

Ausgold
LIMITED

In-fill and Step-out Drilling Confirms and Extends Mineralisation at the Katanning Gold Project, WA

Drilling momentum continues to accelerate with four drill rigs now operating on site

Highlights:

- Assay results received from a further 55 reverse circulation drill holes for 8,179m from the Central Zone of the Katanning Gold Project, part of the ongoing 44,000m drilling program.
- Step-out drilling delivers broad, high-grade mineralisation down-dip, beyond the limits of the existing 2.44Moz Mineral Resource and DFS Update open pit designs¹, including:
 - 10m @ 2.24g/t Au from 346m including 2m @ 9.45g/t Au from 346m in BSRC1850.
 - 6m @ 1.91g/t Au from 33m including 3m @ 3.25g/t Au from 33m in BSRC1865.
 - 13m @ 0.75g/t Au from 296m including 1m @ 4.69g/t Au from 298m in BSRC1871.
- In-fill drilling within the existing Mineral Resource has returned intercepts consistent with, and locally exceeding, the current Resource model, including:
 - 24m @ 0.89g/t Au from 69m and 20m @ 1.00g/t Au from 137m in BSRC1820.
 - 16m @ 1.16g/t Au from 93m in BSRC1842.
 - 13m @ 1.13g/t Au from 119m in BSRC1836.
 - 11m @ 1.12g/t Au from 204m in BSRC1817.
 - 4m @ 2.80g/t Au from 50m in BSRC1843.
- Drilling momentum is accelerating with 13,031m (94 holes) completed to date across the KGP and a third RC rig plus a diamond rig now operating on site.

Ausgold Limited (ASX: AUC) (**Ausgold** or **Company**) is pleased to report assay results from in-fill and extensional drilling within the Central Zone at its 100%-owned Katanning Gold Project (**KGP**) in WA, part of the ongoing 44,000m reverse circulation (**RC**) and diamond drilling (**DD**) campaign.

The drilling campaign is targeting resource growth at the KGP, supporting future reserve conversion, improving confidence in early mine life areas, as well as targeting new discoveries across the Company's 3,000km² of regional tenure in the south-west of Western Australia.

¹ For further details, including JORC 2012 and ASX Listing Rule disclosures, refer to ASX announcement of 16 December 2025. The Company confirms that it is not aware of any new information or data that materially affects the information contained in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed. See Appendix 1 for a breakdown of Mineral Resource Estimate and Ore Reserve categories.

Two RC rigs have been undertaking the 44,000m program to date, primarily focused on resource growth and in-fill drilling within the planned early mine life areas of the Central Zone. A third RC rig and a diamond rig have also now arrived on site. The additional RC rig will accelerate the in-fill component of the program, while the diamond rig will initially complete metallurgical drilling before transitioning to testing down-plunge targets within the Central and Northern Zones.

Management Comments

Commenting on the drilling results, Ausgold Executive Chairman, John Dorward, said:

"These results continue to demonstrate the quality of the Katanning Gold Project, reinforcing the robustness of the existing Mineral Resource and supporting confidence in the current mine plan, while also highlighting the Project's straightforward growth potential. We look forward to delivering further results over the coming quarters, culminating in an updated Mineral Resource Estimate following completion of the current drilling campaign."

Katanning Gold Project

The KGP lies within a major mineralised structural corridor, with exploration to date outlining a 15km trend hosting multi-lode gold mineralisation across three key Resource zones (Figure 1):

- **Northern Zone:** Datatine deposit.
- **Central Zone:** Jinkas-White Dam, Jackson and Olympia deposits.
- **Southern Zone:** Dingo and Lukin deposits.

Drilling results reported in this announcement are from 55 holes for 8,179m drilled in the Central Zone, from the Jinkas-White Dam and Jackson deposits (Figure 2). The Central Zone contains 90% of the total Mineral Resource at the KGP (Figure 1), largely controlled by the Jinkas-White Dam synformal structure (Figures 2-4).

Twenty holes were drilled to test mineralisation outside the current Mineral Resource and DFS pit designs², returning the following new significant results:

- **10m @ 2.24g/t Au from 346m including 2m @ 9.45g/t Au from 346m in BSRC1850 (Jinkas-White Dam) – Figure 3.**
- **6m @ 1.81g/t Au from 33m including 3m @ 3.25g/t Au from 33m in BSR1865 (Jinkas-White Dam).**
- **13m @ 0.75g/t Au from 296m including 1m @ 4.69g/t Au from 298m in BSRC1871 (Jinkas-White Dam).**
- **31m @ 0.50g/t Au from 80m in BSRC1830 including 1m @ 2.25g/t Au from 100m and 1m @ 2.01g/t Au from 104m.**

² Refer to Table 2 within this document for hole-by-hole breakdown of which holes are targeting mineralisation extension.

The results highlight the potential to extend the mineralisation down-dip beyond the current Resource and mine design envelopes, complementing previously reported results from the ongoing drilling campaign, including³:

- **14m @ 6.18g/t Au from 181m including 5m @ 16.44g/t Au from 181m in BSRC1811 (Jinkas-White Dam).**
- **10m @ 2.27g/t Au from 150m including 3m @ 6.59g/t Au from 150m in BSRC1809 (Jinkas-White Dam).**

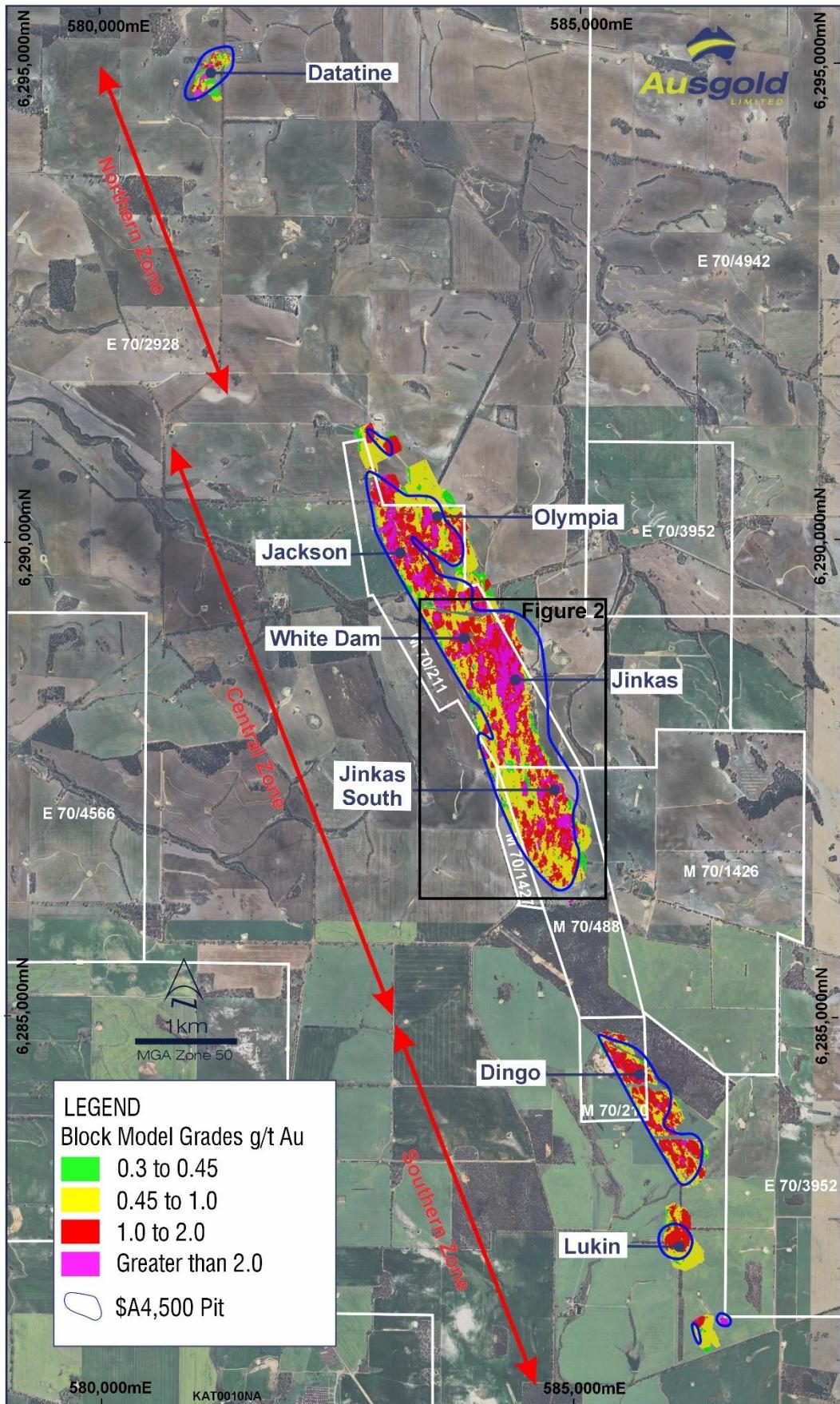
Thirty-five holes reported in this announcement comprise in-fill drilling, designed to confirm the existing Mineral Resource model, support future reserve conversion, and improve confidence in early mine life areas. Of these, 12 holes returned locally higher grades and/or widths relative to the current Resource model, including:

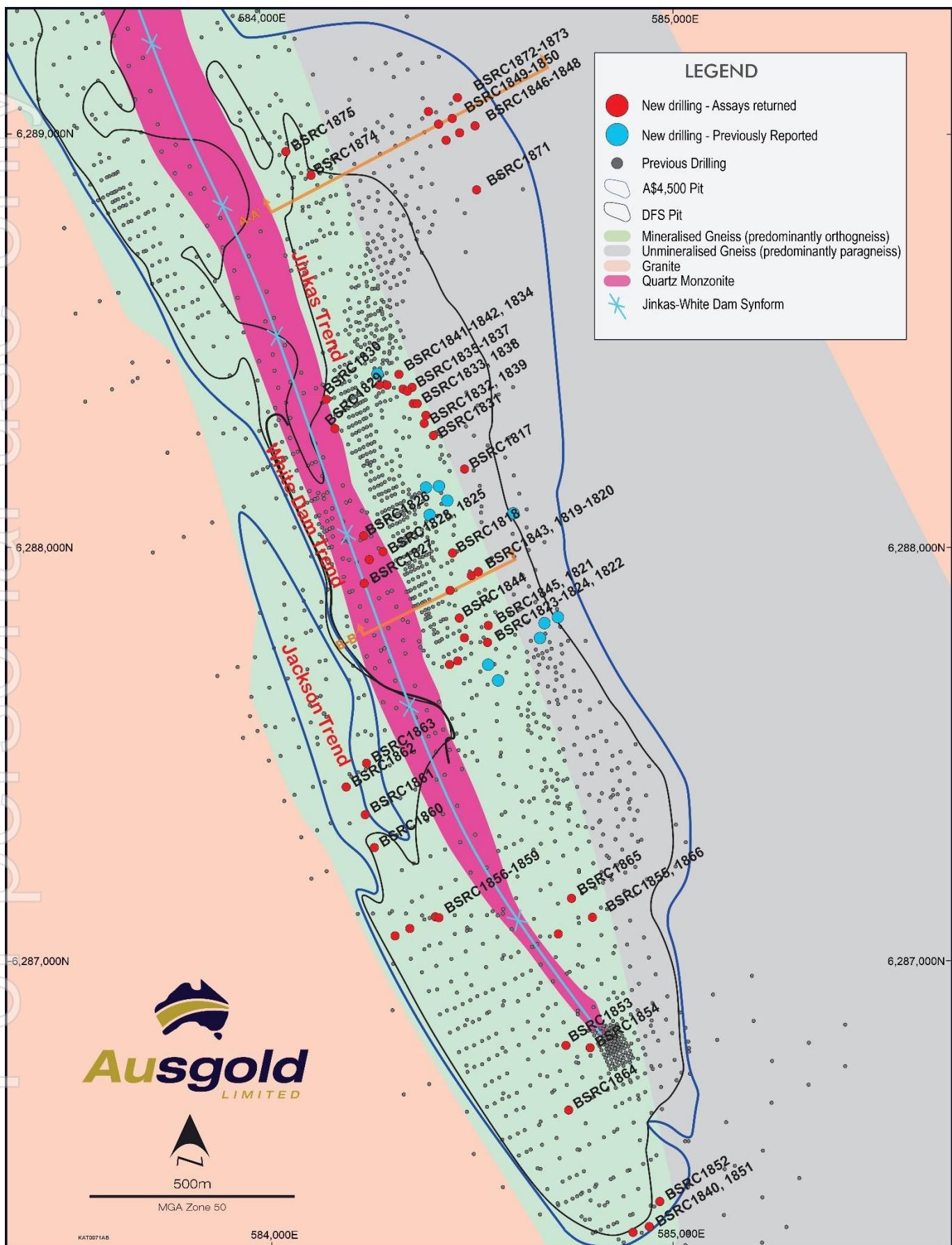
- **24m @ 0.89g/t Au from 69m in BSRC1820 including 1m @ 1.46g/t Au from 77m, 1m @ 9.01g/t Au from 82m and 1m @ 1.35g/t Au from 91m in BSRC1820 – Figure 4.**
- **20m @ 1.00g/t Au from 137m in BSRC1820 including 3m @ 1.25g/t Au from 138m and 6m @ 2.06g/t Au from 149m – Figure 4.**
- **16m @ 1.16g/t Au from 93m in BSRC1842.**
- **13m @ 1.13g/t Au from 119m in BSRC1836 including 1m @ 1.40g/t Au from 119m and 6m @ 1.74g/t from 123m.**
- **11m @ 1.12g/t Au from 204m in BSRC1817 including 1m @ 6.07g/t Au from 204m and 1m @ 2.14g/t Au from 209m and 1m @ 1.03g/t Au from 214m.**
- **4m @ 2.80g/t Au from 50m in BSRC1843 including 1m @ 10.15g/t Au from 52m.**
- **5m @ 2.19g/t Au from 2m in BSRC1817.**
- **5m @ 2.07g/t Au from 95m including 2m @ 4.56g/t Au from 98m in BSRC1838.**

The remaining in-fill drilling results returned intercepts generally consistent with the current geological and grade model, providing increased confidence in grade continuity, particularly within planned early mine life areas.

Upcoming Market Updates

- RC and DD drilling results from the KGP across the Southern, Central and Northern Zones, including further extensional drilling results aimed at growing the open-pit Resource and assessing underground potential.
- RC drilling results from regional targets including Nanicup Bridge and Kulin.


³ For further details, see ASX announcement dated 1 December 2025. The Company confirms that it is not aware of any new information or data that materially affects the information contained in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed.


- FID for the Katanning Gold Project targeted for Q2.
- Updated KGP Mineral Resource Estimate in Q3.

For personal use only

For personal use only

Figure 1 – Plan map of the Katanning Gold Project with the Resource Block Model, \$A4,500 pit outline, an inset (Figure 2) of area of drilling results and current granted tenements

Figure 2 – Geological map of the central portion of the Central Zone displaying new drilling relative to the DFS and A\$4,500 pit outlines

For personal use only

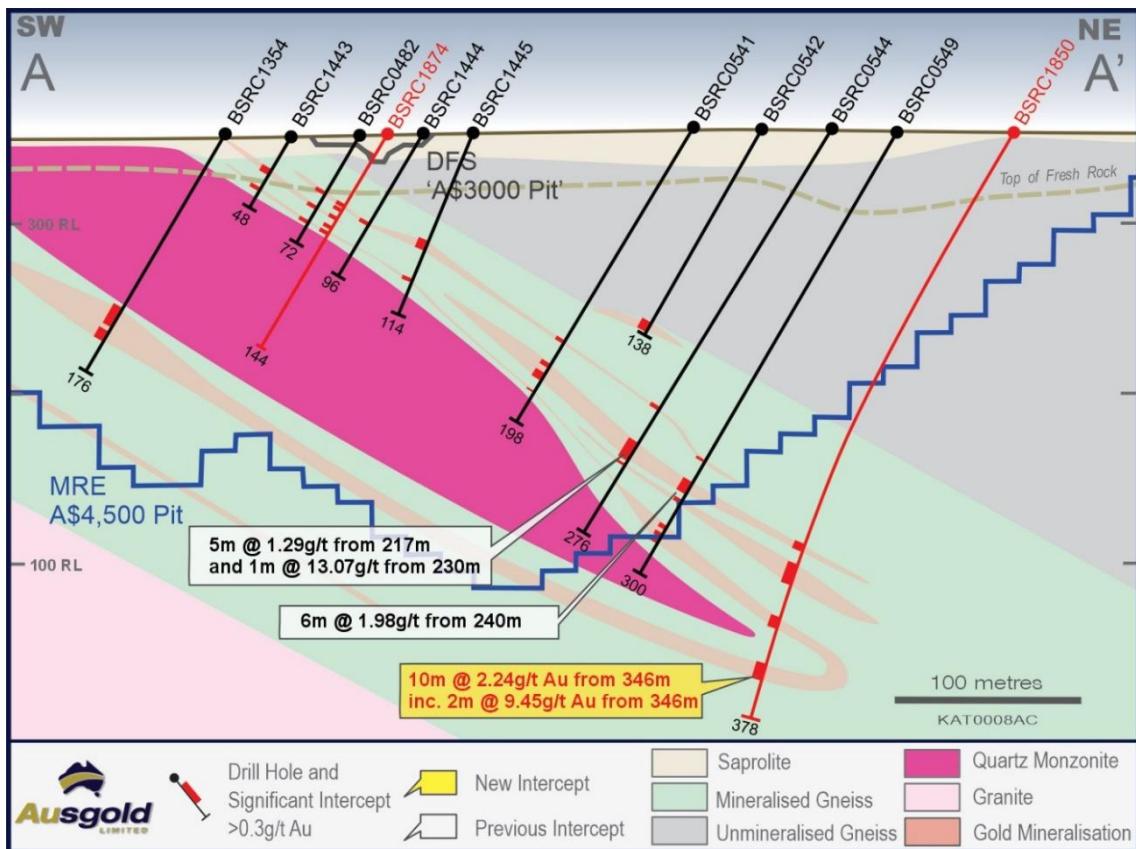


Figure 3 – Cross-section A-A' across the Jinkas -White Dam Lodes with Resource Drilling and Pits

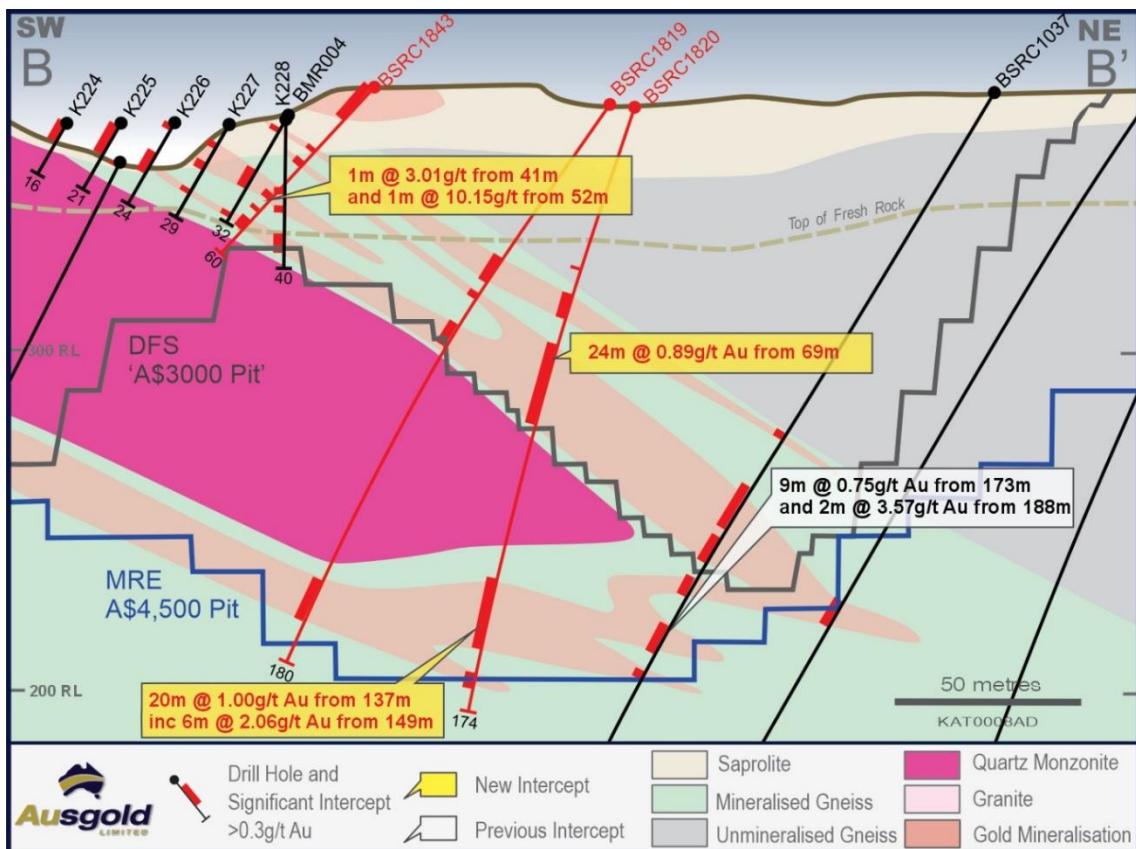


Figure 4 – Cross-section B-B' across the Jinkas -White Dam Lodes with Resource Drilling and Pits

Table 1 – Significant intercepts

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1817	2	7	5	2.19
including	3	7	4	2.53
BSRC1817	8	9	1	0.47
BSRC1817	12	14	2	0.38
BSRC1817	63	65	2	0.77
including	63	64	1	1.22
BSRC1817	112	113	1	0.3
BSRC1817	119	120	1	0.49
BSRC1817	204	215	11	1.12
including	204	205	1	6.07
and	209	210	1	2.14
and	214	215	1	1.03
BSRC1817	218	220	2	0.81
including	219	220	1	1
BSRC1818	32	36	4	0.44
BSRC1818	40	41	1	0.3
BSRC1818	55	56	1	1.85
BSRC1818	60	62	2	0.36
BSRC1818	66	67	1	0.46
BSRC1819	1	2	1	1.47
BSRC1819	52	60	8	0.56
including	53	54	1	1.68
BSRC1819	64	65	1	0.48
BSRC1819	74	81	7	0.54
BSRC1819	155	167	12	0.59
including	163	164	1	2.41
BSRC1820	47	48	1	2.32
BSRC1820	55	62	7	0.53
including	55	56	1	1.65
BSRC1820	69	93	24	0.89
including	77	78	1	1.46
and	82	83	1	9.01
and	91	92	1	1.35
BSRC1820	137	157	20	1
including	138	141	3	1.25
and	149	155	6	2.06
BSRC1820	164	167	3	0.45
BSRC1821	0	3	3	0.91
including	0	2	2	1.04
BSRC1821	42	43	1	0.49
BSRC1821	48	49	1	0.3
BSRC1821	52	55	3	0.78
BSRC1821	59	60	1	0.78
BSRC1821	63	74	11	0.41
including	69	70	1	1.38
BSRC1821	78	86	8	0.84
including	82	85	3	1.27
BSRC1822	0	2	2	0.88
including	0	1	1	1.25
BSRC1822	14	15	1	0.54
BSRC1822	27	29	2	0.52
BSRC1822	32	33	1	0.3
BSRC1822	37	38	1	0.97
BSRC1822	43	44	1	0.47
BSRC1822	52	54	2	2.23
including	53	54	1	4.08
BSRC1822	58	59	1	2.53
BSRC1823	0	1	1	1.37

For personal use only

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1823	8	10	2	0.96
BSRC1824	0	1	1	0.32
BSRC1824	10	19	9	0.61
including	10	11	1	1.97
BSRC1825	0	3	3	0.5
BSRC1825	72	76	4	0.57
BSRC1825	79	80	1	0.37
BSRC1825	83	84	1	0.38
BSRC1825	89	92	3	0.34
BSRC1826	47	61	14	0.43
including	48	49	1	1.29
and	60	61	1	1.02
BSRC1827	28	32	4	1.64
including	28	29	1	5.54
BSRC1827	35	36	1	0.63
BSRC1828	40	42	2	3.97
including	40	41	1	7.48
BSRC1828	49	60	11	0.49
including	51	52	1	1.62
BSRC1828	69	70	1	0.36
BSRC1829	97	107	10	0.39
including	105	106	1	1.14
BSRC1829	111	120	9	0.71
including	112	113	1	2.69
BSRC1830	80	111	31	0.5
including	100	101	1	2.25
and	104	105	1	2.01
BSRC1830	114	115	1	0.45
BSRC1830	119	120	1	0.32
BSRC1831	30	31	1	0.58
BSRC1831	90	91	1	0.41
BSRC1831	102	104	2	0.76
including	102	103	1	1.07
BSRC1831	110	113	3	0.9
including	111	112	1	1.48
BSRC1831	116	118	2	1.68
including	116	117	1	3.03
BSRC1832	74	78	4	0.31
BSRC1832	83	84	1	0.37
BSRC1832	94	102	8	1.19
including	94	96	2	3.34
BSRC1832	110	111	1	0.83
BSRC1832	114	115	1	0.47
BSRC1832	116	117	1	0.35
BSRC1832	121	122	1	0.37
BSRC1833	69	70	1	2.96
BSRC1833	86	88	2	0.49
BSRC1833	95	97	2	0.9
including	95	96	1	1.25
BSRC1833	117	119	2	0.81
including	117	118	1	1.13
BSRC1833	137	138	1	0.79
BSRC1833	142	143	1	0.34
BSRC1833	146	150	4	1.48
including	147	148	1	4.53
BSRC1833	153	163	10	0.39
BSRC1834	42	43	1	0.51
BSRC1834	57	59	2	0.35
BSRC1834	63	69	6	0.43
including	66	67	1	1.09

For personal use only

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1834	74	75	1	0.47
BSRC1834	82	84	2	0.32
BSRC1834	92	94	2	0.61
BSRC1834	103	116	13	0.71
including	110	111	1	1.13
and	114	115	1	1.92
BSRC1834	119	121	2	1.04
including	119	120	1	1.15
BSRC1834	132	134	2	0.67
BSRC1834	194	195	1	0.63
BSRC1834	201	206	5	0.94
including	201	202	1	3.25
BSRC1834	213	214	1	0.46
BSRC1835	70	71	1	0.96
BSRC1835	79	80	1	0.38
BSRC1835	89	90	1	0.57
BSRC1835	122	124	2	0.91
including	122	123	1	1.22
BSRC1835	132	133	1	0.43
BSRC1835	138	141	3	0.78
including	140	141	1	1.03
BSRC1835	145	148	3	0.39
BSRC1835	152	156	4	0.59
including	155	156	1	1.57
BSRC1836	37	38	1	0.79
BSRC1836	62	63	1	0.41
BSRC1836	76	80	4	0.32
BSRC1836	87	89	2	0.47
BSRC1836	105	108	3	0.43
BSRC1836	115	116	1	1.38
BSRC1836	119	132	13	1.13
including	119	120	1	1.4
and	123	129	6	1.74
BSRC1836	137	138	1	0.31
BSRC1837	18	19	1	0.77
BSRC1837	25	27	2	1.16
including	26	27	1	1.52
BSRC1837	56	57	1	0.54
BSRC1837	60	61	1	0.43
BSRC1837	63	64	1	0.3
BSRC1837	66	67	1	0.38
BSRC1837	78	79	1	0.32
BSRC1837	80	81	1	0.48
BSRC1837	84	85	1	0.57
BSRC1837	97	109	12	0.51
including	108	109	1	1.14
BSRC1837	112	114	2	0.48
BSRC1838	56	60	4	0.5
including	56	57	1	1.4
BSRC1838	72	77	5	0.7
BSRC1838	84	85	1	0.61
BSRC1838	88	89	1	0.52
BSRC1838	95	100	5	2.07
including	98	100	2	4.56
BSRC1838	105	112	7	0.9
including	105	108	3	1.34
BSRC1838	115	116	1	0.32
BSRC1838	121	122	1	0.32
BSRC1838	123	124	1	0.31
BSRC1838	134	135	1	0.44

For personal use only

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1839	89	92	3	0.31
BSRC1839	114	115	1	0.53
BSRC1839	120	121	1	0.32
BSRC1839	126	128	2	1.06
including	127	128	1	1.66
BSRC1840	19	20	1	4.4
BSRC1840	40	41	1	1.08
BSRC1840	44	52	8	0.49
BSRC1841	21	22	1	0.37
BSRC1841	24	25	1	0.34
BSRC1841	29	30	1	0.39
BSRC1841	32	33	1	0.61
BSRC1841	64	67	3	0.71
including	65	66	1	1.2
BSRC1841	74	75	1	0.78
BSRC1841	79	80	1	2.26
BSRC1841	83	85	2	3.44
BSRC1841	92	102	10	0.81
including	93	94	1	3.45
and	101	102	1	1.85
BSRC1842	51	54	3	0.61
BSRC1842	70	71	1	2.76
BSRC1842	77	78	1	2.68
BSRC1842	82	83	1	0.8
BSRC1842	93	109	16	1.16
BSRC1842	114	115	1	0.46
BSRC1842	119	121	2	0.7
BSRC1843	0	12	12	0.52
including	7	10	3	1.04
BSRC1843	23	24	1	0.41
BSRC1843	28	30	2	0.74
BSRC1843	41	42	1	3.01
BSRC1843	46	47	1	0.52
BSRC1843	50	54	4	2.8
including	52	53	1	10.15
BSRC1844	0	7	7	1.54
including	0	2	2	4.73
BSRC1844	11	15	4	1.3
including	13	14	1	3.82
BSRC1844	19	22	3	0.49
BSRC1844	27	34	7	0.35
BSRC1844	39	43	4	0.55
BSRC1844	47	50	3	0.35
BSRC1845	0	1	1	0.33
BSRC1845	9	10	1	0.46
BSRC1845	13	23	10	0.57
including	15	16	1	1.05
and	21	22	1	1.57
BSRC1845	26	35	9	0.44
including	27	28	1	1.57
BSRC1845	39	40	1	1.73
BSRC1846	171	174	3	0.56
BSRC1846	250	252	2	1.11
including	251	252	1	1.6
BSRC1846	257	260	3	0.59
BSRC1846	270	271	1	0.31
BSRC1846	291	293	2	0.43
BSRC1846	300	308	8	0.42
including	305	306	1	1.12
BSRC1848	348	349	1	0.31

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1849	233	234	1	1.44
BSRC1849	246	251	5	0.3
BSRC1849	256	257	1	0.38
BSRC1849	263	265	2	0.34
BSRC1849	268	279	11	0.64
including	268	269	1	1.54
and	278	279	1	1.08
BSRC1849	284	287	3	1.08
BSRC1849	297	300	3	0.41
BSRC1849	305	308	3	0.71
BSRC1849	328	329	1	0.34
BSRC1849	335	336	1	0.68
BSRC1849	341	343	2	0.8
BSRC1850	272	276	4	0.32
BSRC1850	284	297	13	0.38
including	295	296	1	1.58
BSRC1850	318	324	6	0.32
BSRC1850	346	356	10	2.24
including	346	348	2	9.45
BSRC1851	27	29	2	0.72
including	27	28	1	1.07
BSRC1851	56	57	1	1.31
BSRC1851	60	64	4	0.41
BSRC1851	69	73	4	0.42
BSRC1852	52	57	5	0.55
including	56	57	1	1.35
BSRC1852	69	72	3	0.42
BSRC1852	96	100	4	0.74
including	96	97	1	1.42
BSRC1853	8	9	1	0.52
BSRC1853	14	26	12	0.75
including	21	23	2	2.58
BSRC1853	89	90	1	0.54
BSRC1853	96	97	1	0.35
BSRC1853	100	105	5	0.92
including	100	101	1	3.13
BSRC1853	111	117	6	0.48
BSRC1853	128	129	1	1.67
BSRC1854	10	16	6	0.81
including	14	16	2	1.64
BSRC1854	99	105	6	0.58
including	100	101	1	1.18
BSRC1854	114	115	1	0.3
BSRC1854	124	129	5	0.31
BSRC1854	137	144	7	0.54
BSRC1854	158	159	1	0.53
BSRC1855	7	8	1	0.37
BSRC1855	15	19	4	0.48
BSRC1855	73	74	1	0.37
BSRC1855	79	82	3	0.31
BSRC1855	156	161	5	0.82
including	156	158	2	1.49
BSRC1855	170	171	1	0.49
BSRC1856	0	2	2	0.63
BSRC1856	21	22	1	1.13
BSRC1857	1	2	1	0.33
BSRC1857	21	22	1	0.37
BSRC1857	31	32	1	0.48
BSRC1858	28	29	1	0.53
BSRC1858	41	42	1	0.39

For personal use only

For personal use only

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1858	61	62	1	0.73
BSRC1859	59	60	1	0.39
BSRC1859	70	71	1	0.41
BSRC1859	89	90	1	0.49
BSRC1859	97	98	1	0.57
BSRC1860	0	2	2	0.35
BSRC1860	11	14	3	1.22
including	13	14	1	2.3
BSRC1860	23	24	1	6.36
BSRC1861	0	1	1	8.85
BSRC1861	19	22	3	0.61
BSRC1862	10	14	4	1.55
including	12	13	1	4.81
BSRC1863	1	2	1	0.43
BSRC1863	44	45	1	0.31
BSRC1864	48	50	2	0.32
BSRC1864	63	67	4	0.38
BSRC1865	1	2	1	0.42
BSRC1865	15	16	1	0.39
BSRC1865	33	39	6	1.91
including	33	36	3	3.25
BSRC1865	44	45	1	0.97
BSRC1865	49	54	5	0.62
including	51	52	1	1.48
BSRC1865	108	109	1	1.7
BSRC1865	112	122	10	0.37
including	113	114	1	1.07
BSRC1865	171	172	1	0.75
BSRC1865	180	183	3	0.8
including	181	182	1	1.29
BSRC1865	201	202	1	0.5
BSRC1866	38	41	3	1.06
including	39	40	1	1.67
BSRC1866	46	47	1	1.08
BSRC1866	56	60	4	0.35
BSRC1866	87	89	2	0.73
BSRC1866	94	96	2	1.19
including	95	96	1	1.63
BSRC1866	100	101	1	0.3
BSRC1866	149	150	1	0.35
BSRC1866	185	189	4	0.49
BSRC1866	196	202	6	0.49
BSRC1871	189	192	3	0.31
BSRC1871	244	246	2	1.08
including	245	246	1	1.7
BSRC1871	296	309	13	0.75
including	298	299	1	4.69
BSRC1871	312	313	1	0.38
BSRC1871	322	326	4	0.96
including	324	326	2	1.56
BSRC1871	330	333	3	0.39
BSRC1872	217	218	1	0.68
BSRC1872	244	248	4	1.31
including	244	246	2	2.09
BSRC1872	252	259	7	0.33
BSRC1872	269	270	1	0.88
BSRC1872	277	278	1	0.33
BSRC1872	282	283	1	0.41
BSRC1872	297	298	1	2.81
BSRC1872	340	342	2	0.37

Hole Id	From	To	Interval (m)	Grade g/t Au
BSRC1873	307	310	3	0.52
BSRC1873	336	337	1	1.38
BSRC1873	344	345	1	0.37
BSRC1873	350	351	1	1.09
BSRC1874	10	12	2	2.22
including	10	11	1	4
BSRC1874	30	31	1	0.3
BSRC1874	37	38	1	0.36
BSRC1874	45	46	1	0.32
BSRC1874	52	53	1	0.39
BSRC1874	61	66	5	0.32
BSRC1875	30	35	5	0.42
BSRC1875	165	170	5	0.68
including	165	166	1	1.15
and	168	169	1	1.54
BSRC1875	177	179	2	0.71
including	178	179	1	1.1
BSRC1875	223	231	8	0.36
including	230	231	1	1.06

Notes to Table 1.

For RC drill assay results the intervals reported are thickness-weighted averages (i.e. XXm grading XX grams per tonne gold content). Reported intervals are calculated using $\geq 0.3\text{g/t}$ Au cut-off grade and using a $\leq 2\text{m}$ minimum internal dilution. All 'included' intervals are calculated using $>1.0\text{g/t}$ Au cut-off and using a $\leq 2\text{m}$ minimum internal dilution.

Table 2 – Collar Locations

Hole Id	Total Depth (m)	MGA East	MGA North	RL (m)	Azimuth	Dip	Tenement	Purpose
BSRC1817	234	584495	6288189	386	246	-59	M70/211	In-fill
BSRC1818	78	584467	6287986	368	238	-76	M70/211	In-fill
BSRC1819	180	584516	6287937	369	249	-55	M70/211	In-fill
BSRC1820	174	584522	6287939	369	242	-72	M70/211	In-fill
BSRC1821	96	584551	6287810	373	247	-84	M70/211	In-fill
BSRC1822	72	584551	6287771	371	237	-65	M70/211	In-fill
BSRC1823	24	584462	6287718	369	245	-59	M70/211	In-fill
BSRC1824	30	584480	6287727	369	245	-60	M70/211	In-fill
BSRC1825	107	584295	6287989	364	0	-90	M70/211	In-fill
BSRC1826	81	584247	6288031	363	247	-48	M70/211	In-fill
BSRC1827	54	584255	6287911	362	247	-54	M70/211	In-fill
BSRC1828	72	584265	6287974	361	247	-76	M70/211	In-fill
BSRC1829	120	584188	6288287	366	0	-90	M70/211	In-fill
BSRC1830	120	584162	6288359	363	248	-78	M70/211	In-fill/Extension
BSRC1831	123	584416	6288270	385	250	-56	M70/211	In-fill
BSRC1832	126	584399	6288306	386	253	-52	M70/211	In-fill
BSRC1833	174	584373	6288352	385	61	-73	M70/211	In-fill
BSRC1834	228	584338	6288420	377	0	-90	M70/211	In-fill
BSRC1835	174	584368	6288389	381	58	-76	M70/211	In-fill
BSRC1836	141	584355	6288382	381	0	-90	M70/211	In-fill
BSRC1837	120	584350	6288384	381	241	-71	M70/211	In-fill
BSRC1838	144	584381	6288349	384	0	-90	M70/211	In-fill
BSRC1839	138	584400	6288315	386	0	-90	M70/211	In-fill
BSRC1840	66	584905	6286342	361	248	-61	M70/488	Extension
BSRC1841	105	584297	6288392	374	4	-85	M70/211	In-fill
BSRC1842	126	584303	6288391	374	45	-78	M70/211	In-fill
BSRC1843	60	584461	6287900	373	242	-48	M70/211	In-fill
BSRC1844	54	584478	6287831	370	0	-90	M70/211	In-fill
BSRC1845	51	584495	6287783	369	0	-90	M70/211	Extension
BSRC1846	372	584451	6288985	359	240	-60	E70/2928	Extension
BSRC1847	168	584484	6289002	358	245	-60	E70/2928	Extension
BSRC1848	390	584518	6289018	356	244	-61	E70/2928	Extension
BSRC1849	366	584433	6289021	357	243	-60	E70/2928	Extension
BSRC1850	378	584468	6289038	356	245	-60	E70/2928	Extension
BSRC1851	84	584942	6286360	362	247	-62	M70/488	Extension
BSRC1852	114	584967	6286419	364	244	-61	M70/488	Extension
BSRC1853	133	584741	6286794	378	249	-70	M70/488	In-fill
BSRC1854	176	584798	6286789	380	244	-81	M70/488	Extension
BSRC1855	183	584723	6287066	386	251	-59	M70/488	In-fill
BSRC1856	36	584329	6287061	375	244	-59	M70/488	Extension
BSRC1857	56	584365	6287079	377	242	-59	M70/488	Extension
BSRC1858	66	584425	6287105	379	0	-90	M70/488	In-fill
BSRC1859	99	584426	6287106	379	63	-68	M70/488	In-fill
BSRC1860	42	584277	6287276	373	63	-57	M70/1427	In-fill
BSRC1861	54	584255	6287354	373	0	-90	M70/1427	Extension
BSRC1862	48	584211	6287419	372	250	-51	M70/1427	In-fill
BSRC1863	72	584260	6287477	375	282	-81	M70/488	Extension
BSRC1864	90	584747	6286639	373	248	-59	M70/488	In-fill
BSRC1865	228	584753	6287153	391	247	-59	M70/488	In-fill/Extension
BSRC1866	246	584807	6287107	390	248	-61	M70/488	In-fill/Extension
BSRC1871	354	584525	6288866	360	245	-62	E70/2928	Extension
BSRC1872	366	584410	6289053	356	244	-60	E70/2928	Extension
BSRC1873	390	584478	6289086	354	243	-66	E70/2928	Extension
BSRC1874	144	584126	6288900	355	241	-59	M70/211	Infill
BSRC1875	252	584064	6288958	356	239	-62	M70/211	In-fill/Extension

The Board of Directors of Ausgold Limited approved this announcement for release to the ASX.

For further information please visit Ausgold's website or contact:

John Dorward

Executive Chairman, Ausgold Limited

T: +61 (08) 9220 9890

E: investor@ausgoldlimited.com

Nicholas Read

Read Corporate

T: +61(08) 9388-1474

E: nicholas@readcorporate.com.au

Competent Person's Statement

The information in this report that relates to exploration drill results is based on and fairly represents information and supporting documentation compiled by Mr Graham Conner, who is an employee of Ausgold Limited and a Member of The Australian Institute of Geoscientists. Mr Conner takes responsibility for the integrity of the exploration results published herein, including sampling, assaying, QA/QC and the preparation of geological interpretations. Mr Conner has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activities being undertaken, to qualify as a Competent Person under The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Person consents to the inclusion of such information in this report in the form and context in which it appears.

Forward-Looking Statements

This Announcement includes "forward-looking statements" as that term within the meaning of securities laws of applicable jurisdictions. Forward-looking statements involve known and unknown risks, uncertainties and other factors that are in some cases beyond Ausgold Limited's control. These forward-looking statements include, but are not limited to, all statements other than statements of historical facts contained in this presentation, including, without limitation, those regarding Ausgold Limited's future expectations. Readers can identify forward-looking statements by terminology such as "aim," "anticipate," "assume," "believe," "continue," "could," "estimate," "expect," "forecast," "intend," "may," "plan," "potential," "predict," "project," "risk," "should," "will" or "would" and other similar expressions. Risks, uncertainties and other factors may cause Ausgold Limited's actual results, performance, production or achievements to differ materially from those expressed or implied by the forward-looking statements (and from past results, performance or achievements). These factors include, but are not limited to, the failure to complete and commission the mine facilities, processing plant and related infrastructure in the time frame and within estimated costs currently planned; variations in global demand and price for coal and base metal materials; fluctuations in exchange rates between the U.S. Dollar, and the Australian dollar; the failure of Ausgold Limited's suppliers, service providers and partners to fulfil their obligations under construction, supply and other agreements; unforeseen geological, physical or meteorological conditions, natural disasters or cyclones; changes in the regulatory environment, industrial disputes, labour shortages, political and other factors; the inability to obtain additional financing, if required, on commercially suitable terms; and global and regional economic conditions. Readers are cautioned not to place undue reliance on forward-looking statements. The information concerning possible production in this announcement is not intended to be a forecast. They are internally generated goals set by the board of directors of Ausgold Limited. The ability of the company to achieve any targets will be largely determined by the company's ability to secure adequate funding, implement mining plans, resolve logistical issues associated with mining and enter into any necessary off take arrangements with reputable third parties. Although Ausgold Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Appendix 1: Mineral Resource Estimate and Ore Reserve⁴

June 2025 Mineral Resource Estimate

RESOURCE CATEGORY	TONNES (MT)	GRADE (G/T AU)	CONTAINED GOLD (OZ)
MEASURED	41.6	1.14	1,531,000
INDICATED	21.2	1.02	693,000
INFERRRED	5.9	1.16	219,000
TOTAL RESOURCE	68.6	1.11	2,443,000

December 2025 Ore Reserve

ORE RESERVE	CATEGORY	ORE (MT)	GRADE (G/T)	CONTAINED GOLD (KOZ)
CENTRAL ZONE	PROVED	29.1	1.14	1,070.0
	PROBABLE	5.4	0.96	168.7
	SUB-TOTAL	32.3	1.12	1,238.7
SOUTH ZONE	PROVED	1.2	0.97	36.5
	PROBABLE	1.7	1.01	54.6
	SUB-TOTAL	2.9	0.99	91.0
TOTAL		37.4	1.11	1,329.7

⁴ For further details refer to ASX Announcement dated 16 December 2025. The Company confirms that it is not aware of any new information or data that materially affects the information contained in that announcement and that all material assumptions and technical parameters underpinning the estimates in that announcement continue to apply and have not materially changed.

Appendix 2: Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i> 	<p>The reverse circulation (RC) drilling program referred to in this announcement consisted of 55 RC holes for 8,179m.</p> <p>Samples from RC drilling were collected in one metre intervals in mineralised zones with a 1/8 split for assay, split by a cyclone-mounted cone splitter, bagged in pre-numbered calico bags and the remainder retained in large plastic bags.</p> <p>Selected non-mineralised zones were spear sampled over 1m intervals and composited to a 3m sample. Composite spear sampling is only applied in known non-mineralised intervals and is not used within mineralised zones.</p> <p>Field duplicates (additional split from RC) are inserted into the sequence at a rate of 1 in 20 samples.</p> <p>Field certified reference materials and blanks are inserted into the sequence of assay samples at a rate of 1 in 25.</p> <p>Each RC metre sampled weighed approximately 2 to 3 kilograms.</p> <p>Samples were sorted, dried, crushed to 10mm then pulverised to -75µm. Gold was analysed from a 50g charge and using fire assay (Au AA26).</p>
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<p>RC drilling was conducted using a truck mounted 660 Schramm reverse circulation rig, using a 139-143mm diameter bit.</p>
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> 	<p>A semi-quantitative estimate of sample recovery is done for each sample. Drill sample recovery approximates to 100% in all mineralised zones.</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<p>Samples were collected dry. Variation from this is recorded in the drill log.</p> <p>The cyclone-mounted cone splitter is cleaned thoroughly between rod changes. The cyclone is cleaned every 30m, or between rod changes when sample is wet. In addition, the cyclone is generally cleaned at the base of transported cover and the base of completed oxidation, and after each hole to minimise cross-hole contamination.</p> <p>The relationship between sample recovery and grade and whether bias has been introduced has not been investigated at this stage.</p>
<i>Logging</i>	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<p>All holes in the current program have been geologically logged to a high level of detail to support the definition of geological domains appropriate to support Mineral Resource Estimation and exploration work.</p> <p>Geologists logging drilling have been trained how to log to a high level of detail through their university studies as well as by Supervising Geologists experienced in the geology of the region, including high metamorphic terranes.</p> <p>For RC drilling representative rock chips from every metre were collected in chip trays and logged by the geologist at the drill site.</p> <p>Lithology, weathering (oxidation state), veining, mineralisation and alteration are recorded in detail using standard digital logging sheets and defined look up tables to ensure that all data is collected consistently. Reference cards aided the logging of sulphides, which along with the experience of logging geologists, ensures sulphide estimates are reliable and reproduceable.</p> <p>Logging data is entered using tablet computers. All data is validated by the logging geologist before being entered in an acQuire database.</p> <p>All chip trays and core trays are photographed using a SLR camera and images recorded using the cloud-based system.</p>
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> 	<p>All 1m samples are cone split at the drill rig.</p> <p>All 3m composites collected are speared through the bulk sample for each metre within the large plastic bags and composited into pre-numbered calico bag through the known non-mineralised intervals. These composite samples are recorded in the sample log for each hole.</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>All samples have the aim of being drilled dry, where samples are moist or wet due to ground conditions the rig geologist will record in the sample log for each hole.</p> <p>Field duplicates (additional split from RC) are inserted into the sequence at a rate of 1 in 20 samples.</p> <p>Field certified reference materials and blanks are inserted into the sequence of assay samples at a rate of 1 in 25.</p>
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i> 	<p>Analysis for gold was undertaken by ALS by fire assay (Au AA26), considered to be a to be a 'total assay technique'.</p> <p>Field quality control procedures adopted comprised of entering a sequence of matrix matched commercially certified reference materials (CRM's), and blanks into the sample run at a frequency of approximately 1 in 25 samples. Field duplicates were collected every 1 in 20 samples.</p> <p>Gold CRM's were sourced from Geostats Pty Ltd and are used to check accuracy and bias of the analytical method. Gold certified values range between 0.38g/t and 2.33g/t.</p> <p>Blank material was sourced from Geostats Pty Ltd and should be below detection limits.</p> <p>Standard reference materials are used to check accuracy and bias of the analytical method. The results were similar to the standard concentration for the specific standard.</p> <p>QAQC samples were monitored on a batch-by-batch basis. An assay batch is accepted if the blank samples are within the acceptable limits (5 times the lower detection limit) and the standards are within the + 3SD (standard deviations). One failed standard can cause rejection if the results around the failed standard are not in the normal grade range. A batch is also re-assayed when assay results from two or more standards are outside the acceptable limits. The inserted blank materials did not show any consistent issues with sample contamination.</p> <p>Review of CRM's and blanks suggest an acceptable level of accuracy (lack of bias) is established.</p> <p>The performance of field duplicates in RC samples is generally reasonable and the variations are related to the style of mineralisation.</p>

Criteria	JORC Code explanation	Commentary
		<p>Internal laboratory checks are conducted including insertion of CRM'S, blanks and conducting lab duplicates. Review of the internal laboratory QA/QC checks suggests the laboratory is performing within acceptable limits.</p> <p><i>Verification of sampling and assaying</i></p> <ul style="list-style-type: none"> • <i>The verification of significant intersections by either independent or alternative company personnel.</i> • <i>The use of twinned holes.</i> • <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> • <i>Discuss any adjustment to assay data.</i> <p>High standard QAQC procedures are in place therefore repeatability issues from a QAQC point of view are not considered to be significant.</p> <p>Significant and/or unexpected intersections were reviewed by alternate company personnel through review of geological logging data, physical examination of remaining samples and review of digital geological interpretations.</p> <p>All assay data was accepted into the database as supplied by the laboratory.</p> <p>Data importation into the database is documented through standard operating procedures and is guided by acQuire import validations to prevent incorrect data capture/importation.</p> <p>Geological determination data is directly captured in the database through a validation-controlled interface using Toughbook computers and acQuire database import validations.</p> <p>Primary data is stored in its source electronic form. Assay data is retained in both the original certificate (.pdf) form and the text files received from the laboratory. Data entry, validation and storage are discussed in the section on database integrity below.</p> <p>No twinned holes were required as drilling is In-fill within a well-established geological model.</p> <p>No adjustments to assay data were undertaken.</p>
<i>Location of data points</i>	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<p>Drill holes are reported in MGA94 datum, UTM zone 50 coordinates. Elevation values are in AHD.</p> <p>Drill hole collars (and drilling foresight/backsight pegs) were set out and picked up by Ausgold personnel using a differential GPS; which provided +/- 100 millimetre accuracy.</p> <p>An end of hole gyroscopic drill hole survey was completed by the drilling contractors using an Axis Mining Champ Gyro tool. The gyro measured the first shot at 0m followed by every 30m down-hole. The data was examined and validated onsite by the supervising geologist. Any surveys that were spurious were re-taken.</p> <p>Validated surveys are entered into the acQuire data base.</p>

Criteria	JORC Code explanation	Commentary
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<p>Drilling was conducted on variable spacings. The drilling was largely on a nominal 20-40m hole spacing and 40-80m line spacing.</p> <p>Data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation.</p> <p>No compositing has been applied to mineralised intervals.</p>
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<p>Drilling typically angled, (nominally -60 towards 244° with minor variations) tested the east dipping lodes (20 – 35°) and gneissic foliation as to minimise bias. Surface conditions in the drill area mean variations of the nominal drill orientation were used in order to gain access, this includes BSRC1825, 1829, 1834, 1836, 1838-1839, 1844-1845, 1858, 1861 (all vertical), and 1833, 1835, 1842, 1859-1860 (all drilling towards 045-063°). See Table 2 for detail. The relationship between the drilling orientation and the orientation of key mineralised structures is considered to have minor sampling bias and is not considered material.</p>
<i>Sample security</i>	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	<p>All drill samples are systematically numbered and placed in pre-printed (numbered) calico bags and placed into numbered polyweave bags which were tied securely and marked with flagging.</p> <p>Assay samples were stored at a dispatch area and dispatched weekly. Samples were shipped via a local logistics company directly to labs in Perth.</p> <p>The sample dispatches were accompanied by supporting documentation signed by the geologist and showing the sample submission number, analysis suite and number of samples.</p> <p>The chain of custody is maintained by the labs once the samples are received on site and a full audit is conducted.</p> <p>Assay results are emailed to the responsible geology administrators in Perth and are loaded into the acQuire database through an automated process. QAQC on import is completed before the results are finalised.</p>
<i>Audits or reviews</i>	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	<p>Before the commencement of this drilling program, the sampling process was fully reviewed and documented as a standard company process. There were some minor operational and technical adjustments identified to improve validation of collected data, interpretation of data and management of QAQC practices. These improvements have been updated into standard operating procedures (manual).</p>

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<p>Reported results are all from 100% owned Ausgold Exploration Pty Ltd Tenements (wholly owned subsidiary of Ausgold Limited) – E70/2928, M70/211, M70/488, M70/1427. The land is used primarily for grazing and cropping.</p> <p>The tenements are in good standing, and all work is conducted under specific approvals from the Department of Mines, Petroleum and Exploration (DMPE).</p> <p>Apart from reserved areas, rights to surface land use are held under freehold titles, held by Ausgold.</p> <p>Written consent under section 18(3) for Jinkas Hill dated 24 January 2018 was granted by Honourable Ben Wyatt MLA to disturb and remove the registered Aboriginal Heritage Site 5353 known as “Jinkas Hill” which is located on the eastern side of the Jinkas Pit.</p>
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<p>Gold mineralisation was discovered by Otter Exploration NL in 1979 at Jinkas Hill, Dylabing, Lone Tree and White Dam after following up stream sediment anomalies. Between 1984 and 1988 Otter and related companies evaluated the region with several other explorers including South-West Gold Mines and Minasco Resources Pty Ltd.</p> <p>In 1987, Glengarry Mining NL purchased the project and in 1990 entered into a joint venture with Uranerz who agreed on minimum payments over three years to earn 50% interest. Uranerz withdrew from the project in 1991 after a decision by their parent company in Germany to cease Australian operations.</p> <p>International Mineral Resources NL (IMR) purchased the mining leases and the Grants Patch treatment plant from Glengarry Mining NL in 1995 and commenced mining at the Jinkas deposit in December 1995. Ausgold understands the mine was closed in 1997 after producing approximately 20,000 oz of gold from the Jinkas and Dingo Hill open cuts at a head grade of approximately 2.4g/t. In addition, the mine closure was brought about by a combination of the low gold price of the time (<US\$400/oz) and the inability of the processing plant's comminution circuit to process hard ore from below the base of weathering. Reports from the period indicate that the ore bodies were reasonably predictable in terms of grade and continuity and appeared to produce consistent and reproducible results from grade control (Ravensgate, 1999).</p> <p>Great Southern Resources Pty Ltd (GSR) purchased the mining and exploration leases from IMR in August 2000.</p>

Criteria	JORC Code explanation	Commentary
		Ausgold entered into a joint venture with GSR in August 2010, and the mineral titles were transferred to Ausgold in entirety in August 2011.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<p>The project includes three main deposit areas named Northern Zone, Central Zone and Southern Zone. Each of these areas are subdivided into a set of mineralised lodes.</p> <p>The majority of the project area is overlain by residual clays with outcrop mostly limited to remnants of lateritic duricrust on topographic highs.</p> <p>Gold mineralisation is hosted by medium to coarse-grained mafic gneisses which dip at around 20° to 45° towards grid east (68°) in Southern and Central Zone and around 30° to 45° towards the WSW in Northern Zone. These units represent Archaean greenstones metamorphosed to granulite facies.</p> <p>The mineralised gneissic units are interlayered with barren quartz-monzonite sills up to approximately 120 metres thick and are cross-cut by several Proterozoic dolerite dykes that post-date mineralisation and granulite metamorphism.</p> <p>Gold predominantly occurs as free gold associated with disseminated pyrrhotite and magnetite, lesser pyrite and chalcopyrite.</p>
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent</i> 	<p>Plans showing location of drill holes and location of significant results and interpreted trends are provided in the Figures of the report.</p> <p>Details of drill holes including new significant drill results are provided in tables of the report.</p>

Criteria	JORC Code explanation	Commentary
	<i>Person should clearly explain why this is the case.</i>	
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<p>All reported assays have been arithmetically length weighted.</p> <p>For all drill assay results the intervals reported are thickness-weighted averages (i.e. XXm grading XX grams per tonne gold content). Reported intervals are calculated using $\geq 0.3\text{g/t}$ Au cut-off grade and using $a \leq 2\text{m}$ minimum internal dilution (unless otherwise stated). All 'included' intervals are calculated using $>1.0\text{g/t}$ Au cut-off and using $a \leq 2\text{m}$ minimum internal dilution (unless otherwise stated).</p>
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i> 	The geometry of any primary mineralisation at the KGP is such that it trends N-S to NNW-SSE and dips moderately (20° - 45°) to the east. Given this, drilling intersects mineralisation at a high-angle and downhole intercepts approximates true widths in most cases. If down hole length varies significantly from known true width then appropriate notes are provided.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	Refer to Figures.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high</i> 	See Table 1. All intervals above the stated reporting cut-off are included; no selective reporting has occurred.

Criteria	JORC Code explanation	Commentary
	<i>grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i>	
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	At this stage there is no substantive exploration data from the recent drilling that is meaningful and material to report.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	Further RC drilling is planned within the KGP including to test the continuity of the Jinkas-White Dam lode (Central Zone) down-dip and down-plunge as well in-fill and extensional drilling within the Southern Zone.