
Down Hole Electromagnetic Survey Identifies Off Hole Conductors at Gulf Creek

OD6 Metals Limited (**OD6** or the **Company**) is pleased to advise that processing and interpretation of the Downhole Electromagnetic (DHEM) survey completed in December 2025 has identified a strong off-hole conductors at the Gulf Creek Copper Project in northern New South Wales.

The newly identified strong conductor is located proximal to historic high-grade copper workings and represents a compelling new drill target, supporting the potential for fault-offset or stacked mineralised lodes beneath the historic mine.

Highlights

- DHEM surveying results complete across six drill holes using four surface EM loops
- **Strong conductor identified approximately 75m beyond the end of hole GDD010**
- Geological reinterpretation indicates a **potential fault offset** of historic high-grade lodes mined
- DHEM results at the **Northwest Target** indicates a **possible additional conductor**
- **Drill assay results pending** from the recent diamond drilling program
- OD6 fully permitted for additional 25 holes at Gulf Creek follow up drilling

Managing Director Brett Hazelden, commented:

"The DHEM survey and subsequent modelling has provided confidence that there are significant undiscovered accumulations of mineralization proximal to the historic high-grade copper mine at Gulf Creek."

"Both our near-mine drilling and historic records indicate the presence of high grade copper, and this combined with the increased knowledge of mine-stratigraphy and the newly identified conductor located beyond end-of-hole, strongly suggests there is a structural fault off-set of the main lode."

"With drilling now logged and geological understanding significantly advanced, we believe this conductor represents a high-priority target at depth and reinforces the prospectivity of the project."

What is DHEM?

Downhole Electromagnetics (DHEM) is a geophysical method where an electromagnetic field is transmitted from a surface loop and measured by a probe lowered down a drill hole. Because copper sulphides (chalcopyrite, bornite, chalcocite) are **significantly more conductive** than surrounding host rocks, the DHEM tool can detect:

- **Off-hole conductors**, potentially massive sulphide bodies, not intersected by drilling
- **Down-dip, up-dip or along-strike extensions** of mineralised lodes
- **Potential stacked or parallel lenses** hidden from surface geophysics
- **Depth and orientation** of conductive bodies to improve drilling accuracy

DHEM is considered one of the most effective tools for vectoring toward massive sulphide accumulations, particularly in structurally complex or historically mined VMS systems such as Gulf Creek. DHEM can detect conductors at 50 to 100m from the drill hole.

Downhole Electromagnetic (DHEM) Surveying Program Overview

A total of four EM surface loops were laid out over key target areas at Gulf Creek with six holes. This included 3 holes at Gulf Creek, and one hole each at the Big Bend, West Limb and Northwest Target areas (Figure 2).

Results confirmed conductors associated with known high-grade mineralization proximal to the historic workings as seen in the upper areas of Figure 1.

A strong off-hole conductor was detected beyond the end of hole GDD010 as indicated in Figure 1. Hole GDD010 was drilled as a deep hole (EOH 328m) beneath the historic workings. Whilst the hole intersected only minor sulphide horizons it also did not intersect the known mine-stratigraphy including the main hanging-wall exhalite/jaspilite or the footwall basalt. The top part of the hole included silicified material, potentially **indicating a fault zone. This suggests that there is a potential fault off-set, that steps mineralisation to the SW from a fault currently inferred to strike, parallel with the Gulf Creek syncline and dipping to the SW.**

DHEM Results from the Northwest target indicate a possible conductor, though in consultation with Mitre Geophysics, it requires further geological consideration before testing.

DHEM at Big Bend and Western Limb did not yield appreciable off-hole conductors (Table 1).

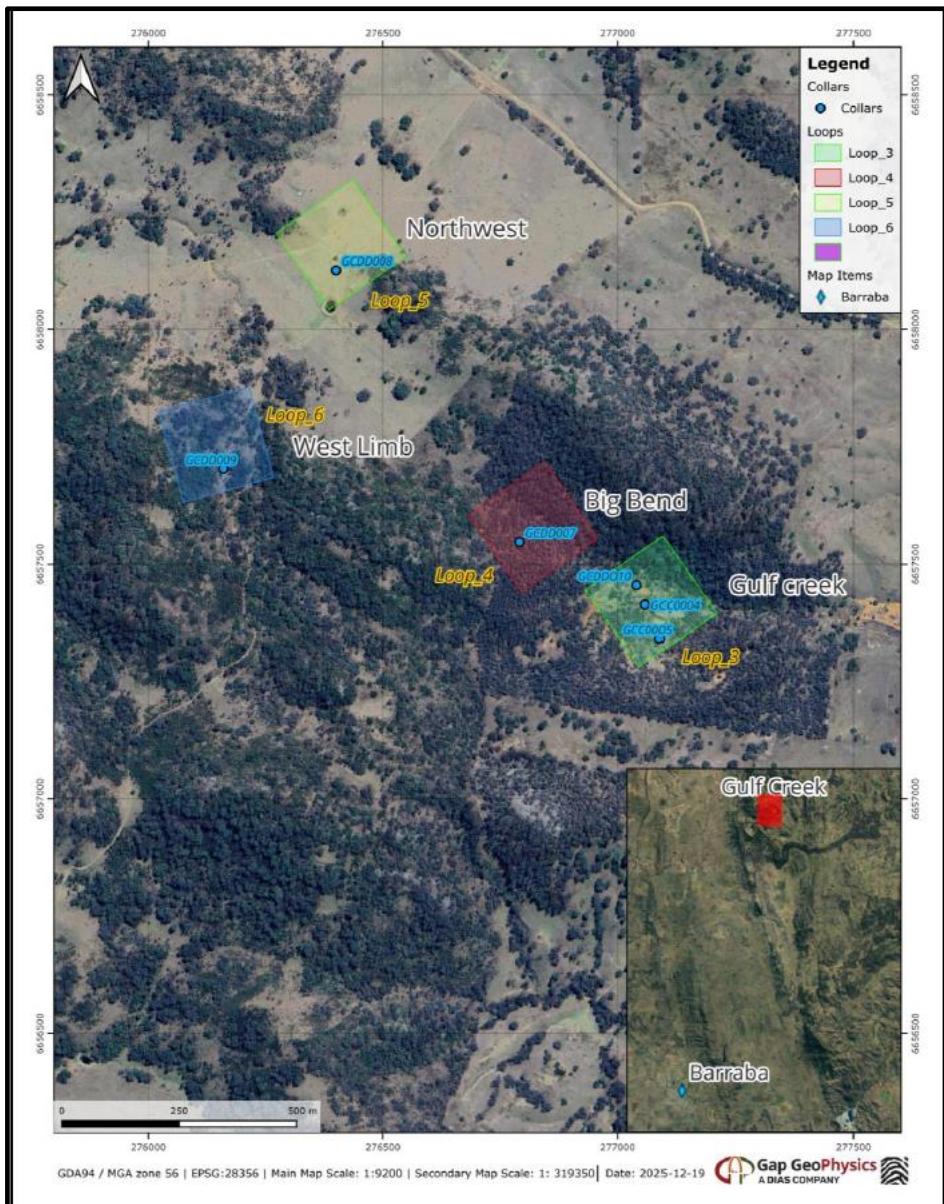


Figure 2: Gulf Creek DHEM Survey Design

Table 1: DHEM Summary Results / Drill Hole Details. All coordinates in GDA94 Zone 56

Hole ID	East	North	RL	Hole Depth	Dip	Azi	Loop/Target	Results
GCC0004	277058	6657414	766	242	-55.0	232.8	Gulf Creek	Conductors proximal to historic workings
GCC0005	277088	6657341	761	200	-50.0	258.8	Gulf Creek	Conductors proximal to historic workings
GCDD007	276791	6657547	798	240.5	-75.7	227.9	Big Bend	No Significant Results
GCDD008	276400	6658126	789	240.5	-60.1	223.3	NorthWest	Potential Conductor
GCDD009	276160	6657703	813	240.5	-55.2	116.0	West Limb	No Significant Results
GCDD010	277038	6657457	759	328	-66.9	229.0	Gulf Creek	Conductor 75m off end

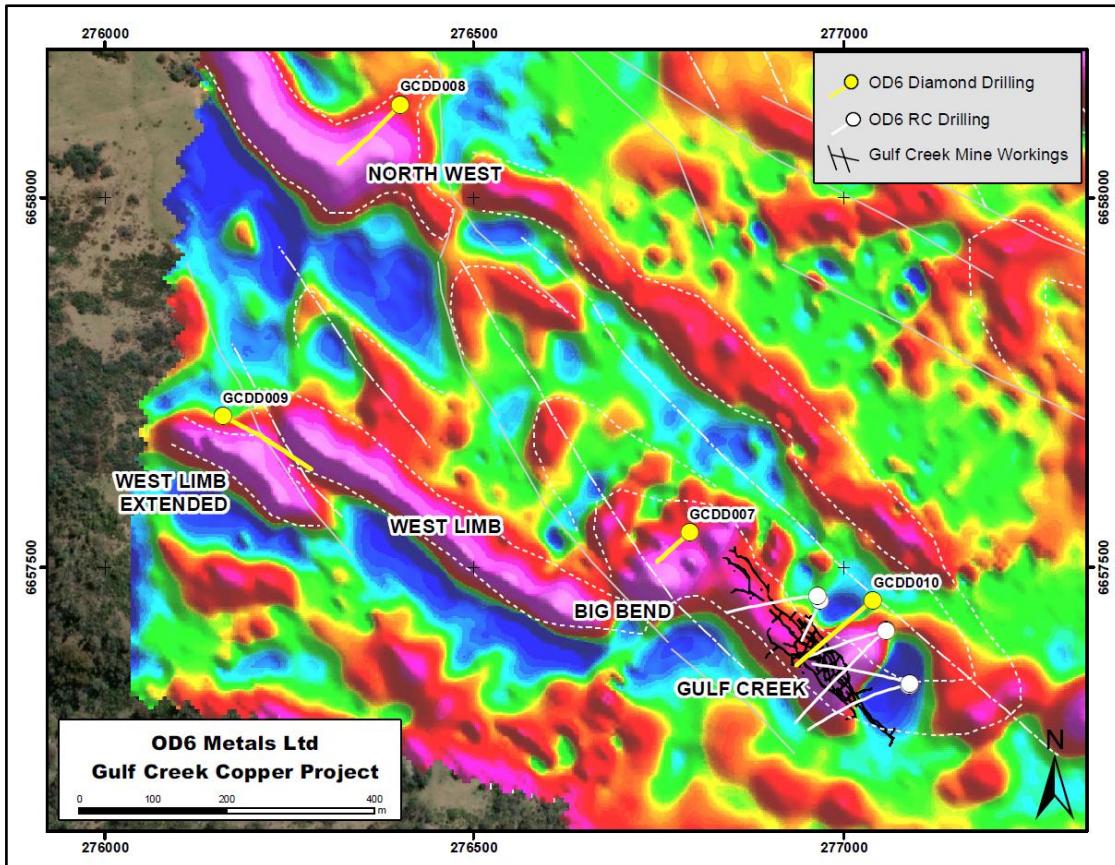


Figure 3: Plan view of OD6 Drilling completed to date overlain on 1st vertical derivative of magnetics with the priority targets Big Bend, North West, West Limb and the historic Gulf Creek Mine

Next Steps

- Receipt of **assay results** from the recent diamond drilling program
- Integrated interpretation of **DHEM, geology, surface geochemistry and geophysics**
- Design of **follow-up drill holes** to test identified conductors
- Advancement of priority targets ahead of the next drilling phase
- OD6 remains **fully permitted for an additional 25 drill holes** at Gulf Creek

About OD6 Metals

OD6 Metals is an Australian public company pursuing exploration and development opportunities within the critical minerals sector, namely rare earths and copper.

Rare Earth Elements

OD6 Metals has successfully identified clay hosted rare earths at its 100% owned **Splinter Rock Project** which is located in the Esperance-Goldfields region of Western Australia.

The Company released a Mineral Resource Estimate (MRE) for Splinter Rock in May 2024, confirming that the project hosts one of the largest and highest-grade clay-hosted rare earths deposits in Australia with an Indicated Resource of 119Mt @ 1,632ppm TREO and an Inferred Resource of 563Mt @ 1,275ppm TREO with an overall ratio of ~23% high-value Magnetic Rare Earths (MagREE).

An innovative Process Flow sheet has been selected utilising Heap Leaching, Nano-filtration and Ion Exchange Technologies that have achieved ~75% Nd & Pr overall recovery, produced a high-quality Mixed Rare Earth Carbonate or Hydroxide (MREC/H) of ~56-59% TREO, with low levels of impurities (Al, Fe, P, Si) and extremely low uranium and thorium content (<0.001% U + Th).

OD6 Metals believes that Splinter Rock has all the hallmarks of a world class rare earths project with a conceptual heap leach development which utilises the large and high-grade Splinter Rock resource to support a long-life REE operation.

Copper

The Company is advancing the **Gulf Creek Copper-Zinc VMS Project** located near the town of Barraba in NSW.

Gulf Creek was mined at around the turn of the 20th century and was once regarded as the highest-grade copper mine (2% to 6.5% Cu) in NSW until its closure due to weak copper prices in 1912. Very little exploration has occurred at the project in over 100 years, with OD6 aiming to apply modern day exploration technologies.

The 2025 maiden drilling program successfully defined high grade copper below the historical mine plus confirmed the strong relationship between magnetism and massive sulphide mineralisation. Geophysical modelling has identified multiple, high priority and untested targets ready for drilling providing over >3km of untested strike in the immediate mine-stratigraphy, and over >10km across the tenement.

Corporate Directory

Managing Director	Mr Brett Hazelden
Non-Executive Chairman	Mr Piers Lewis
Non-Executive Director	Dr Mitch Loan
Financial Controller/ Joint Company Secretary	Mr Troy Cavanagh
Joint Company Secretary	Mr Joel Ives

Contact

OD6 Metals Ltd
ACN 654 839 602
www.od6metals.com.au
Mail to: info@od6metals.com.au
Phone: +61 8 6189 8515
Level 1, 1 Alvan Street, Subiaco, WA 6008

Investor Relations

Lucas Robinson
Corporate Storytime
luscas@corporatestorytime.com
Phone: +61 408 228 889

Competent Persons Statement

Information in this report relating to Exploration Results is based on information reviewed by Dr Darren Holden who is a Fellow of the Australasian Institute of Mining and Metallurgy. Dr Holden is an employee of GeoSpy Pty Ltd and is geological advisor to the Company and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Holden owns shares in the Company and participates in the Company's employee securities incentive plan. Dr Holden consents to the inclusion of the data in the form and context in which it appears.

Forward Looking Statements

Certain information in this document refers to the intentions of OD6 Metals, however these are not intended to be forecasts, forward looking statements, or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to OD6 Metals projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the OD6 Metals plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause OD6 Metals actual results, performance, or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, OD6 Metals and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortious, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Splinter Rock Project is extracted from the Company's ASX announcements dated 18 July 2024. OD6 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

This announcement has been authorised for release by the Board of OD6 Metals Limited

JORC 2012 – Table1: Gulf Creek

Section 1 Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information</i> 	<ul style="list-style-type: none"> <i>No sampling reported in this release.</i> <i>All drilling, as yet un-cut and assayed, is diamond core drilling, and it is anticipated that selected samples will be cut-half core and assayed.</i>
<i>Drilling techniques</i>	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> <i>Diamond core drilling NQ.</i>
<i>Drill sample recovery</i>	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> <i>Some zones of broken core and potential core loss were noted, however, overall core recovery expected at >95%</i>
<i>Logging</i>	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> <i>All core logged on site by contract geologists recording lithology, alteration, structure and magnetic susceptibility.</i>
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> <i>No sampling or sub-sampling reported in this release.</i>

Criteria	JORC Code explanation	Commentary																												
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> <i>No new assay results reported in this release. Refer to assays reported previously on 7 May 2025.</i> <i>DHEM conducted by GAP Geophysics, with data modelled by Mitre Geophysics Ltd</i> <i>Transmitter was a GAP KPTX-80 (703)</i> <i>Loop was single turn 35mm2 double insulated copper</i> <table border="1"> <thead> <tr> <th>Parameter</th><th>Specifications</th></tr> </thead> <tbody> <tr> <td>Acquisition System</td><td>DigiAtlantis (GAP)/ SMARTem24</td></tr> <tr> <td>Acquisition Software</td><td>SMARTem 24 v 10.11.8.57317</td></tr> <tr> <td>Digi Probe</td><td>163 (GAP) (3 component fluxgate magnetometer)</td></tr> <tr> <td>BH43 probe</td><td>3 component coil, 100 sqm2 effective area for all components</td></tr> <tr> <td>Digi Probe Calibration Date</td><td>2024-09-29</td></tr> <tr> <td>Magnetic Inclination</td><td>-60.8</td></tr> <tr> <td>Magnetic Declination</td><td>10.7</td></tr> <tr> <td>Primary Start / End</td><td>-3 ms to -2 ms (Digi) 0.5 ms to 1.5 ms (BH43)</td></tr> <tr> <td>Tx Frequency</td><td>4.1667 Hz and 8.3334</td></tr> <tr> <td>Repeat Readings</td><td>2-3 repeats</td></tr> <tr> <td>Stacks</td><td>512 (Digi) 256 (BH43)</td></tr> <tr> <td>Station Intervals</td><td>10m, infills 5m, 2.5m and 2m</td></tr> <tr> <td>Winch</td><td>Auslog 1400m winch (GAP)</td></tr> </tbody> </table>	Parameter	Specifications	Acquisition System	DigiAtlantis (GAP)/ SMARTem24	Acquisition Software	SMARTem 24 v 10.11.8.57317	Digi Probe	163 (GAP) (3 component fluxgate magnetometer)	BH43 probe	3 component coil, 100 sqm2 effective area for all components	Digi Probe Calibration Date	2024-09-29	Magnetic Inclination	-60.8	Magnetic Declination	10.7	Primary Start / End	-3 ms to -2 ms (Digi) 0.5 ms to 1.5 ms (BH43)	Tx Frequency	4.1667 Hz and 8.3334	Repeat Readings	2-3 repeats	Stacks	512 (Digi) 256 (BH43)	Station Intervals	10m, infills 5m, 2.5m and 2m	Winch	Auslog 1400m winch (GAP)
Parameter	Specifications																													
Acquisition System	DigiAtlantis (GAP)/ SMARTem24																													
Acquisition Software	SMARTem 24 v 10.11.8.57317																													
Digi Probe	163 (GAP) (3 component fluxgate magnetometer)																													
BH43 probe	3 component coil, 100 sqm2 effective area for all components																													
Digi Probe Calibration Date	2024-09-29																													
Magnetic Inclination	-60.8																													
Magnetic Declination	10.7																													
Primary Start / End	-3 ms to -2 ms (Digi) 0.5 ms to 1.5 ms (BH43)																													
Tx Frequency	4.1667 Hz and 8.3334																													
Repeat Readings	2-3 repeats																													
Stacks	512 (Digi) 256 (BH43)																													
Station Intervals	10m, infills 5m, 2.5m and 2m																													
Winch	Auslog 1400m winch (GAP)																													
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> <i>No new assay results reported in this release.</i> 																												
<i>Location of data points</i>	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> <i>All drill collars sighted using hand held GPS with accuracy of +/- 5m.</i> <i>Downhole surveys conducted using Omni Gyro tool by the drill team.</i> <i>Results presented in GDA94 Zone 56.</i> 																												
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> <i>Drill spacing is variable.</i> 																												
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> <i>Drilling oriented orthogonal to the stratigraphy</i> 																												
<i>Sample security</i>	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> <i>All core is securely stored on site and is being reviewed</i> 																												
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> <i>Collection of geological data from drilling has been reviewed and overseen by Core Geoscience Pty Ltd and GeoSpy Pty Ltd.</i> <i>Geophysical data was modelled by an independent consultant, namely Kate Hine at Mitre Geophysics.</i> 																												

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> <i>The Gulf Creek Project EL8492 is listed on the Mining Titles Registrar of NSW under the Gulf Creek Copper Pty Ltd, a wholly owned subsidiary of OD6 Metals..</i> <i>Gulf Creek Copper Pty Ltd the sole 100% holder of the exploration license. The license was renewed on 18/03/2024 is valid until 21/12/2029.</i> <i>Other than state royalties, there is no overriding royalties on the project.</i> <i>The license overlaps both crown land (being the area principally of the historic mine) and private farmland. Private land holders in the area have previously consented to exploration activity on their land, and the Company knows no reason why on-going land access cannot be granted.</i> <i>The land falls in the area of claimants – the Gomeroi people. On private land, the native title has been extinguished. The area of Crownland was subject to a ruling 31/03/2022 and that Native Title is effectively extinguished for the purposes of exploration. Further consents may be required prior to mining.</i> <i>Heritage – areas subject to future ground disturbing work are subject to the NSW Mineral Industry Due Diligence Code of Practice for the Protection of Aboriginal Objects 2010.</i> <i>Historical archaeological sites are protected under the NSW Heritage Act (1977), which may be applicable to historic buildings and structures, including the presence of historic mine and smelter workings.</i> <i>Refer to ASX announcement 21 March 2025 regarding NSW Resources Regulator Notice</i>
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> <i>The Gulf Creek mine has been subject to intermittent exploration for more than 100 years. In recent times, reconnaissance and geophysical surveys were carried out. Refer to ASX announcement 30 October 2024 for details.</i>
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> <i>Base metal (copper and zinc) mineralisation occurs is massive to semi-massive sulphides principally chalcopyrite and sphalerite. The mineralisation is closely associated with magnetite.</i> <i>Mineralisation is hosted in a series of cherts, (sedimentary radiolarian and exhalative) siltstones and basalts of the Bob's Creek Formation. The Bob's Creek formation is underlain by the Woodsreef Formation-an ophiolite sequence including harzburgite, dunite and gabbro.</i> <i>Mineralisation is considered to be 'Besshi Style' Volcanogenic Massive Sulphide (VMS) deposit</i> <i>The sedimentary sequence, of which the mineralisation is parallel, has been folded into NW-SE striking and steeply dipping folds.</i> <i>At the historic Gulf Creek mine, mineralisation strikes NW-SE and is steeply dipping (70-85 degrees) to the NE</i>
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> 	<ul style="list-style-type: none"> <i>All drill results are reported to the ASX in line with ASIC requirements.</i> <i>A summary of material drill hole information is included in the Drill Hole Data table included in this release.</i> <i>No material has been excluded.</i>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	
<i>Data aggregation methods</i>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> <i>No data aggregation reported in this release.</i>
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> <i>No intercept or mineralization widths reported.</i>
<i>Diagrams</i>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> <i>Diagrams are included at relevant sections in this Report</i>
<i>Balanced reporting</i>	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> <i>This is an update with no assay results reported.</i>
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> <i>Refer to previous releases of the first drill program reported 7 May 2025 and earlier releases.</i> <i>All material data available is reported.</i> <i>No metallurgical testing, bulk density, or rock characteristics have been undertaken</i>
<i>Further work</i>	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> <i>Mineralisation mined historically is open along strike to the NW and down-dip / plunge.</i> <i>The Company intends to conduct down hole geophysical surveys to test the main historic workings and further targets in the area.</i> <i>Further work will include mineralogy, metallurgical testwork and study work subject to satisfactory drill results.</i>