

20th January 2026

ASX ANNOUNCEMENT

Over 100 Significant Intercepts In Maiden Drill Program Reveals Multiple Gold Deposit Potential at Bousquet

Highlights

- Very successful maiden drill program at the Bousquet Gold Project with over 100 significant intercepts (see Table 3). Standout results include:
 - 6.40m @ 6.54 g/t Au from 183.0m (BO-25-27)^{iv}
 - 7.90m @ 6.20 g/t Au from 138.0m (BO-25-28)^{iv}
 - 1.50m @ 54.20 g/t Au from 235.5m (BO-25-28)^{iv}
 - 1.50m @ 4.70 g/t Au from 31.5m (BO-25-34)ⁱ
 - 4.50m @ 3.29 g/t Au from 5.65m (BO-25-38)ⁱ
 - 14.50m @ 1.96 g/t Au from 355.5m (BO-25-40)^{vi}
 - 4.90m @ 2.16 g/t Au from 182.3m (BO-25-41)ⁱⁱ
 - 2.60m @ 3.13 g/t Au from 190.0m (BO-25-43)ⁱⁱ
 - 1.00m @ 6.33 g/t Au from 219.0m (BO-25-44)ⁱⁱ
 - 1.30m @ 12.20 g/t Au from 218.2m (BO-25-53)^{viii}
 - 1.50m @ 4.22 g/t Au from 92.5m (BO-25-57)^{viii}
- Paquin and Amadee Prospects linked to indicate a large, east-west trending, gold system with 1.3km of strike, still open to the west (see Figure 2)
- Main lode at Paquin reveals the potential for high grade shoots within the larger gold lodes and Paquin Deeps indicates the system is present down to 430m vertical, with no drill testing between Paquin and Paquin Deeps (see Figure 3)
- Paquin preliminary testing to 150m vertical and Amadee to 60m vertical, both systems lack testing beyond these depths and are open down dip and down plunge
- Decoeur prospect reveals a 1.7km long mineralised system, with BO-25-40 demonstrating continuity of gold mineralisation down to 290m vertical (see Figure 4)
- ~80% of the Bousquet Gold Project remains unexplored, highlighting significant scale potential of the gold mineralisation (see Figure 1)
- Bousquet Gold Project located on Cadillac Break in Quebec, Canada, a regional structure associated with world-class gold mines (>110 Moz Auⁱⁱⁱ)
- Situated within 15km of multi-million ounce working gold mines (Agnico Eagle's La Ronde - 15.8Moz Au^{iv} and IAMGOLD's Westwood - 2.4Moz Au^v)

Olympio's Managing Director, Sean Delaney, commented:

"We are very pleased with the results from our thirty two hole diamond drilling program at Bousquet completed last year. The maiden program at Bousquet South has highlighted three main structural trends through Decoeur, Paquin and CB-1. Each of these structural trends has successfully demonstrated multiple significant gold intercepts confirming that Bousquet South is a large gold system with multiple deposit potential.

The Company will now focus on advancing exploration of each of these main east-west trending structures to identify the zones of greatest economic potential.

The Bousquet project provides us with exposure to a quality gold project in a renowned mining area that still has significant regional upside with ~80% of the project area remaining unexplored."

Olympio Metals Limited (ASX:OLY) (Olympio or the Company) is pleased to provide a summary of the results from the highly successful maiden drill program at the Bousquet Gold Project, which focused solely within Bousquet South (see Figure 1). The geology team has conducted a thorough analysis of the 32 hole drill program, with over 100 significant gold intercepts returned over three prospects and three targets (see Table 3).

The Bousquet South area has demonstrated three main feeder structures that are all open to the east and west. These structures define a large 3km x 1.5km gold system to the south of the Cadillac Break^{vi}.

The Paquin and Amadee Prospects comprise the most advanced of the three feeder structures delineated at Bousquet South. The first phase of drilling revealed the presence of high grade gold mineralisation and visible gold (BO-25-27) with **6.40m @ 6.54 g/t Au from 183.0m^{vii}**. The drilling suggests multiple gold lodes across 1.3km of strike across the two prospects which remains open to the east and to the west (see Figure 2). Drilling to-date has only tested down to a maximum of 150 vertical metres, with both prospects open down dip, down plunge and along strike (see Figure 3).

The Decoeur Prospect drill results extended the strike of known gold mineralisation of the North Bousquet Fault to the east, creating 1.7km of strike that remains open at depth (see Figure 4 and Figure 5). A significant intersection of **14.50m @ 1.96 g/t Au from 355.5m (BO-25-40)^{viii}** demonstrated the Decoeur trend still holds significant gold mineralisation to 290m vertical depth and is yet to be closed off.

Results at the CB-1 target revealed three main zones associated with a fold hinge, within a 260m area with significant gold anomalies. BO-25-53 demonstrated the high grade potential of these zones with **1.30m @ 12.20 g/t Au from 218.2m^{ix}**. These results are located ~170m from the Cadillac Break and represent the third key structural east-west trending corridor defined at Bousquet South (see Figure 6).

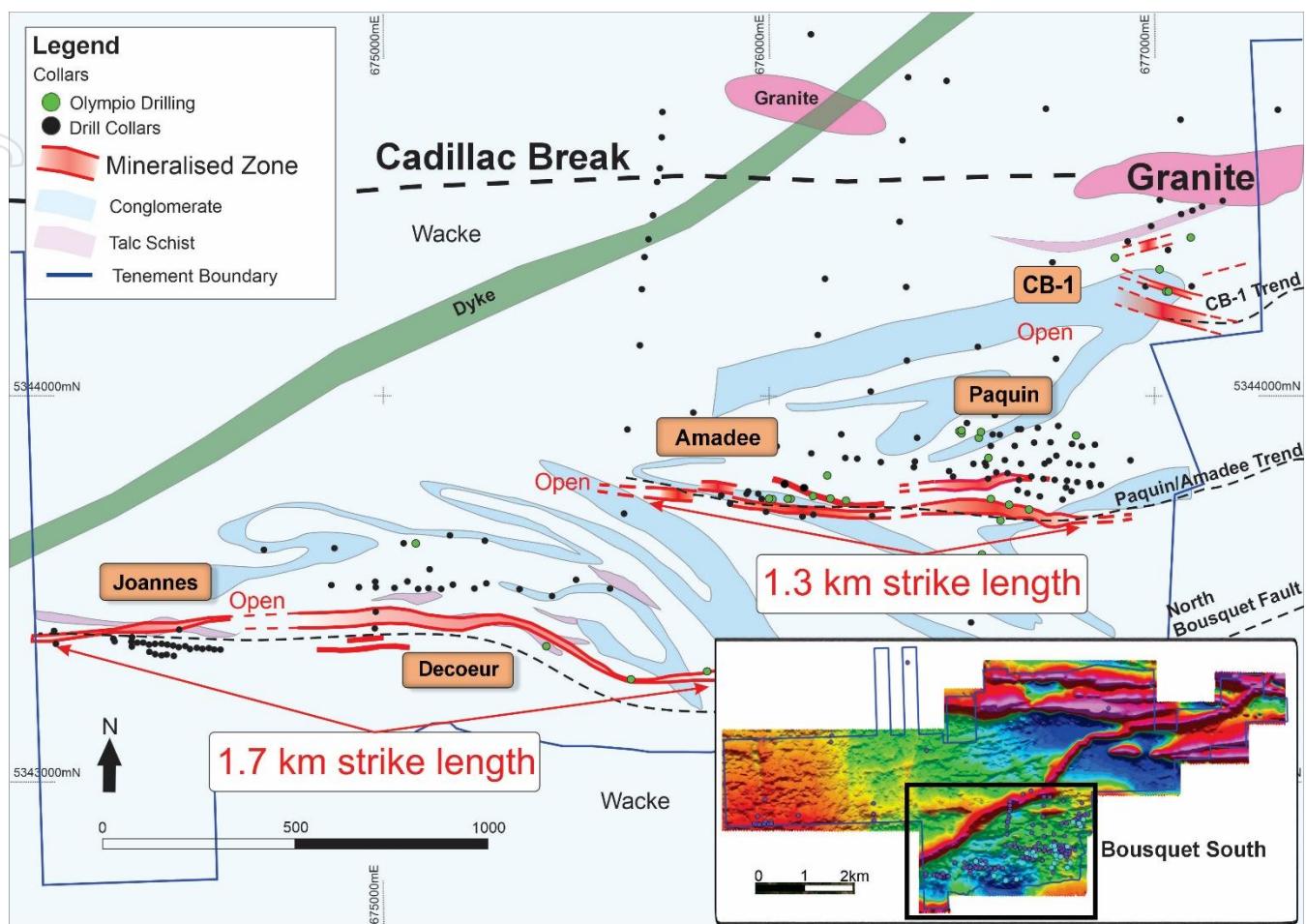


Figure 1 Plan map showing the Bousquet South Prospects and the rest of the Bousquet Project (Magnetics RTP Image)

Olympio has the option to acquire an 80% interest in the Bousquet Project in Quebec from Bullion Gold Resources for total payment of C\$1.25M (cash and shares) and an exploration investment of C\$2M. Olympio has made payments of C\$0.30M (cash and shares) to date and completed exploration spend of nearly C\$1.0M. Bullion will retain a 20% undivided interest (net carried interest) in this project.

Table 1: Standout significant gold intersections from drilling at the Bousquet Gold Project
($\geq 0.5\text{g/t Au cut-off, 1m min. width, 2m max. internal dilution (downhole)}$) (See Table 3 for detailed results)

Hole ID	Prospect	From (m)	Width (m)	Au g/t	Significant Intercept
BO-25-27	Paquin	183	6.4	6.54	6.40m @ 6.54 g/t Au from 183.00m
BO-25-28	Paquin	138	7.9	6.2	7.90m @ 6.20 g/t Au from 138.00m
BO-25-28	Paquin	235.5	1.5	54.2	1.50m @ 54.20 g/t Au from 235.50m
BO-25-34	Amadee	31.5	1.5	4.7	1.50m @ 4.70 g/t Au from 31.50m
BO-25-38	Amadee	5.65	4.5	3.29	4.50m @ 3.29 g/t Au from 5.65m
BO-25-40	Decoeur	355.5	14.5	1.96	14.50m @ 1.96 g/t Au from 355.50m
BO-25-41	Paquin	182.3	4.9	2.16	4.90m @ 2.16 g/t Au from 182.30m
BO-25-43	Paquin	190	2.6	3.13	2.60m @ 3.13 g/t Au from 190.00m
BO-25-44	VLF	219	1	6.33	1.00m @ 6.33 g/t Au from 219.00m
BO-25-53	CB-1	218.2	1.3	12.2	1.30m @ 12.20 g/t Au from 218.20m
BO-25-57	Paquin	92.5	1.5	4.22	1.50m @ 4.22 g/t Au from 92.50m

Paquin and Amadee Prospects

Olympio conducted preliminary drill testing with 2,703m at Paquin and 909m at Amadee (see Table 2). The maiden drill program was designed to gain a better understanding of the gold mineralisation previously intersected by Bullion Gold Resources between 2021 and 2023^x.

The Paquin Prospect drilling successfully demonstrated an extension of the high grade gold intersected in BO-21-08 (9m @ 16.97 g/t Au), with Olympio's first two drill holes intercepting **6.40m @ 6.54 g/t Au from 183.0m (BO-25-27)** and **7.90m @ 6.20 g/t Au from 138.0m (BO-25-28)** ~60m along strike (see Figure 3). These high grade results were within a broader structural zone up to 100m (apparent thickness) of black quartz veining, sulphides and dominant chlorite alteration. This larger structure was intersected in the shallow drilling across BO-25-57 to BO-25-59 which indicated the structure is present near surface (~10m of cover) and extends down vertically to at least 150m. The geology team has identified this structure as the Main Lode within Paquin. The Main Lode has an average strike of 310⁰ and is open along strike and at depth and is interpreted to be the fold hinge of an isoclinal fold. (see Figure 2).

Further analysis of structural data obtained from the maiden drill program has indicated that the Paquin and Amadee prospects are likely an early, east-west trending strike-slip shear zone, which has likely undergone dextral rotation between north-south trending structures. This rotation has formed a series of 'dilation zones' in a 1.3km long, en-echelon array. These dilation zones have focused gold mineralisation in isoclinal fold hinges, with a steep plunge. The Main Lode at Paquin shows the scale potential of the system with gold mineralisation defined over 220m of strike and down to 150m vertical and open in all directions (see Figure 3).

Historical drill intercepts known as Paquin Deeps delineated gold mineralisation down dip of the Paquin prospect, with 7.85m @ 1.72 g/t Au from 543.9m to EOH (TMN-07-02) and 1.17m @ 24.29 g/t Au from 480.13m (TMN-03-19) (see Figure 3). These drill holes indicate the presence of

the Paquin gold system to 430m vertical depth and demonstrate the down dip potential at Paquin and Amadee.

The Company believes that there are at least seven gold lodes in the Paquin Prospect, including the Main Lode, based on the current available drill results. However, multiple historical holes intersected key structural positions but were not sampled. The team is currently taking additional samples from preserved cores of these older holes to see if any of the interpreted lodes link together. The grade potential of these lodes can be determined once historical sampling gaps are filled in.

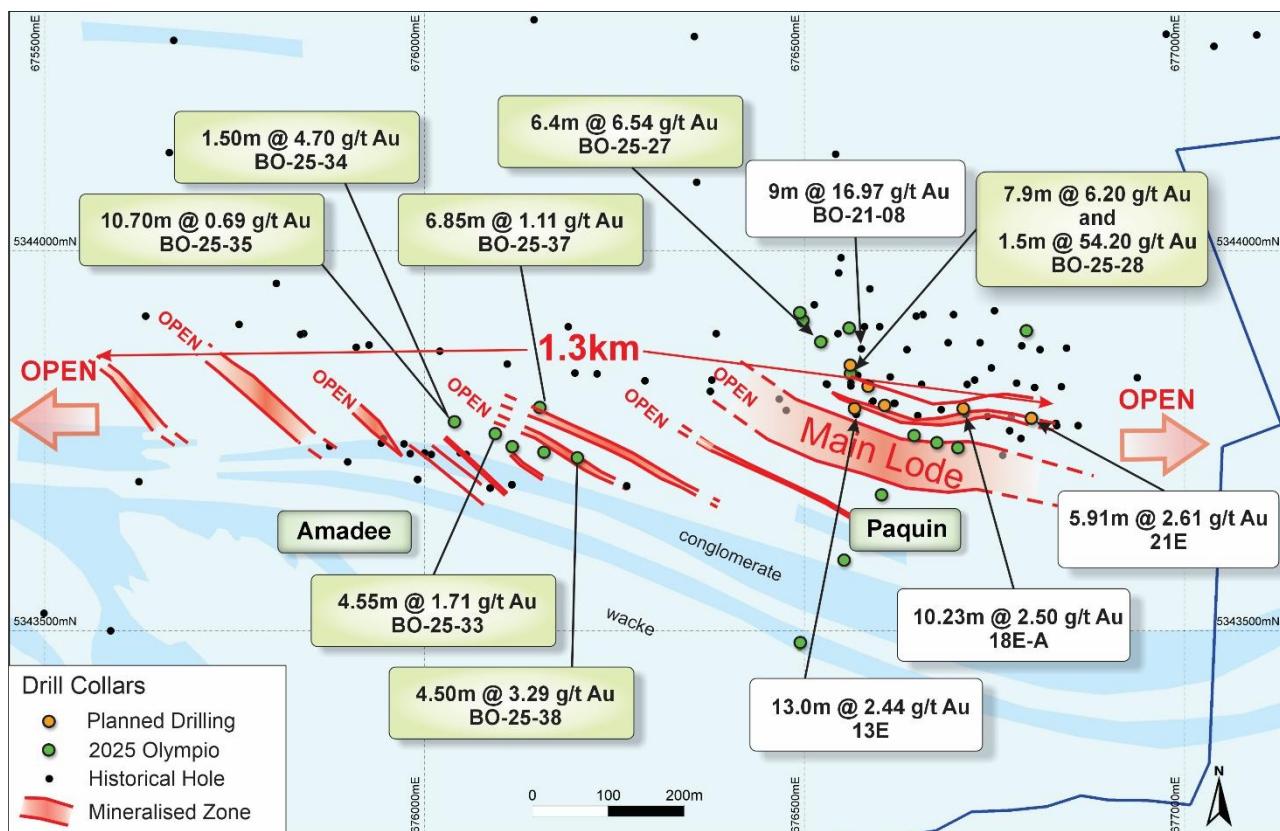


Figure 2 Paquin and Amadee plan view map showing emerging en-echelon gold bearing structures

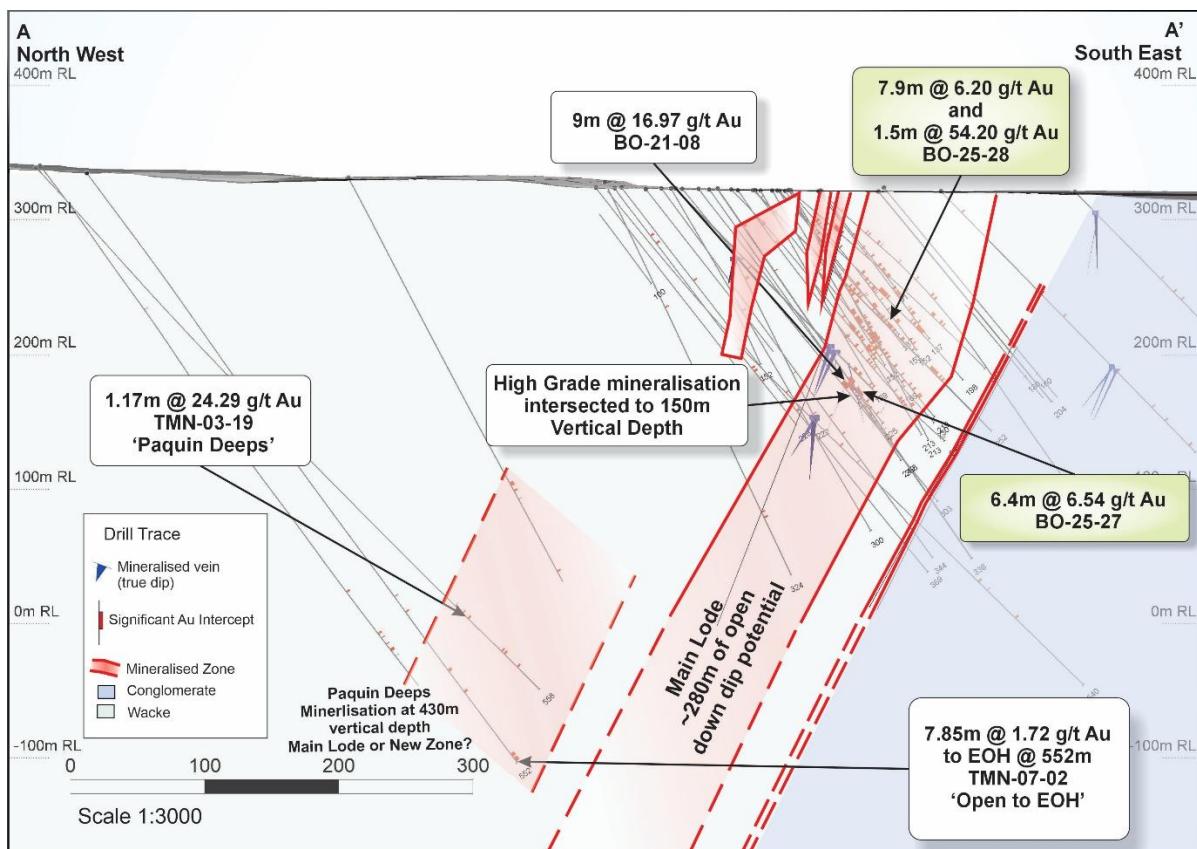


Figure 3 Cross section looking east of the Paquin prospect and Paquin Deep

Decoeur Prospect

Olympio conducted 951m of preliminary drill testing over 4 holes at Decoeur and Decoeur Extension (see Table 2). The program purpose was to test the strike extension and down dip potential of the gold mineralisation intersected in historical drilling, such as 21.55m @ 1.14 g/t Au from 137.45m (TMN-03-14) (see Figure 4).

Drill hole BO-25-40 was designed to test the down dip position of known gold mineralisation in relation to the North Bousquet Fault. Gold mineralisation is in the form of finely disseminated sulphides, hosted in biotite altered and schistose ultramafic host rock. Results indicated that the structure was intercepted at depth, with 14.50m @ 1.96 g/t Au from 355.50m (BO-25-40)^{vi}, demonstrating the North Bousquet Fault is mineralised to a vertical depth of 290m and is open across the 1.7km of established strike continuity (see Figure 5).

The geology team has identified cross-cutting north-south structures which may play an important part in the structural controls on gold mineralisation across the 1.7km strike. This model will be tested by future drilling at the Decoeur Prospect.

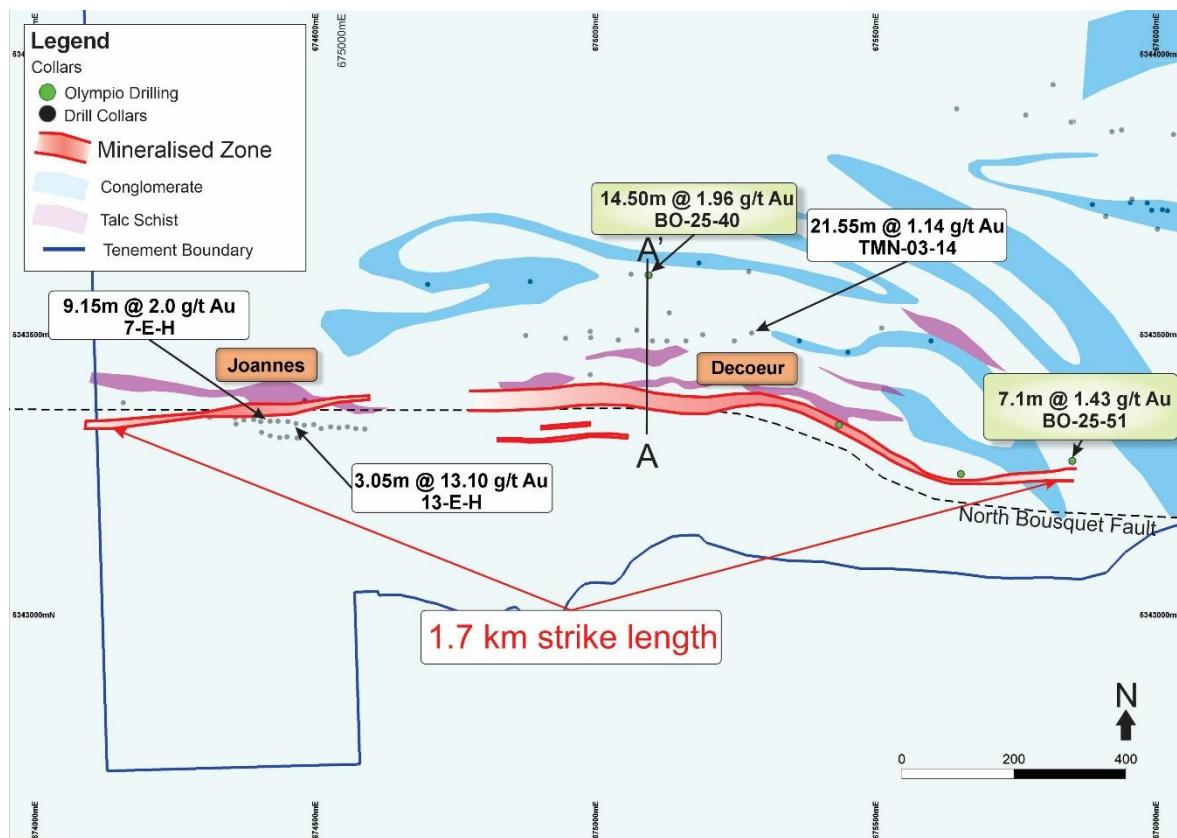


Figure 4 Plan view map of the Decoeur Prospect in Bouquet South

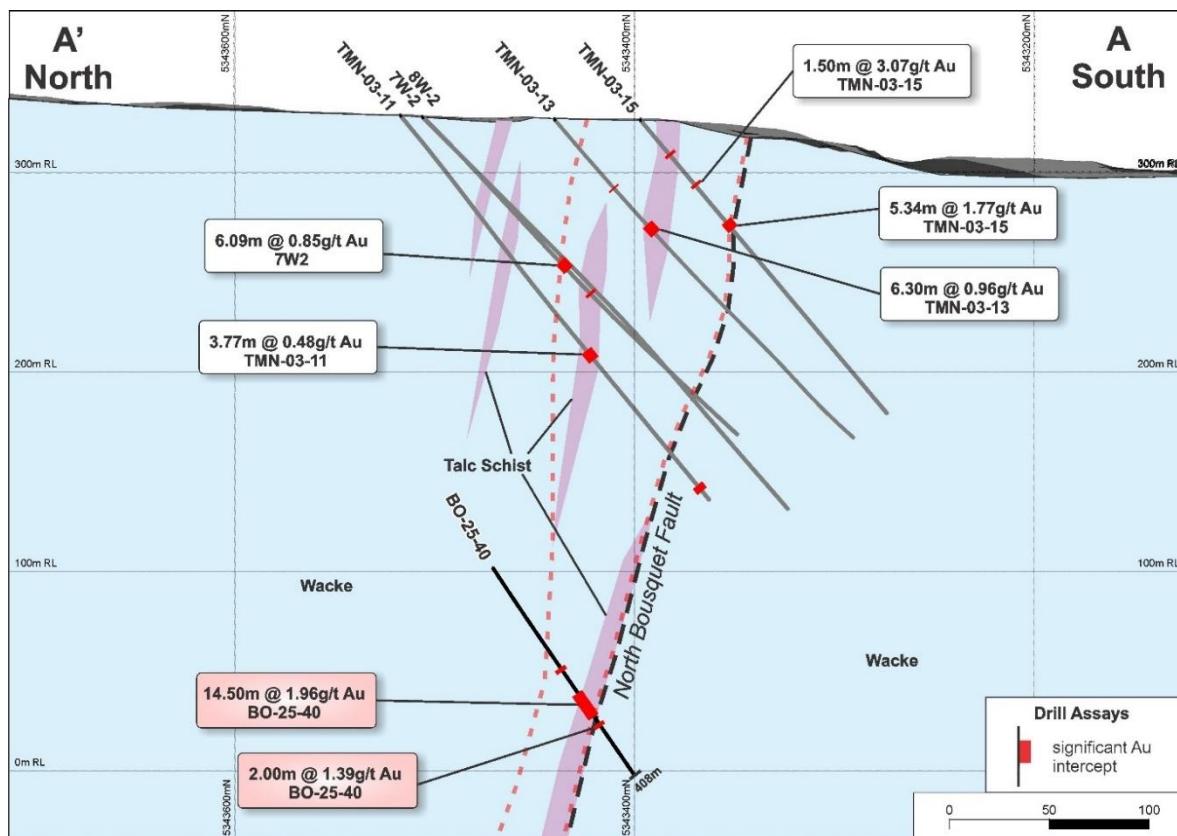


Figure 5 Cross section (looking east) of BO-25-40 results, demonstrating the down dip potential at Decoeur

CB-1 Prospect

Olympio completed a total of 5 diamond holes for 1,440m (see Table 2). The program was originally designed to investigate the strike extent and down dip positions of the original CB-1 drill hole, which intercepted 2.9m @ 5.70g/t Au from 63.26m.

The CB-1 drilling successfully intersected another significant gold lode to the north of the original CB-1 intercept. BO-25-53 intersected **1.3m @ 12.20 g/t Au from 218.2m** which sits just above the contact with a sheared talc schist unit (Figure 7). This is an additional intercept to the original intercept of 2.9m @ 5.70 g/t Au from 63.26m (CB-1) and the anomalous results seen in BO-25-54 (see Table 3).

This demonstrates that the CB-1 Prospect has at least three fertile structures identified from our early stage testing (see Figure 6). The geology team will assess the structural data from these intercepts and plan a follow up drill program for 2026.

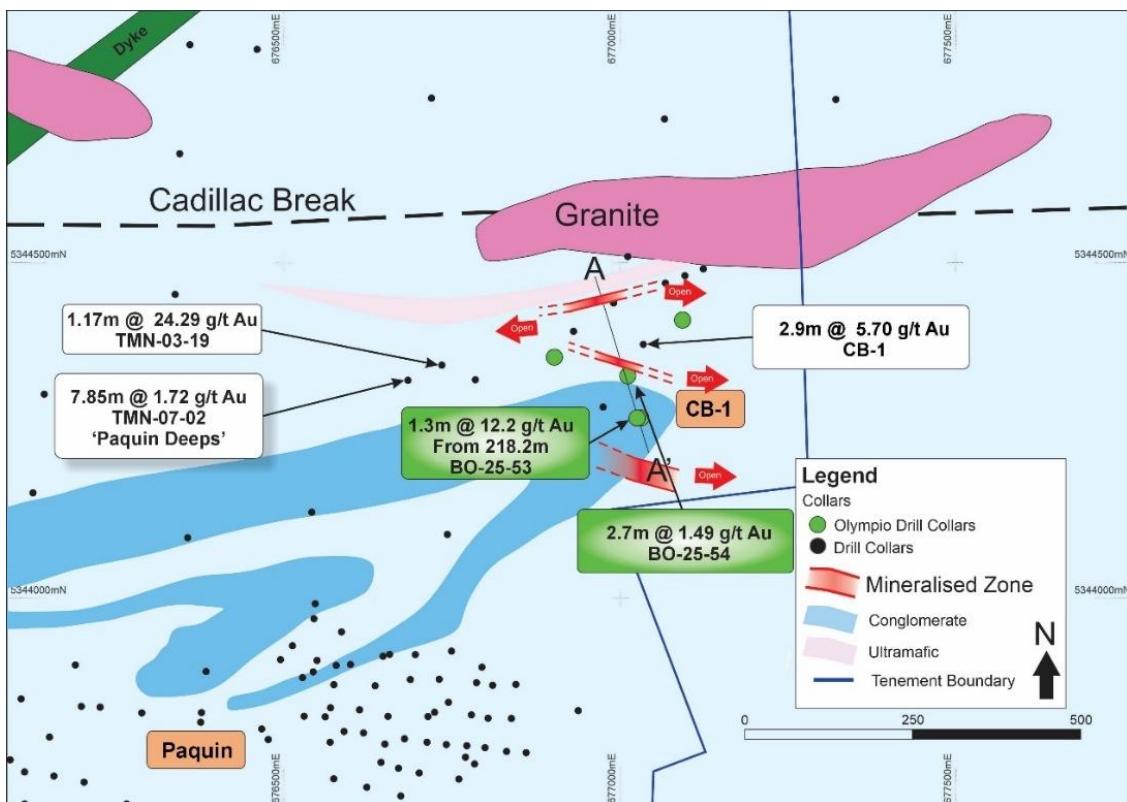


Figure 6 Plan view of the CB-1 Target

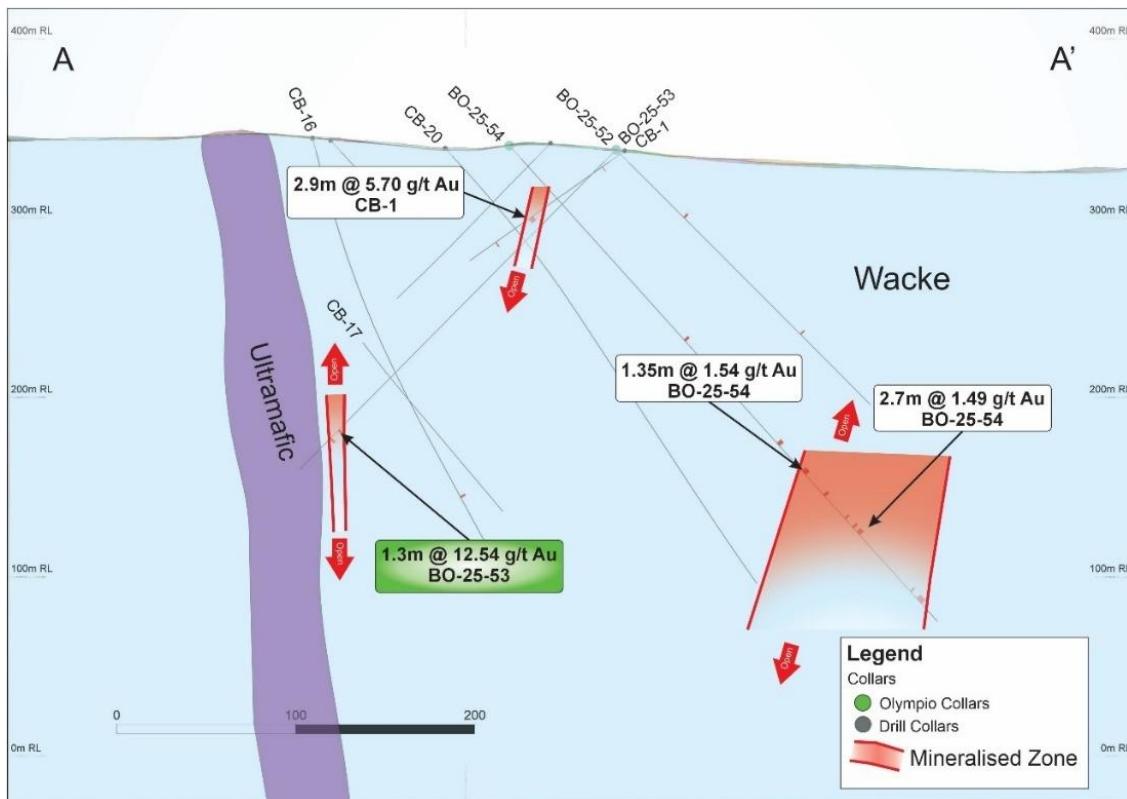


Figure 7 Cross-section of the latest results from CB-1 target

Bousquet South Overview

The Bousquet South area has been the primary focus for historical and modern exploration (see Figure 1), with gold mineralisation in outcrop identified in early twentieth century exploration around Amadee and Decoeur and subsequently followed up with numerous drill campaigns. Historical drilling has focused on shallow (top 60m) with Bullion Gold concentrating on preliminary down dip drilling^{ix}.

A lack of orientated drill core has previously limited the structural understanding of the controls on gold mineralisation within Bousquet South.

Olympio conducted the first orientated core drilling program and has started to build a conceptual structural model for the controls on gold mineralisation. This model suggests three main feeder structures with the North Bousquet fault, Paquin – Amadee, and CB-1 (see Figure 1). The three structures are interpreted to be a bifurcated series as part of a major, regional scale, deformed compressional duplex on the southern side of the Cadillac Break (see Figure 8). Each with its own unique characteristics, lithological and structural setting, but all part of a large gold mineralised system that is open along strike and down dip.

This model suggests that deposit scale characteristics along each of the three structures will be unique. Paquin mineralisation associating with isoclinal fold hinges and Decoeur associating with schistose ultramafic host rocks. However, to date the structural controls on mineralisation show strong similarities between Paquin – Amadee, Decoeur and CB-1 which will allow Olympio to apply learning from the more advanced Paquin prospect to other earlier stage prospects.

Conceptual section showing how the 'Deformed Compressional Duplex' theory suggests the Bousquet Gold Project is prospective north of the Cadillac Break

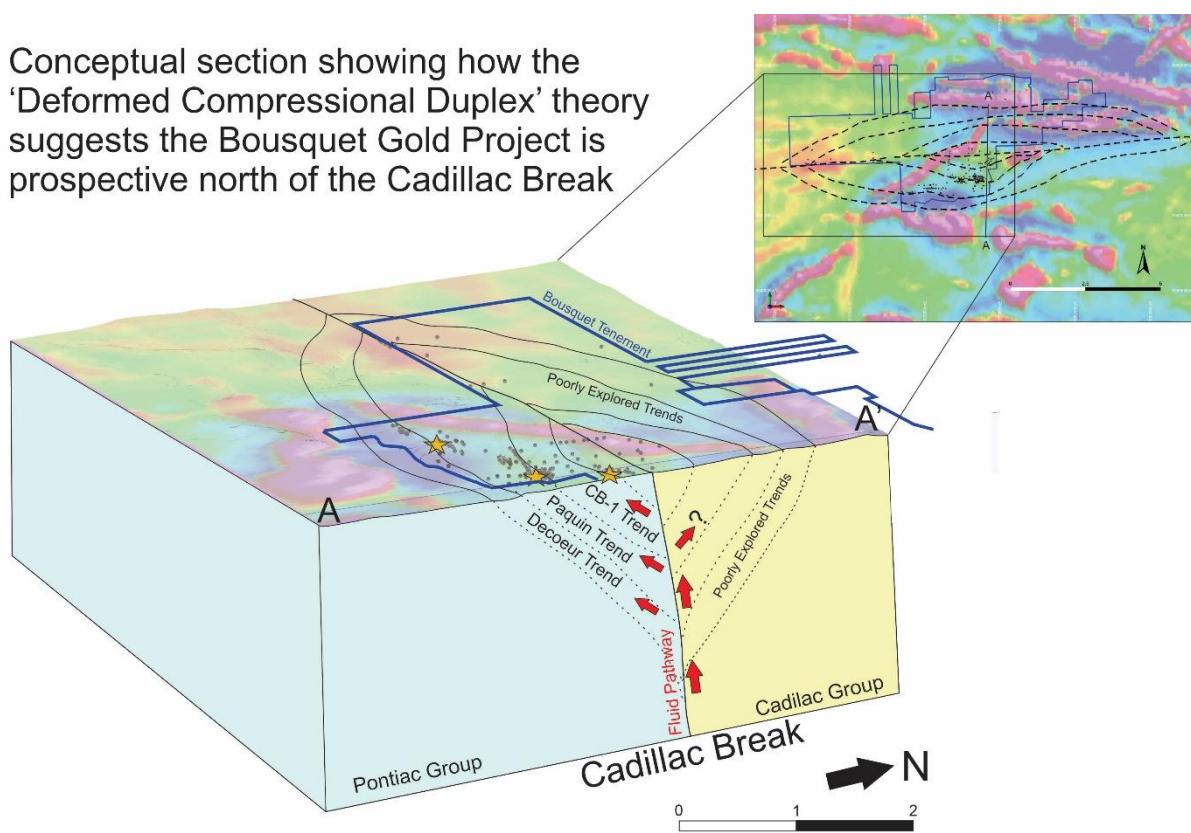


Figure 8 Conceptual project scale structural model putting the Decoeur, Paquin – Amadee, and CB-1 trends into regional context.

The Next Steps

The Company is planning a follow-up drill program at the Bousquet Gold Project that will primarily focus on establishing the dimensions and grade continuity of the high grade intercepts within the Main Lode. The geology team has identified drill holes from the 1940s that are in key structural positions within the Main Lode. However, historical logging indicates many of them suffered from core loss around the mineralised intervals and were inadequately sampled. These 1940s era drill holes cannot be utilised in estimating the potential contained gold ounces in the Main Lode and across the Paquin and Amadee prospects. The follow-up drill program will provide fully representative samples and reveal the grade potential of the Main Lode, while adding to the building of a structural database for Paquin with more structural measurements from orientated drill core.

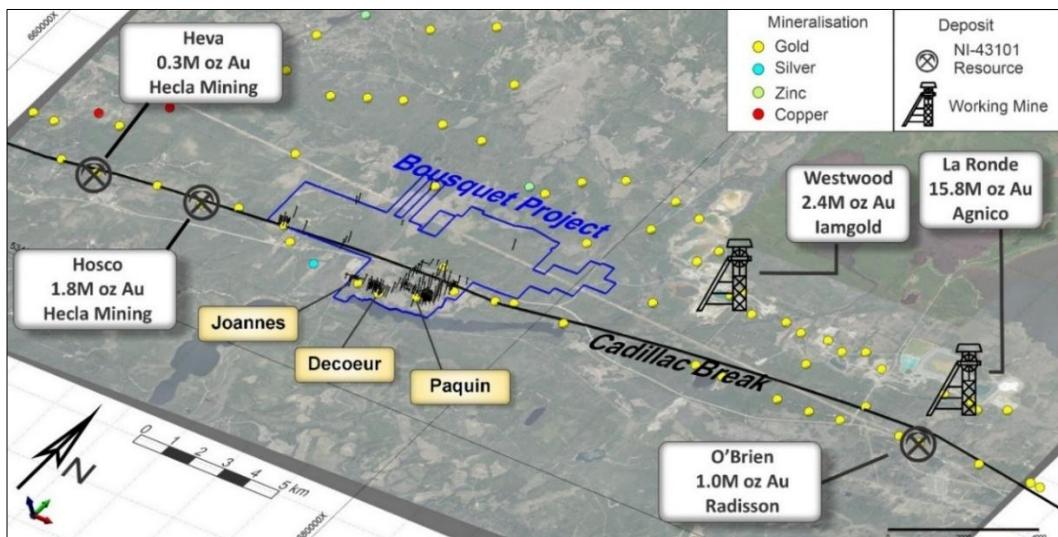


Figure 9 Setting of the Bousquet Gold Project relative to working mines and mineral resources along the Cadillac Break.

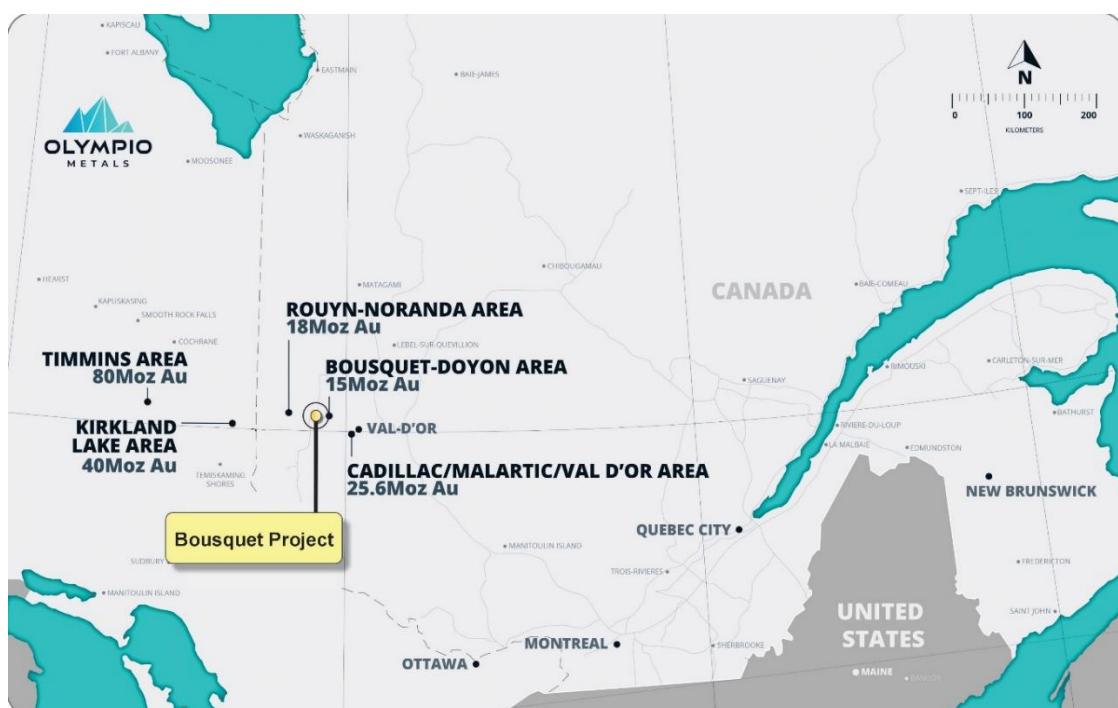


Figure 10 Bousquet Project Location

- ENDS -

This announcement is approved by the Board of Olympio Metals Limited.

For further information:

Sean Delaney

Managing Director
T: +61 409 084 771

E: sdelaney@olympiometals.com.au

Jason Mack

White Noise Communications
T: +61 400 643 799
E: jason@whitenoisecomms.com

Competent Person's Statement

The information in this announcement that relates to exploration results is based on information compiled by Mr. Neal Leggo, a Competent Person who is a Member of the Australian Institute of Geoscientists and a consultant to Olympio Metals Limited. Mr. Leggo has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Leggo consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain "forward looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis.

However, forward looking statements are subject to risks, uncertainties, assumptions, and other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forward looking statements. Such risks include, but are not limited to exploration risk, Mineral Resource risk, metal price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which we sell our product to, and government regulation and judicial outcomes.

Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

ISSUED CAPITAL

Ordinary Shares: 124.7 million

COMPANY SECRETARY

Peter Gray

BOARD OF DIRECTORS

Sean Delaney, *Managing Director*
Simon Andrew, *Non-Executive Chairman*
Aidan Platel, *Non-Executive Director*

REGISTERED OFFICE

L2, 25 Richardson Street
West Perth, WA, 6005

Table 2: Collar information for completed drill holes of the 2025 drill program at the Bousquet Project

Hole	Prospect/Target	Azimuth	Dip	Length	Easting	Northing	Elevation	Status
BO-25-27	Paquin	188	-55	336	676528	5343882	324	28 th Jul 2025
BO-25-28	Paquin	205	-45	252	676568	5343839	322	28 th Jul 2025
BO-25-29	Paquin	195	-55	300	676496	5343909	324	12 th Aug 2025
BO-25-31	Amadee	220	-45	87	676115	5343741	336	12 th Aug 2025
BO-25-32	Amadee	230	-45	102	676092	5343758	334	12 th Aug 2025
BO-25-33	Amadee	210	-45	102	676092	5343758	334	12 th Aug 2025
BO-25-34	Amadee	210	-45	102	676038	5343774	336	12 th Aug 2025
BO-25-35	Amadee	230	-45	102	676038	5343774	336	12 th Aug 2025
BO-25-36	Amadee	220	-45	90	676157	5343734	334	12 th Aug 2025
BO-25-37	Amadee	220	-45	222	676152	5343793	340	12 th Aug 2025
BO-25-38	Amadee	230	-45	102	676202	5343726	324	12 th Aug 2025
BO-25-39	Decoeur Ext.	180	-60	207	675423	5343350	308	26 th Aug 2025
BO-25-40	Decoeur	220	-55	408	675089	5343598	320	26 th Aug 2025
BO-25-41	Paquin	187	-51	225	676496	5343909	324	30 th Sept 2025
BO-25-42	Paquin	150	-52	222	676495	5343909	325	30 th Sept 2025
BO-25-43	Paquin	210	-45	234	676551	5343907	324	30 th Sept 2025
BO-25-44	Paquin	210	-45	252	676796	5343897	323	30 th Sept 2025
BO-25-45	Paquin	210	-45	273	676601	5343677	321	28 th Oct 2025
BO-25-46	VLF	210	-45	252	676551	5343589	321	28 th Oct 2025
BO-25-47	VLF	210	-45	264	676501	5343503	320	28 th Oct 2025
BO-25-48	VLF	210	-45	312	676793	5343508	311	28 th Oct 2025
BO-25-49	VLF	210	-50	252	676843	5343595	311	28 th Oct 2025
BO-25-50	Decoeur Ext.	180	-60	162	675641	5343263	316	28 th Oct 2025
BO-25-51	Decoeur Ext.	180	-60	174	675838	5343286	310	28 th Oct 2025
BO-25-52	CB-1	153	-45	201	677036	5344273	338	28 th Oct 2025
BO-25-53	CB-1	343	-45	252	677036	5344273	338	6 th Jan 2026
BO-25-54	CB-1	155	-48	357	677011	5344327	340	28 th Oct 2025
BO-25-55	CB-1	156	-45	330	676898	5344358	339	6 th Jan 2026
BO-25-56	CB-1	156	-45	300	677092	5344409	339	6 th Jan 2026
BO-25-57	Paquin	211	-50	204	676625	5343718	321	6 th Jan 2026
BO-25-58	Paquin	210	-50	201	676674	5343705	321	6 th Jan 2026
BO-25-59	Paquin	210	-50	204	676575	5343732	324	6 th Jan 2026

Table 3 Significant gold intersections from 2025 drilling at the Bousquet Gold Project ($\geq 0.5\text{g/t Au}$ cut-off, 1m min. width, 2m max. internal dilution (downhole))

Hole ID	Prospect	From (m)	Width (m)	Au g/t	Significant Intercept
BO-25-27	Paquin	34	1.5	0.62	1.50m @ 0.62 g/t Au from 34.00m
BO-25-27	Paquin	183	6.4	6.54	6.40m @ 6.54 g/t Au from 183.00m
BO-25-27	Paquin	199.5	1.5	0.83	1.50m @ 0.83 g/t Au from 199.50m
BO-25-27	Paquin	218	1.55	2.05	1.55m @ 2.05 g/t Au from 218.00m
BO-25-28	Paquin	42	1	0.79	1.00m @ 0.79 g/t Au from 42.00m
BO-25-28	Paquin	81.3	1	0.77	1.00m @ 0.77 g/t Au from 81.30m
BO-25-28	Paquin	101	1.3	2.22	1.30m @ 2.22 g/t Au from 101.00m
BO-25-28	Paquin	104.35	2.15	1.99	2.15m @ 1.99 g/t Au from 104.35m
BO-25-28	Paquin	109.3	4	0.63	4.00m @ 0.63 g/t Au from 109.30m
BO-25-28	Paquin	125.4	1.2	3.18	1.20m @ 3.18 g/t Au from 125.40m
BO-25-28	Paquin	130.5	1.5	1.12	1.50m @ 1.12 g/t Au from 130.50m
BO-25-28	Paquin	138	7.9	6.20	7.90m @ 6.20 g/t Au from 138.00m
BO-25-28	Paquin	156	1	0.86	1.00m @ 0.86 g/t Au from 156.00m
BO-25-28	Paquin	167.6	1.4	0.95	1.40m @ 0.95 g/t Au from 167.60m
BO-25-28	Paquin	187.9	12.6	0.59	12.60m @ 0.59 g/t Au from 187.90m
BO-25-28	Paquin	235.5	1.5	54.20	1.50m @ 54.20 g/t Au from 235.50m
BO-25-29	Paquin	177	1.3	0.66	1.30m @ 0.66 g/t Au from 177.00m
BO-25-29	Paquin	183	1.5	0.78	1.50m @ 0.78 g/t Au from 183.00m
BO-25-29	Paquin	191.8	1.2	1.60	1.20m @ 1.60 g/t Au from 191.80m
BO-25-29	Paquin	199.7	1.65	0.66	1.65m @ 0.66 g/t Au from 199.70m
BO-25-29	Paquin	203.4	1.1	0.83	1.10m @ 0.83 g/t Au from 203.40m
BO-25-31	Amadee	36	6.3	0.95	6.30m @ 0.95 g/t Au from 36.00m
BO-25-31	Amadee	49.5	2.1	1.40	2.10m @ 1.40 g/t Au from 49.50m
BO-25-32	Amadee	49	1	2.32	1.00m @ 2.32 g/t Au from 49.00m
BO-25-33	Amadee	49.3	4.55	1.71	4.55m @ 1.71 g/t Au from 49.30m
BO-25-33	Amadee	60	1.3	1.14	1.30m @ 1.14 g/t Au from 60.00m
BO-25-34	Amadee	31.5	1.5	4.70	1.50m @ 4.70 g/t Au from 31.50m
BO-25-34	Amadee	36	1	0.91	1.00m @ 0.91 g/t Au from 36.00m
BO-25-34	Amadee	39	5.8	1.06	5.80m @ 1.06 g/t Au from 39.00m
BO-25-34	Amadee	49.7	1.3	1.18	1.30m @ 1.18 g/t Au from 49.70m
BO-25-34	Amadee	60	4.3	0.98	4.30m @ 0.98 g/t Au from 60.00m
BO-25-35	Amadee	36	1	0.51	1.00m @ 0.51 g/t Au from 36.00m
BO-25-35	Amadee	57	1	0.75	1.00m @ 0.75 g/t Au from 57.00m
BO-25-35	Amadee	62.2	2.1	1.14	2.10m @ 1.14 g/t Au from 62.20m
BO-25-35	Amadee	67.8	10.7	0.69	10.70m @ 0.69 g/t Au from 67.80m
BO-25-35	Amadee	82.85	1.95	2.05	1.95m @ 2.05 g/t Au from 82.85m
BO-25-36	Amadee	31.55	1.45	1.57	1.45m @ 1.57 g/t Au from 31.55m

Hole ID	Prospect	From (m)	Width (m)	Au g/t	Significant Intercept
BO-25-36	Amadee	47.3	1.1	0.89	1.10m @ 0.89 g/t Au from 47.30m
BO-25-37	Amadee	80.15	2.25	1.29	2.25m @ 1.29 g/t Au from 80.15m
BO-25-37	Amadee	88	2.35	2.02	2.35m @ 2.02 g/t Au from 88.00m
BO-25-37	Amadee	113.15	6.85	1.11	6.85m @ 1.11 g/t Au from 113.15m
BO-25-38	Amadee	5.65	4.5	3.29	4.50m @ 3.29 g/t Au from 5.65m
BO-25-38	Amadee	26.25	1.15	0.54	1.15m @ 0.54 g/t Au from 26.25m
BO-25-39	Decoeur	13.25	3.75	2.24	3.75m @ 2.24 g/t Au from 13.25m
BO-25-40	Decoeur	298	1	0.68	1.00m @ 0.68 g/t Au from 298.00m
BO-25-40	Decoeur	338	2.15	0.84	2.15m @ 0.84 g/t Au from 338.00m
BO-25-40	Decoeur	355.5	14.5	1.96	14.50m @ 1.96 g/t Au from 355.50m
BO-25-40	Decoeur	373.8	2	1.39	2.00m @ 1.39 g/t Au from 373.80m
BO-25-41	Paquin	67	1.2	0.58	1.20m @ 0.58 g/t Au from 67.00m
BO-25-41	Paquin	182.3	4.9	2.16	4.90m @ 2.16 g/t Au from 182.30m
BO-25-41	Paquin	190.3	2.1	1.05	2.10m @ 1.05 g/t Au from 190.30m
BO-25-41	Paquin	204	1.3	2.52	1.30m @ 2.52 g/t Au from 204.00m
BO-25-42	Paquin	87	1	0.57	1.00m @ 0.57 g/t Au from 87.00m
BO-25-42	Paquin	216.5	1.5	0.68	1.50m @ 0.68 g/t Au from 216.50m
BO-25-43	Paquin	190	2.6	3.13	2.60m @ 3.13 g/t Au from 190.00m
BO-25-43	Paquin	195	1.5	0.60	1.50m @ 0.60 g/t Au from 195.00m
BO-25-43	Paquin	207	1	0.65	1.00m @ 0.65 g/t Au from 207.00m
BO-25-43	Paquin	210	1	4.43	1.00m @ 4.43 g/t Au from 210.00m
BO-25-44	VLF	99.6	1.4	1.42	1.40m @ 1.42 g/t Au from 99.60m
BO-25-44	VLF	219	1	6.33	1.00m @ 6.33 g/t Au from 219.00m
BO-25-44	VLF	250	2	0.94	2.00m @ 0.94 g/t Au from 250.00m
BO-25-45	VLF	21.75	1	1.07	1.00m @ 1.07 g/t Au from 21.75m
BO-25-45	VLF	131	1	0.70	1.00m @ 0.70 g/t Au from 131.00m
BO-25-45	VLF	188.5	1.1	3.43	1.10m @ 3.43 g/t Au from 188.50m
BO-25-48	VLF	94.2	1.05	1.40	1.05m @ 1.40 g/t Au from 94.20m
BO-25-48	VLF	103.5	1.5	0.91	1.50m @ 0.91 g/t Au from 103.50m
BO-25-48	VLF	171.5	3	0.60	3.00m @ 0.60 g/t Au from 171.50m
BO-25-48	VLF	179.5	2	0.66	2.00m @ 0.66 g/t Au from 179.50m
BO-25-49	VLF	198.8	1.32	0.55	1.32m @ 0.55 g/t Au from 198.80m
BO-25-50	Decoeur Ext.	37	2	1.15	2.00m @ 1.15 g/t Au from 37.00m
BO-25-50	Decoeur Ext.	43.4	2	0.64	2.00m @ 0.64 g/t Au from 43.40m
BO-25-51	Decoeur Ext.	47.1	7.1	1.43	7.10m @ 1.43 g/t Au from 47.10m
BO-25-51	Decoeur Ext.	59.6	2.4	1.06	2.40m @ 1.06 g/t Au from 59.60m
BO-25-51	Decoeur Ext.	68	1	0.50	1.00m @ 0.50 g/t Au from 68.00m
BO-25-53	CB-1	218.2	1.3	12.20	1.30m @ 12.20 g/t Au from 218.20m
BO-25-53	CB-1	225	1.5	0.66	1.50m @ 0.66 g/t Au from 225.00m

Hole ID	Prospect	From (m)	Width (m)	Au g/t	Significant Intercept
BO-25-54	CB-1	224	1.35	1.54	1.35m @ 1.54 g/t Au from 224.00m
BO-25-54	CB-1	245.7	1.3	0.82	1.30m @ 0.82 g/t Au from 245.70m
BO-25-54	CB-1	261.8	1.5	1.18	1.50m @ 1.18 g/t Au from 261.80m
BO-25-54	CB-1	279.3	1	1.73	1.00m @ 1.73 g/t Au from 279.30m
BO-25-54	CB-1	289.5	2.7	1.49	2.70m @ 1.49 g/t Au from 289.50m
BO-25-54	CB-1	334	1	0.60	1.00m @ 0.60 g/t Au from 334.00m
BO-25-54	CB-1	341	1.5	0.61	1.50m @ 0.61 g/t Au from 341.00m
BO-25-55	CB-1	156.1	1.3	0.54	1.30m @ 0.54 g/t Au from 156.10m
BO-25-55	CB-1	270.9	1.45	2.04	1.45m @ 2.04 g/t Au from 270.90m
BO-25-56	CB-1	250.5	1.5	0.51	1.50m @ 0.51 g/t Au from 250.50m
BO-25-57	Paquin	24.35	3	2.21	3.00m @ 2.21 g/t Au from 24.35m
BO-25-57	Paquin	33	3	1.16	3.00m @ 1.16 g/t Au from 33.00m
BO-25-57	Paquin	49.3	1.15	1.78	1.15m @ 1.78 g/t Au from 49.30m
BO-25-57	Paquin	59.8	3.35	0.79	3.35m @ 0.79 g/t Au from 59.80m
BO-25-57	Paquin	92.5	1.5	4.22	1.50m @ 4.22 g/t Au from 92.50m
BO-25-57	Paquin	183	1.3	1.16	1.30m @ 1.16 g/t Au from 183.00m
BO-25-58	Paquin	25.1	1.3	0.58	1.30m @ 0.58 g/t Au from 25.10m
BO-25-58	Paquin	48.5	1.15	1.07	1.15m @ 1.07 g/t Au from 48.50m
BO-25-58	Paquin	64.35	1.35	1.73	1.35m @ 1.73 g/t Au from 64.35m
BO-25-58	Paquin	126	1	1.13	1.00m @ 1.13 g/t Au from 126.00m
BO-25-59	Paquin	23.75	1.45	0.83	1.45m @ 0.83 g/t Au from 23.75m
BO-25-59	Paquin	50.5	1.1	0.62	1.10m @ 0.62 g/t Au from 50.50m
BO-25-59	Paquin	70.15	4.25	0.98	4.25m @ 0.98 g/t Au from 70.15m
BO-25-59	Paquin	76.7	1.3	0.89	1.30m @ 0.89 g/t Au from 76.70m
BO-25-59	Paquin	108	1.5	0.57	1.50m @ 0.57 g/t Au from 108.00m
BO-25-59	Paquin	187.7	1	0.98	1.00m @ 0.98 g/t Au from 187.70m

References

ⁱ ASX Release OLY, Drilling at Amadee Prospect Confirms Shallow Gold Mineralisation, 12th August 2025

ⁱⁱ ASX Release OLY, Bousquet Drilling Demonstrates Down Dip Potential at Paquin, 30th September 2025

ⁱⁱⁱ Poulsen, K., 2017 The Larder Lake-Cadillac Break and Its Gold Districts, *Economic Geology*, v. 19, pp. 133–167

^{iv} NI 43-101 Technical Report, La Ronde Complex, Québec, Canada, 24 March 2023

^v IAMGOLD Corporation, Table 3: Mineral Reserves and Mineral Resources, 31 December 2023, retrieved from https://s202.q4cdn.com/468687163/files/doc_news/2024/02/iag-2024-mrrmr-estimate.pdf

^{vi} ASX Release OLY, Structural Setting Confirms Potential for Large Scale Gold Deposit at Bousquet, 8th September 2025

^{vii} ASX Release OLY, High-Grade Gold up to 42.3 g/t Confirmed in First Two Drill-holes at Bousquet, 28th July 2025

^{viii} ASX Release OLY, 1.7km Gold System Emerging at Decoeur, 28th October 2025

^{ix} ASX Release OLY, High-grade Gold up to 12.2 g/t Intersected in Multiple Structures at Bousquet, 6th January 2026

^x ASX Release OLY, OLYMPIO TO ACQUIRE ADVANCED BOUSQUET GOLD PROJECT, QUEBEC, CANADA, 26th feb 2025

JORC Code - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation	Comment
Sampling techniques	<p><i>Nature and quality of sampling.</i></p> <p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i></p>	<p>Current Exploration Diamond core samples (NQ) were collected in timber core trays, sequence checked, metre marked and oriented at the drill site. The drill core was logged at Explo-logik core shack in Val D'Or by Quebec qualified geologists.</p> <p>Historical Exploration Diamond drilling to produce core samples is the only sampling technique reported. The drilling data included in this release comes from a range of historical drilling programs. These are grouped in 3 sets as follows: BG Drilling: Sampling techniques from Bullion Gold drilling 2021 to 2023 (Hole series BO-21 and BO-22, GM73520) is described in detail. TM Drilling: Sampling techniques from Twin Mining drilling 2003 to 20xx (Hole series TMN, GM61411) are described in detail. 20thC Drilling: Sampling techniques from all other drilling programs (mostly pre-1947) typically have no details recorded in historical records and reports. Channel Sampling: GM34572 1978 Channel samples were collected by electric jack hammer under the supervision of a Quebec certified geologist. Sample density appears to be appropriate to the vein density existing in mapped outcrops.</p>
Drilling techniques	<p><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>Current Exploration All drill core is NQ. All downhole surveying is done with an OMNIX42 (every 30m), rig alignment with a TN14 Gyro, and core orientation with a Reflex ACTIII every 6m or less.</p> <p>Historical Exploration All drilling within the project area has been diamond core.</p> <p>BG, TM & 20thC: No records of any oriented core The drill core size is not specified for the majority of drill holes.</p>
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p> <p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade ...</i></p>	<p>Current Exploration Proportion of core recovered for each 3 metre interval of core drilled is recorded in the drill database.</p> <p>Historical Exploration BG, TM & 20thC: Core recovery is not recorded for the majority of drill holes. The measures taken by previous explorer to maximise recovery is not recorded. With no recovery data available, no comment about any recovery/grade relationship is possible.</p>
Logging	<p><i>Whether core and chip samples have been logged</i></p> <p><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i></p>	<p>Current Exploration All drill core was qualitatively logged by the Explo-logik staff geologist. Logging includes lithology, alteration, mineralisation, veining and photography. The main rock types observed in the logging were greywacke, siltstone and conglomerate.</p> <p>Historical Exploration</p>

	<p><i>The total length and percentage of the relevant intersections logged.</i></p>	<p>BG Drilling: All drilling has drill logs available. The drill core was logged and marked for sampling by a professional geologist. Sample lengths ranged from 0.3 to 2.0m. The main criterion for sample selection was based on the presence of one of the visible features of the mineralised zones (sulphides, visible gold, alteration, blue quartz). Logging is qualitative. The majority of the core has been core has been logged. All descriptive logs are in French summary logging is in English.</p> <p>TM Drilling: All drilling has drill logs available. Logging is qualitative. All core has been logged. All descriptive logs are in English.</p> <p>20thC Drilling: Drill logs are available for some drill holes with a range of detail/quality. Measurements are generally in imperial units (feet) and logs in either French or English.</p>
<p>Sub-sampling techniques and sample preparation</p>	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p>Current Exploration</p> <p>All core is logged, then sampling intervals are selected by the logging geologist, with a maximum sample interval of 2m.</p> <p>Core samples were collected by sawing each sample interval in half lengthwise with a bench rock saw. One half of the interval was returned to the core box, and the other half was placed in a plastic bag with a tag. The tag number was marked in indelible ink on the outside of the bag, and the bag was sealed with a plastic tie-wrap.</p> <p>Sample are sent to AGAT Laboratories in Thunder Bay. The half core samples were crushed to 90% passing 2mm and then riffle split to a 250g sub-sample that was pulverised to pulp 90% passing 105µm.</p> <p>Historical Exploration</p> <p>BG Drilling: Core samples were collected by sawing each sample interval in half lengthwise with a bench rock saw. One half of the interval was returned to the core box, and the other half was placed in a plastic bag with a tag. The tag number was marked in indelible ink on the outside of the bag, and the bag was sealed with a plastic tie-wrap.</p> <p>Sample preparation was undertaken at the Lab Expert facility in Rouyn-Noranda. The half core samples were crushed to 70% passing 2mm and then riffle split to a 250g sub-sample that was pulverised to pulp 85% passing 75µm. All analyses were done using a 50g fire assay fusion (FA) with Atomic Absorption Spectroscopy (AAS) finish. Assays exceeding 3g/t Au were checked by re-assaying using FA with gravimetric finish. Where the logging geologist deemed appropriate, the sample was analysed using metallic screen assay techniques.</p> <p>TM Drilling: Drill core was split by hydraulic splitter, and approximately half the cores sampled. Sample preparation methods are not recorded.</p> <p>20thC Drilling: Core sampling techniques of historical drilling other than BG and TM is unknown.</p> <p>Channel Sampling: GM34572 1978 sample preparation is not recorded</p>
<p>Quality of assay data and laboratory tests</p>	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used</i></p> <p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc,</i></p> <p><i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i></p>	<p>Current Exploration</p> <p>All samples were analysed for Au by 50g fire assay fusion (FA) with Atomic Absorption Spectroscopy (AAS) finish (202-551), and also 34 elements by 4-acid digest with ICP_OES finish (201-070). Samples with observed or suspected coarse gold as logged by the geologist were analysed by screen Fire assay (202-121). From the pulverised sample, a 1kg sub-sample was sieved to 106µm. The +106µm fraction was analysed to extinction by FA/ICP(OES) and the -106µm fraction by FA/ICP(OES).</p> <p>AGAT protocols are considered by the Qualified Person to be consistent, in general, with industry standards.</p> <p>One certified reference material (CRM) standard and one blank were included in each batch of 20 samples (inserted at 1/19 samples) by Explo-logik staff. CRM used were OREAS 221, 231, 236, 238, 242. The blank was quartz-sericite.</p> <p>Historical Exploration</p> <p>BG Drilling: All analyses were done using a 50g fire assay fusion (FA) with Atomic Absorption Spectroscopy (AAS) finish. Assays exceeding 3g/t Au were checked by re-assaying using FA with gravimetric finish. Where the logging geologist deemed appropriate, the sample was analysed using metallic screen assay techniques.</p> <p>One certified reference material (CRM) standard and one blank were included in each batch of 20 samples (inserted at 1/19 samples). CRM used were SF85, SF100, SG102, SG115, SG81. 58% of the CRM assay results were reported higher than 3 standard deviations from the certified value, which is considered a poor performance from the lab. It was recommended to review the assay certificates and re-assay the pulps before and after the failed standards.</p> <p>TM Drilling: Hole series TMN- (Twin Mining GM61411) was assayed at ALS Vancouver using a fire assay with a 30g split, AAS finish, 5ppb detection limit. Assays over 1g/t Au were re-assayed. Twin Mining reported that no quality assurance/quality control checks were performed.</p> <p>20thC Drilling: Procedures for other historical drilling are unknown. No QA/QC data is recorded.</p>

		Channel Sampling: GM34572 1978 Samples were analysed at Assayers Ltd, Rouyn-Noranda. By combined Fire Assay – AAS with 7ppb DL.
Verification of sampling and assaying	<p><i>The verification of significant intersections by independent or alternative company personnel.</i></p> <p><i>The use of twinned holes.</i></p> <p><i>Documentation of primary data, data entry procedures, data verification, data storage protocols.</i></p> <p><i>Discuss any adjustment to assay data.</i></p>	<p>Current Exploration Significant intersections have been reviewed by Neal Leggo, Independent Geologist. No twin holes have been drilled. No documentation of data protocols has been completed</p> <p>Historical Exploration BG Drilling: No independent verification or twinned holes have been used. Adequate documentation of the drill data is available. No adjustments of data are recorded. TM Drilling: No independent verification or twinned holes have been used. Adequate documentation of basic aspects of the drill data is available. No adjustments of data are recorded. 20thC Drilling: No independent verification or twinned holes have been used. For the majority of historical drill holes, the data is not well documented. Translation from imperial to metric system measurements has been made in the database. Channel Sampling: GM34572 1978 no verification sampling is recorded</p>
Location of data points	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p> <p><i>Specification of the grid system used.</i></p> <p><i>Quality and adequacy of topographic control.</i></p>	<p>Current Exploration All drillholes are located using handheld GPS, accuracy ~ +/-10m. Drill collars are surveyed using an Imdex TN14 Gyro.</p> <p>Historical Exploration BG, TM & 20thC: The accuracy and location method of exploration data including historical drill holes is not recorded in the reports, logs and databases available.</p> <p>Grid system used is NAD83 / UTM zone 17N in accordance with the National Topographic System or NTS used by Natural Resources Canada for mapping.</p> <p>Topographic control is satisfactory for the exploration phase at which the project is at.</p> <p>Channel Sampling: GM34572 1978 samples are mapped in varying detail in numerous maps which allow the samples to be accurately located relative to outcropping geology in the field.</p>
Data spacing and distribution	<p><i>Data spacing for reporting of Exploration Results.</i></p> <p><i>Whether appropriate for the Mineral Resource ... estimation procedure(s) ...</i></p> <p><i>Whether sample compositing has been applied.</i></p>	<p>Current Exploration Completed drilling is consistent with spacing used in previous drill programs, and appropriate for the mineralisation targeted, typically 25m drill hole spacing minimum for Paquin, with wider and irregular spacings controlled by geology at other prospects.</p> <p>Historical Exploration BG, TM & 20thC: The historical drilling data has been drilled at a range of spacing, azimuth and dip to intersect the interpreted mineralised horizons. Spacing is currently insufficient for resource estimation work. No sample compositing has been applied.</p> <p>Channel Sampling: GM34572 1978 data spacing and distribution is appropriate to the vein density observed in the field</p>
Orientation of data in relation to geological structure	<p><i>Whether the orientation of sampling achieves unbiased sampling</i></p> <p><i>relationship between the drilling orientation and structures is considered to have introduced a sampling bias.</i></p>	<p>Current Exploration The drilling orientation is consistent with previous drilling and designed to maximise exposure to structural elements see in surface mapping.</p> <p>Detailed structural logging of oriented drill core and structural modelling is being undertaken to improve orientation of drill intersection as exploration work progresses.</p> <p>Historical Exploration BG, TM & 20thC: The drill hole sampling orientation is considered appropriate to test the mineralised target horizons. The strike of the mineralised structures targeted is generally determined with drill holes set back and angled, producing intersections across the strike, thus reducing bias.</p> <p>Channel Sampling: GM34572 1978 sampling orientation is optimised relative to mineralised zones</p>
Sample security	<i>The measures taken to ensure sample security.</i>	<p>Current Exploration Sample security is managed by Explo-logik staff, who are highly experienced in drill core and sample management. All drill core transport, core sampling and sample transport is conducted, or managed, by Explo-logik staff. Core samples are sent by courier to AGAT laboratories in Thunder Bay Ontario.</p> <p>Historical Exploration</p>

		<p>BG: For shipping, samples were placed in rice bags that were individually sealed with numbered, tamper-proof security tags. The rice bags were sent to Lab Expert in Rouyn-Noranda.</p> <p>TM: The selected core intervals were split under the direction and supervision of the senior geologist. All samples were hand delivered by the senior geologist or approved project technical personnel to the ALS Chemex sample preparation laboratory in Val d'Or, Quebec.</p> <p>20thC: No information about the sample security measures is present in the historical exploration reports.</p> <p>Channel Sampling: GM34572 1978 sample security is not recorded</p>
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	No reviews or audits are recorded.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Explanation	Comment
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<p>The Bousquet Project is a mineral property which consists of 71 claims (registered with the Quebec provincial government) covering (23.69 km²). The Property is located 30km east of the historic mining town of Rouyn-Noranda, in the province of Quebec, Canada. The property consists of a contiguous package of wholly owned tenements held under title by Bullion Gold Resources Corp and under option for purchase by Olympio. The tenements are current and in good standing with the Quebec Provincial government.</p> <p>A list of claim IDs is provided in Table 3 of previous ASX release 19th March 2025.</p> <p>Olympio are not aware of any known impediments to obtaining a licence to operate in the area. Numerous gold and base metal mines are currently operating in the district. New mining operations have recently been bought into production through established protocols of Quebec and Canadian authorities. No development studies have been undertaken on the Bousquet project to date.</p> <p>A royalty applies to any future mineral production. In the event that the Project is brought to commercial production, Falco will receive a 1.5% NSR royalty on the claims sold to Bullion Gold. In certain claims located in the Bousquet Township, there a number of companies holding various royalty interest. On the original Normar block, Barrick Gold and Atlanta Gold (bankrupted) each hold a 1% NSR ("Net Smelter Return") royalty while Delfer Gold Mine holds a 5% Net Profit Interest. On the Blackfly Block, Atlanta Gold holds a 1% NSR on certain claims and Globex Resources hold a 0.5% Gross Mineral Profit on 8 claims.</p>
Exploration done by other parties	<i>Acknowledgment and appraisal of exploration by other parties.</i>	<p>No mining has occurred on the property, according to available records.</p> <p>There have been 4 eras of active exploration on the property.</p> <p>1. Early 20thCentury: The main gold corridor was found and explored between 1932 and 1946. During this period, the Paquin, Decoeur, Calder Bousquet and Joannes prospects were discovered and drilled. During this period, 120 drill holes for a total of 20,530m were executed on the various gold discoveries.</p> <p>2. Late 20thCentury: During the period extending from 1967 to 1995, exploration comprised 14 drill holes for a total of 2,532m which were drilled mainly on the Paquin prospect and just north of the Bouzan Or prospect. Various types of geophysical survey including magnetic, electromagnetic (VLF, MAXMIN and AeroTem) and IP surveys were executed on the property. Breakwater also did some stripping and mapping on the southern gold shear zone.</p> <p>3. 21st Century: From 2003 to 2020, 39 drill holes were drilled for 13,574m mainly in the southeast portion of the property by Twin Mining (2003-2008, GM61411). Of the 39 drill holes, 4 holes were drilled on the Joannes Township Block and magnetic, EM and IP surveys were conducted on this block.</p> <p>The most recent exploration (2021 to 2023) has been 26 diamond drill holes on the property for a total of 6,194 metres by Bullion Gold, concentrated at Paquin and Decoeur prospects (GM73520).</p>
Geology	<i>Deposit type, geological setting and style of mineralisation.</i>	<p>The geology of the property consists of volcano-sedimentary rocks divided in three major Groups. From North to South, there is the Cadillac Group, which is composed of turbidites, pelitic schists with beds of polymictic conglomerate and iron formations. The Timiskaming Group is composed of greywacke, siltstone, polymictic conglomerate, and talc-chlorite-carbonate schist (possibly from the Piché Formation). Occasional beds of argillite with graphitic mudstone also occurs. The Pontiac Group is composed of greywacke, interbedded with argillite, massive to pillow mafic flows and ultramafic flows. The Piché Group is composed of a sequence of komatiites, mafic rocks, amphibolites, volcanic tuffs and flows and granitic intrusives. In many areas, the Piché formation is superposed with the CLLD2 and lies between the Cadillac and Timiskaming Groups.</p> <p>Numerous gold prospects occur on the property. Most of them are found within a gold mineralised shear zone in the southern part of the property. Gold mineralisation is associated with structurally</p>

	<p>controlled quartz veins (typically smoky blue-grey-white quartz) and sulphides within E-W oriented, north dipping structures. The dominant host unit is Timiskaming group turbidites, and lesser conglomerate.</p> <p>The Paquin prospect is located between 675716 and 676832mE and 5343683 and 5343802mN giving the mineralised zone a length of 1,300m and a thickness of in excess of 100 m.</p> <p>Paquin was identified through drilling as it does not outcrop. These are two mineralised envelopes (East and West) containing blue to smoky quartz veins and veinlets accompanied by visible gold, as well as disseminated or stringers of arsenopyrite, pyrite, and pyrrhotite. Each envelope is contained within silicified and carbonatised greywackes. The longitudinal sections of the East and West mineralised envelopes show that the gold mineralization is most prominent on the eastern part of the gold corridor with a length of 400m between section 676400E and 676800E. The thickness of the mineralised zone (along the hole) varies from a few meters to 10 to 12m and, in some instances, the envelope may contain more than one mineralised zone.</p> <p>The Decoeur prospect is located between 674860mE and 675300mE at 5343385mN, giving the prospect a length of 440 m. The Decoeur prospect is located immediately in the south contact with the polymictic conglomerates. The mineralization is associated with talc-chlorite-quartz-carbonate schist (probably komatiitic lava flows). Previous interpretation suggested that the mineralization was associated to an E-W fault. The mineralization is composed of stringers of pyrite, chalcopyrite, arsenopyrite and galena and associated quartz veins and veinlets and local silicification. The mineralised sections vary from thirty centimetres up to 28.5m wide. The best intersection metal factor wise was in hole TMN-03-14 where an intercept 1.26 g/t Au over 18.6m was recorded.</p> <p>The Joannes prospect was discovered by drilling in 1937. The gold mineralization is vein-type associated with clastic sediments (turbidites) of the Timiskaming Group. Minor komatiitic basalts are also present. Gold is associated with disseminated pyrite in quartz veins. Traces of chalcopyrite and arsenopyrite are also present. The shear zone contains several quartz veins and some pyrite. Other prospects and showings of mineralisation identified within the property are of similar geology to these main prospects.</p> <p>The CB-1 prospect was discovered in 1938 by Calder Bousquet G.M.L with the CB-1 drill hole intercept of 2.9m @ 5.7g/t Au from 63.26m. The intercepts were logged as massive sulphide in carbonaceous veins, hosted in Greywacke. Logged sulphides were pyrite, pyrrhotite, chalcopyrite, sphalerite and trace arsenopyrite.</p>																																
Drill hole Information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <p>Current drilling information is provided in Tables 2 and 3 of this announcement and several other recent ASX releases on the Bousquet Project.</p> <p>All historical drillholes referred to in figures or text are included in Appendix 1 of previous ASX release 26th February 2025, together with reference document number (SIGEOM).</p> <p>For the many old historical holes, limited meta-data and detailed information are preserved in the records, thus verification of location and results is not possible.</p> <p>Basic collar information is available for all 200 drill holes as presented in Appendix 1 of previous ASX release 26th February 2025, and summarised below:</p> <table border="1" data-bbox="624 1298 1505 1518"> <thead> <tr> <th>Prospect</th> <th>Number Drill Holes</th> <th>Total Metres Drilled</th> <th>Grade (g/t) x Thickness (m) > 1</th> </tr> </thead> <tbody> <tr> <td>Paquin</td> <td>62</td> <td>13183</td> <td>301</td> </tr> <tr> <td>Amadee</td> <td>14</td> <td>458</td> <td>7</td> </tr> <tr> <td>Decoeur</td> <td>25</td> <td>7217</td> <td>90</td> </tr> <tr> <td>Joannes</td> <td>28</td> <td>3674</td> <td>20</td> </tr> <tr> <td>CB-1</td> <td>11</td> <td>2128</td> <td>7</td> </tr> <tr> <td>Regional</td> <td>60</td> <td>16474</td> <td>67</td> </tr> <tr> <td>Total</td> <td>200</td> <td>43134</td> <td>492</td> </tr> </tbody> </table>	Prospect	Number Drill Holes	Total Metres Drilled	Grade (g/t) x Thickness (m) > 1	Paquin	62	13183	301	Amadee	14	458	7	Decoeur	25	7217	90	Joannes	28	3674	20	CB-1	11	2128	7	Regional	60	16474	67	Total	200	43134	492
Prospect	Number Drill Holes	Total Metres Drilled	Grade (g/t) x Thickness (m) > 1																														
Paquin	62	13183	301																														
Amadee	14	458	7																														
Decoeur	25	7217	90																														
Joannes	28	3674	20																														
CB-1	11	2128	7																														
Regional	60	16474	67																														
Total	200	43134	492																														
Data aggregation methods	<p><i>... weighting averaging techniques, maximum and/or minimum grade truncations should be stated.</i></p>																																
	<p><i>The assumptions used for any reporting of metal equivalent values.</i></p> <p>Where drill intervals have been aggregated, the calculations are recorded as being weighted according to interval length. No allowance for recovery or truncations of grades are recorded in the documentation available.</p> <p>Significant drill intercepts noted in figures and tables of this announcement are reported at a minimum cut-off grade of 0.5 gram per tonne gold, minimum width of 1m (down-hole); maximum internal dilution of 2m.</p> <p>Significant drill intercepts noted in Table 1 of previous ASX releases for the Paquin and Decoeur prospects are reported at a minimum cut-off grade of 1.0 gram per tonne gold per metre.</p> <p>No metal equivalent values or formulas have been used.</p>																																
Relationship between mineralisation widths and intercept lengths	<p><i>These relationships are particularly important in the reporting of Exploration Results.</i></p> <p><i>If the geometry of mineralisation with respect to the drill hole angle</i></p> <p>Sample mineralisation intervals are reported as down-hole observed intervals in drill core. The true widths of mineralisation have not been calculated on a drill hole intercept basis in available historical documentation. There are many variations of drill hole orientation and lode orientation across the prospects.</p>																																
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included ...</i></p> <p>The maps and figures provided in this announcement provide an overview of the Bousquet project and accurately reflect recent exploration data acquired by Olympio, and historical exploration data as provided by the vendors in project databases and reports. The accuracy of information in databases and reports will be reviewed by Olympio personnel as the project progresses.</p>																																

		Detailed maps and figures have been provided for recent exploration by Olympio and will be provided in further market announcements as targeting work on each prospect progresses and drill testing is undertaken.
Balanced reporting	<i>Where comprehensive reporting of all Exploration Results is not practicable</i>	The project has seen a long history of exploration with a significant body of data collected with minimal recording of methods and parameters during the early 20 th Century. Later exploration data has been reported to Quebec/Canadian/TSX standards of the day. No reporting to ASX/JORC Code standard had previously undertaken, prior to its acquisition by Olympio. Comprehensive reporting will require time consuming search and review of historical records, field assessments, inspection of preserved drill cores, etc prior to historical data being deemed suitable for reporting in the current exploration context. This is being undertaken on a prospect by prospect basis as the exploration program proceeds. To date the historical data has been found to correlate well with new data and thus confidence in the historical data is increasing.
Other substantive exploration data	<i>Other exploration data, if meaningful and material, should be reported.</i>	<p>In 2021 Bullion gold contracted Novatem to carry out a 1,114 line-km high-resolution helicopter-borne magnetic survey on the Bousquet project.</p> <p>During the late 20th century various types of geophysical survey including magnetic, electromagnetic (VLF, MAXMIN and AeroTem) and IP surveys were executed on the property. Magnetic, EM and IP surveys were conducted on the Joannes Township Block. Some stripping and mapping on the southern gold shear zone also occurred during this era of exploration.</p> <p>VLF and Magnetometer Ground Survey, Normar Property, October 1986 GM43967</p> <p>Technical specifications of the geophysical surveys discussed in this announcement are summarised from the technical report of Novamin Resources Inc - the geophysical contractors who undertook the work in 1986: <i>Magnetometer and VLF Survey of Normar Property, 1986 (GM43967)</i>.</p> <p>Magnetometer and VLF Survey of Normar Property, 1986 (GM43967)</p> <p>Magnetometer and very low frequency (VLF) electromagnetic surveys were completed over the Normar Property (Project 2140.24) in the spring and summer of 1986. Objective was to obtain a geophysical data base to guide and assist subsequent geologic/geophysical work. The magnetic and VLF results outline a number of lithologies and present a complex structural setting.</p> <p>A number of VLF zones are tentatively associated with known gold showings. Geologic mapping and compilatory work are recommended before implementation of additional exploratory work. The two survey techniques are reviewed separately below.</p> <p>Very Low Frequency (VLF) Electromagnetic Survey</p> <p>Tabulated below are logistical details concerning the survey.</p> <p>Instrumentation: Geonics EM-16 Crone Radem</p> <p>Transmitter Station: Cutler, Maine, U.S.A.</p> <p>Frequency: 24.0 KHz</p> <p>Line Interval: 100 m</p> <p>Station Interval: 25 m</p> <p>Survey Dates: March 15-21; June 3-5, 15, 24-26, 1986</p> <p>Parameters Read: Dip in percent (%) of the total electromagnetic field perpendicular to the transmitter station.</p> <p>Production: 76.3 line-km / 3087 Rdg.</p> <p>Dip angles generated by the Crone Radem were converted from degrees (°) to a percentage (%) dip, so as to agree with the Geonics EM-16. These dips were then plotted in profile form on a base map at 1:5000 scale and profile scale of 1 cm = 20%. Plotting conventions are completely explained on the map. These dips were then processed with the well known Fraser filter and the results also plotted on a 1:5000 scale base map. Contouring was then completed with an interval of 20 units. Coupling to Cutler, Maine was about 15° off the optimum of 0°, however, this is quite adequate for energizing any strataform conductors. The field work proceeded smoothly and the data is of utmost quality.</p> <p>However, a buried telephone line along highway 117 produced an extremely robust anomaly which overwhelmed nearby responses. This essentially negates results along its length for a width of about 500 m.</p> <p>Conclusions and Recommendations</p> <p>The magnetic and VLF results outline a number of lithologies and present a complex structural setting. At least three (3) VLF zones (i.e. #1, #2, & #3) are, or appear to be, related to known gold showings. Final verification must await compilation of the previous work on to the present grid. The property should be mapped geologically and all previous work compiled. Once this is available it can be integrated with these geophysical results and an exploration proposal developed.</p> <p>Report author: James L. Wright, Senior Staff Geophysicist, Novamin Resources Inc.</p> <p>IP Survey, Normar Project, August 1995 GM53815</p> <p>In July 1995, ground Induced Polarization (I.P.) surveys were carried out on the NORMAR (5064) property, for BREAKWATER RESOURCES Ltd.</p> <p>The I.P. survey was carried out along previously cut lines oriented at North-South, spaced every 100 meters and chained every 25 meters. The grid is controlled by base line 0+OON and tie line 9+OOS, striking east-west. The I.P. survey was conducted using a dipole-dipole electrode configuration. The dipole dimension was 25 meters and successive separations at multiples of n=1, n=2, n=3, n=4 and</p>

For personal use only

		<p>n=5 times the dipole dimensions were used, in order to investigate at depth. A total of approximately 9.8 line-km of I.P. data was thus gathered. The I. P. equipment consisted of 1°) a Phoenix IPT-1 transmitter operating at 1.0 Hz, powered by a 2 kiloWatt, Phoenix model MG-2 motor generator. The phase angle (in milliradians) between the transmitted current and the received voltage was measured by 2°) a Phoenix Turbo V-4 phase I.P. receiver, measuring the polarization effect (phase shift) and also the apparent resistivity of the earth at each "n". The phase angle is a direct measure of the polarization of the underlying earth.</p> <p>The Bousquet Property is suited to IP survey as there are limited known conductive lithologies or overburden with the potential to mask IP responses from sulphides and associated gold mineralisation. The survey identified numerous resistivity and chargeability anomalies that were ranked according to prospectivity. A notable chargeability anomaly occurs to the immediate southwest of the Decoeur prospect, however the anomaly remains open to the west and south of the IP survey boundaries. The IP anomaly has recently been drilled by hole BO-25-39, 50, and 51. The drilling to date has not resolved the source of the IP anomaly, and further drilling will be required.</p>
Further Work	<i>The nature and scale of planned further work.</i>	<p>Logging, sampling and assaying of the 2025 drilling program is complete. Further exploration including drilling is planned for the project.</p> <p>A review of the Paquin Prospect has identified that the up dip position of the mineralisation is dominated by drilling from the mid-1940s. While this drilling shows significant gold results, the historical core was drilled as AQ and the lack of documentation on assay methodology means these samples could not be used in any future mineral resource estimation.</p> <p>A 1,200m diamond drill program is proposed to test of the Paquin Prospect. These drill holes will provide additional structural data, modern sample preparation and analytical methods, including sample screening for coarse gold, to provide reliable results in zones that were only drilled by historical 1940s sampling.</p> <p>Drilling results at the Decoeur Prospect has revealed a 1.7km trend of mineralisation. A detailed review of the structural data from drilling and mapping at Decoeur will be conducted to better understand the structural controls on mineralisation and identify the highest priority target areas along the 1.7km mineralised strike.</p> <p>Interpretation of geophysical data, in conjunction with field mapping and review of regional prospects, has resulted in several key areas of interest (AOI) north of the Cadillac Break, that require further investigation. The Company will continue to develop these early stage regional targets to progress them towards preliminary drill testing.</p>