

20 January 2026

ASX RELEASE

Mt McKenna Gold Project: Aircore Drilling identifies 1.5km mineralised structure.

Platina Resources Limited (ASX: PGM) has identified a number of new gold targets in the maiden aircore drilling program at its Mt McKenna Project in Western Australia, including a 1.5km mineralised structure warranting deeper drilling.

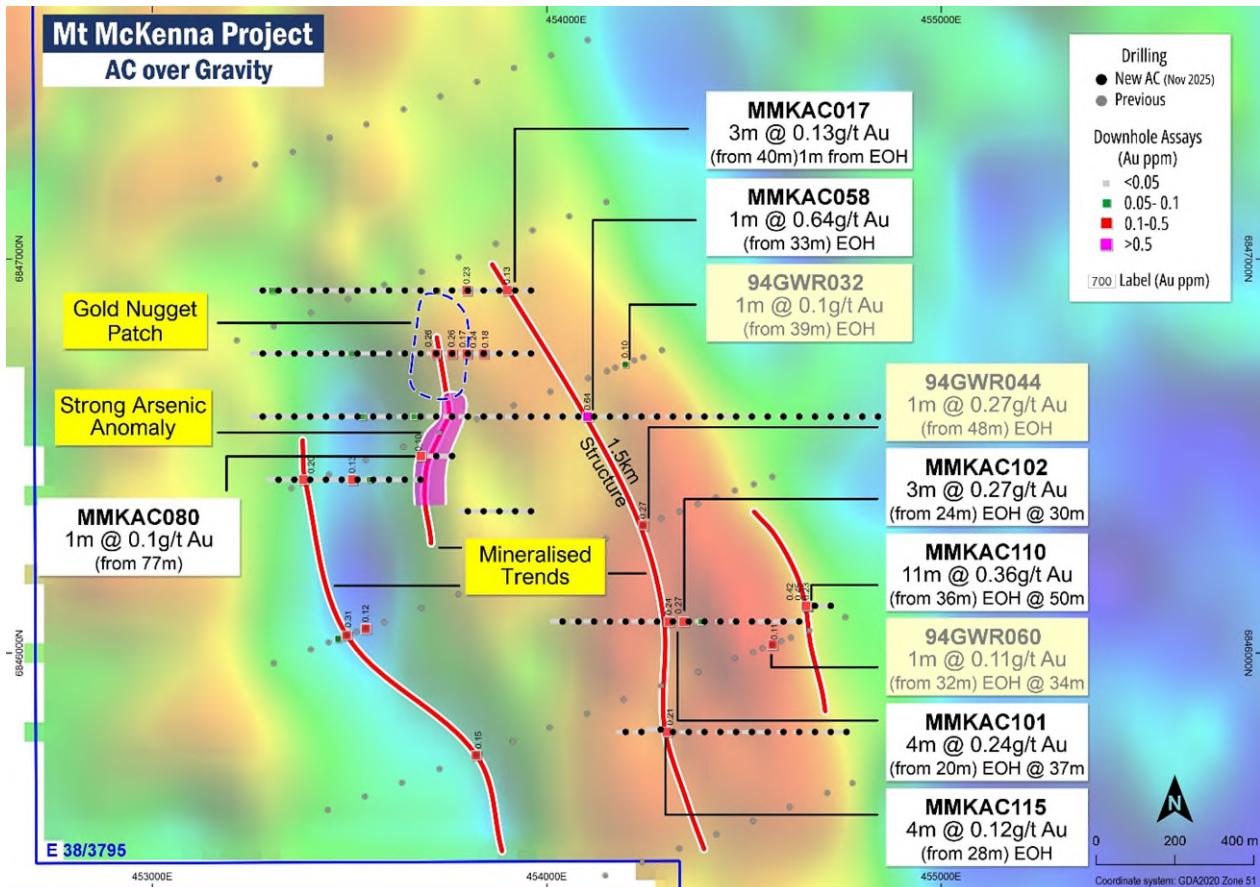
The Phase 1 program was designed to delineate gold mineralisation concealed beneath a thin layer of transported cover. A total of 126 aircore holes for 6,056m were drilled across the northern portion of the Target 2 area.

The drilling defined multiple mineralised trends, most notably a coherent 1.5km mineralised structure, with the majority of aircore holes along strike ending in gold mineralisation (Figure 1).

A second continuous structure of 250m strike length of elevated concentration of arsenic values up to 1,750ppm was intersected across four holes. This strong arsenic anomaly is coincident with anomalous gold values at the end of MMKAC080. This zone lies immediately south of a known area hosting gold nuggets and remains completely open to the south.

The 1.5km mineralised structure is defined by the following intersections:

- 1m @ 0.64g/t Au from 33m (EOH in MMKAC058)
- 4m @ 0.24g/t Au from 20m (EOH is at 37m in MMKAC101)
- 3m @ 0.27g/t Au from 24m (EOH is at 30m in MMKAC102)
- 4m @ 0.12g/t Au from 28m (EOH in MMKAC115)
- 3m @ 0.13g/t Au from 40m (EOH is at 41m in MMKAC017)


Additional anomalous intercepts included: 11m @ 0.36g/t Au from 36m (EOH is at 50m in MMKAC110) and 4m @ 0.20g/t Au from 32m (MMKAC072).

Reverse Circulation (RC) drilling is required to assess the gold potential of these newly identified structures at depth. Exploration and cultural heritage clearances across Targets 4 and 5 will commence in February, enabling the generation of new aircore drilling targets. This strategy is designed to develop multiple prospects for subsequent deeper RC drilling.

Platina Managing Director, Mr Corey Nolan, said:

"The integration of geological mapping, surface sampling, magnetics, gravity and aircore drilling has proven effective in identifying gold-bearing structures at Mt McKenna. This systematic approach will continue across the remaining 20km strike of the tenement.

"This exploration approach is consistent with methods used to define other gold orebodies in the Laverton region, where surface expressions are commonly depleted".

Figure 1. Map showing mineralised trends including the 1.5km mineralised structure from November 2025 aircore drilling and assays by Platina at the Mt McKenna Project. Also showing the ENE-WSW historical RAB lines drilled by CRA in 1994. Map underlain by 2025 ground gravity image acquired by Platina.

This announcement was authorised by **Mr Corey Nolan, Managing Director of Platina Resources Limited.**

For more information:

Corey Nolan
Managing Director
Phone +61 (0)7 5580 9094
admin@platinaresources.com.au

Gareth Quinn
Investor Relations
Mobile: 0417 711 108
gareth@republicpr.com.au

DISCLAIMER

Statements regarding Platina Resources' plans with respect to its mineral properties are forward-looking statements. There can be no assurance that Platina Resources' plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that Platina Resources will be able to confirm the presence of additional mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of Platina Resources' mineral properties.

ABOUT PLATINA RESOURCES LIMITED (ASX: PGM)

Platina is an Australian-based company focused on advancing early-stage metals projects through exploration, feasibility, and permitting towards development. Shareholder value is created by monetising the projects through either sale, joint venture or development.

Platina controls a 100% interest in a portfolio of gold projects in the Yilgarn Craton in Western Australia. For more information please see: www.platinaresources.com.au

REFERENCES TO PREVIOUS ASX RELEASES

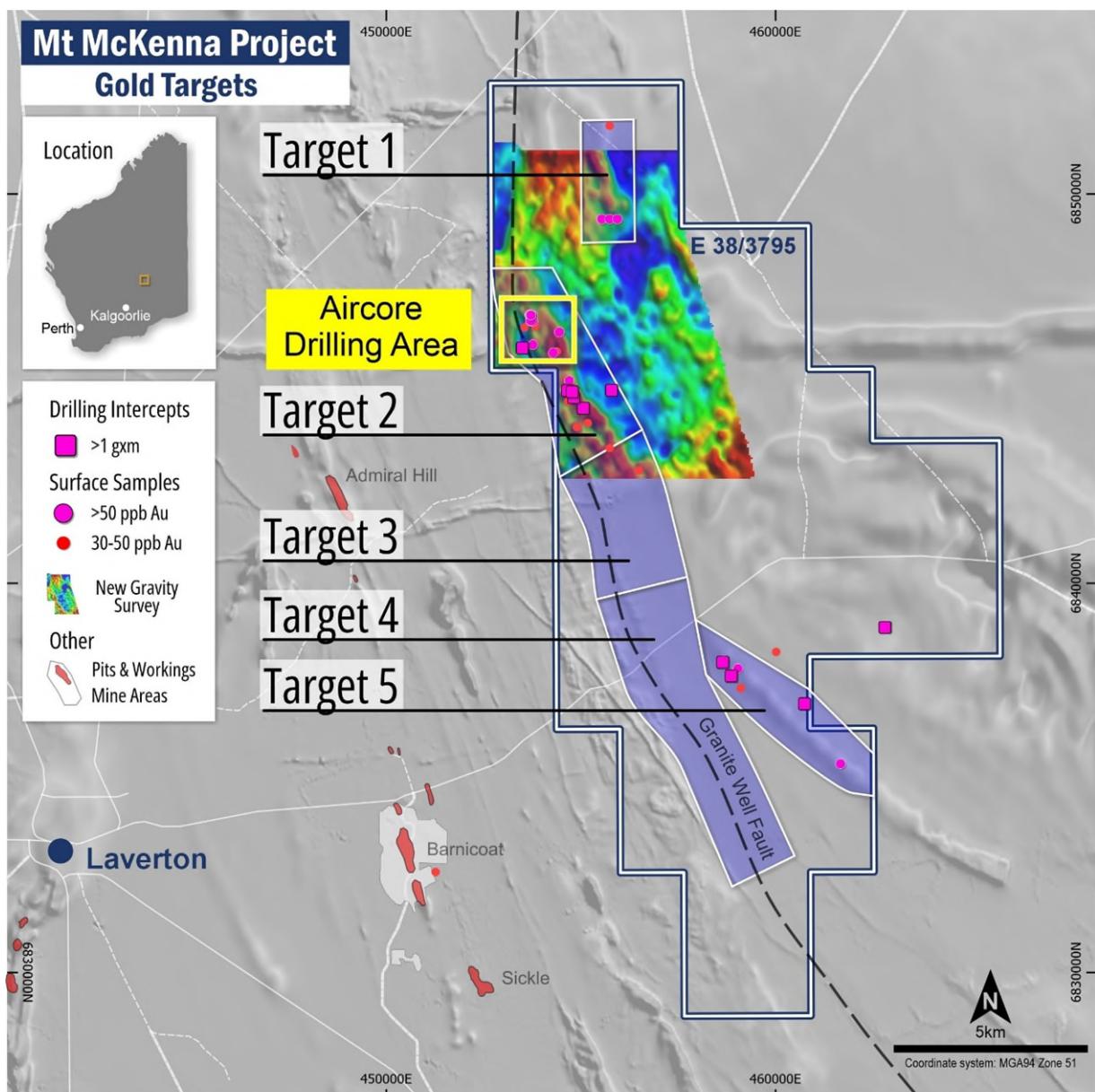
The information in this report that relates to Exploration Results were last reported by the company in compliance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves in market releases dated as follows:

- New gold project in the world-class Laverton gold district, 3 September 2025
- Commencement of Exploration at the Mt McKenna Gold Project, 25 September 2025
- Mt McKenna Gold Project Exploration Update, 3 November 2025
- Aircore drilling underway at Mt McKenna Gold Project, 26 November 2025
- Drilling completed at Mt McKenna and US\$1 million received, 23 December 2025

The company confirms that it is not aware of any new information or data that materially affects the information included in the market announcements referred to above and further confirms that all material assumptions underpinning the exploration results contained in those market releases continue to apply and have not materially changed.

COMPETENT PERSON STATEMENT

The information in this Report that relates to the Mt McKenna Project exploration results is based on information reviewed and compiled by Mr Rohan Deshpande who is an employee of Platina Resources and Member of the Australian Institute of Geoscientists (AIG). Mr Deshpande has sufficient experience which is relevant to this style of mineralisation and type of deposit under consideration and to the overseeing activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves". Mr Deshpande consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.



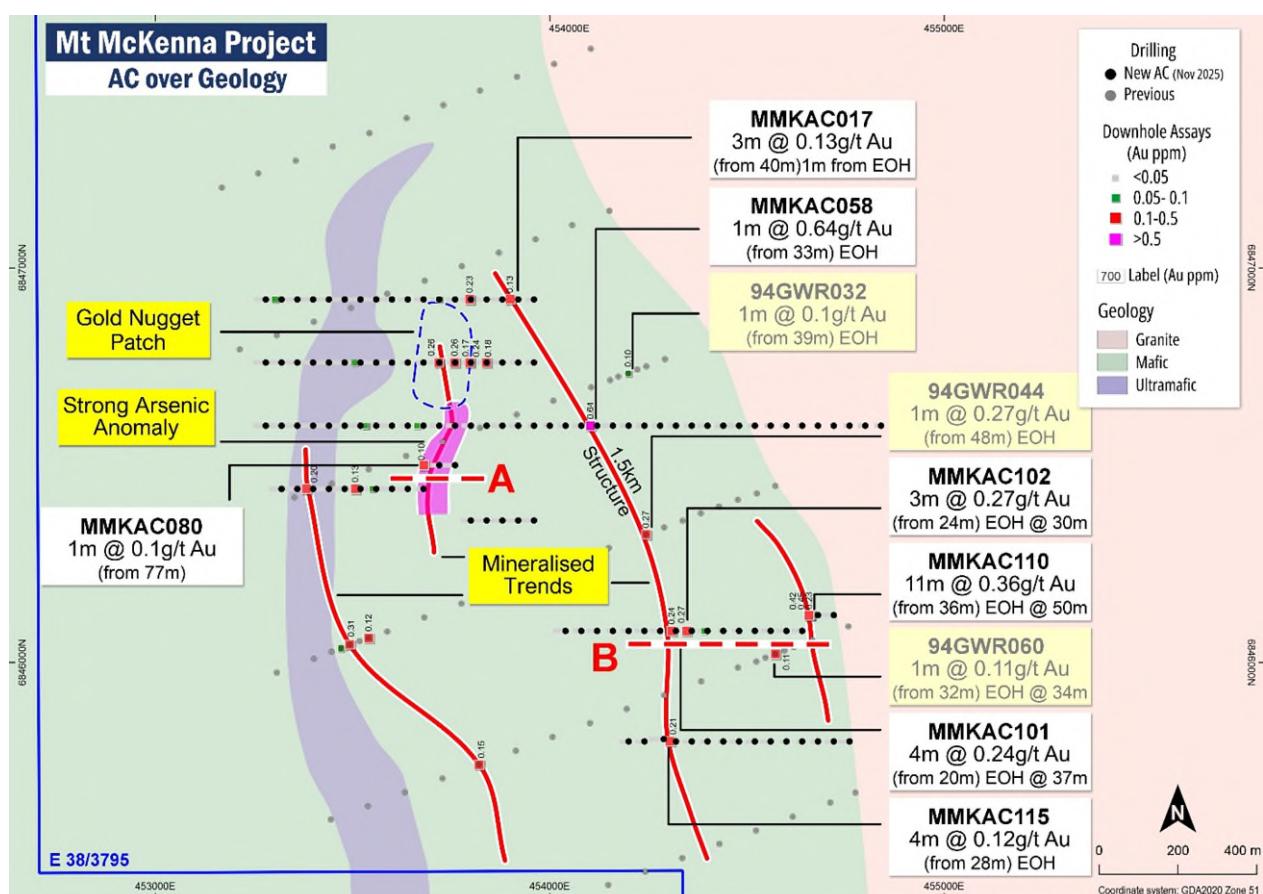
PROJECT DETAILS

Location and tenure

The Mt McKenna Project (E38/3795) is located approximately 13km east of the town of Laverton in the Eastern Goldfields of Western Australia (Figure 2). The tenement is within the Laverton Downs and Mt Weld Pastoral Leases.

Access from Laverton is via the unsealed White Cliffs Road and sealed Great Central Road. Station tracks provide 4WD access through the project area providing all year-round access for exploration.

Figure 2. Map showing the Mt McKenna tenement and its distance from the town of Laverton and an inset showing location of November 2025 aircore drilling. Map underlain by faded Geological Survey of Western Australia (GSWA) - Total Magnetic Intensity (80m) 1VD of WA v1,


2020. Also, including the recently acquired 1 VD gravity imagery and interpreted mineralised faults from mapping.

November 2025 Aircore Drill Program

The aircore drilling program comprised 6,056m across 126 aircore holes by two rigs at the northern section of the Target 2 area. Drilling tested four interpreted splays off the regional Granite Well fault.

Geology

The drilling intersected Laverton greenstone lithologies as expected in the Archean sequence of the Yilgarn craton. Basalts, High-Mg Basalts, Dolerites, Ultramafics, Komatiites, Talc-Carbonate Ultramafics, Quartz-Feldspar Dykes, Granites, Granodiorites and some Andesites were the lithologies logged in drilling. Rocks being strongly weathered down to 40m and a shallow transported cover from near surface to 15m deep. Most holes ended in top of fresh rock at varying depths.

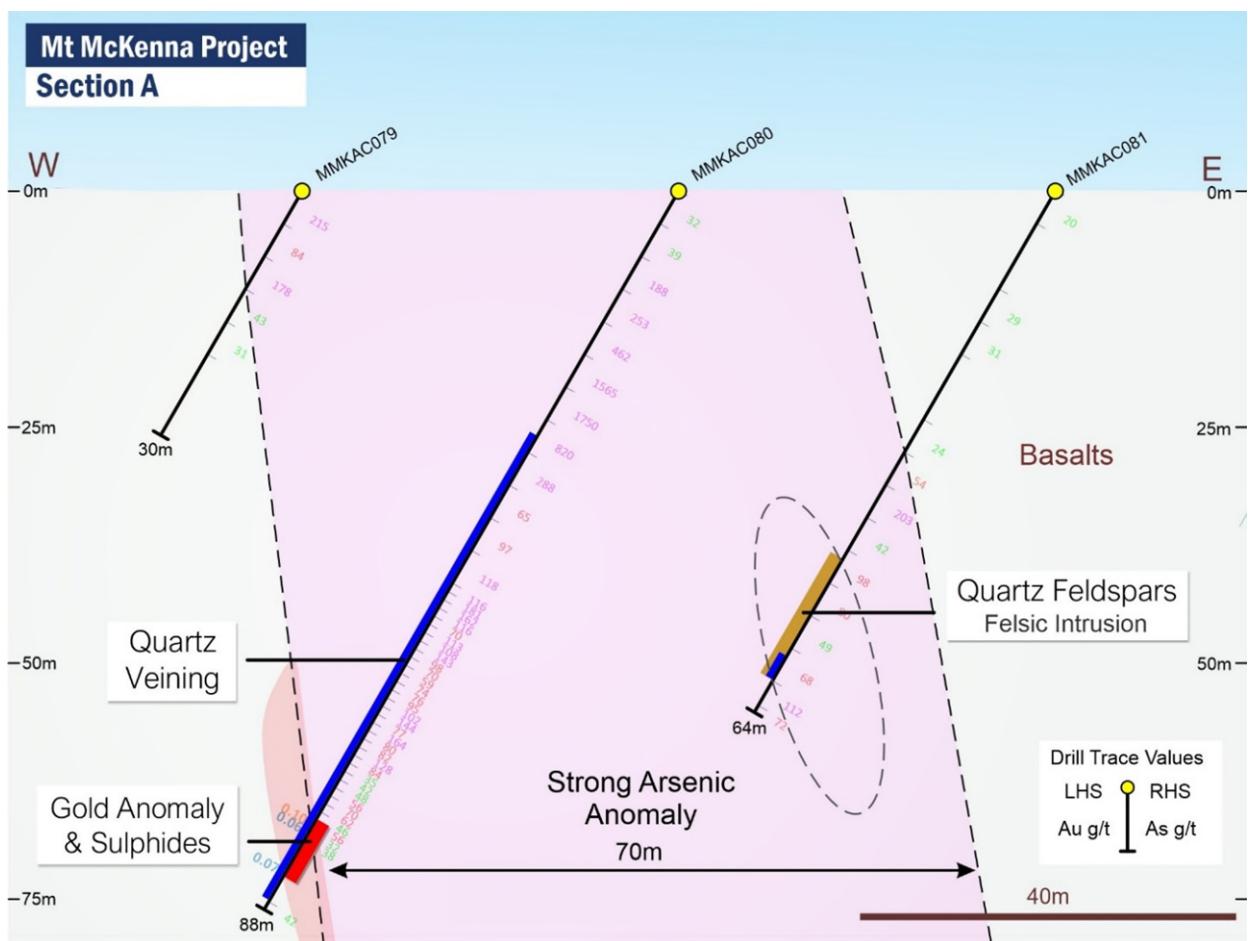


Figure 3. Mt McKenna interpreted geology map showing aircore drilling locations, assay results from November 2025 program and identified mineralised trends in red. Also showing the ENE-WSW historical RAB lines drilled by CRA in 1994.

Alteration and Mineralisation

Multiple zones of varying quartz veining have been logged along with minor amounts of sericite, chlorite and epidote alteration. Strong talc and carbonate alteration is also noted in the Ultramafic schists, where the holes were drilled down past 100m in these ultramafics. Varying levels of disseminated and blebby pyrite have been logged across the drilling but not necessarily associated with the mineralised and anomalous intercepts. Hole MMKAC080 which has the strongest intersections of arsenic values (up to 1750ppm As) is associated with laminated quartz veins up to 70%. The same hole has anomalous Au values towards the end of the hole. Holes MMKAC049, MMKAC079-081 all have strong values of Arsenic and define a zone of more than 250m along strike and up to 70m in width.

Figure 4. Section A showing AC holes MMKAC079-81 within the strong Arsenic anomaly zone up to 1750ppm As and ending in anomalous Au values. Section limits +/-80m.

Figure 5. Section B shows AC holes from MMKAC101-111 with mineralised Au intersections along with geological and mineralisation interpretations. Section limits +/-80m.

Further work

A detailed litho-geochemical assessment is currently being undertaken using data recently acquired from the Target 2 aircore drilling program. This work will be supported by additional ground geological mapping and field verification to refine interpretations and improve geological confidence.

The next phase of drilling requires either RC and/or slimline RC drilling using an aircore rig, aimed at infilling and deeper testing the 1.5 km mineralised trend. Potential southern and down-dip extensions of the arsenic anomaly zone will also be evaluated through this deeper drilling.

In parallel, a ground gravity survey will commence in February 2026 across the southern portion of the project area, covering Targets 4 and 5. Cultural heritage surveys will also be undertaken over Targets 4 and 5 to facilitate readiness for aircore drilling.

Newly generated aircore targets at Targets 4 and 5, together with currently identified targets at Target 2, will then be tested by deeper drilling as part of a single, integrated reverse circulation drill program

Air-Core Drilling Details

Hole ID	Depth From (m)	Depth To (m)	Width (m)	Au g/t	gram x metre	Intercept
MMKAC014	4	8	4	0.23	0.9	4m @ 0.23g/t Au from 4m
MMKAC017	40	43	3	0.13	0.4	3m @ 0.13 g/t Au from 40m
MMKAC030	0	4	4	0.26	1.0	4m @ 0.26 g/t Au from 0m
MMKAC031	0	4	4	0.26	1.1	4m @ 0.26 g/t Au from 0m
MMKAC032	0	8	8	0.21	1.7	8m @ 0.21 g/t Au from 0m
MMKAC033	0	4	4	0.18	0.7	4m @ 0.18 g/t Au from 0m
MMKAC058	33	34	1	0.64	0.6	1m @ 0.64 g/t Au from 33m
MMKAC072	32	36	4	0.20	0.8	4m @ 0.20 g/t Au from 32m
MMKAC075	24	28	4	0.13	0.5	4m @ 0.13 g/t Au from 24m
MMKAC080	77	78	1	0.10	0.1	1m @ 0.10 g/t Au from 77m
MMKAC101	20	24	4	0.24	0.9	4m @ 0.24 g/t Au from 20m
MMKAC102	24	27	3	0.27	0.8	3m @ 0.27 g/t Au from 24m
MMKAC110	36	47	11	0.36	4.0	11m @ 0.36 g/t Au from 36m
MMKAC115	28	32	4	0.12	0.5	4m @ 0.12 g/t Au from 28m

Table 1. 2025 Mt McKenna anomalous gold AC intersections (minimum of 0.1g/t Au cut-off and maximum 4m internal dilution)

Hole ID	Drill Type	End Depth (m)	Dip (degrees)	Azimuth (GDA94/MGA zone 51)	Collar East (GDA94/MGA zone 51)	Collar North (GDA94/MGA zone 51)	Collar RL (GDA94/MGA zone 51)	Collar Survey Method	Tenement ID
MMKAC001	AC	45	-60	270	453280	6846920	450	GPS	E 38/3795
MMKAC002	AC	55	-60	270	453320	6846920	450	GPS	E 38/3795
MMKAC003	AC	55	-60	270	453360	6846920	450	GPS	E 38/3795
MMKAC004	AC	63	-60	270	453400	6846920	450	GPS	E 38/3795
MMKAC005	AC	65	-60	270	453440	6846920	450	GPS	E 38/3795
MMKAC006	AC	82	-60	270	453480	6846920	450	GPS	E 38/3795
MMKAC007	AC	69	-60	270	453520	6846920	450	GPS	E 38/3795
MMKAC008	AC	66	-60	270	453560	6846920	450	GPS	E 38/3795
MMKAC009	AC	92	-60	270	453600	6846920	450	GPS	E 38/3795
MMKAC010	AC	41	-60	270	453640	6846920	450	GPS	E 38/3795
MMKAC011	AC	36	-60	270	453680	6846920	450	GPS	E 38/3795
MMKAC012	AC	38	-60	270	453720	6846920	450	GPS	E 38/3795
MMKAC013	AC	35	-60	270	453760	6846920	450	GPS	E 38/3795
MMKAC014	AC	41	-60	270	453800	6846920	450	GPS	E 38/3795
MMKAC015	AC	61	-60	270	453840	6846920	450	GPS	E 38/3795
MMKAC016	AC	51	-60	270	453880	6846920	450	GPS	E 38/3795
MMKAC017	AC	44	-60	270	453920	6846920	450	GPS	E 38/3795
MMKAC018	AC	32	-60	270	453960	6846920	450	GPS	E 38/3795
MMKAC019	AC	54	-60	270	453280	6846760	450	GPS	E 38/3795
MMKAC020	AC	63	-60	270	453320	6846760	450	GPS	E 38/3795
MMKAC021	AC	69	-60	270	453360	6846760	450	GPS	E 38/3795
MMKAC022	AC	68	-60	270	453400	6846760	450	GPS	E 38/3795
MMKAC023	AC	89	-60	270	453440	6846760	450	GPS	E 38/3795
MMKAC024	AC	105	-60	270	453480	6846760	450	GPS	E 38/3795
MMKAC025	AC	102	-60	270	453520	6846760	450	GPS	E 38/3795

Hole ID	Drill Type	End Depth (m)	Dip (degrees)	Azimuth (GDA94/MGA zone 51)	Collar East (GDA94/MGA zone 51)	Collar North (GDA94/MGA zone 51)	Collar RL (GDA94/MGA zone 51)	Collar Survey Method	Tenement ID
MMKAC026	AC	126	-60	270	453560	6846760	450	GPS	E 38/3795
MMKAC027	AC	129	-60	270	453600	6846760	450	GPS	E 38/3795
MMKAC028	AC	24	-60	270	453640	6846760	450	GPS	E 38/3795
MMKAC029	AC	27	-60	270	453680	6846760	450	GPS	E 38/3795
MMKAC030	AC	40	-60	270	453720	6846760	450	GPS	E 38/3795
MMKAC031	AC	33	-60	270	453760	6846760	450	GPS	E 38/3795
MMKAC032	AC	36	-60	270	453800	6846760	450	GPS	E 38/3795
MMKAC033	AC	50	-60	270	453840	6846760	450	GPS	E 38/3795
MMKAC034	AC	58	-60	270	453880	6846760	450	GPS	E 38/3795
MMKAC035	AC	30	-60	270	453920	6846760	450	GPS	E 38/3795
MMKAC036	AC	33	-60	270	453960	6846760	450	GPS	E 38/3795
MMKAC037	AC	54	-60	270	453280	6846600	450	GPS	E 38/3795
MMKAC038	AC	67	-60	270	453320	6846600	450	GPS	E 38/3795
MMKAC039	AC	52	-60	270	453360	6846600	450	GPS	E 38/3795
MMKAC040	AC	82	-60	270	453400	6846600	450	GPS	E 38/3795
MMKAC041	AC	78	-60	270	453440	6846600	450	GPS	E 38/3795
MMKAC042	AC	68	-60	270	453480	6846600	450	GPS	E 38/3795
MMKAC043	AC	85	-60	270	453520	6846600	450	GPS	E 38/3795
MMKAC044	AC	94	-60	270	453560	6846600	450	GPS	E 38/3795
MMKAC045	AC	54	-60	270	453600	6846600	450	GPS	E 38/3795
MMKAC046	AC	30	-60	270	453640	6846600	450	GPS	E 38/3795
MMKAC047	AC	34	-60	270	453680	6846600	450	GPS	E 38/3795
MMKAC048	AC	40	-60	270	453720	6846600	450	GPS	E 38/3795
MMKAC049	AC	36	-60	270	453760	6846600	450	GPS	E 38/3795
MMKAC050	AC	38	-60	270	453800	6846600	450	GPS	E 38/3795

Hole ID	Drill Type	End Depth (m)	Dip (degrees)	Azimuth (GDA94/MGA zone 51)	Collar East (GDA94/MGA zone 51)	Collar North (GDA94/MGA zone 51)	Collar RL (GDA94/MGA zone 51)	Collar Survey Method	Tenement ID
MMKAC051	AC	36	-60	270	453840	6846600	450	GPS	E 38/3795
MMKAC052	AC	46	-60	270	453880	6846600	450	GPS	E 38/3795
MMKAC053	AC	40	-60	270	453920	6846600	450	GPS	E 38/3795
MMKAC054	AC	24	-60	270	453960	6846600	450	GPS	E 38/3795
MMKAC055	AC	25	-60	270	454000	6846600	450	GPS	E 38/3795
MMKAC056	AC	29	-60	270	454040	6846600	450	GPS	E 38/3795
MMKAC057	AC	34	-60	270	454080	6846600	450	GPS	E 38/3795
MMKAC058	AC	34	-60	270	454120	6846600	450	GPS	E 38/3795
MMKAC059	AC	46	-60	270	454160	6846600	450	GPS	E 38/3795
MMKAC060	AC	35	-60	270	454200	6846600	450	GPS	E 38/3795
MMKAC061	AC	33	-60	270	454240	6846600	450	GPS	E 38/3795
MMKAC062	AC	32	-60	270	454280	6846600	450	GPS	E 38/3795
MMKAC063	AC	32	-60	270	454320	6846600	450	GPS	E 38/3795
MMKAC064	AC	27	-60	270	454360	6846600	450	GPS	E 38/3795
MMKAC065	AC	42	-60	270	454400	6846600	450	GPS	E 38/3795
MMKAC066	AC	33	-60	270	454440	6846600	450	GPS	E 38/3795
MMKAC067	AC	51	-60	270	454480	6846600	450	GPS	E 38/3795
MMKAC068	AC	26	-60	270	454520	6846600	450	GPS	E 38/3795
MMKAC069	AC	20	-60	270	454560	6846600	450	GPS	E 38/3795
MMKAC070	AC	52	-60	270	453320	6846440	450	GPS	E 38/3795
MMKAC071	AC	72	-60	270	453360	6846440	450	GPS	E 38/3795
MMKAC072	AC	90	-60	270	453400	6846440	450	GPS	E 38/3795
MMKAC073	AC	114	-60	270	453440	6846440	450	GPS	E 38/3795
MMKAC074	AC	69	-60	270	453480	6846440	450	GPS	E 38/3795
MMKAC075	AC	76	-60	270	453520	6846440	450	GPS	E 38/3795

Hole ID	Drill Type	End Depth (m)	Dip (degrees)	Azimuth (GDA94/MGA zone 51)	Collar East (GDA94/MGA zone 51)	Collar North (GDA94/MGA zone 51)	Collar RL (GDA94/MGA zone 51)	Collar Survey Method	Tenement ID
MMKAC076	AC	98	-60	270	453560	6846440	450	GPS	E 38/3795
MMKAC077	AC	105	-60	270	453600	6846440	450	GPS	E 38/3795
MMKAC078	AC	76	-60	270	453640	6846440	450	GPS	E 38/3795
MMKAC079	AC	30	-60	270	453680	6846440	450	GPS	E 38/3795
MMKAC080	AC	88	-60	270	453720	6846500	450	GPS	E 38/3795
MMKAC081	AC	64	-60	270	453760	6846500	450	GPS	E 38/3795
MMKAC082	AC	41	-60	270	453800	6846360	450	GPS	E 38/3795
MMKAC083	AC	48	-60	270	453840	6846360	450	GPS	E 38/3795
MMKAC084	AC	48	-60	270	453880	6846360	450	GPS	E 38/3795
MMKAC085	AC	66	-60	270	453920	6846360	450	GPS	E 38/3795
MMKAC086	AC	48	-60	270	453960	6846360	450	GPS	E 38/3795
MMKAC087	AC	23	-60	270	454600	6846600	450	GPS	E 38/3795
MMKAC088	AC	17	-60	270	454640	6846600	450	GPS	E 38/3795
MMKAC089	AC	11	-60	270	454680	6846600	450	GPS	E 38/3795
MMKAC090	AC	9	-60	270	454720	6846600	450	GPS	E 38/3795
MMKAC091	AC	19	-60	270	454760	6846600	450	GPS	E 38/3795
MMKAC092	AC	28	-60	270	454800	6846600	450	GPS	E 38/3795
MMKAC093	AC	24	-60	270	454840	6846600	450	GPS	E 38/3795
MMKAC094	AC	54	-60	270	454040	6846080	450	GPS	E 38/3795
MMKAC095	AC	33	-60	270	454080	6846080	450	GPS	E 38/3795
MMKAC096	AC	46	-60	270	454120	6846080	450	GPS	E 38/3795
MMKAC097	AC	22	-60	270	454160	6846080	450	GPS	E 38/3795
MMKAC098	AC	28	-60	270	454200	6846080	450	GPS	E 38/3795
MMKAC099	AC	42	-60	270	454240	6846080	450	GPS	E 38/3795
MMKAC100	AC	42	-60	270	454280	6846080	450	GPS	E 38/3795

Hole ID	Drill Type	End Depth (m)	Dip (degrees)	Azimuth (GDA94/MGA zone 51)	Collar East (GDA94/MGA zone 51)	Collar North (GDA94/MGA zone 51)	Collar RL (GDA94/MGA zone 51)	Collar Survey Method	Tenement ID
MMKAC101	AC	37	-60	270	454320	6846080	450	GPS	E 38/3795
MMKAC102	AC	30	-60	270	454360	6846080	450	GPS	E 38/3795
MMKAC103	AC	40	-60	270	454400	6846080	450	GPS	E 38/3795
MMKAC104	AC	15	-60	270	454440	6846080	450	GPS	E 38/3795
MMKAC105	AC	25	-60	270	454480	6846080	450	GPS	E 38/3795
MMKAC106	AC	10	-60	270	454520	6846080	450	GPS	E 38/3795
MMKAC107	AC	40	-60	270	454560	6846080	450	GPS	E 38/3795
MMKAC108	AC	42	-60	270	454600	6846080	450	GPS	E 38/3795
MMKAC109	AC	45	-60	270	454640	6846080	450	GPS	E 38/3795
MMKAC110	AC	50	-60	270	454680	6846120	450	GPS	E 38/3795
MMKAC111	AC	53	-60	270	454720	6846120	450	GPS	E 38/3795
MMKAC112	AC	35	-60	270	454200	6845800	450	GPS	E 38/3795
MMKAC113	AC	36	-60	270	454240	6845800	450	GPS	E 38/3795
MMKAC114	AC	64	-60	270	454289	6845806	450	GPS	E 38/3795
MMKAC115	AC	32	-60	270	454320	6845800	450	GPS	E 38/3795
MMKAC116	AC	36	-60	270	454360	6845800	450	GPS	E 38/3795
MMKAC117	AC	28	-60	270	454400	6845800	450	GPS	E 38/3795
MMKAC118	AC	16	-60	270	454440	6845800	450	GPS	E 38/3795
MMKAC119	AC	39	-60	270	454480	6845800	450	GPS	E 38/3795
MMKAC120	AC	38	-60	270	454520	6845800	450	GPS	E 38/3795
MMKAC121	AC	45	-60	270	454560	6845800	450	GPS	E 38/3795
MMKAC122	AC	22	-60	270	454600	6845800	450	GPS	E 38/3795
MMKAC123	AC	20	-60	270	454640	6845800	450	GPS	E 38/3795
MMKAC124	AC	28	-60	270	454680	6845800	450	GPS	E 38/3795
MMKAC125	AC	35	-60	270	454720	6845800	450	GPS	E 38/3795

Hole ID	Drill Type	End Depth (m)	Dip (degrees)	Azimuth (GDA94/MGA zone 51)	Collar East (GDA94/MGA zone 51)	Collar North (GDA94/MGA zone 51)	Collar RL (GDA94/MGA zone 51)	Collar Survey Method	Tenement ID
MMKAC126	AC	48	-60	270	454760	6845800	450	GPS	E 38/3795

Table 4. Collar locations and details of all Mt McKenna AC Drilling from November 2025 by Platina Resources Ltd

JORC Code Table

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<ul style="list-style-type: none"><i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sounds, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <p><i>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i></p>	<ul style="list-style-type: none">All drilling and sampling was undertaken in an industry standard manner.Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Some zones of visual interest with sulphide mineralisation were spear sampled into 1m sample intervals as well.The bottom of hole metre was always collected and sampled as a 1m sample.The independent laboratory pulverises the entire sample for analysis as described below.
<i>Drilling techniques</i>	<i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).</i>	<ul style="list-style-type: none">Aircore holes were drilled with a 3.35-inch diameter blade bit and where required the hammer was used for a 3.74-inch diameter. Some locations an aircore diamond bit was also used.Raglan AC Rig 08 (RD350) and Bostec AC Rig 09 (Drillboss 200) were employed to carry out the drill program.

Criteria	JORC Code explanation	Commentary
<i>Drill sample recovery</i>	<ul style="list-style-type: none"><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<ul style="list-style-type: none">Aircore samples were visually assessed for recovery.Samples are considered representative with generally good recovery.No sample bias is observed.
<i>Logging</i>	<ul style="list-style-type: none"><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</i><i>The total length and percentage of the relevant intersections logged.</i>	<ul style="list-style-type: none">Logged qualitatively by the on-site geologists from drill chip samples taken every metre. Logging is undertaken on geology, alteration, veining, sulphides and shearing. Logging of vein and sulphide percentages is semiquantitative
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i><i>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</i><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i><i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i>	<ul style="list-style-type: none">Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. A final 1m bottom of hole assay were taken for assaying with a different technique.Industry prepared independent standards are inserted approximately 1 in 33 for AC.Each sample was dried, split, crushed and pulverised.Sample sizes are considered appropriate for the material sampled.The samples are considered representative and appropriate for this type of drilling.Aircore samples are generally of good quality and appropriate for delineation of geochemical trends but are not generally used in resource estimates.

Criteria	JORC Code explanation	Commentary
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i><i>For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i><i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i>	<ul style="list-style-type: none">The samples were submitted to a commercial independent laboratory in Perth, Australia (ALS).4m Aircore samples were analysed for Au using 25g aqua regia extraction with ICPMS finish and multi-elements by ICPAES and ICPMS using aqua regia digestion. (ALS Code: TL43-MEPKG)1m EOH samples were analysed for Au using 25g aqua regia extraction with ICPMS finish (AuTL43) and multi-elements by ICPAES using four acid digestion (ALS Code: ME-MS61).The techniques are considered quantitative in nature.As discussed previously certified reference standards were inserted by the Company and the laboratory also carries out internal standards in individual batches.The standards were considered satisfactory.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"><i>The verification of significant intersections by either independent or alternative company personnel.</i><i>The use of twinned holes.</i><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i><i>Discuss any adjustment to assay data.</i>	<ul style="list-style-type: none">Sample results have been merged by the company's database consultants.Results have been uploaded into the company database MX Deposit, checked and verified.No adjustments have been made to the assay data.Results are reported on a length weighted basis.
<i>Location of data points</i>	<ul style="list-style-type: none"><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i><i>Specification of the grid system used.</i><i>Quality and adequacy of topographic control.</i>	<ul style="list-style-type: none">Aircore hole collar locations are located by handheld GPS to an accuracy of 4m. Some locations were not tracked by GPS as they were within GPS accuracy limits of the pegged stakes.Elevation data can be considered as low quality and they will be adjusted in future by DTM data. Currently, an average 450m RL has been used for all holes.Locations are given in GDA94 zone 51.Diagrams and location table are provided in the report.Topographic control is by detailed satellite image and GPS data.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"><i>Data spacing for reporting of Exploration Results.</i><i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i>	<ul style="list-style-type: none">Aircore drill spacing was 40m between holes and 160m between lines.All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation.Sample compositing has not been applied except in reporting of drill intercepts.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none">• Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	<ul style="list-style-type: none">• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	<ul style="list-style-type: none">• The AC drilling is approximately perpendicular to the strike of interpreted structures where known and therefore the sampling is considered representative.• In some cases, drilling is not at right angles to the strike and dip of mineralised structures and as such true widths are less than downhole widths. This will be allowed for when geological interpretations are completed.
Sample security	<ul style="list-style-type: none">• The measures taken to ensure sample security.	<ul style="list-style-type: none">• Samples were collected by company personnel and delivered directly to the laboratory via a transport contractor.
Audits or reviews	<ul style="list-style-type: none">• The results of any audits or reviews of sampling techniques and data.	<ul style="list-style-type: none">• No audits have been completed. Review of QAQC data has been carried out by database consultants and company geologists.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none">• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	<p>Mt McKenna Project - E 38/3795. The tenement is owned by Jasper Exploration Pty Ltd which is a 100% subsidiary of Platina Resources Ltd (ASX: PGM).</p> <p>A 1.5% Net Smelter Royalty exists (Platina can buy-back 50% of the royalty at market value) to the vendors of the tenement.</p> <p>Native Title</p>

Criteria	JORC Code explanation	Commentary
	<i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	Mt McKenna is situated within with the Nyalpa Pirniku (WCD2023/002), native title area. A Native Title Agreement has been signed and executed with Nyalpa Pirniku. There are no known impediments to operating on this tenement.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"><i>Acknowledgment and appraisal of exploration by other parties.</i>	Prior to the work completed by Platina mentioned in the body of this report the below companies have completed exploration over the tenement in the past. <ul style="list-style-type: none">• Aberfoyle Resources Ltd – 1991-92• CRA Exploration Pty Ltd – 1995-96• Voyager Gold NL – 1998• Placer Pty Ltd – 1999-00• Coronet Resources Ltd – 2004• Image Resources NL – 2004-06• A1 Minerals Ltd - 2005• Crescent Gold Ltd – 2008• Aruma Exploration Pty Ltd – 2011• Victory Mines Ltd – 2012• White Cliff Minerals Ltd – 2014-16
<i>Geology</i>	<ul style="list-style-type: none"><i>Deposit type, geological setting and style of mineralisation.</i>	<ul style="list-style-type: none">• The project is prospective for orogenic lode-type and intrusive related gold deposits.• Gold mineralisation is associated with shear zones and quartz veining.• Possible mineralisation associated with lithological contacts at Mt McKenna used as a targeting tool for mineralisation. <p>All other geological information is covered in the main body of this report.</p>
<i>Drill hole Information</i>	<ul style="list-style-type: none"><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i>	<ul style="list-style-type: none">• Drill intercepts are considered indicative of widespread gold mineralisation and have been selected to display this, as reported in the main body of this report.• All relevant data has been supplied in the main body and subsequent Tables• Drill hole location and directional information provided in the report.

Criteria	JORC Code explanation	Commentary
<i>Data aggregation methods</i>	<ul style="list-style-type: none"><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i>	<ul style="list-style-type: none">As detailed in the main body of this reportAs detailed in the main body of this reportNo metal equivalent values have been reported.Intercepts are length weighted averaged.Minimum of 0.1g/t Au cut-off with maximum consecutive length of 4m internal dilutionNo maximum cuts have been made.
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"><i>These relationships are particularly important in the reporting of Exploration Results.</i><i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i>	<ul style="list-style-type: none">Not known. Results are indicative only as aircore drilling targets for broader haloes of mineralisation.Not known if the drilling has targeted in the correct geometry of mineralisation only interpretations made.
<i>Diagrams</i>	<ul style="list-style-type: none"><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i>	<ul style="list-style-type: none">All diagrams were prepared to highlight important information relevant to this announcement.
<i>Balanced reporting</i>	<ul style="list-style-type: none"><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i>	<ul style="list-style-type: none">All relevant information has been reported.The report is considered balanced and provided in context.

Criteria	JORC Code explanation	Commentary
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	<ul style="list-style-type: none">Exploration data has been summarized in an appropriate way to reflect the exploration nature of the project.Aeromagnetics: Government aeromagnetic data was reprocessed by a qualified geophysicist for Corporate & Resource Consultants Pty Ltd for the Project.Other Geophysics: Government and historic geophysical data were reprocessed by geophysicist Andrew Bisset from Core Geophysics for the Project.Gravity Data: Ground Gravity Survey data collected by Atlas Geophysics Pty Ltd. This was reported to the ASX on 3/11/2025
<i>Further work</i>	<ul style="list-style-type: none"><i>The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).</i><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i>	<ul style="list-style-type: none">Further work is detailed in the main body of this report.Diagrams including collar locations & plans are contained within the main body of this report.