

27 January 2026

Aeromagnetic & Radiometric campaign to start at Lucy Creek: High-Potential Manganese in an Underexplored Sedimentary Basin

Litchfield Minerals Limited (ASX: LMS) is pleased to advise that the Company will shortly commence an airborne magnetic and radiometric survey across its Lucy Creek Project in the southern Georgina Basin, Northern Territory.

Lucy Creek is located within the Georgina Basin (**Figure 1**), part of the vast Centralian Superbasin, which is characterised by a polyphase history and largely unmetamorphosed Cryogenian to Devonian sedimentary sequences. This intracratonic basin hosts extensive high-grade manganese mineralisation across a broad area, along with documented base metal anomalies and REE enrichment, yet remains largely underexplored with limited systematic exploration.

Highlights

- **5,523 line kilometres** of high-resolution airborne **magnetic and radiometric** coverage to **commence this week** with Magspec our contractor deployed to site.
- Airborne survey to sharpen geological understanding and target definition, including **stratigraphy, regolith architecture and alteration signatures** linked to manganese-bearing systems.
- The Lucy Creek Project covers ~1,600km² of prospective manganese-bearing stratigraphy within the Georgina Basin.
- Multiple large manganese occurrences identified, including **Lucy Creek 2, Lucy Creek 4, MRS-79, MRS-80, GWM-90, LOC-44 and LOC-50**.
- Historical Auvex PXRF rock-chip results returned grades up to **54.2% Mn**. (**Figure 2**) (**Appendix 1**)
- Litchfield's July reconnaissance rock-chip program¹ (**11 samples**) returned a peak grade of **45.2% Mn0** (**Appendix 2**).
- Lucy Creek is considered **analogous to the Bootu Creek manganese field** in the Northern Territory.

Managing Director and CEO, Matthew Pustahya, commented:

"We're very pleased to have the airborne magnetic and radiometric survey over Lucy Creek starting **over the next few days**, which represents another important step in rapidly advancing what we believe is a highly prospective manganese system in the southern Georgina Basin. This survey is a key dataset for refining our understanding of the Project's structural architecture, regolith patterns and potential alteration signatures, and for highlighting the trap sites where mineralising fluids may have focused and precipitated manganese."

With Lucy Creek already delivering strong indications of large-scale manganese potential, including multiple mapped occurrences and more than 50 exploration targets previously identified from historical exploration across the tenement package, we're excited to integrate this new geophysical data and get back on the ground to prioritise and test the highest conviction zones. We see genuine potential for Lucy Creek to host large, high-grade sedimentary and hydrothermal manganese deposits, and we are moving quickly to unlock that opportunity for shareholders.

¹ASX Announcement 10th Sep - Lucy Creek 2 assays verify Manganese up to 35% with Hydrothermal Signature

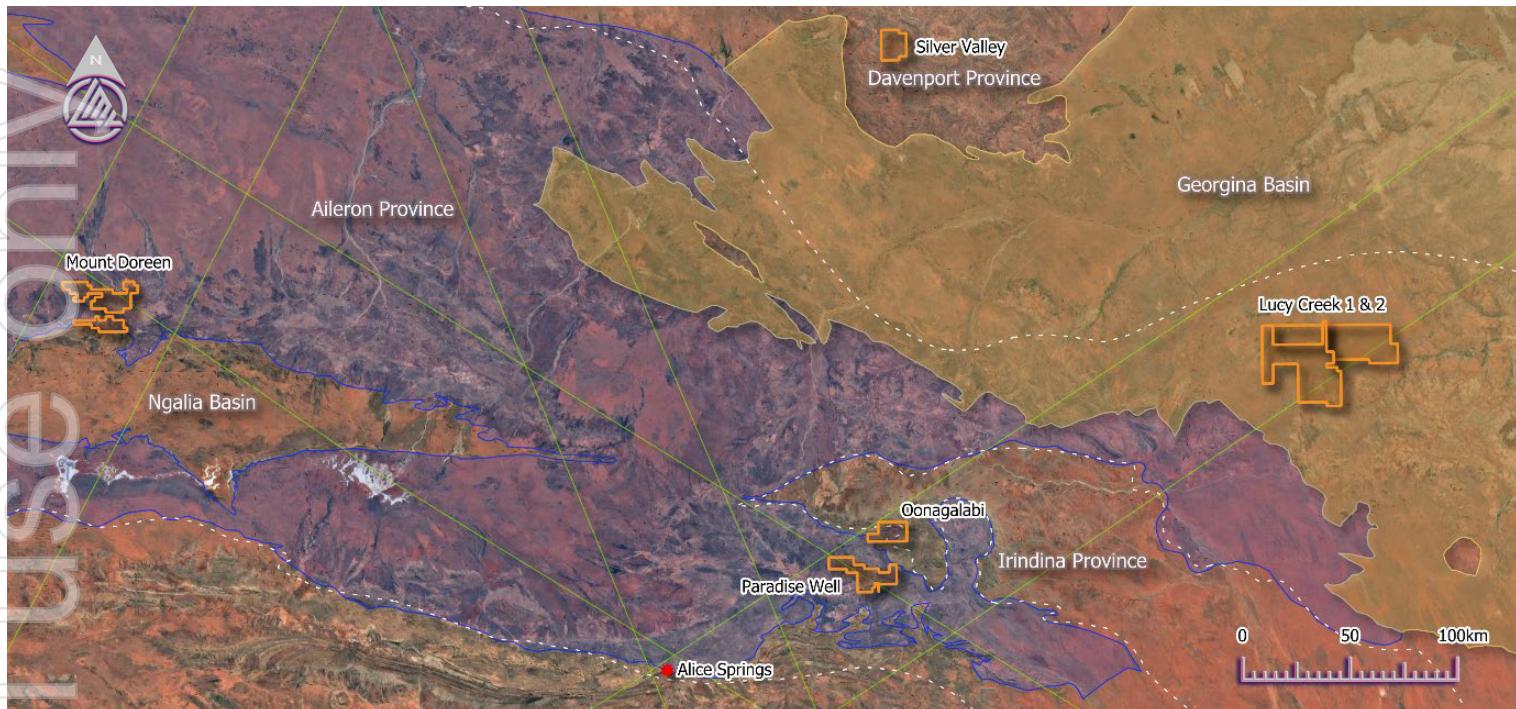


Figure 1 - Tenement Location Map Lucy Creek 1 & 2 situated in the Georgina Basin - Blue Arunta - Yellow Georgina Basin

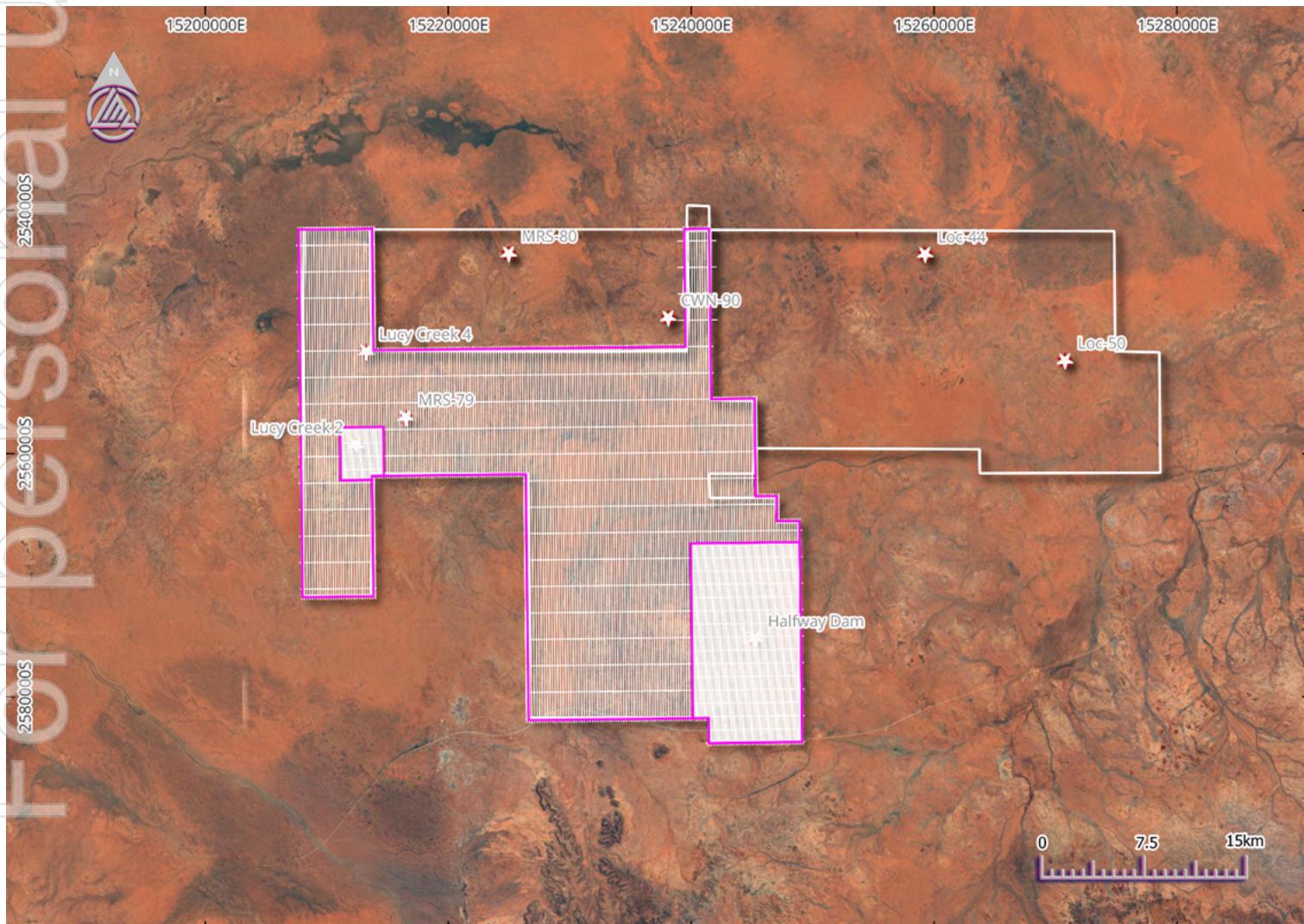


Figure 2 - Some Historical Auvex Sample locations from Lucy Creek areas

Aeromagnetic & Radiometric Survey

The program comprises approximately 5,523 line kilometres (**Figure 3**), providing high-resolution geophysical coverage across a priority area prospective for hydrothermal manganese mineralisation. The survey is designed to refine the Company's understanding of the project area by improving mapping of regional geology and target-scale features, including stratigraphic variation, regolith architecture and alteration signatures that may be associated with manganese-bearing systems. The results will also assist in identifying potential structural and stratigraphic trap sites where mineralising fluids may have focused, upgraded and or and precipitated manganese.

Airborne survey results will be integrated with existing geological interpretation and historical datasets to generate and rank priority targets for follow-up work, including field reconnaissance, geochemistry. Ground-truthing these areas will support a targeted 2026 program at Lucy Creek, incorporating further geophysics, mapping and potential drilling.

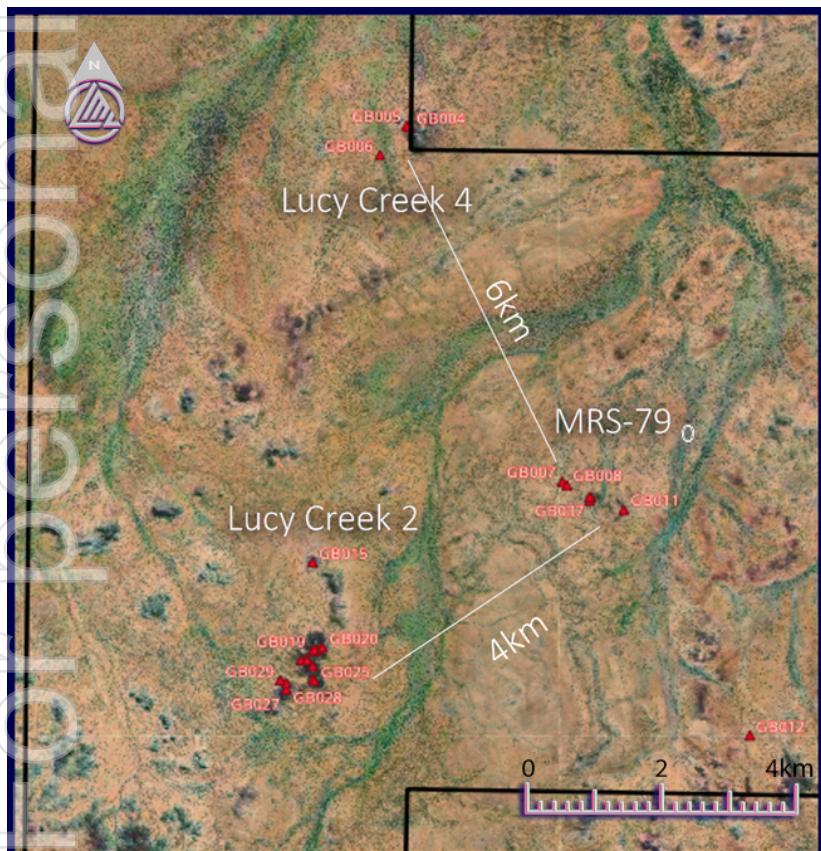


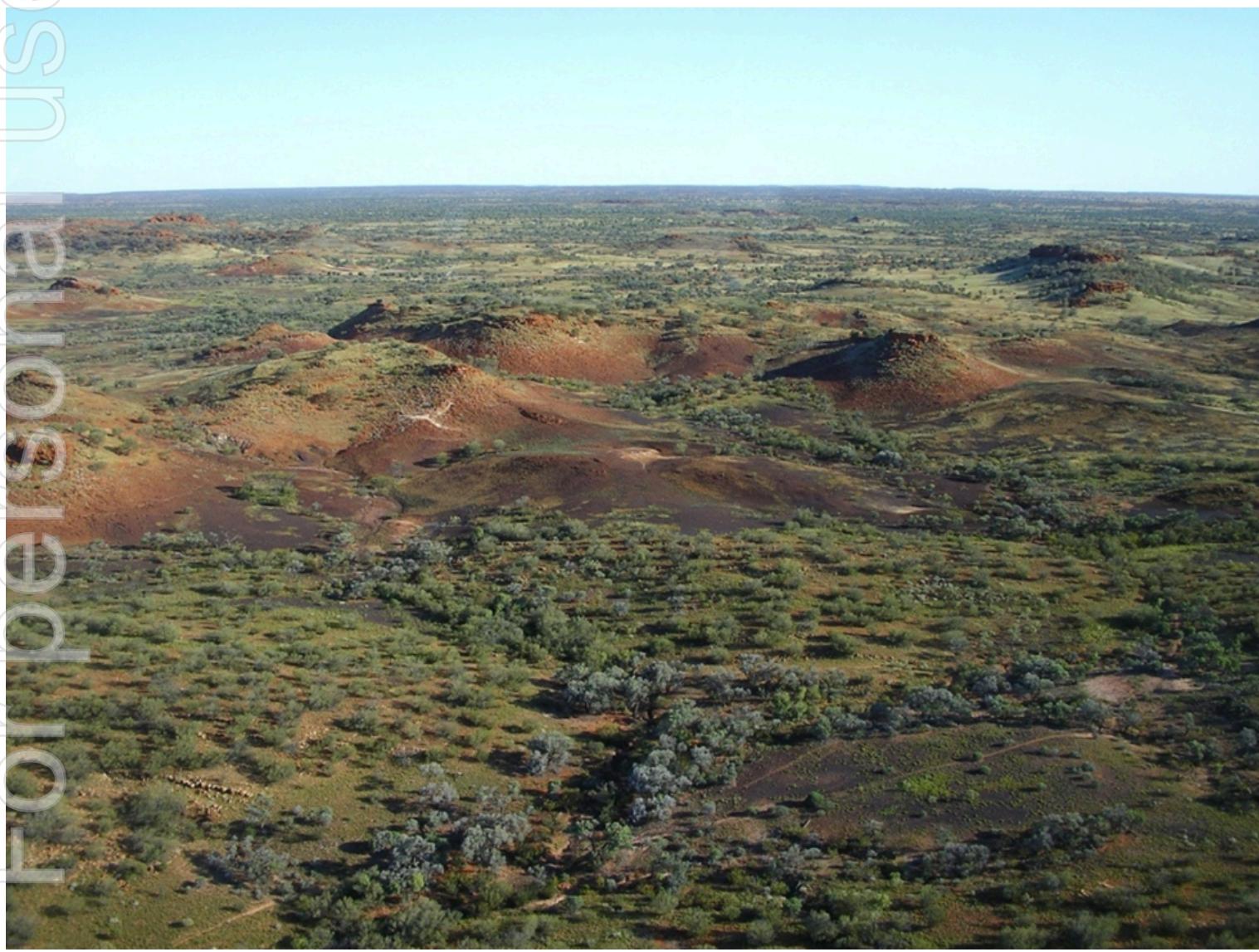
Figure 3 – Flight lines, 200m spaced lines with 100m infill lines over Lucy Creek two and Halfway Dam

A compelling opportunity for the company & investors

High-grade manganese mineralisation confirmed across multiple prospects (**Figure 4**) Previous explorers, including Elkedra Diamonds and Auvex Manganese, recorded ore-grade manganese assays (1, 2, 3):

- Up to **52% Mn** in surface samples from Lucy Creek 2) (3).
- Halfway Dam prospect: **Up to 42% Mn** in excavated sedimentary material (1).
- Extensive surficial manganeseite and float covering very large areas, indicating erosion from thicker seams
- These results repeat across prospects like Lucy Creek 1, 2, 4, MRS-79, and Halfway Dam, with hydrothermal textures suggesting deeper feeder systems (1).
- Numerous additional high grade rock chip assays up to 52% Mn from sites near Lucy Creek, confirming good manganese grades and low iron content (2). (**Figure 4**)
- Historical intersections of 1-3m of massive manganese at depths less than 20m, plus possible lower-grade replaced Mn zones (1, 3).
- Litchfield's initial field campaign returned a peak grade of **35% Mn (45.2% MnO)**, alongside **base metal enrichment and hydrothermal pathfinder signatures²**.

Rock Chip	Location			Mn %	Fe %
	East	North	Altitude		
GB004	671667	7529706	256	25.1	1.12
GB005	671632	7529725	256	27.2	5.46
GB006	671261	7529304	259	38.2	2.37
GB007	673791	7524560	271	22.4	0.83
GB008	673854	7524510	274	23.3	2.4
GB009	674170	7524284	271	52.9	0.58
GB010	674195	7524329	275	27.7	1.14
GB011	674643	7524152	269	22.3	0.8
GB012	676394	7520877	289	32.3	1
GB015	670326	7523392	294	41.5	9.71
GB017	670392	7522131	293	17.9	12.8
GB018	670386	7522109	296	54.2	1.57
GB019	670317	7522102	292	26.7	5.94
GB020	670463	7522155	288	38.3	3.38
GB021	670243	7521975	295	23.7	17.6
GB022	670166	7521970	293	31.2	23.5
GB023	670328	7521886	292	17.3	35
GB024	670322	7521700	292	42.7	9.98
GB025	670348	7521671	293	48.7	7.44
GB027	669962	7521544	291	21.6	3.58
GB028	669959	7521641	285	25.7	2.81
GB029	669877	7521680	284	17.2	3.02
GB034	700469	7507573	N/R	33	1.7
GB035	670249	7521972	N/R	18.5	28.3
GB036	670349	7522122	N/R	37.1	12.7
GB037	674172	7524337	N/R	30.1	0.84


Figure 4 - Highlights historical PXRF results from Auvex & Elkedra at LC2,4 and MRS79

²ASX Announcement | 10th September 2025 Lucy Creek 2 assays confirm high grade manganese

District-scale size with limited modern exploration

Litchfield's Lucy Creek covers around 1,600 km² of prime manganese country (**Figure 5**).

- Limited systematic drilling beyond historic RAB/RC holes (76 total, shallow depths <60 m) (1, 3).
- Underexplored despite aeromagnetic anomalies and seismic lines (e.g., TEX09-02 crossing 17.9km of the tenement)
- Basin deformation from Alice Springs Orogeny created reverse faults and folds, ideal for mineral traps. The area is essentially virgin ground, with potential for extensions of known Mn horizons and untapped deeper resources (1).
- Manganese occurrences are widespread throughout the Georgina Basin, with the laterite profile providing a strong horizon for iron, manganese, and uranium enrichment via groundwater circulation (1).
- Remote sensing studies identified manganese targets, with interpreted surface manganese mineralisation visible on satellite imagery, mainly across the northern section of the tenement and coincident with magnetic boundaries (1, 2).

Figure 5 - Highlighting the Lucy Creek area Manganese, the Black rock is Manganese mineralisation looking North

Conceptual analogy – Bootu creek style manganese potential

The Bootu Creek manganese deposit, located ~110km north of Tennant Creek in the Paleoproterozoic Tomkinson Province (part of the Tennant Inlier), is a strata-bound, hydrothermally modified sedimentary manganese deposit. It occurs at the contact between underlying dolomite-siltstone (Attack Creek Formation) and overlying sandstone (Bootu Formation), with supergene enrichment in a weathered profile. It formed via hydrothermal fluids along faults, upgrading primary sedimentary manganese. Remaining resources are ~6.86Mt at 13.18% Mn, with historical production exceeding 10Mt.

Litchfield considers the Lucy Creek Project to be conceptually analogous to the Bootu Creek manganese district, Importantly, because Bootu Creek demonstrates that stratabound manganese mineralisation, locally enhanced by structural fluid pathways and weathering-related upgrading, can form deposits of meaningful scale and economic relevance in the NT.

At Lucy Creek, manganese mineralisation has been mapped and sampled across multiple prospects, with widespread high-grade surface occurrences suggesting a potentially large mineralised footprint. The Company views the Project setting as favourable for sedimentary-hosted manganese accumulation, with the potential for structural and stratigraphic trap sites to have focused mineralising fluids and upgraded mineralisation along target corridors. Litchfield's reconnaissance sampling has confirmed manganese enrichment alongside pathfinder element signatures in places, supporting the interpretation of a mineral system that may have undergone hydrothermal modification and/or supergene upgrading, similar to key components observed in the Bootu Creek model.

While Lucy Creek remains an early-stage exploration opportunity with no Mineral Resource defined, the combination of scale, grade indications and favourable basin architecture reinforces the Company's view that Lucy Creek represents a genuine opportunity to define a Bootu Creek-style manganese system, with follow-up targeting to be supported by airborne geophysics, systematic surface programs and staged drilling.

What's Next

- Complete interpretation of the aeromagnetic and radiometric survey
- Targeted ground mapping and field verification
- Follow-up surface sampling and geochemistry
- Gravity surveys over priority corridors
- Drill testing of highest-ranked targets (subject to results)

Cautionary Statement

This announcement contains forward-looking statements that involve known and unknown risks, uncertainties, and other factors that may cause actual results, performance, or achievements to differ materially from those expressed or implied. Such statements include but are not limited to, interpretations of geophysical data, planned exploration activities, and potential mineralisation outcomes. Visual estimates of mineral abundance and pXRF results should never be considered a proxy or substitute for laboratory analyses where concentrations of grades are the factors of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuation. Forward-looking statements are based on Litchfield Minerals Limited's current expectations, beliefs, and assumptions, which are subject to change in light of new information, future events, and market conditions. While the Company believes that such expectations and assumptions are reasonable, they are inherently subject to business, geological, regulatory, and operational risks. Further work, including drilling, is required to determine the economic significance of any anomalies identified. Investors should not place undue reliance on forward-looking statements. Litchfield Minerals Limited disclaims any obligation to update or revise any forward-looking statements to reflect events or circumstances after the date of this announcement, except as required by law.

About Litchfield Minerals

Litchfield Minerals is a critical mineral explorer, primarily searching for base metals and uranium out of the Northern Territory of Australia. Our mission is to be a pioneering copper exploration company committed to delivering cost-effective, innovative and sustainable exploration solutions. We aim to unlock the full potential of copper and other mineral resources while minimising environmental impact, ensuring the longevity and affordability of this essential metal for future generations. We are dedicated to involving cutting-edge technology, responsible practices and stakeholder collaboration that drives us to continuously redefine the industry standards and deliver value to our investors, communities and the world.

Competent Person's Statement

The information in this announcement relates to Exploration Results and is based on, and fairly represents, information and supporting documentation compiled by Mr Russell Dow (MSc, BSc Hons Geology), a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy (AUSIMM) and is a full-time employee of Litchfield Minerals Limited. Mr Dow has sufficient sampling experience that is relevant to the style of mineralisation and types of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Dow consents to the inclusion in the Public Report of the matters based on their information in the form and context in which it appears. With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements.

The announcement has been approved by the Board of Directors

For further information please contact:

Matthew Pustahya

Managing Director

Matthew@litchfieldminerals.com.au

References

1. Litchfield Minerals Ltd, 2024. Internal report of LUCY CREEK PROJECT ELA 33568 Northern Territory. April 2024.
2. Davis, B., Shackleton, I., 2010. Annual Report for EL26380 Lucy Creek, Georgina Basin Project, Tobermory Area, Northern Territory. Auvex Resources Limited.
3. Leadbeatter, 2005. Elkdra Diamonds N.L. Final Technical Report EL22534 Lucy Creek East for the period 17th October 2002 to 15th June 2005, CR2005_0680
4. Litchfield ASX Announcement 10th June, 2025. Litchfield Minerals secures strong NT Government backing through three exploration grants.
5. McIntyre and Tompkins, 2003. Elkdra Diamonds N.L. Annual Report for period ending April 30, 2003, CR2003_0159.
6. OM Holdings Ltd, 2007. ASX Announcement 31/10/2007 Annual Report to the Australian Securities Exchange (ASX).
7. Ross, 2023. Independent geologist report of the Northern Territory exploration assets held by Litchfield Minerals Pty. Ltd

Appendix 1

AUVE & ELKEDRA RC & DRILL RESULTS - Related to section "A Compelling Opportunity for the company & investors - References 2"

Sample Number	Mn%	Fe%	Location East	Location North	Co-ords Zone	Topography	Description
GB001	7.59	2.08	671713	7529387	GDA94	Hillside	Subcrop. Sandstone with Mn coating
GB002	#N/A	#N/A	671824	7529454	GDA94	Hilltop	Subcrop. Sandstone with Mn coating
GB003	#N/A	#N/A	671803	7529654	GDA94	Hillside	Mn subcrop
GB004	25.1	1.12	671667	7529706	GDA94	Small hill	Mn subcrop
GB005	27.2	5.46	671632	7529725	GDA94	Flat	Small Mn o/c, some Fe
GB006	38.2	2.37	671261	7529304	GDA94	Flat	Small isolated area of Mn and Fe float
GB007	22.4	0.83	673791	7524560	GDA94	Flat	Extensive Mn float
GB008	23.3	2.4	673854	7524510	GDA94	Flat	Extensive Mn float
GB009	52.9	0.58	674170	7524284	GDA94	Low ridge	Mn subcrop, extensive Mn float
GB010	27.7	1.14	674195	7524329	GDA94	Low ridge	Mn subcrop, extensive Mn float
GB011	22.3	0.8	674643	7524152	GDA94	Flat	Mn subcrop, extensive Mn float
GB012	32.3	1	676394	7520877	GDA94	Low ridge	Mn subcrop, areas of Mn float

GB013	#N/A	#N/A	668581	7525111	GDA94	Hill (N side)	<i>Mn o/c, primarily sandstone with Mn coating</i>
GB014	8.15	2.47	669128	7525210	GDA94	Hill	<i>Mn o/c, primarily sandstone with Mn coating</i>
GB015	41.5	9.71	670326	7523392	GDA94	Hilltop	<i>Mn o/c mixed with mainly Fe o/c</i>
GB016	8.76	25.3	670393	7522250	GDA94	Hill	<i>Mn o/c mixed with Fe o/c</i>
GB017	17.9	12.8	670392	7522131	GDA94	Hill	<i>Mn o/c mixed with mainly Fe o/c</i>
GB018	54.2	1.57	670386	7522109	GDA94	Hill	<i>Mn o/c</i>
GB019	26.7	5.94	670317	7522102	GDA94	Hill	<i>Mn o/c mixed with mainly Fe o/c</i>
GB020	38.3	3.38	670463	7522155	GDA94	Hillside	<i>Mn and Fe subcrop</i>
GB021	23.7	17.6	670243	7521975	GDA94	Hilltop	<i>Mn o/c mixed with mainly Fe o/c</i>
GB022	31.2	23.5	670166	7521970	GDA94	Hillside	<i>Mn o/c mixed with mainly Fe o/c</i>
GB023	17.3	35	670328	7521886	GDA94	Low ridge	<i>Mn o/c mixed with mainly Fe subcrop</i>
GB024	42.7	9.98	670322	7521700	GDA94	Ridgetop (N - S)	<i>Mn o/c mixed with mainly Fe o/c</i>
GB025	48.7	7.44	670348	7521671	GDA94	Ridgetop (N - S)	<i>Mn o/c</i>
GB026	3.68	28.9	670429	7521581	GDA94	Ridgetop (S end)	<i>Mn o/c mixed with mainly Fe subcrop</i>
GB027	21.6	3.58	669962	7521544	GDA94	Hill (E side)	<i>Mn subcrop</i>
GB028	25.7	2.81	669959	7521641	GDA94	Hill (W side)	<i>Mn subcrop ("plates")</i>
GB029	17.2	3.02	669877	7521680	GDA94	Low ridge	<i>Mn and Fe subcrops with sandstone</i>

GB030	31.3	7.2	721491	7526545	GDA94	Track - erosion gully	<i>Nodules and fragments of Mn float - replacement of Tomhawk sst</i>
GB031	23.6	9.74	721295	7527575	GDA94	Flat	<i>Sandstone o/c with weak Mn mineralisation & Mn float</i>
GB032	34.9	0.76	713990	7536150	GDA94	Side of Hill	<i>Ferruginous & silified (brecciated) sandstone with massive Mn</i>
GB033	2.86	0.98	701310	7507737	GDA94	Flat	<i>Sandstone subcrop with disseminated Mn upto 60%</i>
GB034	33	1.7	700469	7507573	GDA94	Side of Hill	<i>Sporadic & very small o/c of cauliform massive silicified Mn</i>
GB035	18.5	28.3	670249	7521972	GDA94	Hill	<i>Mn replacement of laminae in sandstone - stratiform</i>
GB036	37.1	12.7	670349	7522122	GDA94	Hill	<i>Mn replacement of limestone unit in sandstone - nodular in appearance</i>
GB037	30.1	0.84	674172	7524337	GDA94	Hill	<i>Cauliform/massive & siliceous Mn mineralisation amongst veneer of red sand</i>
GB038	30.1	2.66	682189	7536609	GDA94	Ridge	<i>Ferruginous & silified (brecciated) sandstone with massive Mn</i>
GB039	47.3	1.96	701949	7471993	GDA94	Ridge	<i>Massive, siliceous and brecciated Mn mineralisation in sandstone</i>

ELKEDRA ROCK CHIP RESULTS

SAMPLEID	SAM_TYPE	East	North	CoordRef	COMPANY	TITLE	REPORT_NO	Mn %	Fe %	Ba %	P %	Pb %	Zn %
D0152A	ROCKCHIP	670293	7522234	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	10.1	21.8	0.48	0.19	0.07	0.02
D0153A	ROCKCHIP	670320	7522250	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	3.0	6.3	0.18	0.04	0.07	0.01
D0160A	ROCKCHIP	670480	7522180	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	6.5	27.6	0.80	0.12	0.13	0.02
D0161A	ROCKCHIP	670275	7522170	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	10.2	19.9	0.65	0.04	0.16	0.01
D0162A	ROCKCHIP	670329	7522151	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	0.2	34.4	0.02	0.27	0.04	0.03
D0163A	ROCKCHIP	670406	7522138	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	23.7	19.1	2.55	0.16	0.14	0.03
D0164A	ROCKCHIP	670449	7522161	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	11.1	18.3	1.59	0.07	0.21	0.01
D0165A	ROCKCHIP	670412	7522079	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	0.2	31.2	0.02	0.33	0.05	0.02
D0166A	ROCKCHIP	670329	7522101	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	6.7	39.0	0.34	0.26	0.04	0.03
D0167A	ROCKCHIP	670171	7522044	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	23.5	17.8	0.84	0.27	0.02	0.05
D0168A	ROCKCHIP	670361	7522066	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	0.7	40.7	0.08	0.17	0.04	0.03
D0169A	ROCKCHIP	670479	7522070	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	21.2	28.5	0.59	0.15	0.03	0.01
D0171A	ROCKCHIP	670277	7521984	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	1.5	44.8	0.07	0.41	0.03	0.04
D0172A	ROCKCHIP	670229	7522007	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	1.1	56.2	0.05	0.65	0.01	0.06
D0173A	ROCKCHIP	670165	7521956	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	0.5	45.2	0.08	0.13	0.01	0.02
D0174A	ROCKCHIP	670223	7521941	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	7.8	47.6	0.23	0.23	0.02	0.04
D0175A	ROCKCHIP	670477	7521952	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	4.9	12.5	0.34	0.08	0.06	0.01
D0176A	ROCKCHIP	670493	7521900	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	7.0	15.4	0.24	0.12	0.07	0.01
D0177A	ROCKCHIP	670339	7521907	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	23.1	17.8	0.55	0.1	0.02	0.01
D0178A	ROCKCHIP	670310	7521898	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	20.4	23.8	0.61	0.13	0.09	0.02
D0179A	ROCKCHIP	670234	7521880	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	15.9	30.6	0.28	0.1	0.02	0.05
D0180A	ROCKCHIP	670216	7521851	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	7.5	20.1	0.30	0.08	0.01	0.03
D0181A	ROCKCHIP	670359	7521863	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	2.0	33.1	0.08	0.05	0.01	0.03
D0182A	ROCKCHIP	670404	7521834	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	14.9	27.8	0.61	0.46	0.02	0.01
D0183A	ROCKCHIP	670362	7521817	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	34.7	14.2	0.49	0.06	0.03	0.07
D0184A	ROCKCHIP	670288	7521790	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	4.1	30.0	0.32	0.2	0.05	0.04
D0185A	ROCKCHIP	670227	7521804	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	11.8	12.1	0.44	0.07	0.00	0.04
D0186A	ROCKCHIP	670281	7521751	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	8.9	23.7	0.41	0.16	0.13	0.01
D0187A	ROCKCHIP	670328	7521743	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	17.5	31.9	0.52	0.29	0.05	0.04
D0188A	ROCKCHIP	670393	7521779	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	2.9	27.0	0.14	0.23	0.02	0.02
D0189A	ROCKCHIP	670426	7521696	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	0.8	55.0	0.04	0.27	0.03	0.02
D0190A	ROCKCHIP	670352	7521702	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	11.0	41.3	0.46	0.15	0.02	0.04
D0192	ROCKCHIP	670316	7521697	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	15.5	29.0	0.31	0.19	0.02	0.03
D0194	ROCKCHIP	670225	7521632	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	4.8	9.8	0.52	0.12	0.05	0.02
D0196	ROCKCHIP	670337	7521654	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	25.3	32.5	0.46	0.23	0.12	0.04
D0198	ROCKCHIP	670381	7521650	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	2.0	41.0	0.12	0.31	0.07	0.03
D0200	ROCKCHIP	670429	7521653	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	1.2	44.2	0.06	0.09	0.05	0.04
D0202	ROCKCHIP	670417	7521587	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	9.1	37.1	0.53	0.18	0.45	0.02
D0204	ROCKCHIP	670309	7521606	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	10.2	17.2	0.60	0.13	0.10	0.01
D0219	ROCKCHIP	670359	7522138	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	52.0	0.5	0.00	0	0.02	0.05
D0220	ROCKCHIP	670384	7522244	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	39.4	14.2	0.00	0	0.10	0.05
D0221	ROCKCHIP	670379	7522250	GDA94_Zone 53	Elkedra Diamonds NL	EL22534	CR2005-0680	16.3	35.0	0.00	0	0.14	0.04

ELKEDRA RAB COLLARS

HoleRef	Company	Method	Depth	Dip	Azi (TN)	East	North	RL	CoordRef	Map100K	Map250K	Title	ReportID
ERB0037	Elkedra Diamonds	RAB	40	-90	360	670198	7521399		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0038	Elkedra Diamonds	RAB	40	-90	360	670099	7521401	306	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0039	Elkedra Diamonds	RAB	40	-90	360	669993	7521401	305	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0040	Elkedra Diamonds	RAB	40	-90	360	669899	7521405	303	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0041	Elkedra Diamonds	RAB	36	-90	360	669897	7521582	302	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0042	Elkedra Diamonds	RAB	40	-90	360	669805	7521600	302	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0043	Elkedra Diamonds	RAB	40	-90	360	669791	7521415	302	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0044	Elkedra Diamonds	RAB	40	-90	360	670014	7521576	302	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0045	Elkedra Diamonds	RAB	40	-90	360	670102	7521596	296	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0046	Elkedra Diamonds	RAB	40	-90	360	670277	7521606	299	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0047	Elkedra Diamonds	RAB	40	-90	360	670391	7521595	309	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0048	Elkedra Diamonds	RAB	40	-90	360	670520	7521594	301	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0049	Elkedra Diamonds	RAB	40	-90	360	670595	7521575	303	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0050	Elkedra Diamonds	RAB	40	-90	360	670693	7521584	300	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0051	Elkedra Diamonds	RAB	40	-90	360	670707	7521806	299	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0052	Elkedra Diamonds	RAB	40	-90	360	670599	7521803	295	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0053	Elkedra Diamonds	RAB	30	-90	360	670560	7522042	307	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0054	Elkedra Diamonds	RAB	39	-90	360	670598	7522399	300	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0055	Elkedra Diamonds	RAB	40	-90	360	670582	7522191	287	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0056	Elkedra Diamonds	RAB	35	-90	360	670509	7522411	291	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0057	Elkedra Diamonds	RAB	35	-90	360	670487	7522214	295	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0059	Elkedra Diamonds	RAB	37	-90	360	670490	7522017	309	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0060	Elkedra Diamonds	RAB	40	-90	360	670500	7521811	297	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0061	Elkedra Diamonds	RAB	18	-90	360	670663	7522473	305	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0062	Elkedra Diamonds	RAB	40	-90	360	670407	7521785	200	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0063	Elkedra Diamonds	RAB	30	-90	360	670414	7522016	312	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0064	Elkedra Diamonds	RAB	40	-90	360	670407	7522196	294	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0065	Elkedra Diamonds	RAB	30	-90	360	670398	7522410	307	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0066	Elkedra Diamonds	RAB	36	-90	360	670279	7522398	292	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0067	Elkedra Diamonds	RAB	40	-90	360	670305	7522203	298	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0068	Elkedra Diamonds	RAB	40	-90	360	670304	7522016		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0069	Elkedra Diamonds	RAB	40	-90	360	670307	7521804		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0070	Elkedra Diamonds	RAB	30	-90	360	670202	7521802		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0071	Elkedra Diamonds	RAB	30	-90	360	670812	7521593	298	GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0072	Elkedra Diamonds	RAB	27	-90	360	670704	7521513		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0073	Elkedra Diamonds	RAB	29	-90	360	670600	7521502		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0074	Elkedra Diamonds	RAB	24	-90	360	670499	7521514		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0075	Elkedra Diamonds	RAB	21	-90	360	670414	7521486		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0076	Elkedra Diamonds	RAB	24	-90	360	670289	7521397		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0077	Elkedra Diamonds	RAB	30	-90	360	670500	7521398		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0078	Elkedra Diamonds	RAB	21	-90	360	670601	7521294		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0079	Elkedra Diamonds	RAB	21	-90	360	670401	7521300		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0080	Elkedra Diamonds	RAB	30	-90	360	670899	7521796		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0081	Elkedra Diamonds	RAB	19	-90	360	670799	7522005		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0082	Elkedra Diamonds	RAB	20	-90	360	670909	7522117		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0083	Elkedra Diamonds	RAB	10	-90	360	670792	7522198		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0084	Elkedra Diamonds	RAB	12	-90	360	670794	7522418		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680
ERB0090	Elkedra Diamonds	RAB	17	-90	360	670700	7522292		GDA94_MGA Zone 53	6253	SF5312	EL22534	CR2005-0680

Appendix 2 - Litchfield Mineral 2025 Rock Chip Results

IDENT	Ag	Ba	Co	Cu	Fe	Mn	Mo	Ni	P	Pb	Sr	Zn
UNITS	g/t	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm
RCLCK001	4	2.95%	1260	206	2.29%	24.60%	10	26	1850	198	518	216
RCLCK002	0.8	0.31%	139	44	27.20%	25.20%	14.5	98	2550	613	156	322
RCLCK003	1	0.56%	115	34	21.80%	20.00%	17.5	62	1550	594	79	306
RCLCK004	1.2	0.23%	78	42	18.80%	6.76%	3.5	28	550	26	82	206
RCLCK005	0.8	0.26%	227	44	33.70%	17.50%	5.5	54	2300	135	75	470
RCLCK006	0.8	0.26%	255	58	36.50%	12.40%	4.5	96	1600	151	75.5	598
RCLCK007	4.4	1.30%	331	50	18.90%	21.90%	8	30	700	476	90.5	318
RCLCK008	<0.2	0.02%	22	20	29.80%	0.39%	2.5	18	1000	457	19	140
RCLCK009	0.6	0.03%	14	20	32.20%	0.34%	10	22	2650	584	25.5	140
RCLCK010	6.8	2.77%	666	64	1.13%	35.00%	7	42	1250	423	276	378
RCLCK011	4.8	0.94%	385	56	16%	27.80%	13	44	1050	1050	125	334

Litchfield Mineral 2025 Rock Chip Locations

Sample#	Prospect	Sam_Type	East	North	CoordRef	Company	Title
RCLCK001	Lucy Creek 2	Rock Chip	670050	7521411	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK002	Lucy Creek 2	Rock Chip	670340	7521662	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK003	Lucy Creek 2	Rock Chip	670321	7521752	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK004	Lucy Creek 2	Rock Chip	670250	7521888	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK005	Lucy Creek 2	Rock Chip	670232	7521940	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK006	Lucy Creek 2	Rock Chip	670331	7522018	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK007	Lucy Creek 2	Rock Chip	670331	7522086	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK008	Lucy Creek 2	Rock Chip	670385	7522052	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK009	Lucy Creek 2	Rock Chip	670400	7522085	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK010	Lucy Creek 2	Rock Chip	670461	7522155	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568
RCLCK011	Lucy Creek 2	Rock Chip	670393	7522250	GDA94_Zone 53	Litchfield Minersl Ltd.	EL33568

For Personal
Use Only

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<p><i>Litchfield Rock Chips</i></p> <ul style="list-style-type: none"> <i>Rock chip samples were collected from confirmed outcrops only using geopicks.</i> <i>The samples were between 0.5 – 1kg and were collected in marked calico bags for assaying.</i> <i>Sampling was conducted to ensure that the analytical results are representative of the sampled outcrop. True outcrop thicknesses were not calculated and have not been reported.</i> <i>Rock chip samples were collected by hand. In some instances, multiple samples were collected from a single outcrop to better understand mineralisation variability.</i> <i>QAQC samples were inserted every 25 samples as per standard Litchfield sampling protocols.</i> <i>Samples were submitted to Bureau Veritas, Adelaide for multi-element and gold fire assay analysis.</i> <p><i>Historic Elkeda Rock Chips</i></p> <ul style="list-style-type: none"> <i>No physical sampling information is provided in Elkeda Annual Reports.</i> <i>Samples were analysed by Genalysis Laboratories.</i> <p><i>Historic Elkeda 2002 RAB Drilling</i></p> <ul style="list-style-type: none"> <i>Rotary Air Blast (RAB) was used to obtain a large sample for each 1m drilled from a cyclone split. Samples were laid out in lines of 20 samples.</i> <i>Sampling was completed on a 1m basis using a PVC spear.</i> <i>Sampling of drill spoils was based on visual observation of black sooty manganiferous material.</i> <i>QAQC reference samples comprised a single 1m duplicate sample per hole.</i> <i>All samples were assayed using a standard crush and pulverize to -75 microns followed by a 4-Acid digest and an ICP-MS and ICP-OES finish for multi-element analysis at Ultratrace Laboratories.</i>

<p>Drilling techniques</p>	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<p>Historic Elkeda 2002 RAB Drilling</p>	<ul style="list-style-type: none"> All holes were completed using Rotary Air Blast (RAB). All holes were vertical at surface but were not surveyed at end of hole. Holes are assumed to be vertical.
<p>Drill sample recovery</p>	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<p>Historic Elkeda 2002 RAB Drilling</p>	<ul style="list-style-type: none"> No records of drill recovery were reported in the Elkeda Annual Reports. No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.
<p>Logging</p>	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>Soil and Rock Chip Sampling</p>	<ul style="list-style-type: none"> Standard geological mapping data was collected at each sampling point, including, lithology, structural measurements and site specific conditions e.g. outcrop versus float, moisture, soil profile depth etc.
		<p>Historic Elkeda 2002 RAB Drilling</p>	<ul style="list-style-type: none"> Geological logging of RAB drill holes was done on a visual basis with logging including lithology, alteration, mineralisation, structure, weathering, oxidation etc. Logging of RAB drill samples is qualitative and based on the presentation of representative drill chips retained for all 1m sample intervals in the chip trays. All drillholes were geologically logged in their entirety.

*Sub-sampling
techniques and
sample
preparation*

- *If core, whether cut or sawn and whether quarter, half or all core taken.*
- *If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.*
- *For all sample types, the nature, quality and appropriateness of the sample preparation technique.*
- *Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.*
- *Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.*
- *Whether sample sizes are appropriate to the grain size of the material being sampled.*

Historic Elkdra 2002 RAB Drilling

- *No sub-sampling techniques were used.*
- *The sample size is considered appropriate for the mineralisation style, application and analytical techniques used.*

<p>Quality of assay data and laboratory tests</p>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<p><i>Litchfield Soil and Rock Chip Sampling</i></p>	<ul style="list-style-type: none"> <i>For July 2025 rock and soil samples. Standard QAQC protocols were employed, inserting a QAQC sample for every 25 samples submitted for analysis.</i> <i>For portable XRF analysis, standards and blanks are both analysed at the beginning of every sampling session and then repeated every 50 samples.</i>
		<p><i>Elkedra Historic Rock Chip Sampling</i></p>	<ul style="list-style-type: none"> <i>It is unclear from Elkedra Annual Reports what QAQC protocols were employed.</i>
		<p><i>Historic Elkedra 2002 RAB Drilling</i></p>	<ul style="list-style-type: none"> <i>The analytical technique used is considered appropriate for manganese oxide-type mineralisation.</i> <i>For QAQC sampling, Elkedra inserted a single 1m duplicate sample per hole.</i> <i>Further internal laboratory QAQC procedures included internal batch standards and blanks</i> <i>Sample preparation and analysis was completed by Ultratrace Laboratories.</i>
	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> 	<p><i>Historic AUVEX Samples</i></p>	<ul style="list-style-type: none"> <i>It is unclear from Elkedra Annual Reports what QAQC protocols were employed.</i> <i>Results appear to be XRF base however also unclear.</i>

	<ul style="list-style-type: none"> • Discuss any adjustment to assay data.
<i>Location of data points</i>	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. <p><i>Litchfield Soil and Rock Chip Sampling</i></p> <ul style="list-style-type: none"> • Sample locations recorded with Garmin 62c hand held PGS unit with accuracy of greater than $\pm 4m$, using GDA94/UTM, Zone 53. <p><i>Elkedra Historic Rock Chip Sampling</i></p> <ul style="list-style-type: none"> • Sample location accuracy not specified in Elkedra's Annual Reports. Handheld GPS's from 2005 would typically have an accuracy better than $\pm 10m$. <p><i>Elkedra 2002 RAB Drilling</i></p> <ul style="list-style-type: none"> • Drill hole collars were surveyed with a handheld GPS with an accuracy of $\pm 5m$ which is considered sufficient for drill hole location accuracy. • Co-ordinates are in GDA94 datum, MGA Zone 53. • Downhole depths are in metres measured downhole from the collar location on surface. • Topographic control has an accuracy of 2m. RL was not recorded for all drillhole collars. <p><i>Historic AUVEX Rock chip sampling</i></p> <ul style="list-style-type: none"> • Sample location accuracy not specified in Elkedra's Annual Reports. Handheld GPS's from 2005 would typically have an accuracy better than $\pm 10m$. • Easting/ northing locations in Appendix above.

<p><i>Data spacing and distribution</i></p>	<ul style="list-style-type: none"><i>Data spacing for reporting of Exploration Results.</i>	<p><i>Litchfield Soil and Rock Chip Sampling</i></p> <ul style="list-style-type: none"><i>Soil samples were collected on a 200m x 100m grid, aligned to 328° True North (historic soil and drilling grid).</i><i>Rock chip samples were collected randomly where visible mineralisation was observed at surface.</i>
	<ul style="list-style-type: none"><i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i>	<p><i>Elkedra Historic Rock Chip Sampling</i></p> <ul style="list-style-type: none"><i>Samples were collected randomly across outcropping mineralised zones without a specified orientation or spacing.</i>
	<ul style="list-style-type: none"><i>Whether sample compositing has been applied.</i>	<p><i>Elkedra 2002 RAB Drilling</i></p> <ul style="list-style-type: none"><i>Drillholes were spaced approximately 100m apart on 200m spaced, east-west traverses.</i><i>It is too early to establish if drillhole spacing is sufficient to establish geological continuity.</i>
		<p><i>Historic AUVEX Rock chip sampling</i></p> <ul style="list-style-type: none"><i>Samples were collected randomly across outcropping mineralised zones without a specified orientation or spacing.</i>

<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<p><i>Litchfield Soil and Rock Chip Sampling</i></p> <ul style="list-style-type: none"> All samples are considered representative of the sampled outcrop. <p><i>Elkedra Historic Rock Chip Sampling</i></p> <ul style="list-style-type: none"> Sampling was completed across the strike of outcropping mineralisation. <p><i>Elkedra 2002 RAB Drilling</i></p> <ul style="list-style-type: none"> Drilling was completed approximately perpendicular to the north-trending outcropping zone of manganese mineralisation. True thickness of mineralised intervals has not been completed. It is unknown whether the orientation of sampling achieves unbiased sampling as interpretation of quantitative measurements of mineralised zones/structures has not yet been completed. <p><i>Historic AUVEX Rock chip sampling</i></p> <ul style="list-style-type: none"> Sampling was completed across the strike of outcropping mineralisation.
	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<p><i>Litchfield Soil and Rock Chip Sampling</i></p> <ul style="list-style-type: none"> All samples were collected under strict data security measures by Litchfield Minerals Ltd. Employee. <p><i>Elkedra Historic Rock Chip Sampling</i></p> <ul style="list-style-type: none"> No specific measures were noted in the Elkedra Annual Reports. <p><i>Elkedra 2002 RAB Drilling</i></p> <ul style="list-style-type: none"> No sample security records were reported by Elkedra. <p><i>Historic AUVEX Rock chip sampling</i></p> <ul style="list-style-type: none"> No sample security records were reported by Elkedra.

Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> <i>No audits or independent reviews of sampling techniques were complete. QAQC sample analysis for Litchfield data will be reported when final assay data is released to ASX. Litchfield has reported historical data based on information available in company reports.</i>
-------------------	--

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> <i>EL33568 & EL33888</i> <i>The Lucy Creek Project comprises granted exploration tenure located in the southern Georgina Basin region of the Northern Territory, Australia. The Project is held under exploration licence tenure in good standing and is 100% beneficially owned by the Company (or its wholly owned subsidiary), with no material encumbrances that would adversely impact exploration at the time of reporting.</i> <i>The Project area is subject to standard third-party interests commonly applying to exploration tenure in the Northern Territory, including Native Title considerations. The Company is progressing engagement and compliance requirements consistent with applicable legislation and regulatory processes. No joint ventures, farm-ins, partnerships, overriding royalties, or other material third-party agreements are considered to materially affect the current exploration activities within the Project area.</i> <i>To the Company's knowledge, there are no declared national park, wilderness reserve, or conservation reserve exclusions that prevent early-stage exploration activities within the current project footprint. Exploration programs are conducted under relevant environmental and heritage management requirements, and activities are planned to minimise ground disturbance and comply with all regulatory obligations.</i>

Exploration done
by other parties

- Acknowledgment and appraisal of exploration by other parties.
- The Lucy Creek area has received broad reconnaissance exploration coverage by the Bureau of Mineral Resources (BMR), Carpentaria Exploration Pty Ltd (Carpentaria) and Western Mining Corporation Limited (WMC) from the 1970s through to the 1980s.
- Historic exploration within EL33568 is limited to manganese, base metals (Mississippi Valley-type), diamonds and oil/gas.
- Exploration commenced in the 1960's and was predominantly focused on the search for base metals within the Georgina Basin e.g., MVT and stratiform sediment-hosted base metal deposits.
- Manganese exploration is restricted to surface geochemical rock chip and soil sampling of outcropping manganese mineralisation and subsequent drilling at Lucy Creek 2 (48 RAB holes, 1,571m) and MRS-79 (23 RAB holes, 392m) by Elkedra Diamonds between 2002 and 2005 (CR2003_0159, CR2005_0680 respectively).
- Elkedra also completed extensive diamond exploration, focusing on stream sediment sampling, airphoto and magnetic interpretation (kimberlite pipes) and limited ground magnetic traverses. A fertile kimberlite pipe was ultimately not identified and the tenement was relinquished.
- Auvex, in 2012, flew a VTEM survey (299km², 1697 line km) 20km north of Lucy Creek 2, searching for manganese and lead-zinc (Mississippi Valley-type), under the assumption that Mn and Pb-Zn mineralisation is modestly conductive. VTEM interpretation defined several regional-type / lithologically-related conductive anomalies and four of the highest priority targets were RC drilled but failed to detect any mineralisation.
- Exoil Oil drilled a petroleum well in 1966 (Lucy Creek #1, 1,105.5m) as a stratigraphic and structural test of an interpreted closed surface anticline, approximately 1km west of Lucy Creek 2. The well was abandoned as a dry well after hitting igneous basement at 1093.1m.
- Carpentaria Exploration Company collected 650 stream and 101 rock chip samples in an area immediately south of the southwestern corner of EL33568 (south of Halfway Dam). Extensive lead stream sediment anomalies were defined in the coarse fraction, however, -80 mesh resampling effectively eliminated all anomalies with the conclusion that base metal mineralisation was

		<i>scavenged by iron and manganese oxides during a pre-Triassic weathering surface.</i>
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> Massive manganese at Lucy Creek 2 is interpreted to represent hydrothermal replacement-style mineralisation similar to that observed at the Bootu Creek deposit in the Northern Territory. Mineralisation comprises semi-massive to massive manganese oxide in a gently east-dipping, 1-13m thick horizon (true width to be confirmed with additional drilling).
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Refer to Appendix 1 for the 2002 Elkeda RAB data.

<p><i>Data aggregation methods</i></p>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> <i>No weighting averaging techniques have been reported.</i>
<p><i>Relationship between mineralisation widths and intercept lengths</i></p>	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> <i>Additional drilling at Lucy Creek 2 is required to quantify the true width of the known mineralisation.</i> <i>Soil and rock chip sampling was completed across stratigraphy such that analytical results are considered representative of the sampled material. True widths were not assessed due to the folded nature of mineralised outcrops.</i>
<p><i>Diagrams</i></p>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> <i>See figures in the main body of the announcement.</i>
<p><i>Balanced reporting</i></p>	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> <i>Not applicable as no new assay results are reported.</i>

<i>Other substantive exploration data</i>	<ul style="list-style-type: none"><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i><i>See the main body of this announcement for all pertinent observations and interpretations.</i>
<i>Further work</i>	<ul style="list-style-type: none"><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i><i>Further sampling – Rock Chips and soils.</i><i>Gravity Survey.</i><i>Aeromagnetic survey.</i><i>Ground EM survey.</i>