

New Gold Discovery 550m South and Along Strike of Existing Van Uden Mineral Resource

Highlights

- High grade assays confirm a new gold discovery circa 550m to the south and along strike of the existing Van Uden Mineral Resource¹
- Excellent first pass shallow, gold results, including:
 - 3m @ 3.46 g/t Au from 71m
 - 11m @ 1.19 g/t Au from 65m
- These step out holes extend the defined gold deposit to more than 3 kms and could materially add to the existing resource
- Overall mineralised strike defined by drilling and surface geochemistry is over 7kms, showing the large-scale gold footprint at Van Uden
- Results for additional holes testing extensions circa 2.7 km to the south of these new hits are pending
- In total, assays are still pending for a further 76 holes, with drilling expected to recommence at the Project in the next 2 weeks to continue to extend the mineralisation at Van Uden

TG Metals Limited (**TG Metals** or the **Company**) (ASX:TG6) is pleased to provide results from exploration drilling at the Van Uden Gold Project (**Van Uden** or the **Project**). The drill holes were targeting gold in soil anomalies announced 9 September 2025.

These results are from reverse circulation (RC) drillholes south of the currently defined Van Uden gold deposit (**Figure 1**). Multiple gold zones were intercepted in similar geological positions to the MRE¹ to the north. This extends the strike of the Van Uden Deposit by more than 550 metres to over 3 km, within an overall mineralised strike defined by drilling and surface geochemistry of more than 7 km, yet to be fully tested with drilling.

New results highlights include:

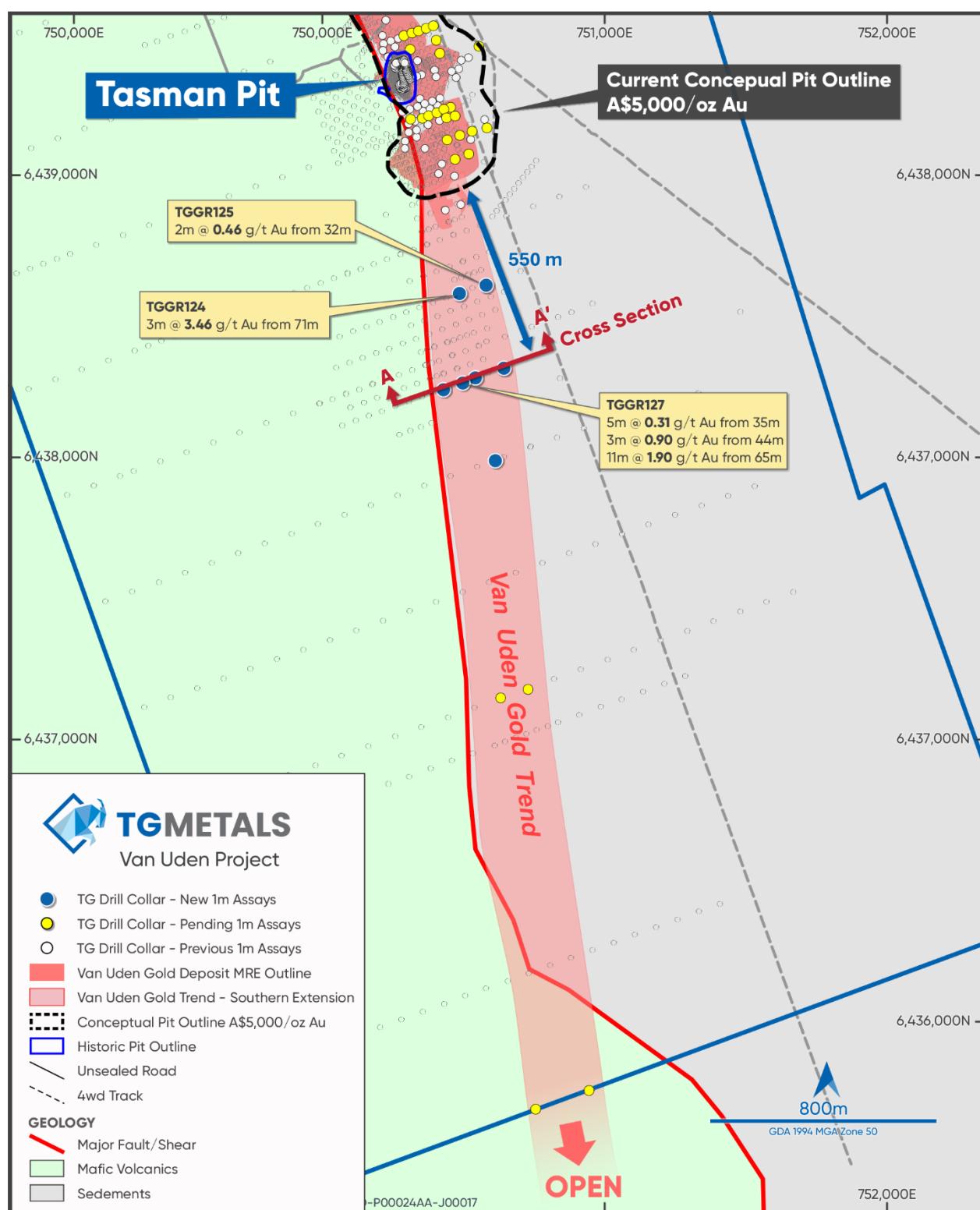
- **TGGR124:** 3m @ 3.46 g/t Au from 71.0m, including 1m @ 9.83 g/t Au from 71.0m
- **TGGR127:** 11m @ 1.19 g/t Au from 65.0m (including 1m @ 6.18 g/t Au from 65m and 1m @ 9.66 g/t Au from 74m) and 3m @ 0.90 g/t Au from 44.0m and 5m @ 0.31g/t from 35m

1. MRE - See Table A

TG Metals CEO, Mr. David Selfe stated:

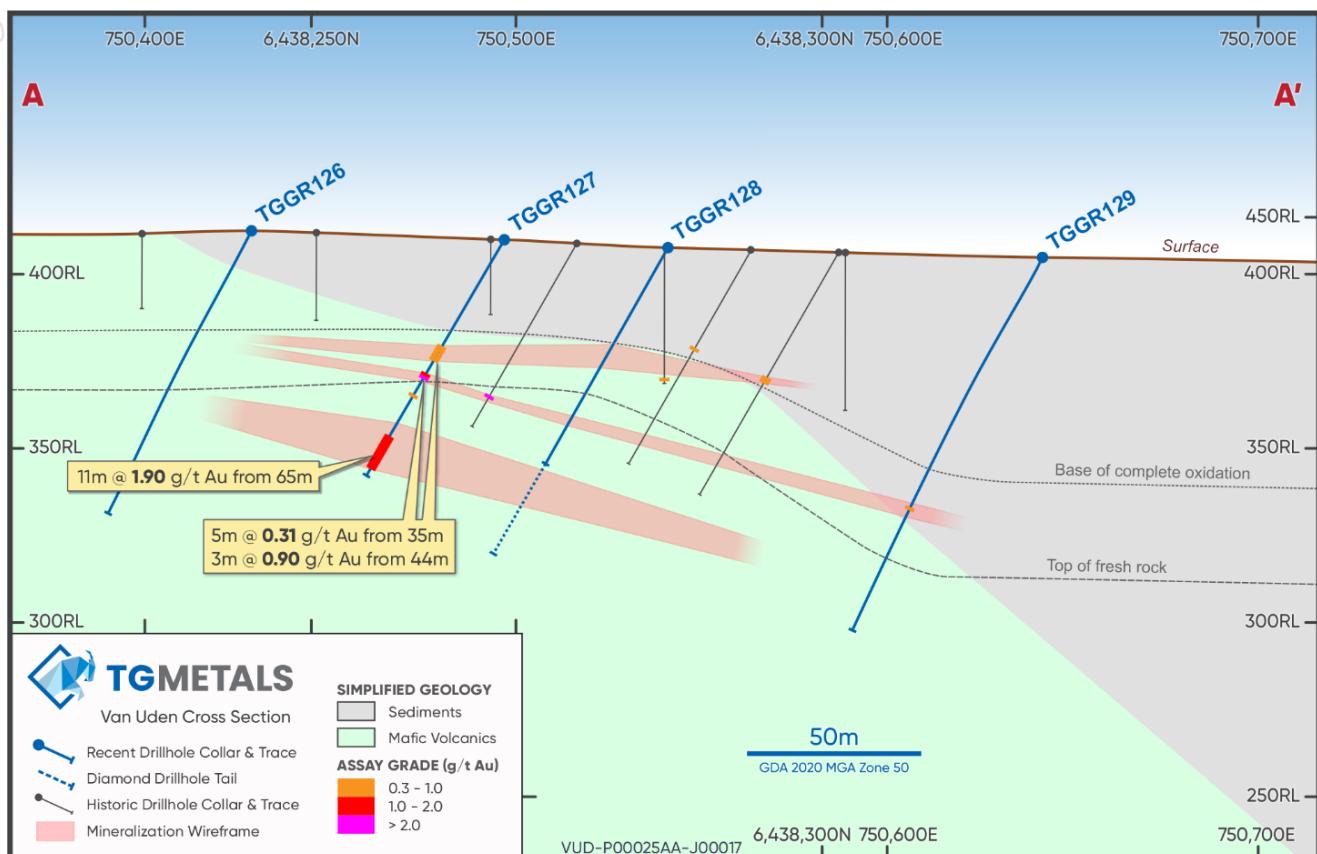
*"This step out drilling program to the south of the Van Uden MRE¹ has resulted in a new discovery of significant widths and grades of gold mineralisation in proximity to the Van Uden shear. This extends the drill defined gold deposit to more than 3 kms and provide the potential to materially add to the current resource. The Van Uden shear is proving to be a fertile conduit for gold mineralisation, initially highlighted by the gold in soil anomalies defined in 2025 and now confirmed by very positive drill results. Getting economic widths and grades first up is very encouraging as is the inclusion of **high grades above 6 g/t Au** in the drillhole intercepts.*

*There is an additional **2.7 km of Van Uden shear** contained within Mining Leases to the south of the Van Uden MRE, yet to be fully tested with drilling. We still have a lot of drilling assays pending and each return of data is increasing our confidence of growing the Van Uden deposit.*


Further drilling will recommence later this month including our first diamond core drilling. We look forward to reporting further drill results as they come to hand."

Van Uden Exploration Drilling

The purpose of this drilling was to test gold in soil anomalies and projected continuations under shallow cover, along strike of the known Van Uden gold deposit. Drilling positions were limited to already disturbed ground on historical exploration grid lines. These results are from south of the modelled Van Uden gold deposit and show that gold mineralisation continues beyond the limit of modelling with similar widths and grades to the known deposit. **Figure 1** shows the location of the reported results for these drillholes.


Figure 2 shows a section through the middle of the new drilling in the area 550m south of the Van Uden MRE. This area was ineffectively drilled historically with shallow drilling which failed to reach the gold mineralised depth. A diamond drill core tail is planned for TGRC0128 to intercept the footwall mineralisation and provide structural information to guide further drill planning. The gold mineralisation occurs both at the meta sediments and basalt contact but is stronger in the basalt footwall. Further drilling is required to test continuity of this mineralised horizon. The full significant assay results above 0.3g/t Au are provided in **Table 2**.

Van Uden Exploration Drilling, continued

Figure 1 – Exploration Drilling Collars Showing Select Intercept Highlights (New Results in Yellow) and Pending Assay Drillholes marked yellow collars and the Van Uden Gold Trend

Van Uden Exploration Drilling, continued

Figure 2 – Cross Section A-A' Showing New Drilling, Historical Drilling and interpreted Mineralisation Envelope

The RC drilling for this report was conducted with a truck mounted Schramm T660 drill rig. A total of 7 drillholes with assays returned and are included in this report for 678m of RC drilling. The drillhole dips are all -60° which was deemed appropriate for first pass modern drilling in this area. See **Table 1** for drill collar information which includes new drilling results reported here and pending drillholes still to be reported.

The reported drilling is in the far southern areas outside of the MRE. The drill collars of drillholes with pending assays are also included in this report.

Individual 1m samples were taken where mineralisation was observed in the drillhole logging and 4m composites taken outside of these zones. Both sample interval batches were assayed using the Photon assay technique. Where the 4m composites recorded anomalous gold, these samples were further analysed for the 1m split intervals. As experienced previously, several drillholes recorded multiple gold mineralised intercepts downhole, refer to **Table 2**. Hole TGGR127 recorded the best intercept and also multiple intercepts downhole, as shown in the **Figure 2** cross section. Mineralisation remains open down dip and along strike.

Table 1 – Drillhole Collar Information MGA2020, Zone 50

STATUS	HOLE ID	Dip(°)	Azimuth(°)	EASTING(m)	NORTHING(m)	RL (mASL)	Depth (m)
Pending	TGGR045	-60.000	250.000	750469.447	6439061.947	411.372	126
Pending	TGGR046	-60.000	250.000	750518.297	6439080.946	410.539	168
Pending	TGGR051	-60.000	250.000	750415.370	6439437.421	415.003	120
Pending	TGGR052	-60.000	250.000	750402.321	6439484.348	415.248	132
Pending	TGGR053	-60.000	250.000	750553.990	6439462.934	413.233	210
Pending	TGGR054	-60.000	250.000	749612.913	6440448.136	435.244	126
Pending	TGGR055	-60.000	250.000	749650.848	6440406.250	433.686	102
Pending	TGGR056	-60.000	250.000	749692.166	6440367.628	432.995	102
Pending	TGGR057	-60.000	250.000	749725.530	6440332.637	433.448	102
Pending	TGGR058	-60.000	250.000	749794.539	6440300.222	432.615	108
Pending	TGGR059	-60.000	250.000	749821.264	6440179.715	435.260	66
Pending	TGGR060	-60.000	250.000	750125.925	6439889.536	425.652	120
Pending	TGGR061	-90.000	0.000	750310.382	6439451.828	417.213	60
Pending	TGGR088	-60.000	250.000	750353.249	6439207.772	414.695	60
Pending	TGGR089	-60.000	250.000	750375.708	6439216.460	413.937	60
Pending	TGGR090	-60.000	250.000	750312.073	6439204.298	416.087	54
Pending	TGGR091	-60.000	250.000	749957.023	6439937.504	427.572	42
Pending	TGGR092	-90.000	360.000	749917.769	6439947.798	428.074	30
Pending	TGGR093	-90.000	360.000	749900.434	6439966.717	428.682	24
Pending	TGGR094	-60.000	250.000	749566.266	6440274.014	430.907	24
Pending	TGGR095	-60.000	250.000	749590.676	6440283.939	431.515	36
Pending	TGGR096	-60.000	250.000	749776.590	6440137.459	434.463	30
Pending	TGGR097	-60.000	250.000	749804.013	6440148.704	435.448	42
Pending	TGGR098	-60.000	250.000	749828.479	6440159.131	435.454	60
Pending	TGGR099	-60.000	250.000	750002.449	6439797.348	429.606	36
Pending	TGGR100	-90.000	0.000	749462.385	6440374.657	438.340	42
Pending	TGGR101	-90.000	0.000	749492.548	6440355.748	435.575	30
Pending	TGGR102	-90.000	0.000	749501.308	6440327.814	434.144	24
Pending	TGGR103	-90.000	0.000	749470.253	6440321.887	434.067	24
Pending	TGGR104	-90.000	0.000	749378.783	6440343.497	438.410	24
Pending	TGGR105	-90.000	0.000	749404.403	6440320.657	435.455	24
Pending	TGGR106	-90.000	0.000	749352.911	6440308.636	435.877	24
Pending	TGGR107	-90.000	0.000	749336.255	6440326.240	437.502	30
Pending	TGGR108	-90.000	0.000	749235.198	6440362.974	438.071	54
Pending	TGGR109	-90.000	0.000	749314.257	6440396.404	444.364	42
Pending	TGGR110	-90.000	0.000	749278.412	6440385.805	442.107	30
Pending	TGGR111	-60.000	250.000	749296.970	6440442.649	449.137	60

Table 1 – Drillhole Collar Information – Continued

STATUS	HOLE ID	Dip(°)	Azimuth(°)	EASTING(m)	NORTHING(m)	RL (mASL)	Depth (m)
Pending	TGGR112	-90.000	0.000	749260.613	6440482.813	452.538	72
Pending	TGGR113	-60.000	250.000	749079.177	6440498.243	444.568	30
Pending	TGGR114	-60.000	250.000	749074.641	6440522.319	446.389	48
Pending	TGGR115	-60.000	250.000	749120.673	6440590.048	453.220	54
Pending	TGGR116	-60.000	250.000	750441.212	6439131.432	412.065	102
Pending	TGGR117	-60.000	250.000	750485.966	6439147.319	411.187	126
Pending	TGGR118	-60.000	250.000	750529.957	6439161.407	410.500	168
Pending	TGGRD119	-60.000	250.000	750582.698	6439173.767	409.897	203
Pending	TGGR120	-60.000	250.000	750405.169	6439227.989	412.968	78
Pending	TGGR121	-60.000	250.000	750453.284	6439246.413	411.800	126
Pending	TGGR122	-60.000	250.000	750429.819	6439239.493	412.260	96
Pending	TGGR123	-60.000	250.000	750439.130	6439209.067	412.156	108
NEW	TGGR124	-60.000	250.000	750484.701	6438586.636	405.880	102
NEW	TGGR125	-60.000	250.000	750579.049	6438616.152	405.804	96
NEW	TGGR126	-60.000	250.000	750428.264	6438245.312	411.955	90
NEW	TGGR127	-60.000	250.000	750496.823	6438269.164	409.462	78
NEW	TGGR128	-60.000	250.000	750541.055	6438286.930	407.766	72
NEW	TGGR129	-60.000	250.000	750642.165	6438321.776	404.648	120
NEW	TGGR130	-60.000	250.000	750611.605	6437993.853	403.050	120
Pending	TGGR131	-60.000	250.000	750100.836	6439723.308	429.255	54
Pending	TGGR132	-60.000	250.000	749981.935	6440039.320	428.052	90
Pending	TGGR133	-60.000	250.000	749964.261	6440072.227	429.372	90
Pending	TGGR134	-60.000	250.000	749336.513	6440509.885	453.901	102
Pending	TGGR135	-60.000	250.000	749379.558	6440523.461	451.140	90
Pending	TGGR136	-60.000	250.000	749454.535	6440551.335	446.154	132
Pending	TGGR137	-60.000	250.000	749192.238	6440567.877	456.990	96
Pending	TGGR138	-60.000	250.000	749292.267	6440599.244	455.656	120
Pending	TGGR139	-60.000	250.000	749393.635	6440636.418	449.274	156
Pending	TGGR140	-60.000	250.000	750288.172	6439500.411	417.280	72
Pending	TGGR141	-60.000	250.000	750316.895	6439509.850	416.921	72
Pending	TGGR142	-60.000	250.000	750339.612	6439517.359	416.548	90
Pending	TGGR143	-60.000	250.000	750367.025	6439526.805	416.047	114
Pending	TGGR144	-60.000	250.000	750392.480	6439535.782	415.630	132
Pending	TGGR145	-60.000	250.000	750469.206	6439216.147	411.446	132
Pending	TGGR146	-60.000	250.000	750755.396	6435694.220	412.474	108
Pending	TGGR147	-60.000	250.000	750943.785	6435760.318	414.651	102
Pending	TGGR148	-60.000	250.000	750630.673	6437152.267	406.142	120
Pending	TGGR149	-60.000	250.000	750727.698	6437182.860	405.691	96
Pending	TGGR150	-60.000	250.000	749175.282	6440611.233	456.963	78
Pending	TGGR151	-90.000	0.000	749303.379	6440289.614	434.042	18
Pending	TGGR152	-60.000	250.000	749325.500	6440454.078	449.761	66
Pending	TGGR156	-60.000	250.000	749843.987	6440132.286	435.775	48
Pending	TGGR157	-60.000	250.000	749867.386	6440039.507	432.149	42
Pending	TGGR158	-60.000	250.000	749910.985	6440056.644	431.379	66
Pending	TGGR159	-60.000	250.000	749861.282	6440140.798	435.612	60
Pending	TGGR160	-60.000	250.000	749874.401	6440147.005	434.902	72

Follow-up Work

Planning and preparation for first diamond drill core drilling is well advanced for commencement in January 2026 which will include a diamond core tail on drillhole TGGRC0128.

Ongoing drilling results will be used to update the current resource model, MRE (Table A) and in addition four holes are outstanding in the far south exploration target positions.

Mineralisation and geology interpolation is ongoing as logging and assay data becomes available.

Pending assays will be reported as they come to hand in January 2026.

Further drilling at the Gold City prospect will commence when approvals have been granted.

Soil sampling assays for Cronin West exploration tenement, Van Uden far north (Powerline Prospecting Licence) and Gold City infill are also expected to return from the laboratory in the coming weeks.

Van Uden Gold Project Description

The Project is located on the Forrestania Greenstone Belt, **Figure 3**, 90km east-northeast of Hyden and 120km south of Southern Cross. It is close to the Marvel Loch (producing) and Westonia - Edna May (care & maintenance) gold processing Plants. The Project lies 12.5km to the south west of the Mt Holland lithium mine and is 130km north west from the Company's established Burmeister lithium deposit at the Lake Johnston Project.

Van Uden Gold consists of an Indicated and Inferred Mineral Resource as per **Table A** below on four granted mining leases, four granted exploration licences, one exploration licence application and two miscellaneous licences (for haul roads).

Mineral Resource Estimate for the Van Uden Gold Deposit - May 2025									
Material	Indicated			Inferred			Total		
	Tonnes	Grade (Au/gt)	Gold (Oz)	Tonnes	Grade (Au/gt)	Gold (Oz)	Tonnes	Grade (Au/gt)	Gold (Oz)
Laterite	234,000	0.9	6,940	525,000	0.7	11,800	759,000	0.7	18,740
Oxide	867,000	1.2	34,200	1,141,000	1.0	38,200	2,008,000	1.0	72,400
Transitional	291,000	1.1	10,700	770,000	1.1	26,500	1,061,000	1.1	37,200
Fresh	318,000	1.6	16,500	2,207,000	1.2	82,300	2,525,000	1.2	98,800
Total	1,710,000	1.2	68,340	4,643,000	1.2	158,800	6,353,000	1.1	227,140

Table A: MRE – Van Uden Gold Deposit

The Mineral Resources statement conforms to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) 2012 Edition. All tonnages are dry metric tonnes. It has been reported at a cut-off grade of 0.35 g/t Au by area within a A\$5,000/oz Au optimised pit shell based on mining parameters and operating costs typical for Australian open pit extraction deposits of a similar scale and geology. Minor discrepancies may occur due to rounding of appropriate significant figures.

The resources comply with the Reasonable Prospects for Eventual Economic Extraction (RPEEE), a key principle in mineral resource reporting that requires the qualified person to demonstrate that a mineral deposit has the potential to be economically extracted in the future.

About TG Metals

TG Metals is an ASX listed company focused on exploring and developing gold and lithium assets at its wholly owned Lake Johnston Project and 80% owned Van Uden Gold Project in the stable jurisdiction of Western Australia, **Figure 4**. The Lake Johnston Project hosts the Burmeister high grade lithium deposit, Jaegermeister lithium pegmatites and several surrounding lithium prospects. Burmeister is in proximity to four lithium processing plants and undeveloped deposits. The Van Uden Gold Project contains past producing gold mines and is in proximity to operating gold processing Plants.

Authorised for release by TG Metals Board of Directors.

Contact

Mr David Selfe
Chief Executive Officer
Email: info@tgmetals.com.au

Investor Relations

Evy Litopoulos
ResolveIR
Email: evy@resolveir.com

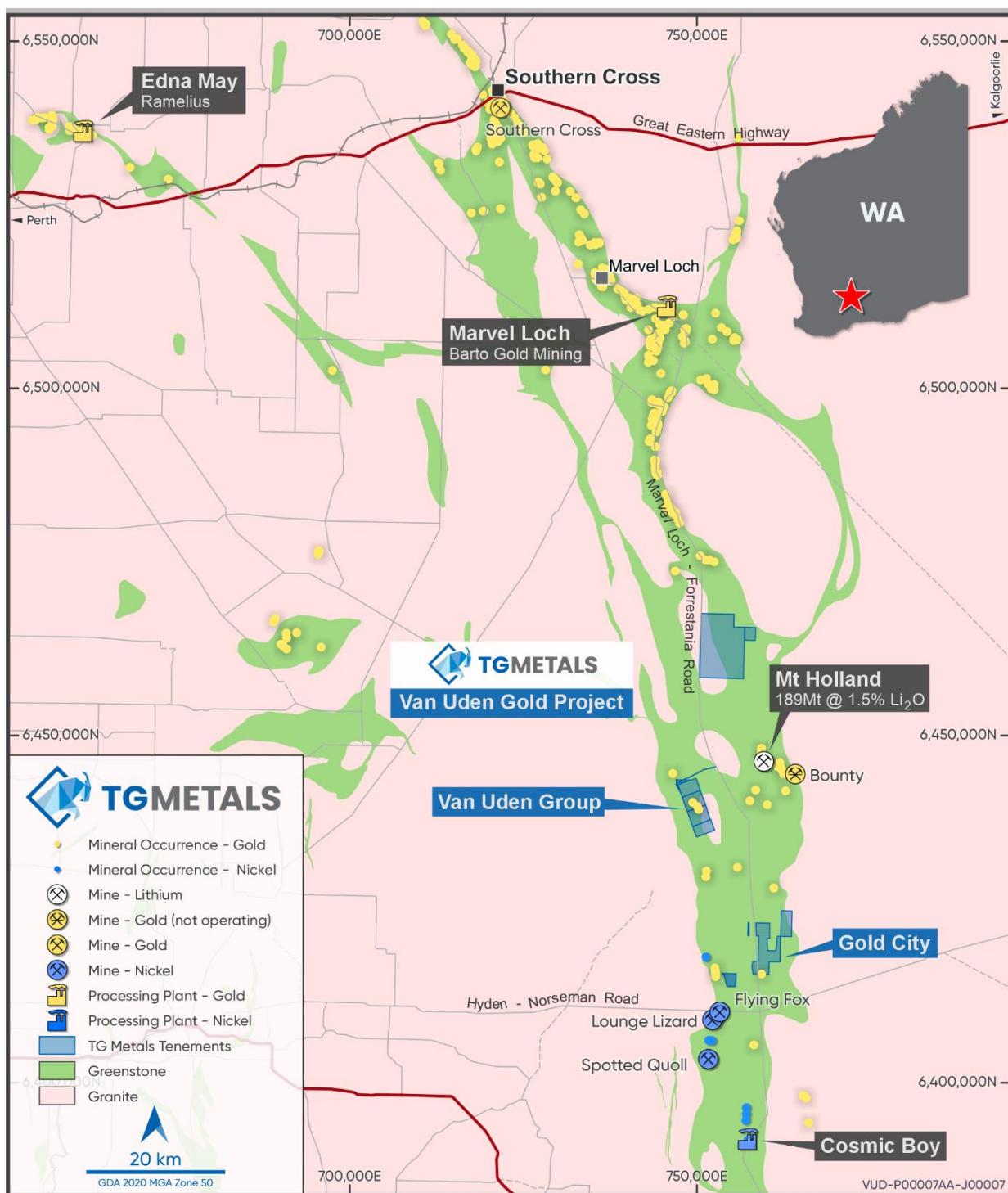


Figure 3 – Location Map showing TG Metals' Van Uden Gold Project

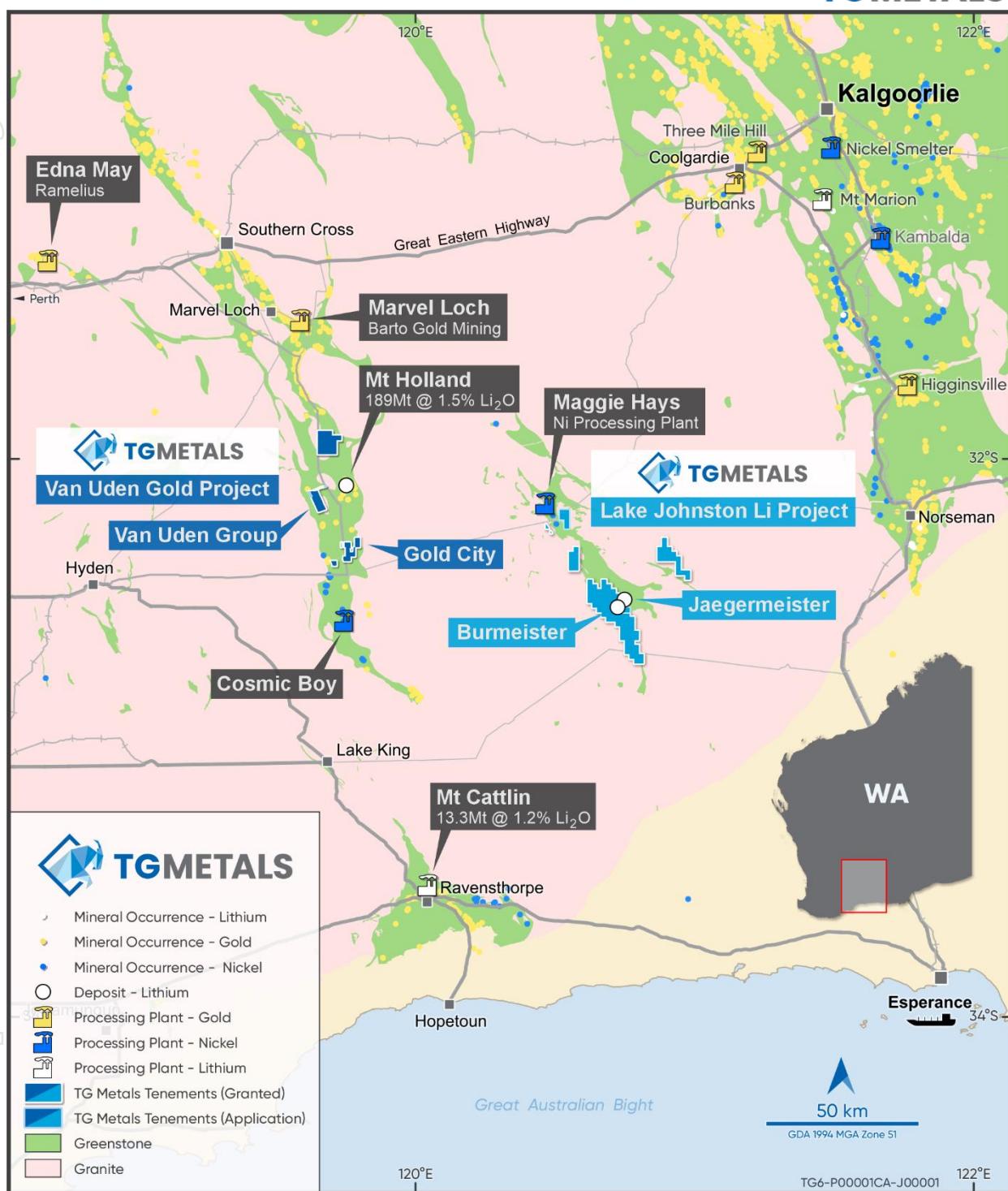


Figure 4 – Location Map showing TG Metals' Lake Johnston Lithium and Van Uden Gold Projects

Competent Person Statement

Information in this announcement that relates to exploration results, exploration strategy, exploration targets, geology, drilling and mineralisation is based on information compiled by Mr David Selfe who is a Fellow of the Australasian Institute of Mining and Metallurgy and an employee of TG Metals Limited. Mr Selfe has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Selfe has consented to the inclusion in this report of matters based on their information in the form and context in which it appears. Mr Selfe considers that the information in this announcement is an accurate representation of the available data and studies for the Van Uden Gold Project.

Forward Looking Statements

This announcement may contain certain statements that may constitute "forward looking statements". Such statements are only predictions and are subject to inherent risks and uncertainties, which could cause actual values, results, performance achievements to differ materially from those expressed, implied or projected in any forward looking statements.

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)" and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

The Company believes that it has a reasonable basis for making the forward-looking Statements in the presentation based on the information contained in this and previous ASX announcements.

The Company is not aware of any new information or data that materially affects the information included in this ASX release, and the Company confirms that, to the best of its knowledge, all material assumptions and technical parameters underpinning the exploration results in this release continue to apply and have not materially changed.

Table 2 – Drill Assay Table – NSI=no significant Intercept (<0.3g/tAu), All 1m intervals

Hole ID	FROM	To	PROSPECT	Au (g/t)
TGGR124	0	26	VU South Ext	NSI
TGGR124	26	27	VU South Ext	0.48
TGGR124	27	71	VU South Ext	NSI
TGGR124	71	72	VU South Ext	9.83
TGGR124	72	73	VU South Ext	0.21
TGGR124	73	74	VU South Ext	0.34
TGGR124	74	100	VU South Ext	NSI
TGGR125	0	32	VU South Ext	NSI
TGGR125	32	33	VU South Ext	0.37
TGGR125	33	34	VU South Ext	0.56
TGGR125	34	96	VU South Ext	NSI
TGGR126	0	52	VU South Ext	NSI
TGGR126	52	56	VU South Ext	0.19
TGGR126	56	90	VU South Ext	NSI
TGGR127	0	35	VU South Ext	NSI
TGGR127	35	36	VU South Ext	0.34
TGGR127	36	37	VU South Ext	0.33
TGGR127	37	38	VU South Ext	0.25
TGGR127	38	39	VU South Ext	0.32
TGGR127	39	40	VU South Ext	0.33
TGGR127	40	41	VU South Ext	0.21
TGGR127	41	42	VU South Ext	0.1
TGGR127	42	43	VU South Ext	0.24
TGGR127	43	44	VU South Ext	0.18
TGGR127	44	45	VU South Ext	0.51
TGGR127	45	46	VU South Ext	1.2
TGGR127	46	47	VU South Ext	1.0
TGGR127	47	48	VU South Ext	0.25
TGGR127	48	49	VU South Ext	0.11
TGGR127	49	50	VU South Ext	<0.03
TGGR127	50	51	VU South Ext	0.26
TGGR127	51	52	VU South Ext	0.38
TGGR127	52	53	VU South Ext	0.2
TGGR127	53	61	VU South Ext	NSI
TGGR127	61	62	VU South Ext	0.55
TGGR127	62	63	VU South Ext	0.17
TGGR127	63	64	VU South Ext	0.07
TGGR127	64	65	VU South Ext	0.15
TGGR127	65	66	VU South Ext	6.18
TGGR127	66	67	VU South Ext	0.26
TGGR127	67	68	VU South Ext	0.38
TGGR127	68	69	VU South Ext	0.06
TGGR127	69	70	VU South Ext	0.05
TGGR127	70	71	VU South Ext	1.56
TGGR127	71	72	VU South Ext	0.91
TGGR127	72	73	VU South Ext	0.55
TGGR127	73	74	VU South Ext	0.97
TGGR127	74	75	VU South Ext	9.66
TGGR127	75	76	VU South Ext	0.38
TGGR127	76	77	VU South Ext	0.09
TGGR127	77	78	VU South Ext	0.05
TGGR128	0	32	VU South Ext	NSI
TGGR128	32	36	VU South Ext	0.24
TGGR128	32	33	VU South Ext	<0.03
TGGR128	33	34	VU South Ext	0.30
TGGR128	34	35	VU South Ext	0.28
TGGR128	35	36	VU South Ext	0.2
TGGR128	36	72	VU South Ext	NSI
TGGR129	0	80	VU South Ext	NSI
TGGR129	80	81	VU South Ext	0.23
TGGR129	81	82	VU South Ext	0.32
TGGR129	82	83	VU South Ext	0.15
TGGR129	83	84	VU South Ext	0.24
TGGR129	84	120	VU South Ext	NSI
TGGR130	0	120	VU South Ext	NSI

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> All holes were sampled at 1 m intervals using an on-board Ox Cyclone Sampling system with fixed cone splitter engineered for the rig. Samples outside of the known gold mineralised zones are composited to 4m samples and assayed prior to the 1m intervals being submitted for assay. 4m composite samples are not reported. Two samples (Original + Duplicate) were collected each metre, representing 12.5 % of total cyclone discharge per split. Certified reference materials (CRMs) were inserted every 20 samples, and coarse blanks every 40 samples. All samples were dry. Samples were transported to Laboratory: SGS Australia Pty Ltd, Kalgoorlie WA (17 Stockyard Way) for PhotonAssay™ PAAU02, two-cycle analysis on 500g of crushed material.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Reverse-circulation (RC) drilling Drilling was completed using three rigs, selected to match depth requirements and operational efficiency Impact Drilling – RIG 02 <ul style="list-style-type: none"> Rig: Schramm T660 (8x8 MAN carrier) Year: 2006 (rebuilt 2021) Capability: High-capacity deep RC drilling Depth capacity: >500 m (4.5" RC) Rod handling: KL rod handler Safety & control: KL rod handler, TJM hands-free breakout, rear-mounted controls, onboard dust collection and suppression.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure</i> 	<ul style="list-style-type: none"> Sample recovery was visually assessed and recorded by comparing the two splitter outputs each metre. All samples were dry with negligible loss.

Criteria	JORC Code explanation	Commentary
	<p><i>representative nature of the samples.</i></p> <ul style="list-style-type: none"> • <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> • Given the dry conditions and fixed splitter configuration, no material bias is expected.
Logging	<ul style="list-style-type: none"> • <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> • • <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> • <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> • RC drill cuttings of the metre intervals were sieved, washed and placed into a chip tray for geological logging and for future reference. Clay intervals in regolith were not sieved, however any remnant rock/hard material were sieved and washed for identification. • TG Metals Limited geological logging system: <ul style="list-style-type: none"> ◦ Recognises fresh rock vs regolith. ◦ Is both qualitative and quantitative. ◦ Industry and geological standards were followed recording every detail observed. ◦ Every interval (m) drilled was logged. ◦ 20m interval Chip trays were labelled and used to store a small representative sample for future reference.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> • <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> • <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> • <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> • <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> • <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> • Samples were split at the rig using a fixed cone splitter, producing two by 12.5 % sub-samples per metre. • All samples were transported to SGS Kalgoorlie for preparation and PhotonAssay™ analysis. • Laboratory preparation (SGS Kalgoorlie) included: <ul style="list-style-type: none"> ◦ Drying at 105 °C (< 3 kg) — G_DRY ◦ Crushing 90 % < 3.35 mm — G_CRU_KG ◦ 500g PhotonAssay™ jar filled from crushed material • Sample weights were recorded by SGS on receipt. • CRMs and blanks returned results within expected limits. • Field duplicates retained but not yet analysed.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> 	<ul style="list-style-type: none"> • Laboratory: SGS Australia Pty Ltd, Kalgoorlie WA (17 Stockyard Way). • Method: PhotonAssay™ PAAU02, two-cycle analysis on crushed material. • Charge weight: 500g Detection limit: 0.03 ppm Au – 350 ppm Au (over-range PAAU02H, 100 – 3500 ppm Au). • Preparation: drying, crushing (90 % < 3.35 mm) prior to jar fill.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Precision may be reduced in samples with elevated U, Th or Ba. No umpire analyses to date.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> All assays reviewed and verified internally by TG Metals geological personnel prior to import into the master database. No twinned holes were drilled. However holes were drilled in proximity to historical drillholes for comparative and additional data.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> Coordinate system: MGA2020 Zone 50 for final hole DGPS surveys and MGA94z50 for all other field work Collar survey: GPS (+/- 3m accuracy). DGPS at conclusion of the program Downhole survey: Reflex north-seeking gyro (Continuous mode) – manufactured by Downhole Surveys Pty Ltd Topography: LiDAR surface model.
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Assays reported on 1 m intervals; no compositing applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> Mineralisation is interpreted as shear- and vein-hosted along local contacts; drilling orientations are appropriate for testing mineralised zones and introduce no material bias at this scale.
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> Samples were bagged and sealed in calico bags inside polyweave sacks, cable-tied and labelled at the rig. Chain of custody; Samples were taken to Southern Cross in sealed bulka bags, then freighted to SGS Kalgoorlie.
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> No external audits specific to this program.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Internal QAQC checks identified no material issues.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> All drilling is within in Mining Lease M77/478. The tenements are currently held by Montague Resources Pty Ltd (80%) and Barto Gold Mining Pty Ltd (20%). Ownership: TG Metals has acquired 80% ownership of the Mining lease from Montague Resources Australia Pty Ltd, pending title transfer. The tenements are in good standing and unaffected by heritage or environmental encumbrances.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Dieman, Laterite and Tasman Pits were previously mined and drilled by earlier operators as part of historic gold extraction. Historic data have been reviewed where available.
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> Orogenic, shear- and vein-hosted gold mineralisation occurs within the Forrestania greenstone belt along the sediment–mafic contact, which is mapped as the Van Uden Shear. Host rocks are amphibolite-facies metasediments and mafic volcanic units showing local quartz veining and minor schistose alteration. Gold mineralisation is structurally controlled and consistent with regional orogenic systems of the Western Australian Yilgarn Craton. Most gold mineralisation is formed withing the sediments, however where the mafic/sediment contact undulates, the gold mineralisation is known to occur within the mafic rocks.
<i>Drill hole Information</i>	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> 	<ul style="list-style-type: none"> Collar coordinates, orientation and hole depths for the drilling have been provided in the Table 1 of the report. No holes were abandoned.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> ○ <i>dip and azimuth of the hole</i> ○ <i>down hole length and interception depth</i> ○ <i>hole length</i>. ● <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	
Data aggregation methods	<ul style="list-style-type: none"> ● <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> ● <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> ● <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> ● Significant intercepts reported on length-weighted 1 m assays using the following criteria: <ul style="list-style-type: none"> ○ Lower cut-off: 0.3g/t Au ○ Minimum downhole width: 1 m ○ Maximum internal dilution: 2 m ○ No top-cut applied ○ No metal equivalents used.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> ● <i>These relationships are particularly important in the reporting of Exploration Results.</i> ● <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> ● <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> ● Intercepts represent downhole lengths ● Mineralisation trends NNW and dips 45-50 degrees to the east. ● Most drill holes are drilled to azimuth 250 degrees (WSW) and at -60 degrees dip. ● Some holes were drilled Vertical next to Nearby Infrastructure like open pit voids to allow the rig to get as close as possible. ● Some holes were drilled towards 070 azi due to open pit void constraining ideal drill pad locations. ● The orientation most of the drill holes is roughly perpendicular to the gold mineralisation, and down hole length are approximately equal to true width.
Diagrams	<ul style="list-style-type: none"> ● <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> ● Maps, diagrams and sections have been included in the report.
Balanced reporting	<ul style="list-style-type: none"> ● <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> ● All holes for which assays have been received and not previously reported from this program have been included in Table 2 (body text) to ensure balanced reporting.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> Drilling was conducted to expand the current Van Uden MRE via along strike continuity. No density or metallurgical data were collected.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> See Figure 1 in the body text for future drilling areas and targets. Figure 3 in the body text shows the project tenements which includes future drilling targets.