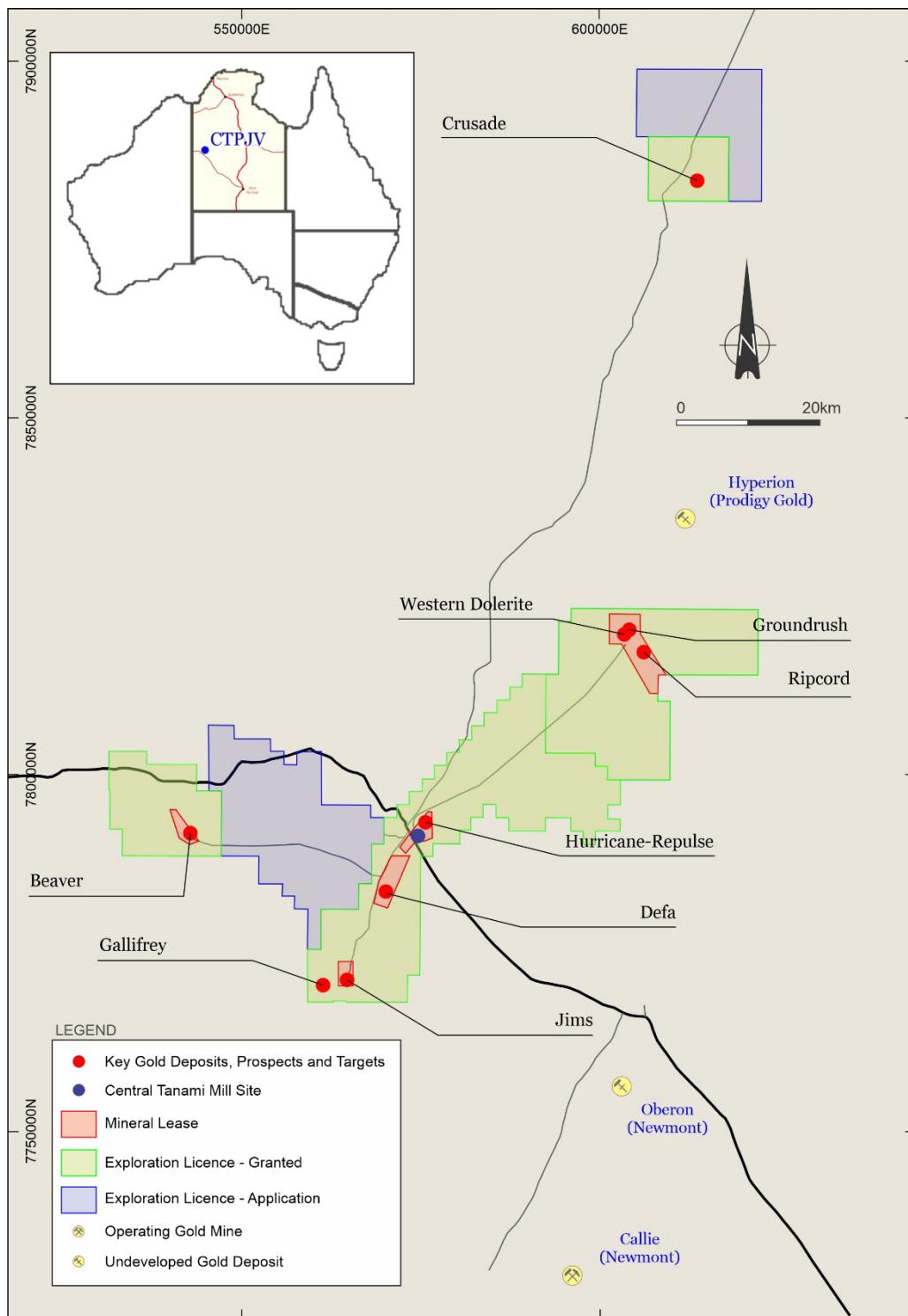


FURTHER ENCOURAGING RESULTS RECEIVED FROM JIMS

- Final assay results from the 2025 drill campaign have been received from the 11-hole Reverse Circulation pre-collar / Diamond Core tail drilling program completed at the historic Jims Gold Mine on the Central Tanami Project JV.
- The program was designed to evaluate the down-dip and northern extensions of known mineralisation at Jims.
- Results returned several encouraging intercepts, including:
 - 27.00 metres @ 1.62 g/t gold from 521.00 metres in JPRCD0029A
 - 22.58 metres @ 3.50 g/t gold from 533.69 metres in JPRCD0030A
 - 5.11 metres @ 10.89 g/t gold from 558.29 metres in JPRCD0030A
 - 7.00 metres @ 4.86 g/t gold from 268.00 metres in JPRCD0031
 - 4.00 metres @ 29.12 g/t gold from 282.00 metres in JPRCD0031
- Drilling has confirmed the continuity of mineralisation, now defined over approximately a 900-metre strike length and to a vertical extent of 500 metres. Mineralisation remains open along strike to the north and at depth.
- Drilling at Jims is planned to resume following the Northern Australian wet season.
- Final assay results from the 2025 drill campaign were also received from the 6-hole Reverse Circulation drilling program at the early-stage Defa Prospect, returning several narrow but significant intercepts, including 2.00 metres @ 5.05 g/t gold and 2.00 metres @ 5.27 g/t gold.

Perth, Australia, 16 January 2026: Tanami Gold NL (ASX: TAM) (Tanami Gold or the Company) is pleased to announce receipt of final assay results from the 11-hole Reverse Circulation pre-collar / Diamond Core tail (RCD) drilling program completed at the historic Jims Gold Mine (Jims), together with final results from a 6-hole Reverse Circulation (RC) drilling program at the Defa Prospect (Defa).


These programs represent the final drilling campaigns of the 2025 field season, during which a total of 29,973.67 metres was drilled across multiple targets within the Central Tanami Project (CTP), including Jims, Defa, Gallifrey, Western Dolerite, and the Groundrush Gold Mine.

Mr Brett Smith, Director of Tanami Gold NL, commented:

“The latest results from Jims are highly encouraging and clearly demonstrate the potential for Jims to emerge as a strong, complementary baseload deposit to Groundrush within the Central Tanami Project Joint Venture (CTPJ). The scale, continuity and depth extent of mineralisation support the opportunity for both a meaningful open pit cutback and the development of underground mining at depth along the main Jims lode. We are very excited by what we are seeing and look forward to the upcoming field season, where a focused resource definition drilling program will be a key step in unlocking further value across the CTPJV.”

The CTPJV is operated as a 50/50 joint venture between Tanami Gold and Northern Star Resources Limited (ASX: NST). The CTPJV controls a 2,108 km² tenement package in the Tanami Region of the Northern Territory and was established to advance exploration and development activities, with a primary objective of progressing the Groundrush gold deposit, together with any additional gold deposits delineated within the tenement holding.

MGX Resources Limited (formerly Mount Gibson Iron Limited) (**ASX: MGX**) announced on 17 July 2025 that it had entered into an agreement to acquire Northern Star's 50% interest in the CTPJV. On 3 December 2025, MGX reported that approval from the Foreign Investment Review Board had been received. Completion of the transaction remains subject to the satisfaction of remaining conditions, which are anticipated to be met ahead of the contractual long-stop date of 31 March 2026.

Figure 1 – Central Tanami Project Joint Venture Tenement Holding

Jims Gold Mine

An 11-hole Reverse Circulation pre-collar / Diamond Core tail (**RCD**) drilling program was undertaken to further evaluate the down-dip and northern extensions of known mineralisation at Jims. Final assay results from the 2025 drill campaign have now been received for all holes, returning several noteworthy intercepts including:

- 0.70 metres @ 28.94 g/t gold from 256.00 metres in JPRCD0026
- 8.00 metres @ 2.09 g/t gold from 452.50 metres in JPRCD0026
- 27.00 metres @ 1.62 g/t gold from 521.00 metres in JPRCD0029A
- 22.58 metres @ 3.50 g/t gold from 533.69 metres in JPRCD0030A
- 5.11 metres @ 10.89 g/t gold from 558.29 metres in JPRCD0030A
- 7.00 metres @ 4.86 g/t gold from 268.00 metres in JPRCD0031
- 4.00 metres @ 29.12 g/t gold from 282.00 metres in JPRCD0031
- 1.40 metres @ 16.58 g/t gold from 349.00 metres in JPRCD0032
- 3.00 metres @ 6.51 g/t gold from 294.00 metres in JPRCD0033

The results align well with earlier drilling completed within the targeted area, further reinforcing the importance of the Jims area to the joint venture. Drilling has confirmed the continuity of mineralisation both to the north and down-dip, with mineralisation now identified over an approximately 900-metre strike length and to a vertical extent of 500 metres. Mineralisation remains open along strike to the north and at depth. Drilling at Jims is planned to resume following the Northern Australian wet season.

Details of the holes drilled in the reported program and the results received are provided in Table 1.

TANAMI GOLD NL

Table 1 – Results for the Jims Reverse Circulation Pre-Collar - Diamond Core Tail drilling program. Intercepts reported at a 1.00 g/t gold cut-off

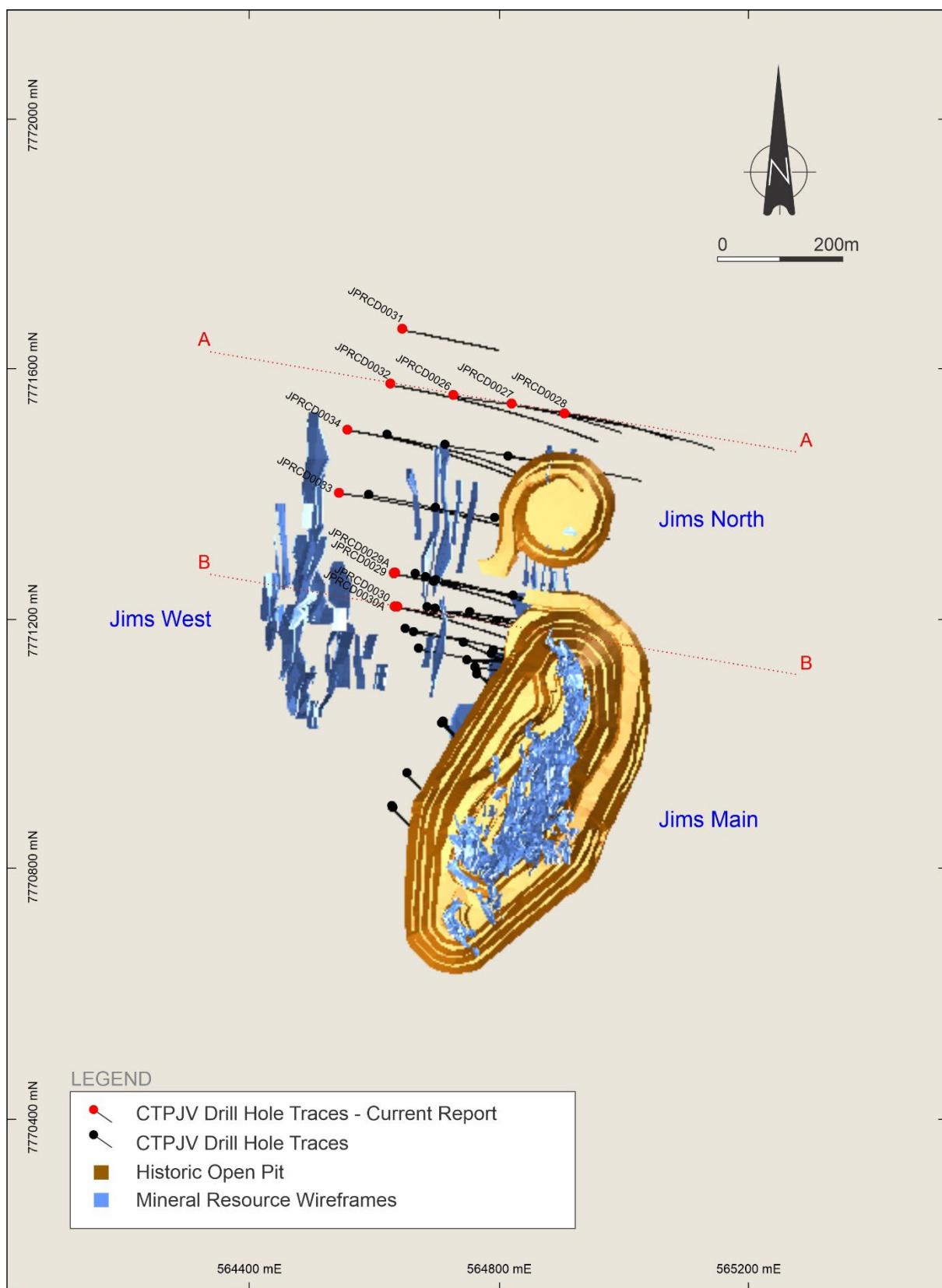
Hole	East	North	Elevation	Azimuth (°)	Dip (°)	Length (m)	From (m)	Down Hole Interval (m)	Gold (g/t)
JPRCD0026	564724.20	7771556.57	413.11	98.46	-61.04	533.25	43.00	1.00	1.64
							61.00	2.00	2.39
							169.60	1.10	2.82
							244.34	3.66	3.49
						Includes 0.77 metres @ 13.05 g/t gold from 244.89 metres			
							256.00	0.70	28.94
						Includes 0.30 metres @ 38.06 g/t gold from 256.00 metres and 0.40 metres @ 21.70 g/t gold from 256.30 metres			
							300.20	0.32	36.20
							305.00	0.50	1.07
							312.30	5.00	2.47
							363.70	0.55	1.49
							397.36	2.64	3.02
						Includes 0.45 metres @ 13.15 g/t gold from 399.55 metres			
							427.70	4.70	1.82
							436.53	5.87	1.98
							444.00	6.00	2.41
							452.50	8.00	2.09
JPRCD0027	564819.00	7771543.00	425.00	99.17	-61.04	518.50	116.00	1.00	1.51
							120.00	1.00	1.38
							135.00	1.00	1.61
							149.00	0.60	14.95
							156.14	5.26	2.63
							171.00	0.46	7.04
							184.00	1.57	2.09
							207.70	0.51	1.49
							210.11	3.67	1.15
							493.80	1.90	1.84
							505.70	1.84	2.63
JPRCD0028	564903.00	7771527.00	425.00	101.13	-60.75	504.31	172.40	0.70	3.10
JPRCD0029	564630.77	7771271.65	415.15	101.29	-60.59	198.00	42.00	1.00	2.11
							57.00	1.00	5.37
							189.00	1.00	1.47
JPRCD0029A	564631.00	7771272.00	421.00	99.17	-70.99	599.24	91.00	1.00	7.56
							177.00	1.00	1.69
							218.10	0.60	1.07
							224.10	0.33	1.43
							229.36	1.43	4.44
							238.48	0.60	2.78
							267.64	1.00	1.94
							293.60	0.37	1.74
							343.05	0.40	1.16
							345.74	0.61	2.51
							352.30	1.15	2.82
							435.87	0.30	2.71
							454.17	2.53	2.58
							460.63	0.42	1.29
							465.62	0.38	2.05
							469.36	0.57	1.22
							489.82	0.32	2.01
							493.18	0.43	1.22
							502.00	4.00	2.19
							510.50	0.50	1.66
							521.00	27.00	1.62

TANAMI GOLD NL

							560.00	0.50	15.55
JPRCD0030	564633.81	7771218.26	415.11	99.15	-61.69	198.00	48.00	1.00	1.61
							126.00	1.00	2.56
							135.00	1.00	1.07
							158.00	1.00	2.79
							180.00	1.00	3.83
							193.00	1.00	1.03
JPRCD0030A	564632.00	7771218.00	415.00	99.23	-70.93	598.56	36.00	2.00	1.39
							41.00	1.00	1.40
							49.00	1.00	3.29
							78.00	1.00	1.15
							102.00	1.00	1.61
							123.00	1.00	8.66
							134.00	1.00	1.62
							154.13	0.78	1.25
							156.57	0.71	1.43
							183.71	0.48	1.42
							185.29	1.48	1.21
							191.39	1.83	1.88
							280.94	0.61	1.82
							296.39	0.95	2.45
							334.82	1.34	1.28
							338.28	1.08	1.19
							454.60	0.82	1.16
							481.91	1.33	7.75
							Includes 0.54 metres @ 11.90 g/t gold from 481.91 metres		
							497.01	2.89	1.42
							507.80	1.11	1.44
							527.99	0.51	1.02
							533.69	22.58	3.50
							Includes 0.98 metres @ 38.90 g/t gold from 550.46 metres		
							558.29	5.11	10.89
							Includes 0.55 metres @ 56.40 g/t gold from 558.29 metres and 0.61 metres @ 22.30 g/t gold from 562.39 metres		
JPRCD0031	564642.00	7771663.00	422.00	100.42	-60.91	300.00	42.00	2.00	1.73
							81.00	2.00	1.55
							214.00	5.00	2.38
							225.00	1.00	5.83
							253.00	1.00	2.57
							262.00	2.00	3.57
							268.00	7.00	4.86
							Includes 1.00 metre @ 23.60 g/t gold from 274.00 metres		
							282.00	4.00	29.12
							Includes 1.00 metre @ 109.00 g/t gold from 282.00 metres		
JPRCD0032	564624.18	7771574.89	412.97	100.53	-60.96	645.55	4.00	1.00	1.86
							74.00	1.00	2.05
							178.45	1.80	1.26
							216.75	1.99	3.20
							246.92	0.59	1.325
							349.00	1.40	16.58
							Includes 0.62 metres @ 36.10 g/t gold from 349.78 metres		
							358.50	0.50	1.04
							361.00	1.00	1.575
							389.00	1.00	4.5
							396.35	5.65	2.37
							416.06	0.84	5.2
							428.60	0.40	2.07
							467.00	1.00	2.78
							588.00	7.00	1.38
JPRCD0033	564543.17	7771401.56	414.28	99.61	-60.63	651.30	264.00	1.00	1.91
							277.00	1.00	2.24

TANAMI GOLD NL

							294.00	3.00	6.51
							328.21	2.79	1.74
							336.48	3.32	1.29
							341.72	1.44	1.58
							347.56	0.49	5.94
							363.87	0.71	1.53
							367.53	0.66	1.04
							372.85	0.55	3.47
							374.75	0.65	1.45
							394.73	0.37	1.29
							399.6	1.55	4.48
							406.34	0.46	2.10
							415.03	5.87	2.23
							425.00	0.70	1.03
							457.00	1.00	3.94
							467.00	0.40	1.95
							484.85	1.79	1.95
							490.40	0.79	1.03
							538.00	0.70	1.09
JPRCD0034	564555.00	7771502.00	408.00	100.57	-60.81	672.40	47.00	5.00	2.40
							75.00	1.00	4.32
							298.00	1.00	1.02
							316.00	0.90	1.27
							385.15	0.81	2.07
							421.90	1.93	2.31
							525.45	0.62	1.02
							652.31	2.71	1.56


Jims is located on Mineral Lease (Southern) MLS168, approximately 23 kilometres southwest of the Central Tanami Mill. Historical open-pit mining was conducted at Jims between 1998 and 2001, targeting the Jims Main and Jims Central deposits.

Gold mineralisation at Jims is associated with an interpreted north-northwest-trending regional fault. Mineralisation is hosted within a series of quartz vein and breccia lodes developed along a major structure situated at the contact between basalt, sediment and dolerite units.

TANAMI GOLD NL

For personal use only

Figure 2 – Drill Hole Plan

TANAMI GOLD NL

For personal use only

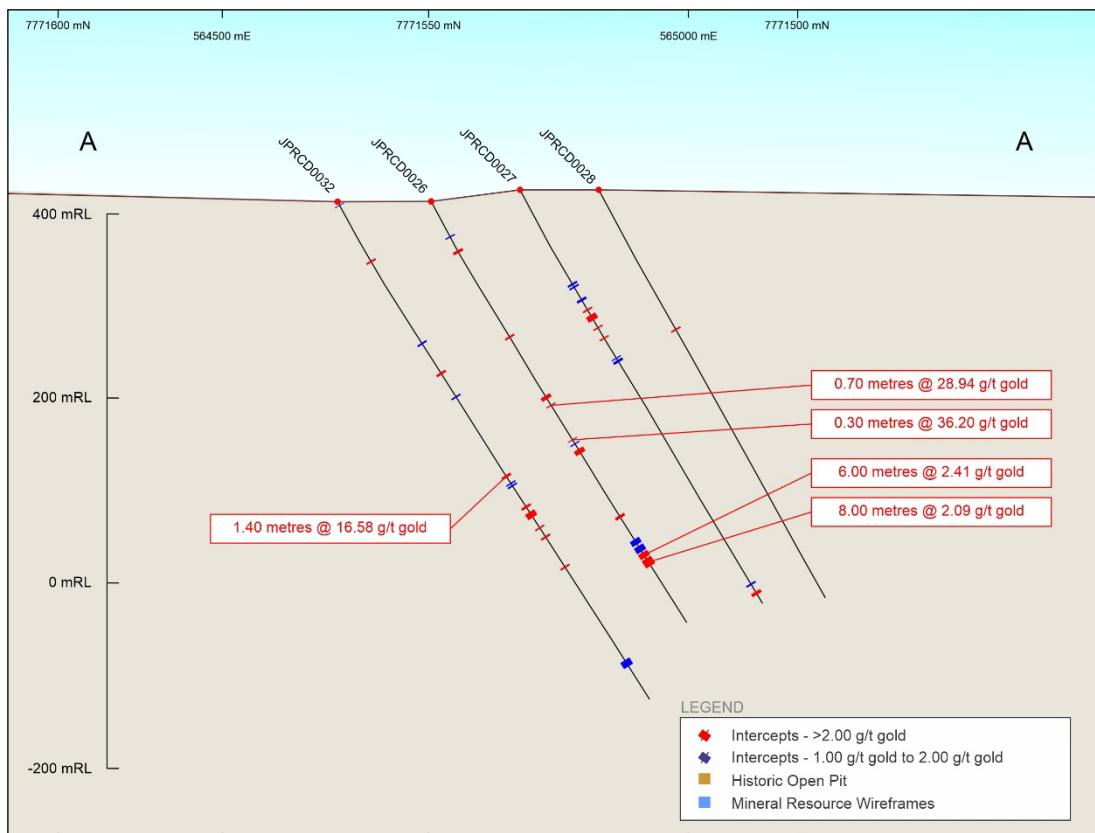


Figure 3 – Cross Section A-A

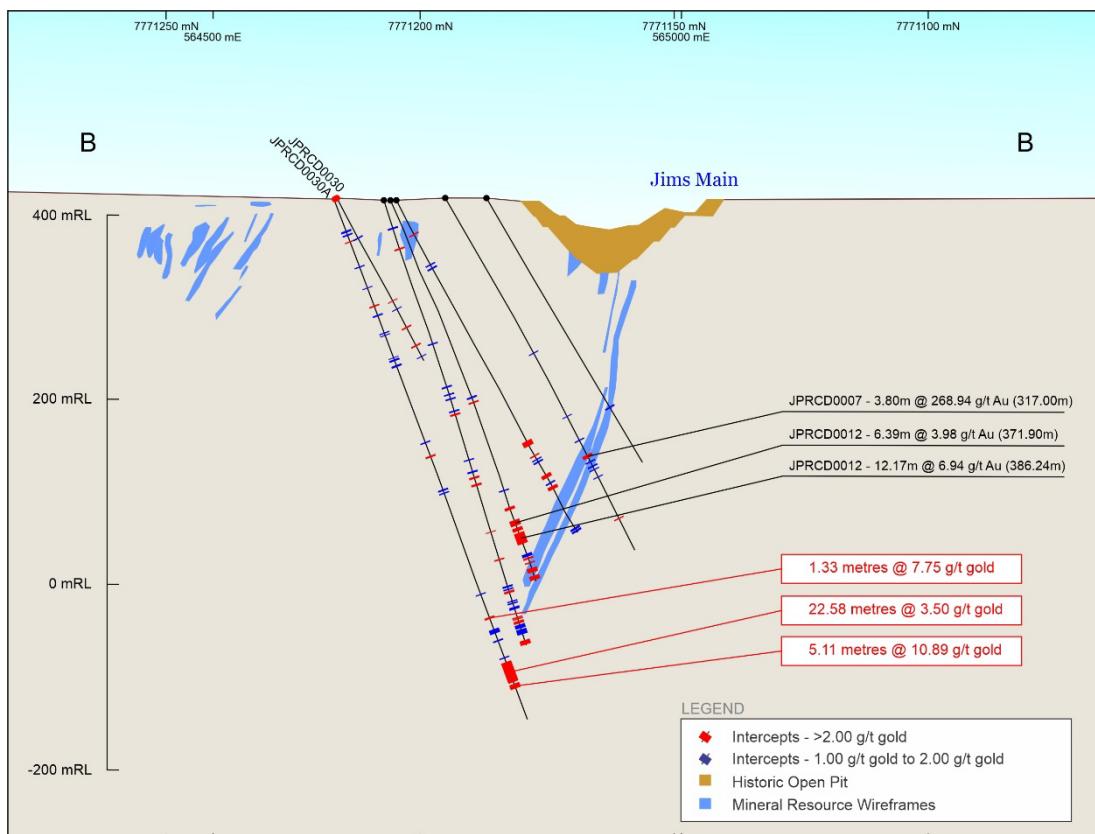


Figure 4 – Cross Section B-B

Note: Results displayed in black in Figure 4 were first reported to the ASX on 4 February 2025 – “Drilling Yields High Grade Intercepts From The Historic Jims Gold Mine” (JPRCD0007) and 25 July 2025 – “First Results Received For New Drilling at Jims Gold Mine” (JPRCD0012).

Defa Prospect

A six-hole Reverse Circulation (**RC**) drilling program was completed at the Defa Prospect late in the 2025 field season. The prospect had previously been explored by widely spaced Rotary Air Blast (**RAB**) drilling and was identified as a target based on the presence of scattered anomalous gold values.

Final assay results have been received for all holes, yielding a small number of narrow but significant intercepts, with the best result being 12.00 metres @ 2.88 g/t gold, which was previously reported on 20 February 2025 – Final Assays Received for Infill Drilling at Ripcord. New highlights include 2.00 metres @ 5.05 g/t gold and 2.00 metres @ 5.27 g/t gold.

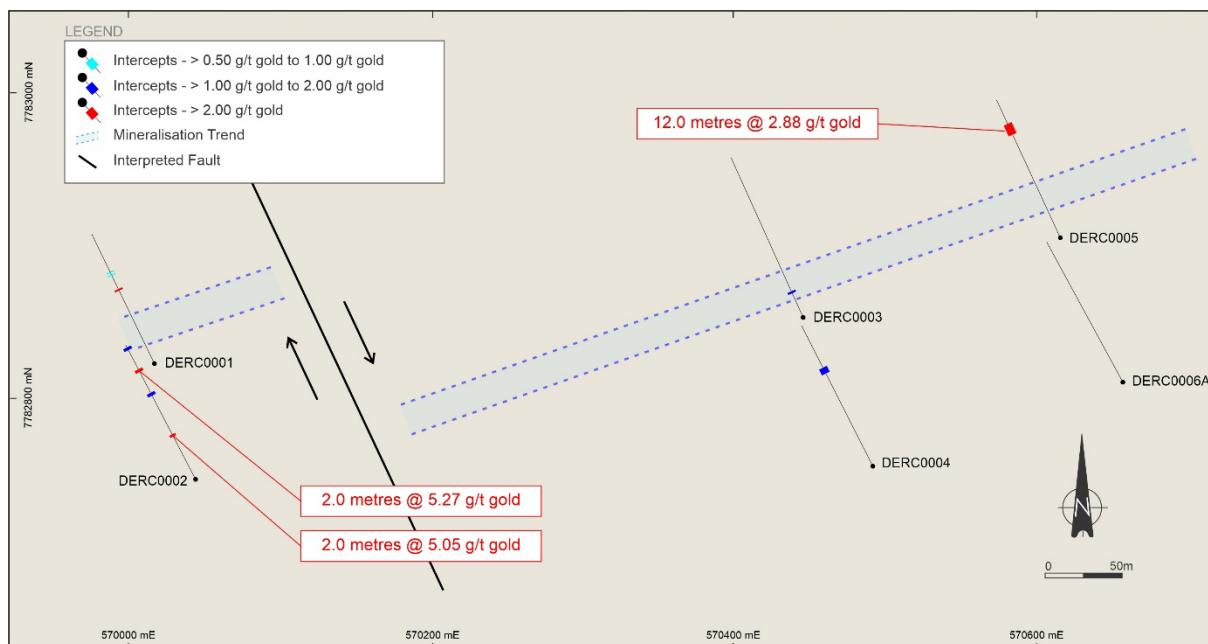

Full details of the drilling and results are provided in Table 2.

Table 2 – Results for the Defa Reverse Circulation drilling program.
Intercepts reported at a 0.50 g/t gold cut-off

Hole	East	North	Elevation	Azimuth (°)	Dip (°)	Length (m)	From (m)	Down Hole Interval (m)	Gold (g/t)
DERC0001	570020.70	7782821.86	401.30	333.5	-61.46	200.00	120.00	1.00	2.45
							144.00	1.00	0.84
							150.00	1.00	0.81
DERC0002	570048.06	7782746.79	401.20	333.48	-60.48	204.00	67.00	2.00	5.05
							132.00	2.00	1.29
							165.00	2.00	5.27
DERC0003	570444.99	7782852.65	400.87	335.44	-61.19	204.00	38.00	1.00	1.06
							198.00	1.00	1.93
							141.00	6.00	1.19
DERC0004	570490.67	7782755.62	400.43	334.39	-60.73	204.00	149.00	12.00	2.88
DERC0005	570613.3	7782905	401.362	335.30	-60.65	200.00	69.00	1.00	0.57
DERC0006A	570653.92	7782810.37	400.44	333.07	-60.71	200.00	194.00	1.00	0.59

Defa is located approximately 10km southwest of the Central Tanami Mill on Mineral Lease MLS167.

Mineralisation at Defa predominantly occurs as gold associated with sulphide minerals, including pyrite, arsenopyrite, and pyrrhotite, and is hosted within quartz veins developed in weakly deformed basalt and medium- to coarse-grained clastic sediments of the Mount Charles Formation.

TANAMI GOLD NL

Figure 5 – Defa Prospect Drill Plan

Information on Tanami's projects can be found on the Company's website at <https://www.tanami.com.au>

This announcement has been authorised by the Board of Directors of Tanami Gold NL for release on 16 January 2026.

Arthur Dew
Chairman
Tanami Gold NL

Competent Persons Statement

The information in this report that relates to Exploration Results fairly represents information and supporting documentation compiled by Mr Neale Edwards BSc (Hons), a Fellow of the Australian Institute of Geoscientists, who is a Director of the Company and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code).

Mr Edwards has provided written consent to the inclusion of the Exploration Results in this report in the form and context in which they appear.

The information in this report that relates to previously disclosed Exploration Results was released to the ASX on 4 February 2025 – Drilling Yields High Grade Intercepts from the Historic Jims Gold Mine, 20 February 2025 – Final Assays Received for Infill Drilling at Ripcord and 25 July 2025 – First Results Received for New Drilling at Jims Gold Mine (ASX: TAM). That information was compiled by Mr Neale Edwards, a Competent Person who is a Director of Tanami Gold NL and a Fellow of the Australian Institute of Geoscientists. Mr Edwards previously provided consent for the inclusion of that information in the form and context in which it appeared.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results reported in the ASX announcements dated 4 February 2025, 20 February 2025 and 25 July 2025. The assumptions and technical parameters underpinning those Exploration Results continue to apply and have not materially changed.

Appendix 1 - JORC Table 1
Jims Gold Deposit

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done is relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i> 	<p>Sampling by reverse circulation ("RC") pre-collars and diamond core ("DD") tails completed by the CTPJV.</p> <p>RC samples are collected via a rig mounted cone splitter, splitting the sample in a 75/25 ratio. The smaller split is retained for dispatch to the laboratory, the larger split retained as a bulk reject.</p> <p>DD samples are HQ and NQ core with samples defined by the geologist to honour geological boundaries ranging from 0.3 metres to 1.2 metres in length.</p> <p>RC metres intervals are defined by paint markings on the rig. The larger split or sample reject is left at the sample pad to indicate metres drilled.</p> <p>Diamond drilling used a combination of HQ and NQ2-sized core. HQ core was drilled until competent ground was intersected, then NQ2 core was drilled. Drill core was oriented, aligned, and half-cut using metre intervals and geologically determined intervals (max 1.2 metres and min 0.3 metres), with geologically determined intervals taking precedence.</p> <p>RC drilling is completed to a high standard, with samples collected at one metre intervals from a cone splitter on the rig, in a calico bag. The sample/bulk ratio was 12.5/87.5. Sample weights ranged between 1kg and 4kg, although sample weight/size are ideally uniform, at least within a drillhole.</p> <p>DD drilling is completed to industry standards, with samples collected at varying lengths based on geological intervals. Sampling of DD holes was completed using a diamond core saw. Half core was sampled on intervals between 0.3-1.2m in length honouring lithological boundaries. Sample weights are typically between 0.5kg and 3kg, mostly dependent on length, however sometimes dependent on lithology.</p> <p>Samples are crushed and pulverised at the ALS laboratory facility in Malaga, Western Australia to produce a ca. 200g, P85 passing 75µm sub-sample to use in the analytical process.</p> <p>Samples are subjected to fire assay analysis for gold using a 50g charge at ALS laboratory facility in Malaga, Western Australia.</p>
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).</i> 	<p>RC drilling completed in the reported campaign was completed using a face sampling hammer with a 143mm diameter drill bit.</p> <p>DD drilling completed in the reported campaign was completed at a HQ (63mm) and NQ2 (50mm) core diameter using a standard tube. Core was fully orientated using the bottom dead centre technique.</p> <p>Deviation surveys were completed on all holes using Boart Longyear TruCore and Axis Champ Ori equipment.</p>
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> 	<p>Approximate RC recoveries are sometimes recorded as percentage ranges based on a visual and/or weight estimate of the sample. RC recovery in the completed campaign was considered consistent.</p> <p>DD core was reconstructed into continuous runs with depths checked against core blocks. Core recoveries are recorded as a percentage and calculated from measured core versus drilled intervals by the geologists.</p> <p>Experienced DD and RC drilling groups were engaged to complete the drilled campaign.</p> <p>RC drilling contractors are supervised and routinely monitored by the CTPJV geologists.</p> <p>The diamond drill contractors adjusted their drilling rate and method if recovery issues arose. All recovery was recorded by the drillers on core blocks. This was checked and compared to the core measurements by the geological team. Any issues were communicated back to the drilling contractor, and necessary adjustments were made.</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No relationship was noted between RC sample recovery and grade. The consistency of the mineralised intervals suggests sampling bias due to material loss or gain is not an issue.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	No relationship was noted between core recovery and grade. The consistency of the mineralised intervals suggests sampling bias due to material loss or gain is not an issue.
	<ul style="list-style-type: none"> Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. 	All RC holes were logged by CTPJV geologists at the drill rig to a high level of detail to support resource estimation, mining studies and metallurgical studies. RC logging is undertaken on a metre-by-metre basis at the time of drilling. All RC chips were logged using wet sieving technique retaining a sample in a plastic chip tray.
	<ul style="list-style-type: none"> The total length and percentage of the relevant intersections logged. 	DD logging is undertaken in the specialised onsite core logging facility away from the rig. All relevant features such as lithology, structure, texture, grain size, alteration, oxidation state, vein style and veining percentage per interval, and mineralisation were recorded in the geological logs.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. 	RC samples are logged for lithology, alteration, mineralisation. Logging is a mix of qualitative and quantitative observations. Visual estimates are made of sulphide, quartz and alteration as percentages.
	<ul style="list-style-type: none"> If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. 	DD core logging is a mix of qualitative and quantitative observations. It is standard practice that drill core is routinely photographed.
	<ul style="list-style-type: none"> For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	The full length of each hole was logged.
	<ul style="list-style-type: none"> Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	DD core is halved with an Almonte core saw on site. Sample intervals are defined by a qualified geologist to honour geological boundaries with a minimum sample length of 0.3m and maximum sample length of 1.2m.
	<ul style="list-style-type: none"> Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	The right-hand side of the core was bagged as the primary sample for analyses. The remaining half of the core was archived and stored for reference.
	<ul style="list-style-type: none"> Whether sample sizes are appropriate to the grain size of the material being sampled. 	RC samples were sampled using a cyclone rotary splitter mounted on the RC drill rig, from an approximate 12.5% split off the bulk reject, or samples were collected using a cyclone then split using a riffle splitter down to approximately 2kg.
	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	All drilling samples were prepared at ALS Perth, commencing with sorting, checking, and drying at less than 110°C to prevent sulphide breakdown. Samples were jaw crushed to a nominal -6mm particle size. If the sample is greater than 3kg, a Boyd crusher with a rotary splitter is used to reduce the sample size to less than 3kg at a nominal <3mm particle size. The entire crushed sample (if less than 3kg) or sub-sample is then pulverized to 90% passing 75µm, using a Labtechnics LM5 bowl pulveriser. 300g Pulp subsamples are then taken with an aluminium scoop and stored in labelled pulp packets.
	<ul style="list-style-type: none"> Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sample preparation and sub-sampling is completed by ALS and follows industry best applicable practice. ALS procedures and facilities are organised to assure proper preparation of the sample for analysis, to prevent sample mixing, and to minimise dust contamination or sample to sample contamination.
	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	The sampling methodology and sample preparation method in use is considered appropriate for the style of mineralisation and should generate representative results.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	All sub-sampling is undertaken to industry best practice.
	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Grind checks are performed at both the crushing stage (3mm) and pulverising stage (75µm), requiring 90% of the material to pass through the relevant size.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	The sample preparation is considered appropriate and to industry standard. Field duplicates for RC drilling are routinely analysed at a rate of 1 in 20 samples. No field duplicates were submitted for diamond core sampling.
	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Sample sizes are considered appropriate to represent the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for gold.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Gold concentration was determined by fire assay using the lead collection method with a 50g sample charge weight. MP-AES instrument finish was used to measure gold levels. The methodology used measures total gold.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<p>No geophysical tools were used to determine any element concentrations.</p> <p>QAQC protocols include the use of commercially prepared certified reference materials ("CRM") that are inserted at a rate of 1 in 20 samples. The CRM is not identifiable to the laboratory and is assessed on import to the database and reported monthly, quarterly, and annually. Values outside of 3 standard deviations were re-assayed with a new CRM. Failed standards are followed up by re-assaying a second 50g pulp sub-sample of all samples in the batch above 0.1 ppm gold by the same method at the primary laboratory.</p> <p>Laboratory QAQC protocols include repeat analysis of pulp samples at a rate of 1 in 20 samples. Screen tests (percentage of pulverised sample passing the 75µm mesh) are undertaken at a rate of 1 in 40 samples.</p> <p>The laboratory reports its QAQC data regularly. The laboratory's standards are routinely loaded into the database.</p> <p>The accuracy component (CRMs) and the precision component (duplicates and repeats) of the QAQC protocols are thought to provide an acceptable level of accuracy and precision.</p> <p>Blanks were routinely inserted into the sample sequence at a rate of 1 per 25 samples and again specifically after potential or existing high-grade mineralisation to test for contamination. Failures of blanks above 0.2g/t were followed up, and re-assayed. New pulps were prepared if failures continued.</p>
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<p>All significant intersections were verified by Geologists during the drill-hole validation process and later signed off by a Competent Person, as defined by JORC.</p> <p>No twinned holes were drilled.</p> <p>Primary data is either entered directly or imported into a SQL acQuire database using semi-automated or automated data entry; hard copies of core assays and surveys are stored at site.</p> <p>Assay files are received in .csv format and loaded directly into the SQL acQuire database by geologists or database administrators. Hardcopy and electronic copies of the data is stored for future reference.</p> <p>Visual checks occur as a result of regular use of the data.</p> <p>The first (primary) gold assay is almost always utilised for any resource estimation, except where evidence from re-analysis and/or check analysis dictates. A systematic procedure utilising several re-assays and/or check assays is employed to determine if/when the first (primary) gold assay is changed for the final assay.</p>
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<p>Planned drillholes were sited either with a handheld global positioning system (GPS) or a differential global positioning system (DGPS), and the initial drillhole pickup is usually with a handheld GPS, as well, with accuracy between \pm 0.3 to 1m. After program completion, differential GPS (DGPS) is used for the final collar pickup with an accuracy of \pm 5mm.</p> <p>During drilling, single-shot surveys were taken every 30m to ensure the hole remains close to the design. Down-hole surveys were performed using Reflex ACT, EZY MARK, Boart Longyear TruCore, or Axis Champ Ori equipment., recording the down-hole dip and magnetic azimuth. These results were then uploaded into the database.</p> <p>Collar coordinates are recorded in MGA94 Zone 52.</p> <p>Topographic control was established through detailed aerial and ground survey control from airborne survey acquisition, or a DGPS elevation with an accuracy of \pm 10mm.</p>
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	<p>Exploration results from the reported campaign range have a nominal drill hole spacing of 100m by 100m.</p> <p>The data spacing and distribution from the reported campaigns is sufficient to establish geological and/or grade continuity. Further drilling will be required to ensure that it is appropriate for resource estimation and higher classifications to be applied.</p>

Criteria	JORC Code explanation	Commentary
	<p><i>Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i></p> <ul style="list-style-type: none"> • <i>Whether sample compositing has been applied.</i> 	
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<p>Drill holes in the reported campaign are drilled at an angle that is approximately perpendicular to the orientation of the mineralised trends.</p> <p>No sampling bias is considered to have been introduced by the drilling orientation.</p>
Sample security	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<p>Chain of custody of samples is managed by CTPJV personnel.</p> <p>CTPJV personnel transport diamond core and RC samples to the on-site core shed where the core is logged, cut and sampled.</p> <p>Samples are bagged in tied numbered calico bags, grouped in larger tied plastic bags and placed in large bulka bags with sample submission sheets. The bulka bags are sent by road freight to the ALS laboratory in Malaga, Western Australia. CTPJV personnel have no further involvement.</p> <p>The results of analyses were returned via email or uploaded to an FTP site.</p> <p>Sample pulp splits are stored for a time at the laboratory.</p> <p>Retained pulp packets are returned to the Central Tanami Mine for storage.</p>
Audits or reviews	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	<p>The CTPJV have undertaken internal reviews of applied sampling techniques and data.</p> <p>The completed reviews raised no issues.</p>

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	<p>Jims Gold Deposit is located in the Tanami region in the Northern Territory on Mineral Lease (Southern) MLS168, approximately 23km southwest of the Central Tanami Mill site.</p> <p>MLS168 covers an area of 711.9ha and forms part of the Central Tanami Project, a 50/50 Joint Venture between Tanami Gold NL and Northern Star Limited. The 2,108 km² tenement area in the Tanami region held by the CTPJV are registered jointly in the name of Northern Star (Tanami) Pty Ltd and Tanami (NT) Pty Ltd. The CTPJV comprises six Exploration Licences, four of which are granted and two applications, three Mineral Leases (Southern) and two Mineral Leases.</p> <p>The Central Tanami project area lies on Aboriginal land within the Central Desert Aboriginal Land Trust and the Mt Frederick Aboriginal Land Trust, both administered by the Central Land Council.</p>
	<ul style="list-style-type: none"> The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	MLS 168 is granted and in good standing.
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	Recent exploration in the area has been completed by the Joint Venture partners, Tanami Gold NL and Northern Star Resources Limited.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	The Jims gold deposits are associated with a north-northwest trending regional fault, with mineralisation hosted within a series of quartz vein breccia lodes along a major structure situated at the contact between basalt and sediment units.
Drill hole information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length 	<p>The reported drilling campaign was designed to evaluate down-dip and northerly extensions of mineralisation associated with the Jims Main zone. Full details of the completed campaign are provided in:</p> <p>Table 1 – Results for the Jims Reverse Circulation Pre-Collar - Diamond Core Tail drilling program. Intercepts reported at a 1.00 g/t gold cut-off.</p>
	<ul style="list-style-type: none"> If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All information from the reported drill program has been provided in Table 1.
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	Results are reported as weighted averages using a nominal 1.0 g/t gold cut-off and can include up to 2 metres continuous of internal dilution. No high-grade cuts were applied.
	<ul style="list-style-type: none"> Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Any high-grade zones above 10 g/t gold within a reported intercept are reported as included intervals.
	<ul style="list-style-type: none"> The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalents are reported.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. 	The reported drill holes have been drilled approximately perpendicular to the orientation of the targeted mineralised trends at various angles.
	<ul style="list-style-type: none"> If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Mineralisation is sub-vertical to vertical.
	<ul style="list-style-type: none"> If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Only down hole lengths have been reported. True widths have not been determined.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams are included in the report.
Balanced Reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	<p>Reporting of all drill details and available results as been provided in this report. Refer to:</p> <p>Table 1 – Results for the Jims Reverse Circulation Pre-Collar - Diamond Core Tail drilling program. Intercepts reported at a 1.00 g/t gold cut-off.</p>
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Exploration results have previously been regularly reported to the ASX by the Joint Venture parties.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). 	Programs planned will primarily involve further drilling to improve the Mineral Resource classification ahead of future resource updates and mining studies.
	<ul style="list-style-type: none"> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Diagrams are included in the report.

Appendix 2 - JORC Table 1
Defa Prospect

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i> 	<p>Sampling by reverse circulation drilling ("RC") completed by the CTPJV.</p> <p>RC samples are collected via a rig mounted cone splitter, splitting the sample in a 75/25 ratio. The smaller split is retained for dispatch to the laboratory, the larger split retained as a bulk reject.</p>
	<ul style="list-style-type: none"> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> 	<p>RC metre intervals are defined by paint markings on the rig. The larger split or sample reject is left at the sample pad to indicate metres drilled.</p>
	<ul style="list-style-type: none"> <i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i> 	<p>RC drilling is completed to a high standard, with samples collected at one metre intervals.</p> <p>Samples were crushed and pulverised at the ALS laboratory facility in Malaga, Western Australia to produce a ca. 200g, P85 passing 75µm sub-sample to use in the analytical process.</p> <p>Samples were subjected to fire assay analysis for gold using a 50g charge at the ALS laboratory facility in Malaga, Western Australia.</p>
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).</i> 	<p>RC drilling completed in the reported programs was completed using a face sampling hammer with a 143mm diameter drill bit.</p>
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> 	<p>Approximate RC recoveries are sometimes recorded as percentage ranges based on a visual and/or weight estimate of the sample.</p> <p>RC recovery in the completed campaign was considered consistent.</p>
	<ul style="list-style-type: none"> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> 	<p>An experienced RC drilling contractor was engaged to complete the drilled campaign. Drilling contractors are supervised and routinely monitored by the CTPJV geologists.</p>
	<ul style="list-style-type: none"> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<p>No relationship was noted between RC sample recovery and grade. The consistency of the mineralised intervals suggests sampling bias due to material loss or gain is not an issue.</p>
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> 	<p>All holes were logged by CTPJV geologists to a high level of detail to support resource estimation, mining studies and metallurgical studies.</p> <p>RC logging is undertaken on a metre-by-metre basis at the time of drilling.</p>
	<ul style="list-style-type: none"> <i>Whether logging is qualitative or</i> 	<p>RC samples are logged for lithology, alteration, mineralisation. Logging is a mix of qualitative and quantitative observations. Visual</p>

Criteria	JORC Code explanation	Commentary
	<p><i>quantitative in nature. Core (or costean, channel, etc.) photography.</i></p> <ul style="list-style-type: none"> <i>The total length and percentage of the relevant intersections logged.</i> 	<p>estimates are made of sulphide, quartz and alteration as percentages.</p> <p>RC samples are not photographed.</p> <p>All holes were logged in full.</p>
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>Not applicable.</p> <p>Drilling completed in the reported programs was completed by RC methods. Samples are collected using a rig mounted cone splitter.</p> <p>RC samples are dried at 100°C.</p> <p>All samples below 4kg are totally pulverised in LM5's to a nominal 85% passing a 75µm screen. Samples above 4kg are crushed to <6mm and riffle split prior to pulverisation.</p> <p>The sampling methodology in use is considered appropriate for the style of mineralisation and should generate representative results.</p> <p>Repeat analysis of pulp samples occurs at a rate of 1 in 20 samples.</p> <p>Field duplicates are routinely analysed at a rate of 1 in 20 samples.</p> <p>Sample sizes are considered appropriate to represent the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay value ranges for gold.</p>
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc..</i> <i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<p>Gold concentration was determined by fire assay using the lead collection method with a 50g sample charge weight. MP-AES instrument finish was used to measure gold levels. The methodology used measures total gold.</p> <p>Not applicable.</p> <p>Field QAQC protocols include the use of commercially prepared certified reference materials ("CRM") that are inserted at a rate of 1 in 20 samples. The CRM is not identifiable to the laboratory and is assessed on import to the database and reported monthly, quarterly and annually.</p> <p>Laboratory QAQC protocols include repeat analysis of pulp samples at a rate of 1 in 20 samples. Screen tests (percentage of pulverised sample passing the 75µm mesh) are undertaken at a rate of 1 in 40 samples.</p> <p>The laboratory reports its own QAQC data on a regular basis. The laboratories standards are routinely loaded into the database.</p> <p>Failed standards are followed up by re-assaying a second 50g pulp sub-sample of all samples in the batch above 0.1 ppm gold by the same method at the primary laboratory.</p> <p>Both the accuracy component (CRM's) and the precision component (duplicates and repeats) of the QAQC protocols are thought to provide an acceptable level of accuracy and precision.</p>
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> 	<p>Significant intersections are verified by qualified CTPJV management.</p> <p>No twinned holes were completed.</p> <p>Primary data is imported into a SQL acQuire database using semi-automated or automated data entry with hard copies of core assays and surveys stored at site.</p> <p>Visual checks occur because of regular use of the data.</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> • <i>Discuss any adjustment to assay data.</i> 	The first (primary) gold assay is almost always utilised for any resource estimation, except where evidence from re-analysis and/or check analysis dictates. A systematic procedure utilising several re-assays and/or check assays is employed to determine if/when the first (primary) gold assay is changed for the final assay.
Location of data points	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> 	Drillholes are sited with a handheld global positioning system (GPS), and the initial drillhole pickup is usually with a handheld GPS, as well; with accuracy between \pm 0.3 to 1m. After program completion, differential GPS (DGPS) is used for the final collar pickup with an accuracy of \pm 5mm.
	<ul style="list-style-type: none"> • <i>Specification of the grid system used.</i> 	Collar coordinates are recorded in MGA94 Zone 52.
	<ul style="list-style-type: none"> • <i>Quality and adequacy of topographic control.</i> 	A DGPS elevation with an accuracy of \pm 10mm is used.
Data spacing and distribution	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> 	Data spacing of exploration results from the reported programs vary in range.
	<ul style="list-style-type: none"> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> 	The data spacing and distribution from the reported programs is sufficient to establish geological and/or grade continuity. Further drilling will be required to ensure that it is appropriate for resource estimation and classifications to be applied.
	<ul style="list-style-type: none"> • <i>Whether sample compositing has been applied.</i> 	Sample compositing is not applied until the resource estimation stage
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> 	Drill holes in the reported programs are drilled at an angle that is approximately perpendicular to the orientation of the mineralised trends.
	<ul style="list-style-type: none"> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	No orientation-based sampling bias has been identified in recent drill hole data.
Sample security	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<p>Chain of custody of samples is managed by CTPJV personnel.</p> <p>Samples are bagged in tied numbered calico bags, grouped in larger tied plastic bags and placed in large bulka bags with sample submission sheets. The bulka bags are sent by road freight to the ALS laboratory in Malaga, Western Australia. CTPJV personnel have no further involvement.</p> <p>Results of analysis are returned via email and secure FTP.</p> <p>Sample pulp splits are stored at the ALS laboratory in Malaga, Western Australia.</p> <p>Retained bulk residue and pulp packets are returned to the Central Tanami Mine for storage.</p>
Audits or reviews	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	<p>The CTPJV have undertaken internal reviews of applied sampling techniques and data.</p> <p>The completed reviews raised no issues.</p>

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	<p>The Defa Prospect is located in the Tanami Region in the Northern Territory on Mineral Lease MLS167, approximately 10km southwest of the Central Tanami Mill site.</p> <p>MLS167 covers an area of 1,877ha.</p> <p>This tenement forms part of the Central Tanami Project, a 50/50 Joint Venture between Tanami Gold NL and Northern Star Resources Limited. They are registered jointly in the name of Northern Star (Tanami) Pty Ltd and Tanami (NT) Pty Ltd.</p>
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	MLS167 is granted and in good standing.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	Mineralisation at Defa occurs predominantly as gold in sulphides (pyrite, arsenopyrite, and pyrrhotite) and is hosted within quartz veins within weakly deformed basalt and medium- to coarse-grained clastic sediments of the Mount Charles Formation.
Drill hole information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<p>The reported RC programs were designed as a first pass to evaluate earlier reconnaissance drilling results over a 600-metre strike length.</p> <p>Details of drilled holes and results are provided in:</p> <p>Table 2 – Results for the Defa Reverse Circulation drilling program. Intercepts reported at a 0.50 g/t gold cut-off.</p>
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<p>Results are reported as weighted averages using a nominal 0.5 g/t gold cut-off and up to 2 metres continuous of internal dilution. No high-grade cuts were applied.</p> <p>High-grade intervals internal to broader lower grade zones of mineralisation are reported at a 10 g/t gold cut-off as included intervals.</p> <p>No metal equivalents are reported.</p>
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	<p>The reported drill holes have been drilled approximately perpendicular to the orientation of the targeted mineralised trends.</p> <p>Mineralisation is sub-vertical to vertical.</p> <p>Only down hole lengths have been reported. True widths have not been determined.</p>
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with 	Diagrams are included in the report.

Criteria	JORC Code explanation	Commentary
	<i>scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i>	
Balanced Reporting	<ul style="list-style-type: none">Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	Reporting of all drill details and available results as been provided in this report. Refer to: Table 2 – Results for the Defa Reverse Circulation drilling program. Intercepts reported at a 0.50 g/t gold cut-off.
Other substantive exploration data	<ul style="list-style-type: none">Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Exploration results have previously been regularly reported to the ASX by the Joint Venture parties.
Further work	<ul style="list-style-type: none">The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling).Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	<p>The CTPJV will review results prior to planning the next phase of activities.</p> <p>Diagrams are included.</p>