |
| Sample treatment                 | <ul style="list-style-type: none"> <li>Type of facility, treatment rate, and accreditation.</li> <li>Sample size reduction. Bottom screen size, top screen size and re-crush.</li> <li>Processes (dense media separation, grease, X-ray, hand-sorting, etc).</li> <li>Process efficiency, tailings auditing and granulometry.</li> <li>Laboratory used, type of process for micro diamonds and accreditation.</li> </ul>                                                                                                                                                                                                                                                                                                                      | <ul style="list-style-type: none"> <li></li> </ul>                               |
| Carat                            | <ul style="list-style-type: none"> <li>One fifth (0.2) of a gram (often defined as a metric carat or MC).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul style="list-style-type: none"> <li></li> </ul>                               |
| Sample grade                     | <ul style="list-style-type: none"> <li>Sample grade in this section of Table 1 is used in the context of carats per units of mass, area or volume.</li> <li>The sample grade above the specified lower cut-off sieve size should be reported as carats per dry metric tonne and/or carats per 100 dry metric tonnes. For alluvial deposits, sample grades quoted in carats per square metre or carats per cubic metre are acceptable if accompanied by a volume to weight basis for calculation.</li> <li>In addition to general requirements to assess volume and density there is a need to relate stone frequency (stones per cubic metre or tonne) to stone size (carats per stone) to derive sample grade (carats per tonne).</li> </ul> | <ul style="list-style-type: none"> <li></li> </ul>                               |
| Reporting of Exploration Results | <ul style="list-style-type: none"> <li>Complete set of sieve data using a standard progression of sieve sizes per facies. Bulk sampling results, global sample grade per facies. Spatial structure analysis and grade distribution. Stone size and number distribution. Sample head feed and tailings particle</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul style="list-style-type: none"> <li></li> </ul>                               |

| Criteria                                                          | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                   | <p><i>granulometry.</i></p> <ul style="list-style-type: none"> <li>• <i>Sample density determination.</i></li> <li>• <i>Per cent concentrate and undersize per sample.</i></li> <li>• <i>Sample grade with change in bottom cut-off screen size.</i></li> <li>• <i>Adjustments made to size distribution for sample plant performance and performance on a commercial scale.</i></li> <li>• <i>If appropriate or employed, geostatistical techniques applied to model stone size, distribution or frequency from size distribution of exploration diamond samples.</i></li> <li>• <i>The weight of diamonds may only be omitted from the report when the diamonds are considered too small to be of commercial significance. This lower cut-off size should be stated.</i></li> </ul>                                                                                                                                                                                            |            |
| Grade estimation for reporting Mineral Resources and Ore Reserves | <ul style="list-style-type: none"> <li>• <i>Description of the sample type and the spatial arrangement of drilling or sampling designed for grade estimation.</i></li> <li>• <i>The sample crush size and its relationship to that achievable in a commercial treatment plant.</i></li> <li>• <i>Total number of diamonds greater than the specified and reported lower cut-off sieve size.</i></li> <li>• <i>Total weight of diamonds greater than the specified and reported lower cut-off sieve size.</i></li> <li>• <i>The sample grade above the specified lower cut-off sieve size.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                         | •          |
| Value estimation                                                  | <ul style="list-style-type: none"> <li>• <i>Valuations should not be reported for samples of diamonds processed using total liberation method, which is commonly used for processing exploration samples.</i></li> <li>• <i>To the extent that such information is not deemed commercially sensitive, Public Reports should include:</i> <ul style="list-style-type: none"> <li>◦ <i>diamonds quantities by appropriate screen size per facies or depth.</i></li> <li>◦ <i>details of parcel valued.</i></li> <li>◦ <i>number of stones, carats, lower size cut-off per facies or depth.</i></li> </ul> </li> <li>• <i>The average \$/carat and \$/tonne value at the selected bottom cut-off should be reported in US Dollars. The value per carat is of critical importance in demonstrating project value.</i></li> <li>• <i>The basis for the price (eg dealer buying price, dealer selling price, etc).</i></li> <li>• <i>An assessment of diamond breakage.</i></li> </ul> | •          |
| Security and integrity                                            | <ul style="list-style-type: none"> <li>• <i>Accredited process audit.</i></li> <li>• <i>Whether samples were sealed after excavation.</i></li> <li>• <i>Valuer location, escort, delivery, cleaning losses, reconciliation with recorded sample carats and number of stones.</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •          |

| Criteria       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                | <ul style="list-style-type: none"> <li>Core samples washed prior to treatment for micro diamonds.</li> <li>Audit samples treated at alternative facility.</li> <li>Results of tailings checks.</li> <li>Recovery of tracer monitors used in sampling and treatment.</li> <li>Geophysical (logged) density and particle density.</li> <li>Cross validation of sample weights, wet and dry, with hole volume and density, moisture factor.</li> </ul> |                                                    |
| Classification | <ul style="list-style-type: none"> <li>In addition to general requirements to assess volume and density there is a need to relate stone frequency (stones per cubic metre or tonne) to stone size (carats per stone) to derive grade (carats per tonne). The elements of uncertainty in these estimates should be considered, and classification developed accordingly.</li> </ul>                                                                  | <ul style="list-style-type: none"> <li></li> </ul> |