

28 JANUARY 2026**KEY POINTS**

- **Hustler in-fill results further define prospective gold zone, best intercepts include 20m @ 1.66g/t Au, 17m @ 1.50g/t Au, 16m @ 1.39g/t Au and 28m @ 1.02g/t Au**
- **Modelling of gold mineralisation will guide prospectivity ranking and potential future work**
- **Plentiful EIS diamond hole complete, detailed logging, assays and interpretation on-foot**

Lunnon Metals Limited (ASX: LM8) (the **Company** or **Lunnon Metals**) is pleased to provide an update on the progress of exploration at two of the Company's high-ranking targets at the Foster-Baker Gold Project (**FBA**), at St Ives/Kambalda.

Hustler

Results from the latest reverse circulation (**RC**) drilling program at the Hustler prospect have been returned. The current zone of mineralisation identified to date has recorded multiple gold intercepts. Significant results are (>0.5g/t Au cut-off, true widths approximate drill widths):

- **FOS25RC_097: 28m @ 1.02g/t Au from 137 metres**
- **FOS25RC_135: 4m @ 5.88g/t Au from 21 metres and also 17m @ 1.50g/t Au from 7 metres**
- **FOS25RC_164: 16m @ 1.39g/t Au from 14 metres**
- **FOS25RC_168: 20m @ 1.66g/t Au from 31 metres**
- **FOS25RC_132: 20m @ 0.58g/t Au from 36 metres and also 16m @ 0.77g/t Au from 46 metres**
- **FOS25RC_137: 7m @ 1.22g/t Au from 19 metres**

Where the gold mineralisation is best developed it is shallow, thick and moderately high-grade. The holes drilled in the northeast area within this program defined the limit of the more favourable host rock, the Defiance Dolerite Zone 4. This favourable zone is still some 30-40m wide, which compares to the 40-60m wide occurrence at the Lady Herial deposit located approximately 350m to the immediate northwest of Hustler. FOS25RC_097, which had ended in mineralisation when first drilled in 2025, was extended and recorded an additional 9 metres of significant gold to total 28m @ 1.02g/t.

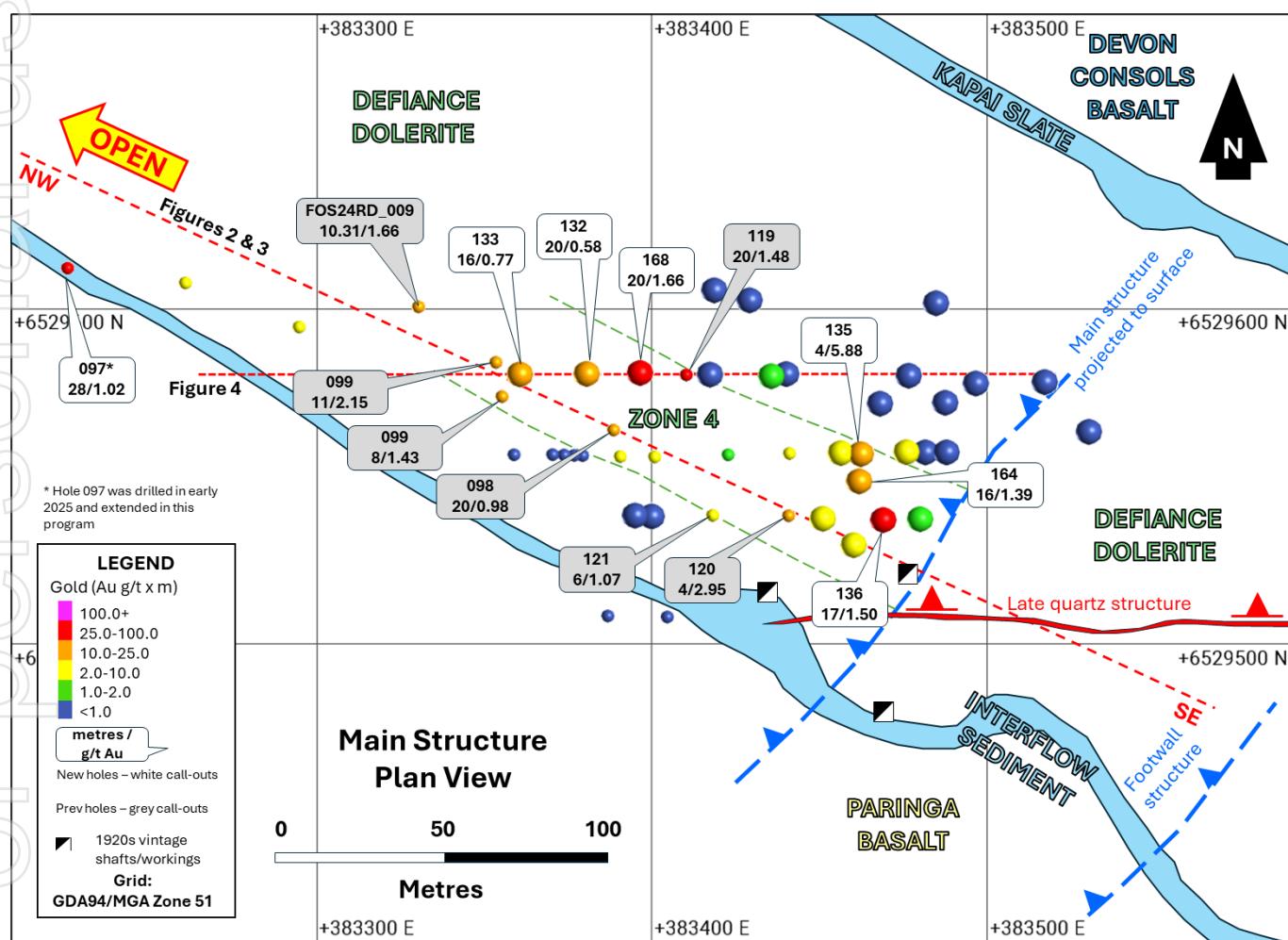
This intercept is some 300m down plunge from surface and is substantially thicker, and better grade, than the drillholes immediately up and down plunge at that depth, demonstrating the excellent continuity of the Hustler structure.

Numerous other narrower intercepts (generally 1.0m to 3.0m in width) at low to modest gold grades were also recorded (full results are included in Annexure 2). **Figure 1** illustrates a plan view of the Hustler prospect with the most recent and prior drilling programs. The new drilling also indicates that the mineralisation may not extend all the way to surface at its fullest width (see **Figures 3** and **4**), possibly resulting from the influence of a late, east-west striking, north dipping weakly gold bearing quartz structure which is mapped at surface.

The Company will now model the gold mineralisation defined to date and run open pit optimisation exercises at the prevailing gold price to test whether Hustler, as it currently presents, warrants further drilling to advance it to the next stage of exploration. If this exercise indicates that Hustler is a potential economic opportunity, further drilling would be planned to enable the appropriate resource classification to be achieved and the permitting process to be initiated.

Plentiful Exploration Incentive Scheme (EIS)

The EIS grant announced on 28 May 2025, related to a program of two diamond drill (**DD**) holes for a combined 1,400m drilling designed to test a dolerite hosted target located between the Victory-Leviathan gold mining complex to the north and the Argo-Apollo gold mining complex to the southeast of the FBA. These adjacent areas, wholly owned by Gold Fields Ltd (**Gold Fields**), have been mined for over 35 years by both WMC Resources Ltd then Gold Fields yielding over 7Moz¹ of gold, making the area that surrounds Lunnon Metals' leases a significant gold producing locality (see compilation **Figure 5**).


¹ "Ounces Mined by Mining Area": <https://www.goldfields.com/pdf/investors/shareholder-information/transcripts/2014/australia-site-visits/st-ives-gold-mine.pdf> (p20).

A 600m long isolated magnetic anomaly, at what is now termed the Plentiful Prospect, was not previously recognised as a potentially significant host to gold. RC and DD drilling by Lunnon Metals at Plentiful in early 2024 identified a differentiated dolerite as the cause of the magnetic anomaly. The dolerite is now termed the Plentiful Dolerite. The first DD hole in the EIS program is now complete and in the process of being logged in detail and sampled. Assay results and interpretation will follow in due course. The Company acknowledges the contribution and support that the Department of Mines, Petroleum and Exploration EIS program provides.

Managing Director, Edmund Ainscough, commenting said:

As the Lady Herial open pit gets ready to start, the hunt is on to identify the 'next cab off the rank'. Hustler has a lot of the same attributes that Lady Herial displayed when we first discovered it in early 2024, however, the more favourable zone of the hosting dolerite is a little bit narrower here. Our methodical approach to defining gold mineralisation such as this, will ensure that between Hustler and the potential for a cutback on the Upper Structure at Lady Herial itself, we are concentrating our efforts and drill dollars on the most likely candidate to continue our success in the Foster Gold Belt at St Ives."

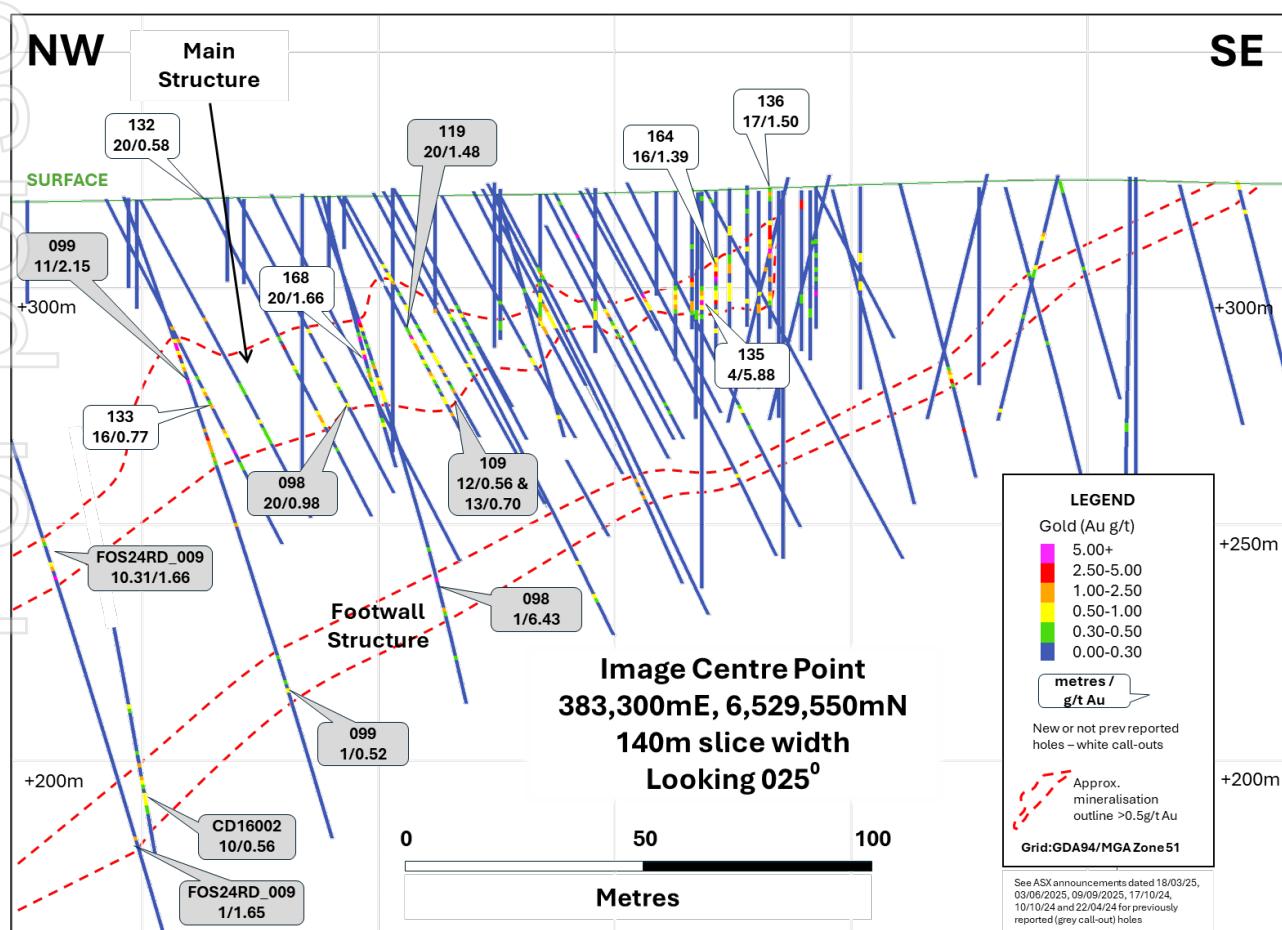
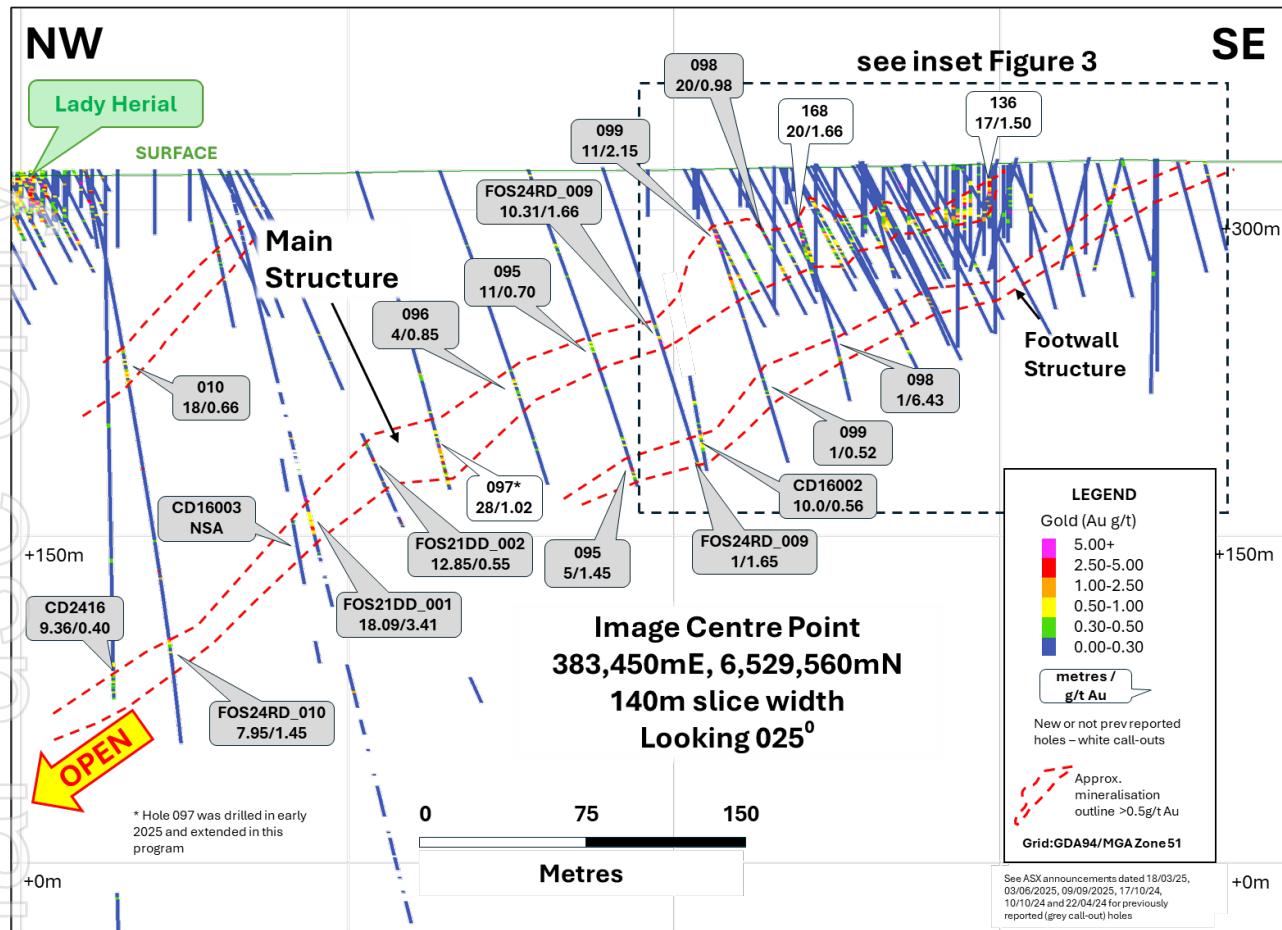


The following Figure 1 represents a plan view, Figures 2 and 3 long sectional views, and Figure 4 a cross sectional view of today's and prior results at Hustler (drillhole ID prefix for three digit labelled holes is FOS25RC_).

Figure 1: Plan view of the Hustler Prospect showing today's results (white call-outs and/or large circles), previous results (small circles and/or grey call-outs) and location of the long section in **Figures 2 & 3** and the cross section in **Figure 4**.

This release has been approved and authorised for release by the Board.

Edmund Ainscough
Managing Director
Phone: +61 8 6424 8848
Email: info@lunnonmetals.com.au

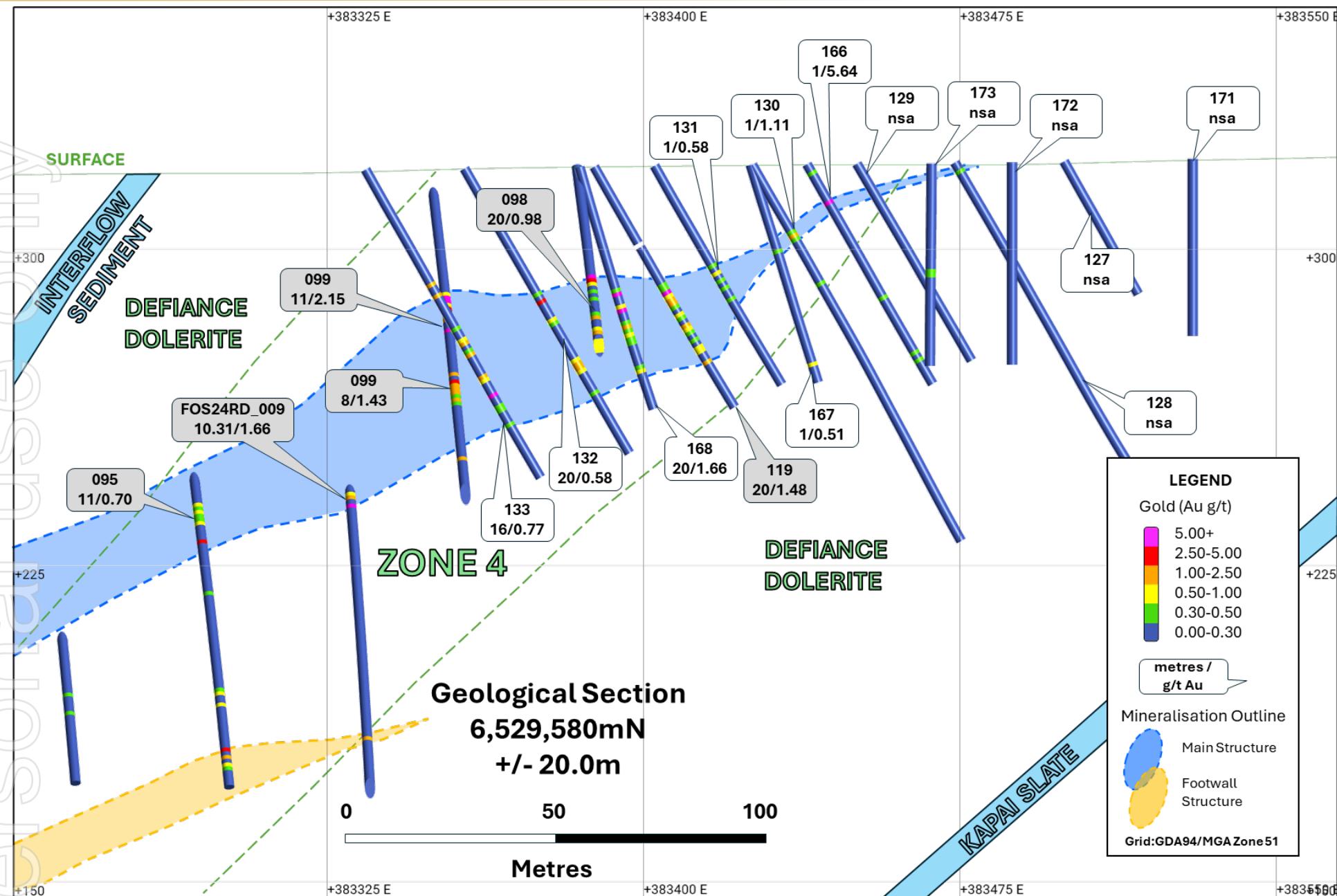
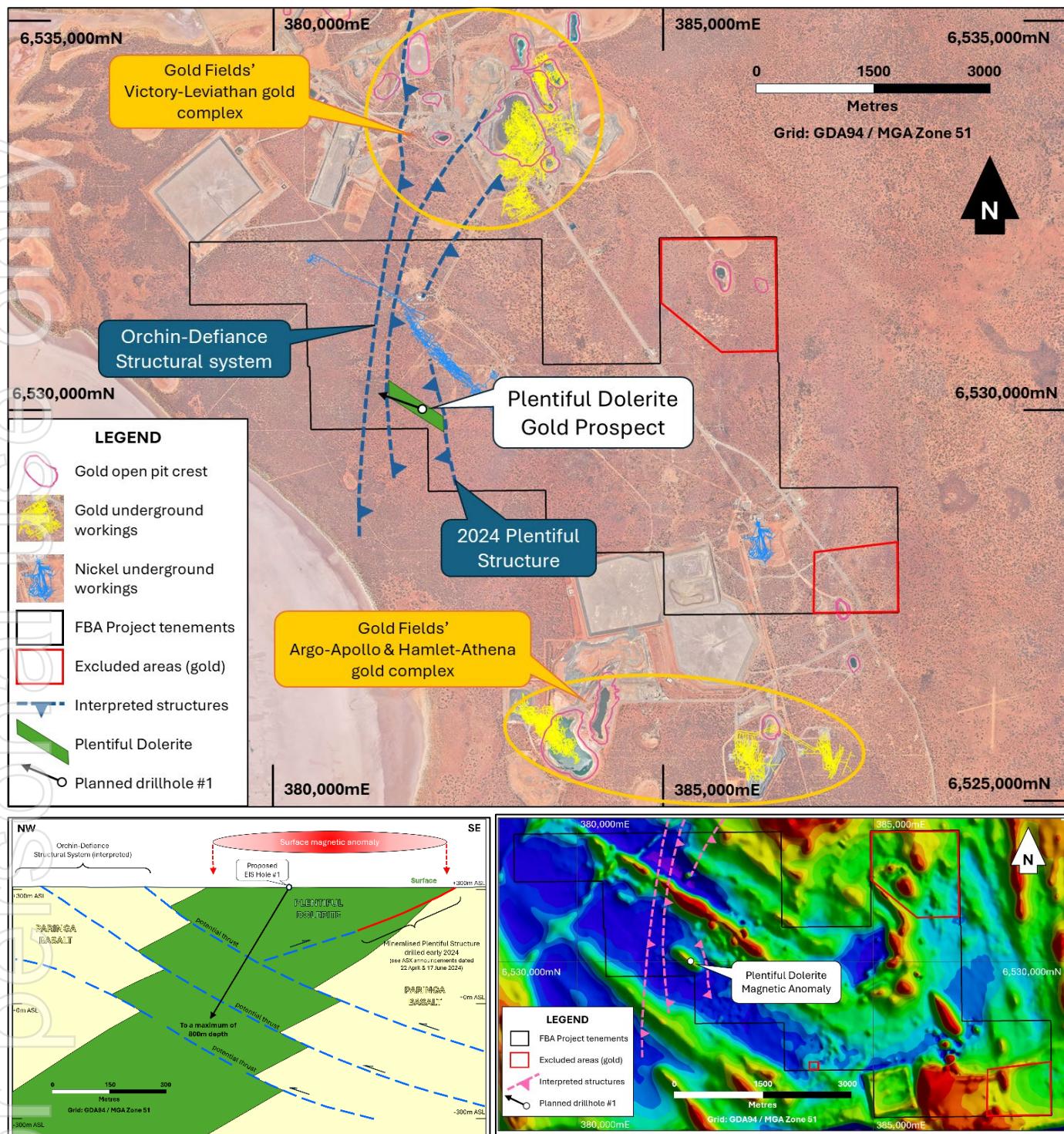



Figure 4: Geological cross section 6,529,580mN, looking north, showing today's and prior results (grey call-outs), and the interpreted Main and Footwall Structures.

Figure 5: Compilation of views, plan and sectional, view of the FBA showing the Orchin-Defiance structural system and the Plentiful Dolerite prospect over an aerial photo depicting key local infrastructure and past producing gold mines on adjacent Gold Fields' ground.

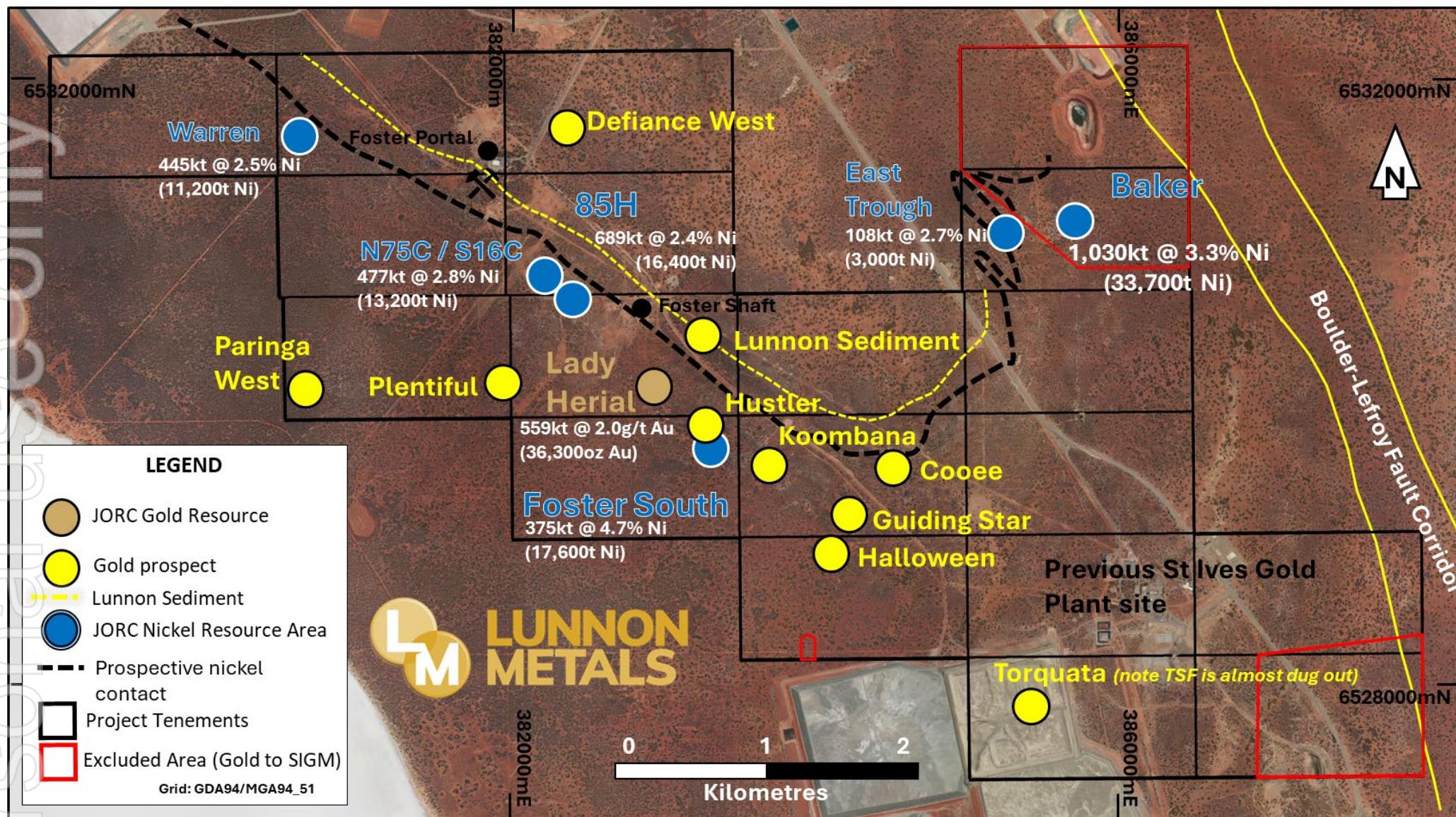


Figure 6: Foster-Baker Project Area showing location of the Plentiful and Hustler gold prospects along with other select high-ranking gold prospects, and gold & nickel Mineral Resource² positions.

² A full breakdown of the gold and nickel Mineral Resource is contained on page 13.

ANNEXURE 1: COLLAR DETAILS

Hole ID	Easting	Northing	Elevation (m ASL)	Dip	Azimuth	EOH Depth (m)	Hole Type	Grid
Hustler								
FOS25RC_123	383,455.3	6,529,602.5	320.6	-60.0	92.7	66.0	RC	MGA94_51
FOS25RC_124	383,430.8	6,529,603.3	320.5	-60.6	88.8	72.0	RC	MGA94_51
FOS25RC_125	383,407.5	6,529,603.5	320.2	-60.4	93.4	78.0	RC	MGA94_51
FOS25RC_126	383,383.9	6,529,604.0	319.9	-61.2	88.9	90.0	RC	MGA94_51
FOS25RC_127	383,499.6	6,529,579.4	320.8	-60.5	92.9	36.0	RC	MGA94_51
FOS25RC_128	383,473.8	6,529,579.2	320.6	-59.7	93.2	90.0	RC	MGA94_51
FOS25RC_129	383,450.5	6,529,579.7	320.3	-59.4	89.5	54.0	RC	MGA94_51
FOS25RC_130	383,425.8	6,529,579.8	320.0	-60.2	89.7	102.0	RC	MGA94_51
FOS25RC_131	383,402.6	6,529,580.6	319.8	-60.7	90.6	60.0	RC	MGA94_51
FOS25RC_132	383,357.5	6,529,580.3	319.1	-60.2	89.6	78.0	RC	MGA94_51
FOS25RC_133	383,334.1	6,529,580.3	318.9	-60.7	90.3	84.0	RC	MGA94_51
FOS25RC_134	383,481.4	6,529,557.2	320.8	-90.0	0.0	78.0	RC	MGA94_51
FOS25RC_135	383,462.2	6,529,556.7	320.5	-90.0	0.0	84.0	RC	MGA94_51
FOS25RC_136	383,468.9	6,529,537.1	321.4	-90.0	0.0	30.0	RC	MGA94_51
FOS25RC_137	383,450.9	6,529,537.5	321.3	-90.0	0.0	30.0	RC	MGA94_51
FOS25RC_138	383,379.6	6,529,539.2	320.5	-59.4	93.1	108.0	RC	MGA94_51
FOS25RC_139	383,411.6	6,529,486.2	322.4	-61.3	88.3	84.0	RC	MGA94_51
FOS25RC_140	383,388.1	6,529,485.8	321.0	-60.5	90.0	66.0	RC	MGA94_51
FOS25RC_141	383,363.8	6,529,484.8	319.9	-60.6	91.5	84.0	RC	MGA94_51
FOS25RC_142	383,479.9	6,529,537.3	321.5	-90.0	0.0	30.0	RC	MGA94_51
FOS25RC_163	383,460.0	6,529,529.6	321.8	-90.0	0.0	30.0	RC	MGA94_51
FOS25RC_164	383,461.7	6,529,548.6	320.5	-90.0	0.0	36.0	RC	MGA94_51
FOS25RC_165	383,456.2	6,529,557.0	320.6	-90.0	0.0	36.0	RC	MGA94_51
FOS25RC_166	383,438.7	6,529,579.7	320.2	-60.6	91.3	60.0	RC	MGA94_51
FOS25RC_167	383,425.4	6,529,579.8	320.0	-72.9	89.2	54.0	RC	MGA94_51
FOS25RC_168	383,384.8	6,529,580.4	319.5	-74.0	89.3	60.0	RC	MGA94_51
FOS25RC_169	383,487.8	6,529,557.2	320.7	-90.0	0.0	36.0	RC	MGA94_51
FOS25RC_170	383,475.8	6,529,557.3	320.7	-90.0	0.0	42.0	RC	MGA94_51
FOS25RC_171	383,530.2	6,529,563.3	321.5	-90.0	0.0	42.0	RC	MGA94_51
FOS25RC_172	383,487.4	6,529,572.0	320.6	-90.0	0.0	48.0	RC	MGA94_51
FOS25RC_173	383,468.3	6,529,571.6	320.4	-89.9	0.0	48.0	RC	MGA94_51
FOS25RC_097	383,214.1	6,529,685.7	318.2	-60.6	170.7	168.0	RC	MGA94_51
Plentiful								
PBS25DD_005	381,968.0	6,529,969.0	304.0	-63.8	255.95	747.5	DD	MGA94_51

ANNEXURE 2: ASSAY RESULTS - HUSTLER

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment / internal zones below cut-off
FOS25RC_123	NSA			0.5	Main
FOS25RC_124	31.0	4.0	1.16	0.5	Possible supergene
including	33.0	2.0	1.81	1.0	
FOS25RC_125	42.0	1.0	0.71	0.5	Main
FOS25RC_126	NSA			0.5	Main
FOS25RC_127	NSA			0.5	Main
FOS25RC_128	NSA			0.5	Main
FOS25RC_129	NSA			0.5	Main

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment / internal zones below cut-off
FOS25RC_130	19.0	1.0	1.11	0.5	Main
FOS25RC_131	29.0	1.0	0.58	0.5	Main
FOS25RC_132	36.0	20.0	0.58	0.5	Main
including	36.0	1.0	4.15	1.0	Maximum of 10m internal dilution
and including	53.0	2.0	1.74	1.0	
FOS25RC_133	31.0	4.0	0.92	0.5	Possible supergene
including	31.0	1.0	1.55	1.0	Maximum of 2m internal dilution
and including	34.0	1.0	2.05	1.0	
and	46.0	16.0	0.77	0.5	Main
including	47.0	1.0	1.17	1.0	Maximum of 5m internal dilution
and including	50.0	1.0	1.22	1.0	
and including	56.0	1.0	2.37	1.0	
and including	61.0	1.0	5.22	1.0	
FOS25RC_134	NSA			0.5	Main
FOS25RC_135	21.0	4.0	5.88	0.5	Main
including	21.0	1.0	1.09	1.0	
and including	23.0	1.0	20.91	1.0	
FOS25RC_136	1.0	1.0	1.18	0.5	Possible supergene
and	7.0	17.0	1.50	0.5	Main
including	8.0	7.0	3.05	1.0	Maximum of 4m internal dilution
and including	19.0	1.0	1.36	1.0	
FOS25RC_137	19.0	7.0	1.22	0.5	Main
including	19.0	2.0	2.70	1.0	Maximum of 3m internal dilution
and including	24.0	1.0	1.75	1.0	
FOS25RC_138	30.0	1.0	0.53	0.5	Main
and	40.0	1.0	0.78	0.5	Main
and	90.0	1.0	0.58	0.5	Footwall Structure
and	98.0	1.0	0.51	0.5	Footwall Structure
FOS25RC_139	55.0	1.0	0.82	0.5	Sediment
FOS25RC_140	NSA			0.5	Sediment
FOS25RC_141	NSA			0.5	Sediment
FOS25RC_142	22.0	1.0	1.57	0.5	Main
FOS25RC_163	11.0	3.0	1.12	0.5	Main
including	11.0	1.0	2.59	1.0	Maximum of 1m internal dilution
and	24.0	1.0	0.62	0.5	
FOS25RC_164	14.0	16.0	1.39	0.5	Main
including	15.0	4.0	3.73	1.0	Maximum of 3m internal dilution
and including	23.0	1.0	2.63	1.0	
FOS25RC_165	21.0	4.0	1.40	0.5	Main
including	22.0	1.0	2.32	1.0	
and including	24.0	1.0	1.47	1.0	

Hole ID	From (drill depth) (m)	Width (m)	Au g/t	Cut-off Au g/t	Comment / internal zones below cut-off
FOS25RC_166	10.0	1.0	5.64	0.5	Possible supergene
FOS25RC_167	49.0	1.0	0.51	0.5	Main
FOS25RC_168	31.0	20.0	1.66	0.5	Main
including	31.0	1.0	13.67	1.0	
and including	35.0	1.0	12.44	1.0	
FOS25RC_169	NSA			0.5	Main
FOS25RC_170	24.0	2.0	1.23	0.5	Main
FOS25RC_171	NSA			0.5	Main
FOS25RC_172	NSA			0.5	Main
FOS25RC_173	NSA			0.5	Main
FOS25RC_097	137.0	28.0	1.02	0.5	Main – hole was originally drilled in 2025, extended due to ending in mineralisation at that time.
including	144.0	1.0	6.87	1.0	
and including	146.0	3.0	1.59	1.0	
and including	151.0	1.0	1.05	1.0	
and including	153.0	1.0	4.22	1.0	
and including	158.0	1.0	2.81	1.0	

NOTE: All Plentiful assays are pending logging and sampling of the DD core.

DISCLAIMER

References in this announcement may have been made to certain previous ASX announcements, which in turn may have included Exploration Results, Exploration Targets, Mineral Resources, Ore Reserves and the results of Scoping and Pre-Feasibility or Feasibility Studies. For full details, please refer to the said announcement on the said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and mentioned announcements, the Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement(s), and in the case of estimates of Mineral Resources and Ore Reserves (if reported) that all material assumptions and technical parameters underpinning the estimates in the relevant announcement continue to apply and have not materially changed. The Company confirms that the Competent Person's findings in relation to the estimates of Mineral Resources and Ore Reserves (if reported) have not been materially modified from the original announcements reporting those estimates.

BACKGROUND: ST IVES / KAMBALDA - ONE OF AUSTRALIA'S MOST PROLIFIC GOLD CAMPS

The Kambalda / St Ives gold camp is one of Australia's most prolific gold production and discovery centres. Gold has been produced in the area since the discovery of the Red Hill gold mine in 1896 (adjacent to the Company's historical Silver Lake nickel mine at Kambalda). The area immediately encompassing and surrounding the FBA project produced gold from the 1920s onwards, but this goldfield came to prominence in the early 1980s when WMC commenced dedicated gold production from the adjacent Victory-Defiance Complex and the Hunt nickel mine, approximately 15km to the north near Kambalda.

The St Ives Gold Mine was sold by WMC to Gold Fields Ltd (**Gold Fields**) in December 2001 after 5.6Moz^{3a} of gold had been produced. With an expanded exploration budget requisite with being one of the world's major gold companies, Gold Fields has gone on to mine over 10Moz^{3b} of gold itself and has found what is shaping to be the most significant discovery in the camp's history, the Invincible deposit (see **Figure 7**), suggesting that the biggest deposits are not always found first in the discovery cycle. The Company holds all mineral rights over the FBA, except gold in specific "Excluded Areas"⁴ (see **Figure 6**).

The Company highlights that all gold prospects being tested and evaluated are 100% owned by Lunnon Metals. The FBA project is located on granted mining tenements with significant existing infrastructure in place. Nearby gold plants include the Lefroy, Lakewood (ASX:BC8) and Higginsville plants (ASX:WGX), with the Lefroy plant, a few kilometres to the north, notably owned and operated by the Company's major shareholder, Gold Fields.

The gold prospects of the Foster Gold Belt are typically hosted in the Defiance Dolerite, a known favourable host for gold in the immediate vicinity of FBA at the Victory-Defiance gold complex a few kilometres to the north. High-grade quartz veins were mined by prospectors in the 1920s in what was then called the Cooee/St Ives field (see ASX announcement dated 22 April 2024) with gold ore won from these workings treated at either the nearby historical State Battery or the privately owned Ives Reward battery, the relic sites of which are both located on what are now Lunnon Metals' leases.

ABOUT THE KAMBALDA GOLD & NICKEL PROJECT (KGNP)

The KGNP features approximately 47sqkm of tenements in the Kambalda/St Ives district. KGNP is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia. KGNP comprises two project areas, Foster and Baker* (19 contiguous mining leases) and Silver Lake and Fisher⁺ (20 contiguous mining leases). This world-renowned district has produced in excess of 1.6 million tonnes⁵ of nickel metal since its discovery in 1966 by WMC. In addition, over 16Moz of gold⁵ in total has been mined, making Kambalda/St Ives a globally significant gold camp in its own right.

The KGNP is accessed via public roads, well-established mine road infrastructure and the main St Ives causeway over Lake Lefroy. The KGNP is broadly surrounded by tenements held by SIGM, a wholly owned subsidiary of Gold Fields Limited (JSE:GFI) and the Company's major shareholder.

*SIGM retains right⁴ to explore for and mine gold in the "Excluded Areas" at the FBA, as defined in the subsisting agreements between Lunnon Metals and SIGM, and on the remaining area of the tenements, has select rights to gold in limited circumstances.

⁺The Company has the exclusive rights to nickel on 19 mining leases and related access rights on one additional tenure. Gold Fields retains the rights to the other minerals (except to the extent minerals occur in conjunction with nickel mineralisation or nickel bearing ore but excluding gold).

³ (a) sum of historical WMC production records to Dec 2001 and (b) sum of Gold Fields Annual Report filings thereafter.

⁴ Refer to the Company's Prospectus (lodged 11 June 2021) for further details. SIGM has a pre-emptive right over gold material from the FBA (other than the Excluded Areas and the Lady Herial deposit).

⁵ **Gold:** Sum of historical WMC production records to December 2001, sum of Gold Fields Ltd's, Karora Resources and Westgold Resources report filings thereafter. **Nickel:** Sum of historical WMC production records and relevant ASX company nickel production figures.

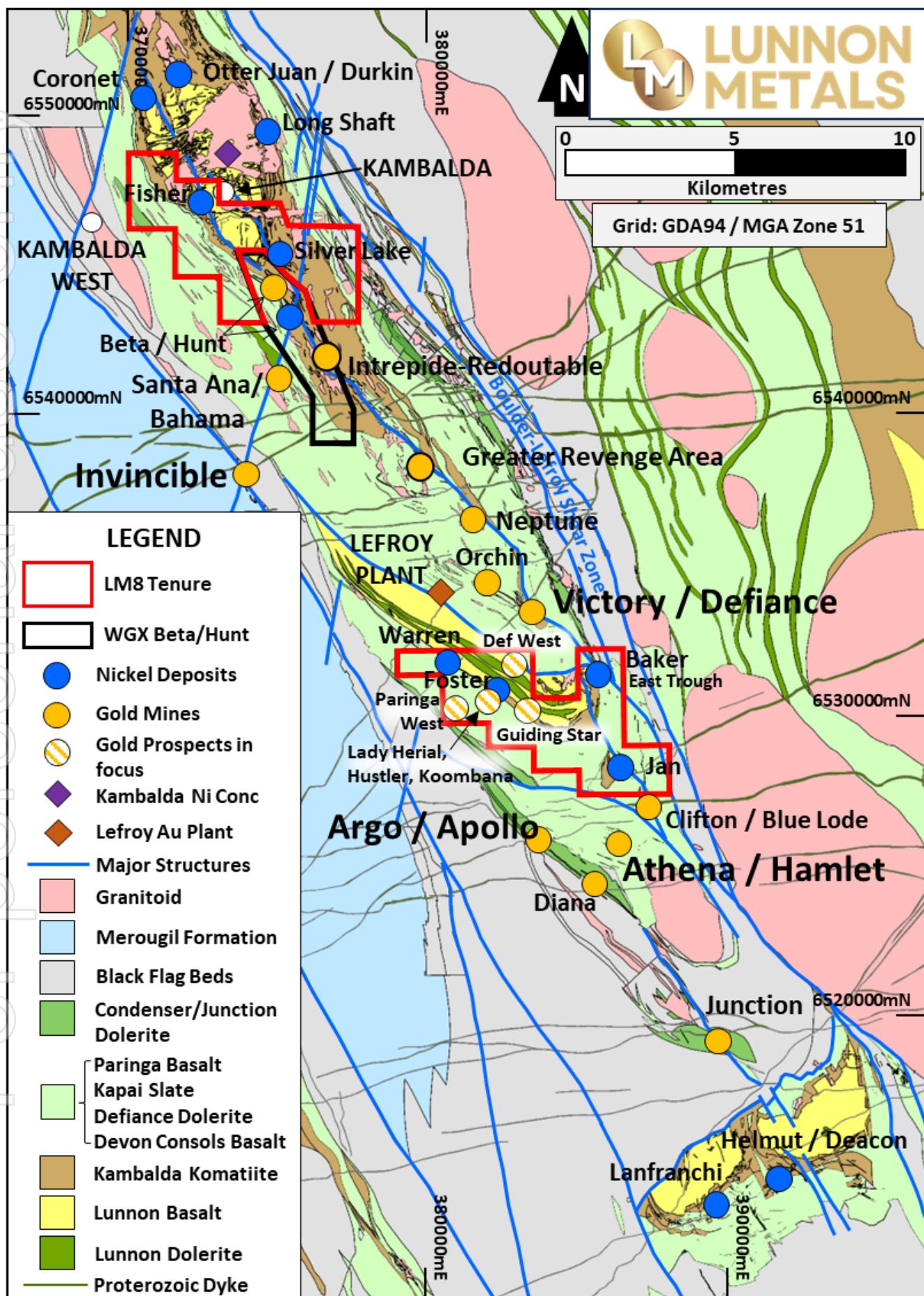


Figure 7: Location of the KGNP (red outlines) at the local Kambalda/St Ives scale; showing surface geology and structure of this significant Australian gold camp.

COMPETENT PERSONS' STATEMENTS

Any information in this or previous announcements that relates to gold and nickel geology, or informed gold and nickel Mineral Resources, Exploration Targets, Exploration Results and the Company's Historical Core Program, which includes the accessing, re-processing, re-logging, cutting and assaying of historical WMC diamond core and the appropriateness of the use of this data and other historical geoscience hard copy data such as cross sections, underground level mapping plans, longitudinal projections and long sections, including commentary relying on personal experience whilst employed at Kambalda by WMC and Gold Fields, is based on, and fairly represents, information and supporting documentation prepared by Mr. Aaron Wehrle, who is a Member of the Australasian Institute of Mining and Metallurgy (**AusIMM**).

Mr. Wehrle is a full-time employee of the Company, a shareholder and holder of employee options/performance rights; he has sufficient experience that is relevant to the style of mineralisation and types of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (**JORC Code**). Mr. Wehrle is the Company's **principal Competent Person** and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Any information in this or previous announcements that relates to, or informed, the Lady Herial Mineral resource estimate, geostatistics, methodology and estimation is based on, and fairly represents, information and supporting documentation prepared by Mr. Stephen Law, who holds current Chartered Professional (Geology) status with the AusIMM. Mr Law is a full-time employee of Lunnon Metals Ltd, a shareholder and holds employee performance rights; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the JORC Code. Mr. Law consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Any information in this or previous announcements that relates to or informed the previous Lady Herial gold metallurgical testwork program, was based on, and fairly represents, information and supporting documentation prepared by Mr. Barry Cloutt, who is a Member of the AusIMM. Mr. Cloutt is an external and independent consultant to the Company and has sufficient experience that is relevant to the activity that he is undertaking to qualify as Competent Person as defined in the JORC Code. Mr. Cloutt consented to the inclusion in this Study of the matters based on his information in the form and context in which it appears.

Any information in this or previous announcements that relates to the mining, metallurgical and environmental Modifying Factors or assumptions (including information in Table 1, sections 1,2,3 and 4), as they may apply was based on, and fairly represents, information and supporting documentation prepared by Mr. Wehrle, Mr. Max Sheppard and Mr. Edmund Ainscough. Messrs. Sheppard and Ainscough are also Competent Persons and Members of the AusIMM. Mr Ainscough is a full-time employee and Mr Sheppard is a permanent, part-time employee, both of Lunnon Metals Ltd. Both Messrs. Ainscough and Sheppard are shareholders and hold employee performance rights in Lunnon Metals Ltd.

Messrs Wehrle, Sheppard and Ainscough have sufficient experience that is relevant to the style of mineralisation, both gold and nickel, the types of deposit under consideration, the activity that they are undertaking and the relevant factors, in particular regarding Lady Herial specifically and the Foster-Baker project area more generally, the historical Foster mine and the KGNP regionally, to qualify as Competent Persons as defined in the JORC Code. Messrs. Sheppard, Wehrle and Ainscough consent to the inclusion in this announcement of the matters based on their information in the form and context in which it appears.

The information in this announcement or previous announcements that relates to Ore Reserves at Lady Herial is also based on information compiled by Mr. Sheppard, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Sheppard's details are as above. Mr. Sheppard has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sheppard consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

GOLD MINERAL RESOURCES

The detailed breakdown, by mineralised structures, of the Company's gold Mineral Resources⁶, above a 0.5g/t Au cut-off, at 18 November 2025, is as follows:

	Measured			Indicated			Inferred			Total		
	Tonnes	Aug/t	Au Ounces	Tonnes	Aug/t	Au Ounces	Tonnes	Aug/t	Au Ounces	Tonnes	Aug/t	Au Ounces
LADY HERIAL												
Upper	94,000	3.4	10,300	27,000	2.2	1,900	13,000	1.6	700	135,000	3.0	12,900
Middle	19,000	2.5	1,500	-	-	-	-	-	-	19,000	2.5	1,500
Lower	104,000	2.2	7,200	56,000	1.2	2,200	106,000	0.9	3,200	266,000	1.5	12,600
Sed/Paringa Basalt	-	-	-	7,000	1.7	400	4,000	2.2	300	11,000	1.9	700
MZ Surface	8,000	0.8	200	-	-	-	-	-	-	8,000	0.8	200
Northwest	-	-	-	-	-	-	120,000	2.2	8,500	120,000	2.2	8,500
TOTAL	226,000	2.6	19,200	90,000	1.6	4,500	243,000	1.6	12,600	559,000	2.0	36,300

GOLD ORE RESERVES

Gold Ore Reserves as declared on 16 January 2026.

Category	tonnes	Au g/t	Au Oz
Proved	268,250	1.89	16,270
Probable	-	-	-
Total	268,250	1.89	16,270

NICKEL MINERAL RESOURCES

The detailed breakdown of the Company's nickel Mineral Resources⁶, above a 1.0% Ni cut-off, restated at 30 June 2025, is as follows:

	Measured Ni			Indicated Ni			Inferred Ni			Total Ni		
	Tonnes	%	Ni Tonnes	Tonnes	%*	Ni Tonnes	Tonnes	%*	Ni Tonnes	Tonnes	%*	Ni Tonnes
FOSTER MINE												
Warren				345,000	2.6	8,800	100,000	2.4	2,400	445,000	2.5	11,200
Foster Central												
85H				395,000	3.2	12,800	294,000	1.2	3,600	689,000	2.4	16,400
N75C				271,000	2.6	6,900	142,000	1.9	2,600	413,000	2.3	9,500
S16C / N14C				-	-	-	64,000	5.7	3,700	64,000	5.7	3,700
South				264,000	4.7	12,400	111,000	4.7	5,200	375,000	4.7	17,600
Sub total	1,275,000	3.2	40,900	711,000	2.5	17,500	1,986,000	2.9	58,400			
BAKER AREA												
Baker	110,000	3.4	3,700	622,000	3.7	22,900	298,000	2.4	7,100	1,030,000	3.3	33,700
East Trough				-	-	-	108,000	2.7	3,000	108,000	2.7	3,000
Sub total	110,000	3.4	3,700	622,000	3.7	22,900	406,000	2.5	10,100	1,138,000	3.2	36,700
SILVER LAKE												
25H				336,000	1.6	5,300	488,000	1.7	8,500	824,000	1.7	13,800
Sub total	336,000	1.6	5,300	488,000	1.7	8,500	824,000	1.7	8,500	824,000	1.7	13,800
FISHER												
F Zone				56,000	2.7	1,500	196,000	1.6	3,200	252,000	1.9	4,700
Sub total	56,000	2.7	1,500	196,000	1.6	3,200	252,000	1.9	3,200	252,000	1.9	4,700
TOTAL	110,000	3.4	3,700	2,289,000	3.1	70,600	1,801,000	2.2	39,300	4,200,000	2.7	113,600

⁶ As defined in the Joint Ore Reserves Committee of the Australian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC): 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

JORC TABLE 1

The following tables address historical WMC and Gold Fields exploration activities/methods where relevant, Lunnon Metals' reverse circulation, diamond drilling and aircore programs as well as covering the Company's Historical Core Program, again where relevant. This report may by necessity also reference past DD, RC, Aircore and grab sampling results, which are therefore also covered in this Table 1.

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	<p><i>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i></p> <p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i></p>	<ul style="list-style-type: none"> All drilling and sampling are undertaken in an industry standard manner both by Lunnon Metals Ltd (Lunnon Metals or the Company) since 2021 and historically by both Gold Fields Ltd (Gold Fields) from 2001 to 2014 and WMC Resources Ltd (WMC) from 1966 to 2001 (collectively Previous Owners). Lunnon Metals' aircore (AC), diamond drill (DD) and reverse circulation (RC) holes are completed by Blue Spec Drilling Pty Ltd (Blue Spec) following protocols and QAQC procedures aligned with industry best practice. Any DD holes on the surface of the salt lake, Lake Lefroy, have been drilled to date by Ausdrill Pty Ltd (Ausdrill), using a track-mounted lake rig. <p>RC Lunnon Metals</p> <ul style="list-style-type: none"> RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. RC samples are appropriate for use in a Mineral Resource estimate. <p>DD Lunnon Metals</p> <ul style="list-style-type: none"> Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) either from surface or as tails from RC pre-collars. Occasionally PQ (83mm core diameter) is drilled in shallow holes which have the additional purpose of collecting material and data for metallurgical and geotechnical studies. HQ3 (61mm core diameter) is occasionally used for shallow geotechnical holes. All DD core is stored in industry standard plastic core trays labelled with the drill hole ID and core depth intervals. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. DD core samples are appropriate for use in a Mineral Resource estimate. <p>AC Lunnon Metals</p> <ul style="list-style-type: none"> AC samples are collected manually by scoop sampling directly from spoil piles on the ground which have been transferred via plastic buckets from a cyclone mounted on the drill rig. The field technician collects a single two-metre composite from two consecutive spoil piles starting from the collar, taking care that the resultant composite sample is representative and with a total sample weight of approximately 2.5 ± 0.5 kg. Each 1.0m spoil mass typically averages $8.5\text{kg} \pm 3.4\text{kg}$. The final two samples for each hole are sampled on a single metre basis (not composited).

Criteria	JORC Code explanation	Commentary
Sampling techniques (continued)		<ul style="list-style-type: none"> Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled and the intended use of the assay data in exploration planning only. AC samples are generally not appropriate for use in a mineral resource estimate. <p>Historical data</p> <ul style="list-style-type: none"> Sampling procedures followed by Previous Owners in the drilling, retrieval, and storage of AC, RC and DD samples and core were in line with industry standards at the time. Surface diamond drill obtaining NQ (48mm) and/or BQ (37mm) diameter drill core, were the standard exploration sample techniques employed by WMC. Underground DD was also used extensively in the operating environment, with drilling of both up and down holes, retrieving typically BQ diameter drill core and to a lesser extent AQ (22mm) diameter drill core. The core trays were labelled with the drill hole number and numbered with the downhole meterage for the start of the first 1 m run and the end of the last 1 m run on the lip of the core tray and typically included core blocks within the core trays demarcating the depth meterage of rod pull breaks. The earlier drilling was collected in wooden, and hybrid wooden/steel core trays and occasionally depths recorded in feet. <p>Handheld XRF</p> <ul style="list-style-type: none"> Where a handheld XRF tool was used to collect any exploration data reported, it was done so to assess the levels of key chemical elements. The individual XRF results themselves are not reported and any element values or ratios are used as a guide only for lithological and alteration logging/sampling and to assist vectoring to potential mineralisation. No XRF results are used in any MRE. <p>Surface rock chip and grab Sampling</p> <ul style="list-style-type: none"> Rock chip samples are taken manually from outcrop exposures using geological pick / crack hammer while grab samples are collected from loose rock material proximal to its original source such as spoils from historical sample pits and surface rock float. Larger rock samples may be reduced in size using geological pick / crack hammer for representative sample compositing purposes. Individual samples comprise several rock chips / grab samples from the area of interest, typically totalling 1.0 to 3.0kg collected in pre-numbered calico bags. The sampling methodology is considered to be appropriate for the intended purpose of the data. Sub-sampling techniques and sample preparation are described further below in the relevant section. Sample sizes are considered appropriate for the material sampled and the intended use of the assay data in exploration planning only. The samples are not considered appropriate for use, and will not be used, in any MRE.
Drilling techniques	<p><i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).</i></p>	<p>RC Lunnon Metals</p> <ul style="list-style-type: none"> RC holes are typically drilled with a 5 1/2-inch bit and face sampling hammer. Holes are drilled dry with use of booster/auxiliary air when/if ground water is encountered. In the case of short holes not likely to intersect the water table and thus not requiring the use of booster/auxiliary air, a 4-inch bit and face sampling hammer may be used. <p>DD Lunnon Metals</p> <ul style="list-style-type: none"> Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) from surface, or as

Criteria	JORC Code explanation	Commentary
Drilling techniques (continued)		<p>tails from RC pre-collars, or as wedge holes off parent DD holes. Occasionally PQ (83mm core diameter) or HQ3 (61mm core diameter) is drilled in shallow holes which have the additional purpose of collecting material and data for metallurgical and geotechnical studies.</p> <ul style="list-style-type: none"> • Triple tube HQ or PQ drilling techniques may be used where maximum recovery and preservation of core is required through the weathered zone from surface until competent fresh rock ground conditions are reached. • To help accurately test the targets, "navi" or motor drilling is sometimes used over short runs to control the direction of the drill hole. In these instances, no drill core or sample is returned from that portion of the drill hole. No navi drilling is undertaken within expected intervals of mineralisation. • Wedge holes, where present, utilise the parent hole to a given depth then branch off from the parent hole using either a casing wedge, a Hall-Rowe wedge, or a natural elbow, or navi bend, in the parent hole from where a lip can be cut with the diamond drill bit and the wedge hole drilled straight off the parent. • The DD core is orientated during the drilling process by the drill contractor, using a down hole Reflex ACTIITM Rapid Descent Digital Core Orientation Tool, and then reconstructed over zones of interest by Lunnon Metals field staff for structural and geotechnical logging.
		<p>AC Lunnon Metals</p> <ul style="list-style-type: none"> • AC holes are typically drilled with a 90mm outside diameter (25mm inside diameter) open face tungsten carbide bladed drill bit designed to cut through unconsolidated ground formations. The rods used are 75mm outside diameter with a 30mm inside diameter. • Holes are typically drilled dry with use of booster/auxiliary air when/if ground water is encountered. The booster/auxiliary air compressor used has a capacity of 350 psi generating approximately 900 cfm. The compressor is an Atlas Copco compressor. <p>Historical Drilling</p> <ul style="list-style-type: none"> • Historical surface DD completed by Previous Owners typically comprised HQ, NQ and BQ size drill core. Pre-collars to the surface diamond drillholes are typically PQ and HQ size and occasionally comprised RC drilling techniques. The pre-collars are not typically mineralised. • Underground WMC DD was used extensively in the underground mining environments when present. Drilling included both up hole and downhole, retrieving typically BQ diameter drill core and to a lesser extent AQ diameter drill core. • Although no documentation is available to describe the drilling techniques used by Previous Owners at the time it is understood that the various drilling types used conventional drilling methods consistent with industry standards of the time. • None of the historical WMC diamond drill core was oriented.
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p> <p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to</i></p>	<p>For Lunnon Metals AC, RC and DD</p> <ul style="list-style-type: none"> • Every RC sample is assessed and recorded for recovery and moisture by Lunnon Metals field staff in real time during the drilling process. Samples are monitored for possible contamination during the drilling process by Lunnon Metals geologists. • DD core recovery is measured for each drilling run by the driller and then checked by the Lunnon Metals geological team during the mark up and logging process. • No sample bias is observed. • There is no observed relationship between recovery and gold grade nor bias related to fine or coarse sample material.

Criteria	JORC Code explanation	Commentary
	<p><i>preferential loss/gain of fine/coarse material.</i></p>	<p>Historical data</p> <ul style="list-style-type: none"> There are no available records for sample recovery for AC, DD or RC drilling completed by Previous Owners; however, re-logging exercises completed by Lunnon Metals of surface and underground DD holes from across the KGNP between 2017 and present found that on average drill recovery was good and acceptable by industry standards.
Logging	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies</i></p> <p><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</i></p>	<p>For Lunnon Metals AC, RC and DD (and re-logging of Historical DD where relevant)</p> <ul style="list-style-type: none"> Geological logging is undertaken for the entire hole recording lithology, oxidation state, mineralisation, alteration, structural fabrics, and veining, subject to the following exception. DD orientated structural logging, core recovery, and Rock Quality Designation (RQDs) are all recorded from drill core over intervals of interest and relevance. Detailed geotechnical logging and rock property test work is completed over intervals of relevance by independent MineGeoTech Pty Ltd (MGT) contractor geotechnical engineers. Geological logging (and where required, geotechnical logging) is completed in sufficient detail to support future Mineral Resource estimation, mining and metallurgical studies. Metallurgical test work in the broader project area is ongoing in addition to the geological logging and element assaying detailed below. General logging data captured are qualitative (descriptions of the various geological features and units) and quantitative (numbers representing structural attitudes, and vein and sulphide percentages, magnetic susceptibility and conductivity). DD core is photographed in both dry and wet form. AC and RC chip trays are photographed in both dry and wet form. <p>Historical data</p> <ul style="list-style-type: none"> There is no available documentation describing the logging procedures employed by Previous Owners' geologists in the KGNP area. However, the WMC historical graphical hardcopy logs and other geoscientific records available for the project are of high quality and contain significant detail with logging intervals down to as narrow as 0.01 m. The geological logs document lithology, textures, structures, alteration, and mineralisation observed in drill core captured both graphically and in a five-character logging code (Lunnon Metals notes that a previous logging legend employed at WMC's Kambalda Nickel Operations utilised a 3-letter code which is often represented on hard copy plans and cross sections of an older vintage and which was converted by WMC to the latter 5-character code at some later time). Stratigraphy is also captured in a three-character logging code. Sample intervals are recorded on the graphical log. These logging legends are well documented in lieu of a recorded procedure and are utilised by Lunnon Metals in current logging practices. In regard geotechnical logging or procedures, there is no record of any formal relevant procedures or logging and based on personal experience of the Competent Person, such logging was not routinely completed prior to the introduction of Regulation 10:28 in the WA Mine Safety and Inspection Act, requiring the same in approximately 1996. Based on the personal experience of the relevant Competent Person to this announcement, having worked for WMC in Kambalda between 1996 and 2001, and Gold Fields between 2001 and 2006, it is known that the Previous Owners had a rigorous and regimented system for storing and archiving the graphical logs physically, microfilmed, and drafted on to master cross sections, plans, and long sections.

Criteria	JORC Code explanation	Commentary
Logging (continued)		<ul style="list-style-type: none"> Starting in the early 2000s under Gold Fields ownership drillhole logging information was captured digitally via rugged tablet, field- based laptops (known as "Toughbooks") using a newly developed in-house (and industry standard) geological logging legend which was overseen by the Competent Person who was Exploration Manager for the St Ives Gold Mining Co Pty Ltd (SIGM) at that time. Both the graphically captured interval data and the more recently digitally captured geological logging information was stored in a secure digital database. Lunnon Metals sourced historical diamond core from the SIGM Kambalda core yard on Durkin Road where relevant to its investigations. <p>Optical Televiewer downhole surveys</p> <ul style="list-style-type: none"> For additional information regarding Optical Televiewer surveys please refer to Table 1 section 2 'Other substantive exploration data' criteria. <p>Surface rock chip and grab sampling</p> <ul style="list-style-type: none"> All rock chip / grab samples have been geologically described and recorded by a qualified geologist. The geological logging was to a level appropriate for exploration planning purposes. Geological logging of the samples is qualitative in nature.
Sub-sampling techniques and sample preparation	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p>Lunnon Metals RC</p> <ul style="list-style-type: none"> Dry RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. Duplicate samples are collected directly from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. After receipt of the RC samples by the independent laboratory the samples submitted for fire assay or multielement analysis are typically dried and pulverised with >85% pulverised to 75micron or better. For sample weights > 3kg the sample is dried, split and pulverised up to 3kg. RC samples submitted for Chrysos PhotonAssay™ (PhotonAssay) method of gold analysis, are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. <p>Lunnon Metals DD (and re-sampling of Historical DD where relevant)</p> <ul style="list-style-type: none"> DD core samples are most typically collected with a diamond drill rig drilling HQ and/or NQ2 size core. After logging, sample interval mark-up, photographing, and geotechnical rock property test work, selected sample intervals of drill core are cut in half along the length of the drill core with a diamond saw in a Discoverer® Automatic Core Cutting Facility using a Corewise Auto Core Saw. Typically, one half of the drill core is sent to the laboratory for assay and the other half retained in its original core tray. The PQ metallurgical holes had one quarter sent to the assay laboratory and the remaining three-quarters is saved for metallurgical testwork samples. Holes are marked-up and sampled for assaying over mineralised and surrounding intervals at a typical minimum sample interval of 0.3m to ensure adequate sample weight and a typical maximum sample interval of 1.0m, constrained by geological boundaries. Specific Gravity – Sufficient density measurements are taken for each mineralised DD sample for the Lunnon Metals drill holes. Sample weights vary depending on core diameter, sample length and density of the rock. Regolith zonation is taken into account. Field duplicate samples are collected at a rate of 1 in 25 samples, and more frequently in the identified mineralised zones, by cutting the core

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation (continued)		<p>into quarters and submitting both quarters to the laboratory for analysis as two separate samples.</p> <ul style="list-style-type: none"> • In the case of the metallurgical holes no field duplicates are collected to preserve a consistent amount of core for metallurgical testwork. • After receipt of the DD core samples by the independent laboratory the samples are dried, crushed to ~2mm, and pulverised with >85% pulverised to 75micron or better. For sample weights >3kg the sample is dried, crushed to ~2mm, split, and pulverised up to 3kg. • DD core samples submitted for PhotonAssay method of gold analysis, are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. • Sample sizes are considered appropriate for the style of mineralisation. • Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverising. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis. <p>Lunnon Metals AC</p> <ul style="list-style-type: none"> • AC samples are collected manually by scoop sampling directly from spoil piles on the ground which have been transferred via plastic buckets from a cyclone mounted on the drill rig. • The field technician collects a single two-metre composite from two consecutive spoil piles starting from the collar, taking care that the resultant composite sample is representative and with a total sample weight of approximately 2.5 ± 0.5 kg. • Each 1.0m spoil mass typically averages $8.5\text{kg} \pm 3.4\text{kg}$. • The final two samples for each hole are sampled on a single metre basis (not composited). • Duplicate samples are collected by scoop sampling from the spoils piles into calico sample bags, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. Additional field duplicate samples are collected if required from key geological horizons. • After receipt of the AC samples by the independent laboratory the samples are typically dried, crushed to ~2mm, and pulverised with >85% pulverised to 75micron or better. For sample weights >3kg the sample is dried, crushed to ~2mm, split, and pulverised up to 3kg. • AC samples submitted for Chrysos PhotonAssay™ (PhotonAssay) method of gold analysis are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. • Selected AC samples are analysed for a multi-element suite typically comprising 48 elements. Analytical techniques used a four-acid digest (with ICP-OES or ICP-MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for near total dissolution of almost all mineral species including silica-based samples. • Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation and then transported to Intertek Genalysis in Perth for analysis. <p>Historical data</p> <ul style="list-style-type: none"> • All historical core that was relevant to the mineralisation drilled and sampled by WMC as sighted by Lunnon Metals was sawn with half or quarter core sampling practices. It is assumed that all samples otherwise contributing to any estimation of mineralisation by Lunnon Metals were processed with this standard methodology. • In regard historical core if used in a future MRE, subsampling techniques for WMC drilled NQ and BQ and occasionally AQ size drill holes typically involved half and quarter sawn drill core with the quarter core dispatched for assaying in the case of NQ and BQ, and half core in the case of AQ.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation (continued)		<ul style="list-style-type: none"> Portions of drill core distal to the main high-grade mineralisation were sometimes 'chip sampled' by WMC. Lunnon Metals has chosen not to utilise such samples in any estimation of grade or mineralisation. WMC typically sampled in interval lengths relevant to the underlying lithology and mineralisation such that sample interval lengths may vary from between minima of 0.05m and maxima up to 2.00m approximately within any mineralised zone. Intervals of no mineralisation or interest were typically not sampled. Review of historical drill core by Lunnon Metals indicated that the sample sizes were appropriate for the type, style and thickness of mineralisation being tested with sample breaks corresponding to lithological or mineralisation breaks being the norm. Although faded through time, sample depth intervals are evident as marked on the remaining half core as observed by Lunnon Metals and these correlate to sample interval depths in the original paper graphical drill logs and the historical database While the Previous Owners' procedures for logging, sampling, assaying and QAQC of drillhole programs was not available at the time of this announcement it is interpreted that it was of high quality and in line with industry standards at that time. It is the opinion of the relevant Competent Person that the sample preparation, security, and analytical procedures pertaining to the above-mentioned historical drilling by Previous Owners were adequate and fit for purpose based on: <ul style="list-style-type: none"> Both WMC and Gold Fields' reputation in geoscience, in WMC's case stemming from their discovery of nickel sulphides in Kambalda in the late 1960s; identification of procedures entitled "WMC QAQC Practices for Sampling and Analysis, Version 2 – adapted for St Ives Gold" dated February 2001 and which includes practices for gold and nickel; and the first-hand knowledge and experience of the Competent Person of this announcement whilst working for WMC and Gold Fields at Kambalda between 1996 and 2006.
Quality of assay data and laboratory tests	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p> <p><i>For geophysical tools,</i></p>	<p>For Lunnon Metals AC, RC and DD (and re-assaying of Historical DD where relevant) and surface rock chip / grab samples</p> <ul style="list-style-type: none"> Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation such as drying, crushing where necessary, and pulverising. Prepared samples are then transported to Intertek Genalysis in Perth for analysis. Samples are analysed for a multi-element suite (typically 33 or 48 elements) including, as a minimum, Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti,

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests (continued)	<p><i>spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p> <p><i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i></p>	<p>Zn. Analytical techniques used a four-acid digest (with ICP-OES or ICP-MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for near total dissolution of almost all mineral species including silica-based samples.</p> <ul style="list-style-type: none"> Within selected gold mineralised zones and all nickel mineralised zones, the platinum group elements (Pd, Pt, Au) are also analysed using a 50g charge lead collection fire assay method with ICP-MS finish. For the purpose of gold exploration, samples have been typically submitted for 50g charge lead collection fire assay, while samples specifically located in weathered regolith and mineralised zones are submitted for the same multi-element suite as above for the purpose of assessing potential gold path finder elements. From 2024 the Company has moved to PhotonAssay™ as its preferred methods of gold analysis. PhotonAssay is a high-energy X-ray source that is used to irradiate large mineral samples, typically about 0.5 kg. The X-rays induce short-lived changes in the structure of any gold nuclei present. As the excited gold nuclei return to their ground state, they emit a characteristic gamma-ray signature, the intensity of which is directly proportional to the concentration of gold. The penetrating nature of PhotonAssay provides much higher energy than those used in conventional X-ray fluorescence (XRF), which provides a true bulk analysis of the entire sample. Samples are presented into a fully automatic process where samples are irradiated, measured, data collected and reported. These techniques are considered quantitative in nature. Industry prepared certified reference material (CRM), or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the expected mineralised zones. Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the identified mineralised zones. At present blank samples are prepared from CRM Bunbury Basalt. In the past blanks were prepared from barren non-ultramafic RC chips as verified by laboratory analysis or barren non-ultramafic Proterozoic Dyke DD core acquired locally and verified by geological logging. The independent laboratory also carries out numerous internal standards in individual batches. The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt to determine that the accuracy and precision of the data has been identified as acceptable prior to being cleared for upload to the project-wide Lunnon Metals KGNP Geobank® (Micromine) database (Database). <p>Historical data</p> <ul style="list-style-type: none"> There is no data available at the time of this announcement pertaining to the assaying and laboratory procedures nor the historical field or laboratory quality assurance and quality control (QAQC), if any, undertaken by Previous Owners' drilling programs in the KGNP area; however, it is expected that industry standards as a minimum were likely to have been adopted in the KGNP area and the analytical laboratory.
Verification of sampling and assaying	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p> <p><i>The use of twinned holes.</i></p> <p><i>Documentation of primary data, data entry procedures, data</i></p>	<p>For Lunnon Metals AC, RC and DD</p> <ul style="list-style-type: none"> In the case of current gold exploration, previous lodgements have specifically documented the results of drilling DD holes adjacent to previous Company RC holes. Specific assayed gold interval samples nominated for verification are either re-split in the field via riffle splitter in the case of RC samples, or in the case of DD core the remaining half of core from the core trays are sampled. These full intervals of duplicate samples are assayed via the

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying (continued)	<p><i>verification, data storage (physical and electronic) protocols.</i></p> <p><i>Discuss any adjustment to assay data.</i></p>	<p>original and/or alternative methods as a means of verifying the original gold assays.</p> <ul style="list-style-type: none"> Prior to drilling, all planned collar data is captured in a digital drillhole collar register stored on a secure site-based server which is backed up to Perth based server continuously. The collar register is updated as drilling progresses and is completed. Sample intervals are captured in digital QAQC'd spreadsheets via Toughbooks. Since September 2023 the data collected on the Toughbooks synchronises directly to the Database stored on a separate secure sequel server. A set of buffer tables store the data before the database administrator does a second validation of the data (driven by in-built validation rules in the Database) before loading to the production data tables. Assays from the laboratory are sent directly to the database administrator via a dedicated Lunnon Metals assays email address where they are all checked and verified by the Lunnon Metals database administrator before accepting the batches into the database. No adjustments are made to the original assay data. Only the Lunnon Metals database administrator has editable access to assay values stored in the Database and an internal periodic audit protocol is in place to verify Database assay values against original laboratory provided assay data.
		<p>Historical data</p> <ul style="list-style-type: none"> Diamond core data – across the KGNP, Lunnon Metals has undertaken exhaustive assessment of historical WMC underground and surface diamond drill core to inspect and visually validate significant drill assays and intercepts, and re-sample and re-assay to validate historical assay data in the KGNP Database. No significant or systematic inconsistencies have been identified and the Competent Person is satisfied that the original data in the project area is representative of the geology and mineralisation modelled; thus, no adjustments to assay data have been deemed necessary or made.
		<p>Surface rock chip and grab sampling</p> <ul style="list-style-type: none"> No verification of sampling and assaying of surface rock chip/grab samples is undertaken. No rock chip data is used in any MRE.
Location of data points	<p><i>Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p> <p><i>Specification of the grid system used.</i></p> <p><i>Quality and adequacy of topographic control.</i></p>	<p>General</p> <ul style="list-style-type: none"> The grid projection is GDA94/ MGA Zone 51. Diagrams and location data tables have been provided in the previous reporting of exploration results where relevant. <p>For Lunnon Metals AC, RC and DD</p> <ul style="list-style-type: none"> RC and DD hole collar locations are located initially by handheld GPS to an accuracy of +/- 3m. Planned resource drill holes are set out by a licensed surveyor for better than 3m accuracy. Subsequently, drill hole collar locations are then picked up by a licensed surveyor using DGPS methods following the completion of the drilling. All drill holes are typically surveyed downhole at 5m intervals using the REFLEX gyro Sprint-IQ (north seeking gyro) system for both azimuth and dip measurements or the new REFLEX gyro OMNIx42, which is stated to have an even greater accuracy than the Sprint-IQ. Downhole surveys are uploaded by Blue Spec and Ausdrill to the IMDEXHUB-IQ, a cloud-based data management program where surveys are validated and approved by trained Lunnon Metals staff. Surveys can now be validated live and in 3D with the introduction of Sequent Central to the process, a cloud-based management system with direct integration between IMDEX and Leapfrog Geo (3D geology modelling software). Approved exports are then downloaded to the server and after additional QAQC checks and sign off the survey data is

Criteria	JORC Code explanation	Commentary
Location of data points (continued)		<p>uploaded to the Database. The input file is the same file directly downloaded from the IMDEX hub, so data entry errors are eliminated.</p>
		<p>Historical data</p> <ul style="list-style-type: none"> Historical methods of drill collar survey pick-up are not recorded however Previous Owners did employ surface surveyors dedicated to the collection of exploration collar data. The easting, northing and elevation values were originally recorded in local KNO ('Kambalda Nickel Operations') grid and later converted to the currently used GDA94/MGA Zone 51 grid. Both the original KNO grid coordinates and the converted coordinates are recorded in the Database. A representative number of historical drill collars were located in the field and their locations cross checked via differential GPS and/or handheld GPS to validate the Database collar coordinates. Historical hardcopy downhole survey data is generally available for the majority of surface drillholes and the records show that single shot magnetic instruments were used. A representative number of these hardcopy downhole survey records have been cross checked against the digital records in the Database. Downhole surveys of select historical surface DD have been conducted using modern gyro systems as described above and no significant errors or inconsistencies were deemed present. Lunnon Metals has corrected where necessary incorrect data in the Database where down hole measurements from the hardcopy data were incorrectly processed. No other significant errors or inconsistencies were deemed present or capable of being detrimental to any interpretation of gold or nickel mineralisation, including any MRE work. <p>Surface rock chip and grab sampling</p> <ul style="list-style-type: none"> The rock chip / grab sampling points are located by handheld GPS to a typical accuracy of +/- 3m.
Data spacing and distribution	<p><i>Data spacing for reporting of Exploration Results.</i></p> <p><i>Whether the drill spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied</i></p> <p><i>Whether sample compositing has been applied</i></p>	<p>For Lunnon Metals AC, RC and DD</p> <ul style="list-style-type: none"> The AC, RC and DD programs at KGNP comprise drillhole spacings that are dependent on the expected target style and size, orientation and depth. Drillholes are not necessarily drilled to set patterns or spacing at the exploration stage of the program. Previous drill spacing varies greatly, again subject to the target style, dimensions, orientation and depth and inherent geological variability and complexity. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. No sample compositing has been applied except at the reporting stage of drill intercepts within a single hole. In the case of drilling intended to serve as grade control on which future open pit production could be designed and scheduled, such as is the case at the Lady Herial gold deposit, the drill spacing aims to approximate 8m x 6m. <p>Historical data</p> <ul style="list-style-type: none"> The typical spacing for the early WMC DD surface drill traverses varies but is typically approximately 200m to 400m apart with drillhole spacing along the traverses at 100m to 50m. In areas of shallower RC drilling this drill spacing is sometimes improved to 100m by 50m or even 50m by 50m. The drill spacing for areas the subject of underground DD holes was variable but was on average spaced at approximately 20m along the strike of a mineralised zone with fans or rings of DD holes that deliver pierce points in the dip orientation at variable spacing, but typically 10m to 20m apart.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution (continued)		<ul style="list-style-type: none"> The drill spacing for the gold prospects reported, with both Lunnon Metals surface DD and RC and Previous Owners surface DD, RC and AC, is variable but ranges typically from 320m, 160m, 80m, 40m, to 20m hole spacing depending on the maturity or state of advancement of the prospect by those Previous owners. <p>Surface rock chip and grab sampling</p> <ul style="list-style-type: none"> Not relevant to the reporting of rock chip / grab samples. Spacing of sample location is arbitrary, and dependent on the surface exposures identified in the field. The location, assay results and geological descriptions of the rock chip / grab samples reported is not appropriate for use, and will not be used, in any mineral resource estimate.
Orientation of data in relation to geological structure	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></p> <p><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	<ul style="list-style-type: none"> The preferred orientation of drilling at KGNP is designed to intercept the target approximately perpendicular to the strike and dip of the mineralisation where/if known. Subsequent sampling is therefore considered representative of the mineralised zones if/when intersected. The chance of bias introduced by sample orientation relative to structures, mineralised zones or shears at a low angle to the drillhole is possible, however quantified orientation of the intercepted interval allows this possible bias to be assessed. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. Lunnon Metals does not consider that any bias was introduced by the orientation of sampling resulting from any particular drilling technique. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal.
Sample security	<i>The measures taken to ensure sample security</i>	<p>Lunnon Metals RC and AC</p> <ul style="list-style-type: none"> The calico sample bags are collected by Lunnon Metals personnel stationed at the drill rig typically at the end of each day. The calico samples are collected sequentially in groups of five and placed into polyweave bags, or more recently green plastic bags, which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies the Company of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the Laboratory's secure warehouse until collected by the Company or approves them to be discarded. <p>Lunnon Metals DD (and re-sampled Historical DD where relevant)</p> <ul style="list-style-type: none"> After the drill core is cut and returned to its original position in the core tray, Lunnon Metals' geologists mark up the drill core for sampling and records the sample intervals against unique sample numbers in a digital sample register. A Lunnon Metals core farm technician then collects the cut core samples into calico bags guided by the sample register and sampling information contained therein. The calico samples are collected sequentially in groups of five and placed into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies Lunnon Metals of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse

Criteria	JORC Code explanation	Commentary
Sample security (continued)		<p>rejects are held in the laboratory's secure warehouse until collected by Lunnon Metals or approval is provided for them to be discarded.</p> <p>Historical data</p> <ul style="list-style-type: none"> There is no documentation which describes the historical sample handling and submission protocols during Previous Owners' drilling programs; however, it is assumed that due care was taken with security of samples during field collection, transport and laboratory analysis. The historical drill core remaining after sampling was stored and catalogued at the KNO core farm (now Gold Fields, SIGM core farm) and it remains at this location to the present day.
Audits or review	<p><i>The results of any audits or reviews of sampling techniques and data.</i></p>	<ul style="list-style-type: none"> No external audits or reviews have been undertaken at this stage of the program. <p>WMC Historical data</p> <ul style="list-style-type: none"> Cube Consulting Pty Ltd (Cube) are independent of Lunnon Metals and have been previously retained by Lunnon Metals to complete the grade estimation for nickel mineralisation models and MRE exercises. Cube were also requested to review and comment on the protocols developed by Lunnon Metals to deal with, and thereafter utilise, the historical WMC Resources' data, in particular the re-sampling and QAQC exercise completed by Lunnon Metals such that the data is capable of being used in accordance with current ASX Listing Rules where applicable and JORC 2012 guidelines and standards for the generation and reporting of MREs. Cube documented no fatal flaws in that work completed by Lunnon Metals in this regard.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<ul style="list-style-type: none"> The property is located on granted Mining Leases. Although all the tenements wholly or partially overlap with areas the subject of determined native title rights and interests, the Company notes that the original grant of the right to mine pre-dates 23 December 1996 and as such section 26D of the Native Title Act may be applied to exempt any future renewals or term extensions from the right to negotiate in Subdivision P of the Act. Notwithstanding the above, on January 9, 2025, the Company announced that it had executed a Mining Agreement with the Ngadju Native Title Aboriginal Corporation RNTBC (NNTAC), covering the relevant parts of the KGNP that fall on Ndadju Determination Area country. The renewal of the Company's mining licences has now been confirmed with the new expiry date being 23 December 2046. The complete area of contiguous tenements on which the Silver Lake-Fisher project and rights is located is, together with the wholly owned Foster-Baker project area on the south side of Lake Lefroy, collectively referred to as the Kambalda Gold & Nickel Project ("KGNP") area. Gold Fields Ltd's wholly owned subsidiary, SIGM, remains the registered holder and the beneficial owner of the Silver Lake- Fisher area. Lunnon Metals holds: <ul style="list-style-type: none"> 100% of the rights and title to the Foster-Baker (FBA) area of KGNP, its assets and leases, subject to certain select reservations and excluded rights retained by SIGM, principally relating to the right to gold in defined areas and the rights to process any future gold ore mined at their nearby Lefroy Gold Plant; The FBA project area of KGNP comprises 19 tenements, each approximately 1,500 m by 800 m in area, and three tenements on which infrastructure may be placed in the future. The tenement numbers are as follows: <p>M15/1546; M15/1548; M15/1549; M15/1550; M15/1551; M15/1553; M15/1556; M15/1557; M15/1559; M15/1568; M15/1570; M15/1571; M15/1572; M15/1573; M15/1575; M15/1576 M15/1577; M15/1590; M15/1592;</p> <ul style="list-style-type: none"> and additional infrastructure tenements: M15/1668; M15/1669; M15/1670; and 100% of the mineral rights to nickel and associated metals in the Silver Lake-Fisher (SLF) project area of KGNP, subject to the rights retained by SIGM as tenement holder and as detailed in the Mineral Rights Agreement (MRA). The tenement numbers are as follows (note select tenements are not wholly within the MRA area): <p>M15/1497; M15/1498; M15/1499; M15/1505; M15/1506; M15/1507; M15/1511; M15/1512; M15/1513; M15/1515; M15/1516; M15/1523; M15/1524; M15/1525; M15/1526; M15/1528; M15/1529; M15/1530; M15/1531; and access rights to ML15/0142.</p> There are no known impediments to potential future development or operations, subject to relevant regulatory approvals, over the leases where significant results have been reported. The tenements are in good standing with the Western Australian Department of Mines, Petroleum and Exploration

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	<i>Acknowledgement and appraisal of exploration by other parties.</i>	<ul style="list-style-type: none"> In relation to nickel mineralisation, WMC, now BHP Nickel West Pty Ltd and a wholly owned subsidiary of BHP Group Ltd, conducted all relevant exploration, resource estimation, development and mining of the mineralisation at Foster, Jan, Silver Lake and Fisher mines from establishment of the mineral licences through to sale of the properties to SIGM in December 2001. Whilst the majority of this prior work had a nickel focus, some gold exploration did occur. Approximately over 550,000m of DD was undertaken on the properties the subject of the FBA and SLF area by WMC prior to 2001. SIGM has conducted later, limited gold exploration activities on the KGNP area since 2001, however until nickel focused work recommenced under Lunnon Metals management, no meaningful nickel exploration has been conducted since the time of WMC ownership and only one nickel focused surface diamond core hole (with two wedge holes), was completed in total since WMC ownership and prior to Lunnon Metals' IPO. In relation to gold exploration, Lunnon Metals adopted a 100% gold focussed strategy in early 2024. Since that time over 34km of drilling has been completed by the Company, with over 500 RC holes and 25 DD holes completed. In relation to past gold production, no modern gold production has occurred on FBA leases where Lunnon Metals has the gold rights. 1920's vintage gold production occurred and is understood to have totalled approximately 50k short tons, for 23.4koz of gold (source: "WA Government List of Cancelled Gold Mining Leases (which have produced gold)" WA DMP 1954). On the KGNP, past total production from underground mining was conducted by WMC and was solely focused on nickel, recording in contained nickel metal terms: <ul style="list-style-type: none"> Foster 61,129 nickel tonnes; Jan 30,270 nickel tonnes; Fisher 38,070 nickel tonnes; and Silver Lake 123,318 nickel tonnes.
Geology	<i>Deposit type, geological setting and style of mineralisation.</i>	<ul style="list-style-type: none"> The KGNP area is host to both typical Archaean greenstone gold deposits and 'Kambalda' style, komatiitic hosted, nickel sulphide deposits as routinely discovered and mined in the Kambalda/St Ives district. The project area is host to gold mineralisation as evidenced by the past mining activities noted above and also nickel mineralisation and elements associated with this nickel mineralisation, such as Cu, Co, Pd and Pt.
Drillhole information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:</i></p> <ul style="list-style-type: none"> <i>easting and northing of the drillhole collar</i> <i>elevation or RL (elevation above sea level in metres) of the drillhole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and</i> <i>interception depth hole length</i> 	<ul style="list-style-type: none"> Drill hole collar location and downhole directional information has been provided for all material drill holes within the body of this, or related previous ASX reports and also within the relevant Additional Details Table in the Annexures of this, or those reports. Cross sections are often only able to be presented once sufficient pierce points on the same section have been generated and the interpretation sufficiently well advanced to present such sections in a meaningful manner.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p>	<ul style="list-style-type: none"> Grades have been reported as intervals recording down-hole length and interpreted true width where this estimation is able to be made. Any grades composited and reported to represent an interpreted mineralised intercept of significance are reported as sample-length weighted averages over that drill intercept. <p>Gold Exploration Results</p> <ul style="list-style-type: none"> The Company currently considers that grades above 0.5 g/t Au and/or 1.0 g/t Au are worthy of consideration for individual reporting in any announcement of Exploration Results in additional details tables provided. Composite grades may be calculated typically to a 0.5 g/t Au cut-off with intervals greater than 1.0 g/t reported as "including" in any zones of broader lower grade mineralisation. Reported intervals may contain variable widths of internal waste (samples with values below stated cut-off grade) depending on the style of gold mineralisation being investigated however the resultant composite must be greater than either the 0.5 g/t Au or 1.0 g/t Au as relevant (or the alternatively stated cut-off grade). No top-cuts have been applied to reporting of drill assay results and no metal equivalent values have been reported. Where present, historical SIGM drilling in the project area was typically only assayed for Au. <p>Surface rock chip and grab sampling (where relevant)</p> <ul style="list-style-type: none"> Only individual rock chip assay results have been released in the past. Results have not been aggregated. No metal equivalent values are reported. Results are from surface outcrops, existing historical sample pit spoils as relevant, and/or surface rock float and no estimate of width or geometry of the sampled medium is provided
Relationship between mineralisation widths and intercept lengths	<p><i>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i></p>	<ul style="list-style-type: none"> In regard to the gold prospects reported, subject to the stage of maturity and thus understanding of the prospect and target mineralisation, again, if possible, drillholes are designed to intersect target surfaces at approximately perpendicular to the strike of mineralisation. Earlier stage or conceptual gold targets however may not be sufficiently well understood to allow this to be the case.
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.</i></p>	<ul style="list-style-type: none"> The Competent Person decides on the appropriate sectional representation, if one is possible. The one chosen may not be a cross section, if a longitudinal section or projection is considered more appropriate. If long plunge extents are present, long projections are often considered the most appropriate format to present most results, especially if there are insufficient drill hole intercepts to present meaningful, true cross sections. Isometric and plan views are also utilised to place drill results in context if possible. In regard the gold prospects reported, plan, isometric, long projection and/or cross section views are presented if sufficient data or individual drill intercepts are present to make this meaningful.
Balanced reporting	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be</i></p>	<ul style="list-style-type: none"> Drill collar locations of Previous Owners Historical drilling and current drilling completed by Lunnon Metals have been previously lodged on the ASX platform and all results of the drilling have also been previously reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	<p><i>practiced to avoid misleading reporting of Exploration Results.</i></p> <p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	<ul style="list-style-type: none"> The KGNP has a long history of geological investigation, primarily for nickel, but also gold to a lesser degree. Datasets pertinent to the KGNP that represent other meaningful and material information include: <ul style="list-style-type: none"> Geophysics - multiple ground and aerial based surveys of magnetic, gravity, Sub Audio Magnetics, electro magnetics, and down hole transient electromagnetic surveys along with more limited 2D and 3D seismic surveys. Geochemistry - gold and nickel soil geochemistry datasets across the KGNP and rock chip sampling in areas of outcrop. Geotechnical test work on drill core is carried out by independent consultants MGT involving on-site geotechnical logging of the DD core and off-site rock property testing of selected DD core samples. Downhole Transient Electro-magnetic (DHTEM) surveys, when conducted, use the DigiAtlantis system and DRTX transmitter. The readings are typically recorded at 2.5m to 10m intervals. The survey used loops ranging from 300m x 200m to 690m x 290m in orientations designed relative to the target and stratigraphic setting. If required, the Company generally retains ABIM Solutions Pty Ltd (ABIMS) to use the latest generation QL40 OBI Optical Televiewer (OTV) and a customized logging vehicle, to conduct OTV wireline surveys in the project area in select RC or DD holes. The OTV survey generates an oriented 360-degree image of the borehole wall by way of a CCD camera recording the image reflected from a prism. ABIMS provide in-house OTV data interpretation techniques which include structural feature classifications along with structural feature dip and dip direction determination The OTV wireline surveys in RC holes, if applicable, are particularly useful in defining geological and structural orientation data, data that is otherwise unobtainable from RC drill chips. Where completed, these OTV surveys can identify the downhole locations of geological and structural features potentially associated with gold mineralisation such as veining and shearing, such that the positions and intensity of these features can be reconciled with the RC chips used by the geologist for geological logging. If required, ABIMS are also used to collected down-hole imaging data using the latest generation ABI40 Acoustic Televiewer (ATV) and a customised logging vehicle. The ATV wireline survey in DD holes provides down-hole geological definition, geotechnical rock mass characterisation, determination of fracture frequency and orientation, and primary stress orientation. The ABI40 ATV generates an image of the drillhole wall by transmitting ultrasound pulses from a rotating sensor and recording the amplitude and travel time of the signals reflected from the drillhole wall. Data is transferred back to the surface via a wireline in real time. Such data collected is used by the Company's geologists in support of deposit geological and structural modelling and by geotechnical consultants for geotechnical assessment purposes. If required, Southern Geoscience Consultants Pty Ltd (SGC) provide an ultrasonic velocity meter for the collection of velocity data measurements on DD. Data from this coupled with density measurements will provide acoustic impedance information, enabling the reflectivity in the seismic section to be tied to the geology in the borehole.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data (continued)		<p>Commentary specific to previous metallurgical test work</p> <ul style="list-style-type: none"> Detailed metallurgical test work has been completed by the Company at its Lady Herial deposit to simulate the operating conditions at the SIGM Lefroy Plant. By commercial agreement with SIGM in the OPA, the metallurgical recovery factor has been set at 91.0% on the basis of this extensive test work. The average metallurgical response from the test work was an overall gold recovery of 91.4% (for a 12 hour residence) and 94.6% (24 hour residence) at P80 passing 150µm. The results of this test work have been previously reported on 17 February 2025 and 14 August 2025. Given the extensive direct experience of the Competent Persons at St Ives, exploring and mining multiple deposits of similar mineralogical characteristics, they consider it reasonable to assume that prospects like Hustler will display a similar metallurgical response. Therefore both the principal and relevant Competent Persons have concluded that there are reasonable prospects that the gold mineralisation will be amenable to treatment at the gold processing facilities closest to the KGNP i.e. Lefroy. More detailed, prospect specific test work will be conducted should the target progress through the relevant stages of exploration maturity.
Further work	<i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</i>	<ul style="list-style-type: none"> Since the Company's IPO through to end of December 2025, over 131,000m of diamond, RC or aircore drilling has now been completed at FBA and SLF, primarily focused on nickel exploration until a shift of focus to gold in early 2024. Nearly 31,000m of historical core has also been reprocessed in the Company's Historical Core Program (HCP) over that same period. All Company work programs are continuously assessed against, and in comparison to, ongoing high priority programs elsewhere at the KGNP. Where activity or drilling relates to early-stage exploration, as is the case at Hustler, it is an iterative process with assay, geological, geochemical, geophysical and litho-structural observations and results all contributing to a continuous assessment of the merits of any particular target, and how, or whether, to continue to pursue further data and further definition, potentially by continuing to drill.