

EXPLORATION RESULTS INC. NEW VULCAN PROSPECT AND PROGRESS ON TARGET GENERATION – BROWNS RANGE

Highlights

- Northern Minerals successfully completed four field exploration programs during H1 FY26 across its broader Browns Range rare earths project area, across northern Western Australia.
- The four programs consisted of three drilling campaigns of 50 holes for 7,452.27 m and an Ultrafine fraction (UFF) soil geochemical program for 772 samples.
- Reverse circulation (RC) drilling consisted of 33 holes for 3,268 m. Assays for all 3,251 samples submitted have now been received.
- The RC Regional Tracks program intercepted broad zones of heavy rare earth elements (HREE) dominated mineralisation in two holes, defining a new target – the Vulcan prospect. Significant intercepts are:
 - **BRR0620: 8 m @ 0.22% total rare earth oxide (TREO) from 17 m to 25 m.**
 - **BRR0620: 23 m @ 0.65% TREO from 31 m to 54 m.**
 - **BRR0632: 2 m @ 0.22% TREO from 9 m to 11 m.**
 - **BRR0632: 29 m @ 0.53% TREO from 14 m to 43 m.**
- The RC Regional Tracks program targeted structural features defined by geophysical interpretations and lithologies with distinct magnetic signatures (intrusions).
 - HREE-dominated mineralisation was intercepted within the mafic andesite package, confirming this as a new lithological target.
 - Results support the revised interpretation of the Browns Range as a volcano-sedimentary arc sequence, first identified by the Dazzler EIS program¹.
 - The results also provide a technical basis for a range of new exploration targets, enhancing the discovery potential across the broader Browns Range project area.
- Northern Minerals completed 17 diamond drill (DD) holes totalling 4,184.27 m. To date, assays from 1,140 samples from 13 holes have been received.
- At the Rockslider prospect, assays from eight DD holes have been received. These results identified anomalous TREO intersections that have successfully confirmed target mineralisation, providing additional data for interpretation and follow-up drilling programs. Significant intercepts were:
 - **BRRSD0001: 4 m @ 0.19% TREO from 5 m to 9 m.**
 - **BRRSD0001: 29 m @ 0.30% TREO from 14 m to 43 m.**
 - **BRRSD0001: 10 m @ 0.18% TREO from 51 m to 61 m.**

¹ See NTU ASX announcement 15 May 2025.

- At the Ripcord prospect and Dazzler deposit, assays from a nine-hole DD program have been received, validating the updated geological model that will be used in the potential Dazzler Mineral Resource estimate (MRE) update, which is planned for Q4 FY26. Ripcord is approximately 700 m north of Dazzler. Significant intercepts were:
 - **BRDD0016: 2.46 m @ 0.29% TREO from 124 m to 126.46 m.**
 - **BRDD0016: 3.55 m @ 0.21% TREO from 146.7 m to 150.25 m.**
- An Ultrafine fraction (UFF) soil sampling program of 772 samples has delivered yttrium geochemical anomalies that will be targeted for second-order follow-up work. The UFF technique is specifically designed for detection of sub-surface mineralisation, ideally suited to Browns Range where more than 80% of the tenure is under cover.
- The Regional Target Generation program has advanced several foundational, cutting-edge datasets and techniques used to construct a Minerals Systems Model for HREE mineralisation in the Browns Range. Results from the interpretation of the program are planned for release during H2 FY26.

Australian heavy rare earths-focused company Northern Minerals Limited (**ASX: NTU**) (**Northern Minerals** or the **Company**) is pleased to announce positive results from the progressive and systematic exploration programs conducted during H1 FY26, proximal to the Company's 100%-owned Browns Range Heavy Rare Earths Project (**Browns Range** or **Project**), located in the East Kimberley region of Western Australia.

The Project lies 160 km south-east of Halls Creek in Western Australia and near the border to the Northern Territory. It encompasses a highly prospective region that includes the Browns Range Dome, a member of the Paleoproterozoic Grimwade intrusive suite. Spanning approximately 3,000 km² and home to the world-scale Wolverine heavy rare earths deposit – the flagship deposit at the Project – the Dome and surrounding margins are highly prospective for additional Heavy Rare Earth Elements (HREE) mineralisation.

Northern Minerals has focused primarily on advanced exploration of its 100%-owned tenements in Western Australia, which contain the Dazzler, Banshee, Area 5 and Cyclops deposits as well as the Polaris, Mystique and Rockslider prospects.

The outstanding exploration potential for HREE in the Browns Range is being advanced through a dual exploration approach as follows:

- **Exploration Results and Target Testing** from application of appropriate field techniques on high priority targets. These programs include soil sampling and diamond and reverse circulation drilling.
- **Regional Target Generation** through the development of a scaled mineral systems approach across the tenement portfolio, initially focused on the Browns Range Dome – Western Australia and Northern Territory.

Commenting on the exploration results, Northern Minerals Managing Director and CEO Shane Hartwig said:

"The results from the RC Regional Tracks program have provided another exciting target, which we have defined as the new Vulcan prospect, and underscores the importance of our work to continue to explore the broader Browns Range project area. Follow-on exploration programs are in development to expand on this initial drilling success. Drilling at Rockslider identified encouraging HREE mineralisation that allows a clear exploration strategy to be executed.

"For regional target generation, the strategic development of a mineral systems model for HREE mineralisation in the Browns Range is providing an improved understanding of the geological setting and related processes, prompting a review of known deposits and prospects for expansion potential. In addition, a mineral systems approach has identified new high priority target areas that previously have not been the focus of exploration but are now under evaluation for future exploration activities."

Exploration Results and Target Testing

Exploration results from field programs conducted during H1 FY26 fully support the new interpretation of the Browns Range as representing an evolving volcano-sedimentary arc sequence, first discussed in the Dazzler EIS drilling results.²

Defining this geological domain as a basinal arc sequence provides specific temporal and spatial vectors for targeting HREE mineralisation and is integral to the regional target generation initiative.

Field work programs completed during the period included:

- Reverse circulation (RC) drilling program: Regional Tracks
- Diamond drilling (DD) program: Rockslider
- DD program: Ripcord–Dazzler
- Ultrafine fraction (UFF) soil sampling

The location of the Browns Range deposits and prospects discussed in this release are shown in **Figure 1**.

² Refer ASX announcement 13 May 2025 – Exploration Incentive Scheme Drill Program results

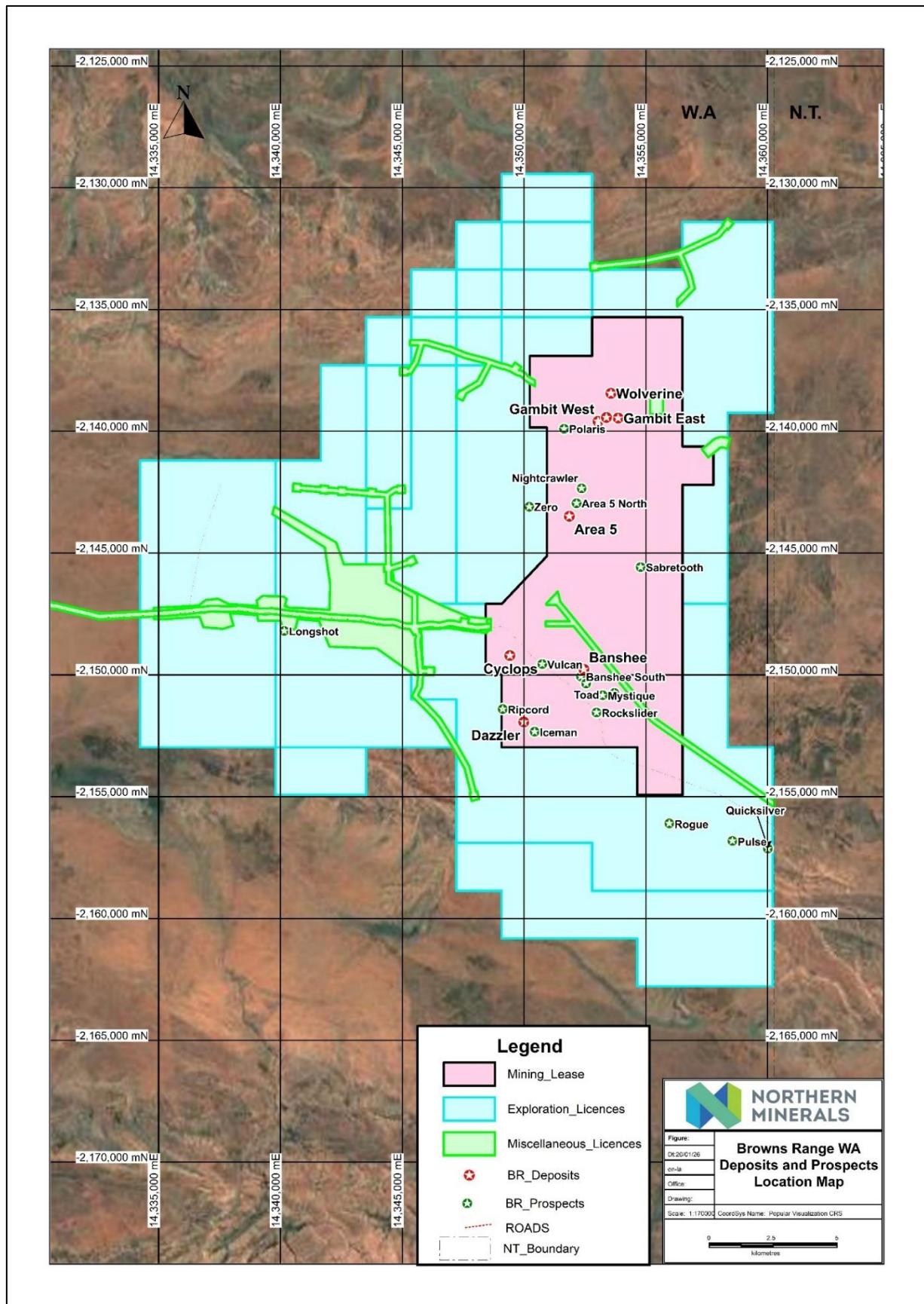
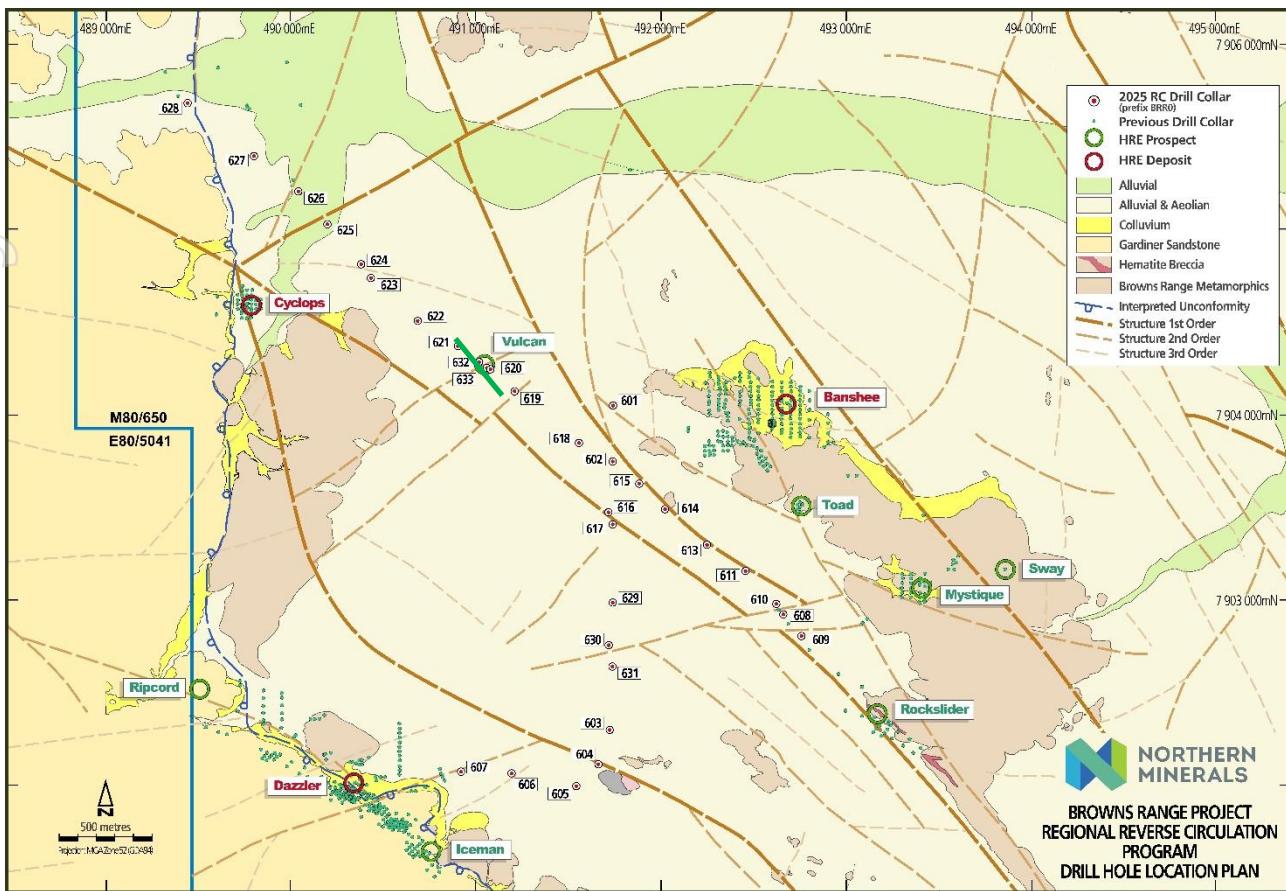


Figure 1: Browns Range WA deposits and prospects location map

RC Regional Tracks Program Results

The 33-hole RC Regional Tracks program, totaling 3,268 m, was designed to acquire geological data, including stratigraphic data across a broad section of the Browns Range Metamorphics located in the south of the Project area. This includes the highly prospective area between the Dazzler, Banshee and Cyclops deposits and the Rockslider prospect. The program design was restricted to existing access tracks with existing heritage clearance. Of the 33-hole RC Regional Tracks program, all 33 holes were logged for lithological data, 32 holes were sampled and submitted for laboratory analysis, with one hole, (BRR0012) abandoned due to unfavorable ground conditions.


Two scissor drill holes (BHID's BRR0620 and BRR0632) intercepted subsurface HREE mineralisation, defining an exciting new prospect named Vulcan. Mineralisation is hosted within brecciated andesites, suggesting a structural association and confirming andesites as a favourable host for mineralisation in addition to the overlying Browns Range sedimentary rocks.

Additionally, the mafic andesite unit first identified and modelled at Dazzler was intercepted by multiple holes of the RC Regional Tracks program and is a more extensive lithological unit than previously recognised. This is significant because the andesite and its internal and bounding lithological contacts represent viable exploration targets. **Table 1** shows the significant intercepts from the RC Tracks program. The program is illustrated in plan view by **Figure 2** and significant intercepts in cross-section by **Figure 3**.

Table 1: Significant intercepts from RC Regional Tracks program assays results (≥ 2 m @0.15% TREO cut-off or equivalent, ≤ 2 m waste.)

Prospect	Hole ID	From	To	Interval	TREO (%)	Dy2O3 (ppm)	Tb4O7 (ppm)	Y2O3_ppm	MHREO:TREO
Vulcan	BRR0620	17	25	8	0.22	142.63	21.62	980.25	0.66
		31	54	23	0.65	565.93	90.31	3884.17	0.88
Vulcan	BRR0632	9	11	2	0.22	160.25	27.35	1128.5	0.78
		14	43	29	0.53	416.93	67.6	3012.66	0.82

- Notes:
- TREO = Total Rare Earth Oxides – La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃.
- MHREO = Medium – Heavy Rare Earth Oxides – Total of Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃.
- True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

Figure 2: Plan view of RC Tracks 2025 drill collar locations

Green line illustrates the section of the Vulcan Prospect shown in Figure 3 below. True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

Note: BRRD0633 not displayed on section as it dips directly north out of the section.

Figure 3: Cross section facing north-east of the Vulcan prospect, identified from the results of the RC Regional Tracks drilling by lithology, with TREO $\geq 0.15\%$ is illustrated as translucent orange halos around holes.

True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

Diamond Drilling Rocksider Program Results

The Rocksider prospect is located approximately 1 km south of the Banshee deposit, 2.3 km north-east of the Dazzler deposit and 12 km from the Wolverine deposit. This prospect was identified from outcropping hematite breccia mapped along a ridge formed by a north north-west-striking structural corridor as well as follow-up soil and rock-chip geochemical analyses. The program was designed as a follow-on from the first-pass exploration RCD program completed during CY2021³ ⁴ and included the north-west extension of the structural corridor over approximately 700 m. A total of eight diamond holes were drilled for 1,798.24m, of which one hole intersected HREE mineralisation over an extensive downhole interval.

Preliminary observations of shallow andesites to the south-west of the structural corridor and Browns Range arkoses dominating to the north-east suggest south-west side-up movement along the structural corridor. Mineralisation at Rocksider is hosted within a quartz-hematite vein stockwork in andesite located within a broad, north-west-striking, regional structural corridor, which represents a compelling exploration target.

³ Refer NTU ASX announcement 27 January 2022 - Quarterly Activities Report: December 2021

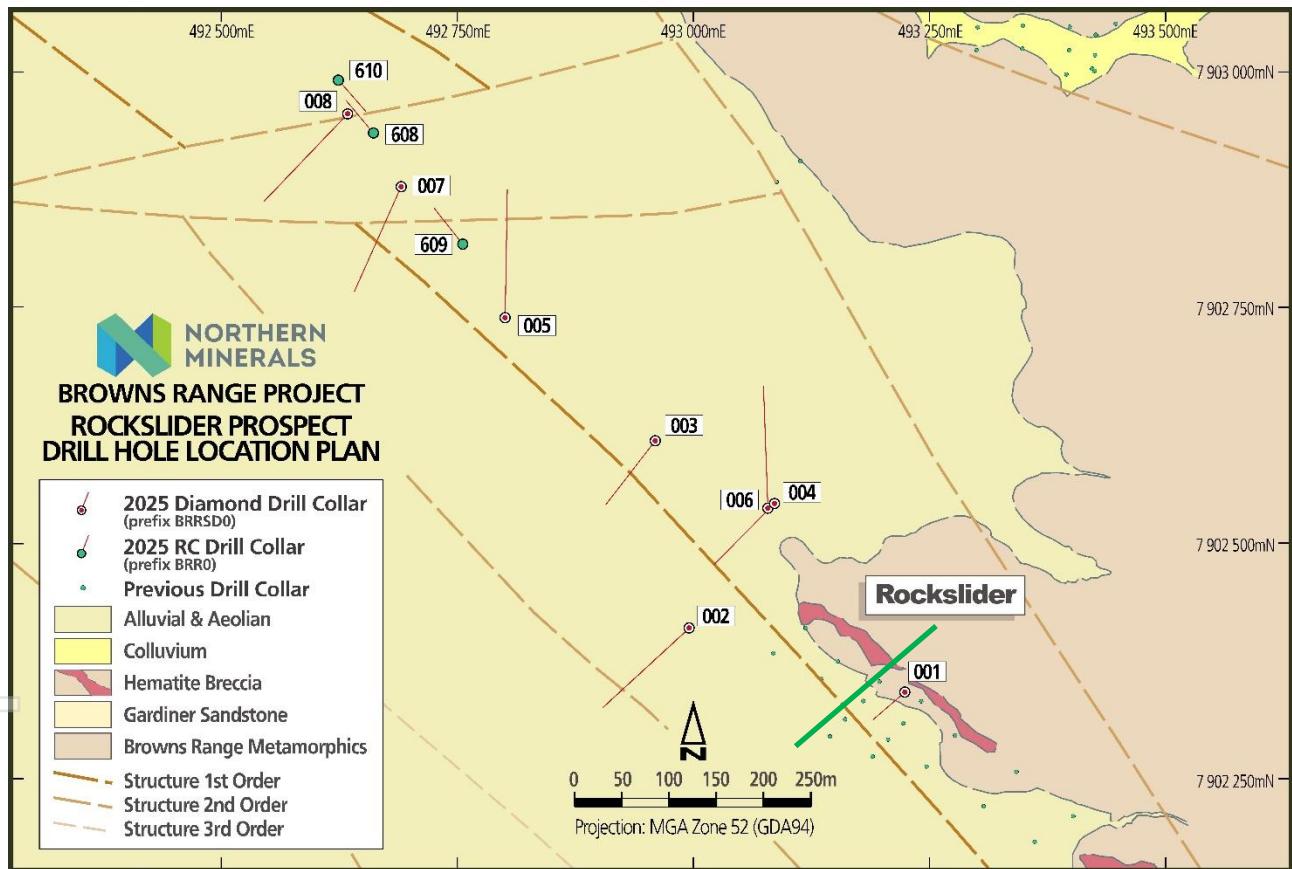
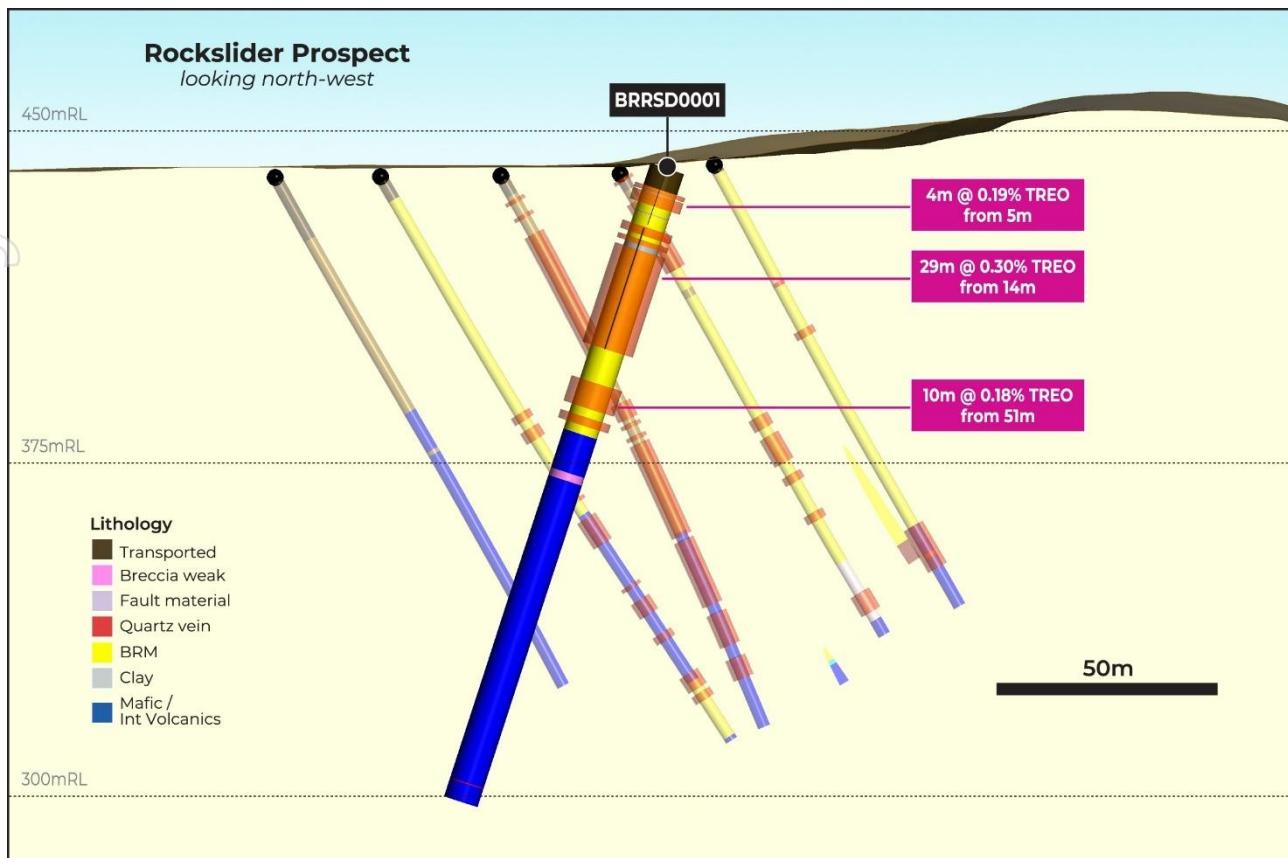

⁴ Refer NTU ASX announcement 29 April 2022 - Quarterly Activities Report: March 2022

Table 2 details the significant intercepts for Rockslider whereas **Figure 4** illustrates the drill hole collar locations in plan view, with significant intercepts illustrated in section by **Figure 5**.

Table 2: Significant intercepts from Rockslider DD assays results (≥ 2 m @0.15% TREO cut-off or equivalent, ≤ 2 m waste.)


Prospect	Hole ID	From	To	Interval	TREO (%)	Dy2O3 (ppm)	Tb4O7 (ppm)	Y2O3_ppm	MHREO:TREO
Rockslider	BRRSD0001	5	9	4	0.19	172.09	22.58	1163.82	0.93
		14	43	29	0.3	296.46	40.53	1882.29	0.96
		51	61	10	0.18	110.84	18.43	691	0.57

- Notes:
- TREO = Total Rare Earth Oxides – La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃.
- MHREO = Medium – Heavy Rare Earth Oxides – Total of Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₄O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Lu₂O₃, Y₂O₃.
- True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

Figure 4: Plan view of Rockslider 2025 DD collar locations.

Green line illustrates the section of the Rockslider Prospect shown in Figure 5 below. True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

Figure 5: Cross section facing north-west illustrating the Rockslider diamond drilling (thick) with previously drilled holes (thinner) by lithology. TREO $\geq 0.15\%$ is illustrated as translucent orange halos around holes.

Diamond Drill Ripcord-Dazzler Program Results

Following on from the Dazzler EIS program completed in February 2025⁵, an additional diamond drill program was designed to test approximately 700 m of strike length extending to the north-west of the Dazzler MRE⁶. The objectives of this program were to test for HREE mineralisation, firstly at the Ripcord prospect as an analogous structural setting to the Dazzler deposit. The second objective was to test for Dazzler-style mineralisation between Ripcord and Dazzler. This occurs along the north-west-striking, sub-cropping, unconformity between the Gardiner Sandstone and underlying Browns Range Metamorphics arkoses, where cut by local east north-east-striking basin-bounding faults.

The testing of Ripcord was completed under the Exploration Incentive Scheme (EIS) Round 31 co-funding arrangement with the Geological Survey of Western Australia (GSWA).

All holes intersected the same mafic andesite unit identified beneath and lateral to the Dazzler MRE zone by the Dazzler EIS drilling program^{7,8}. This regional drilling confirmed that the lithological contact between the mafic andesite and metasedimentary rock units represents an extensive HREE target in the Browns Range South Domain. The contact is characterised by

⁵ Refer NTU ASX announcement 13 May 2025 – Exploration Incentive Scheme Drill Program results

⁶ Refer NTU ASX Announcement NTU ASX Announcement 07 April 2020 Over 50% increase in Dazzler high-grade mineral resource.

⁷ Refer NTU ASX announcement 13 May 2025 – Exploration Incentive Scheme Drill Program results at Browns Range Dazzler Deposit.

faulting/shearing, intense hematitic and chloritic alteration, quartz veins and associated HREE mineralisation.

In total, nine diamond holes were drilled for 2386.03 m with one hole intersecting HREE mineralisation.

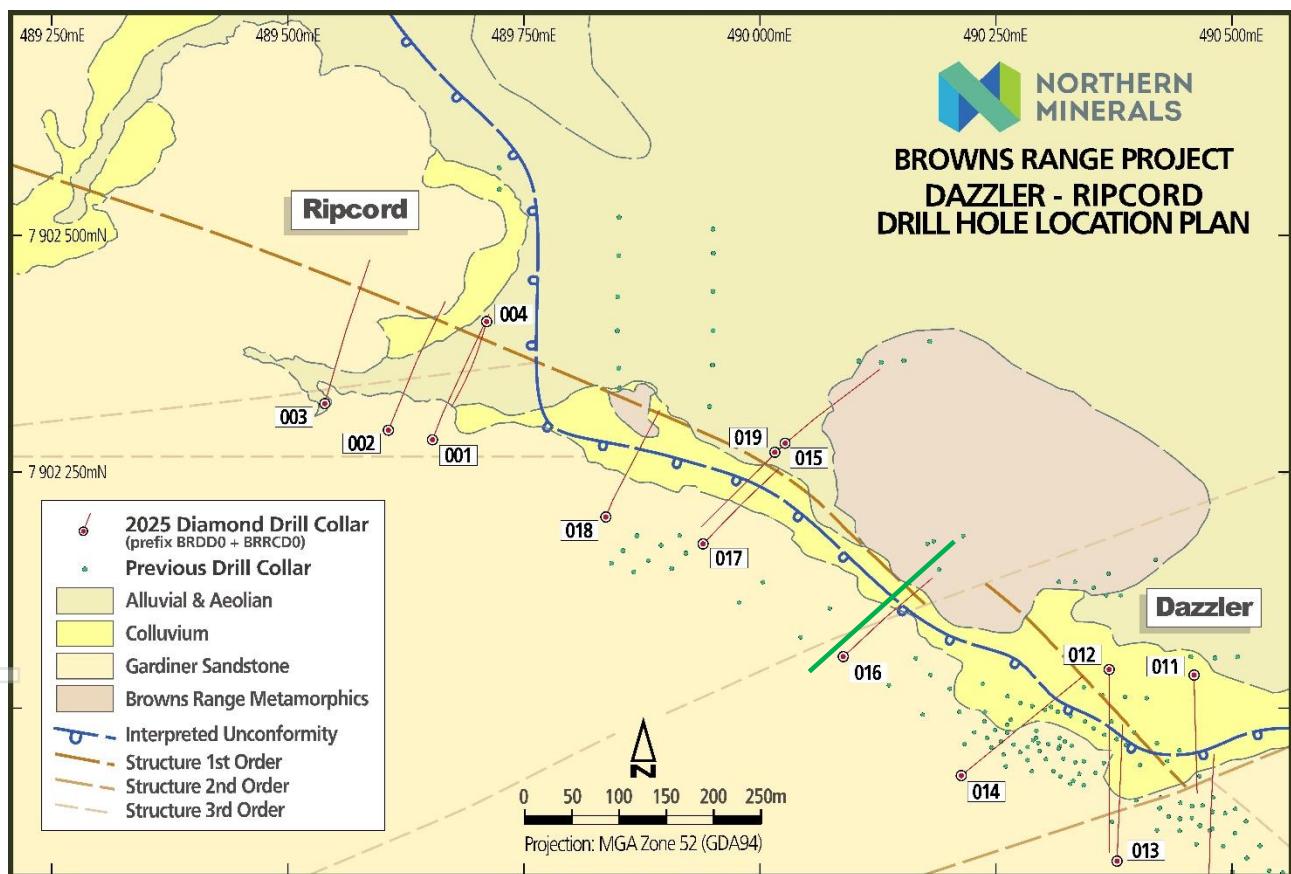
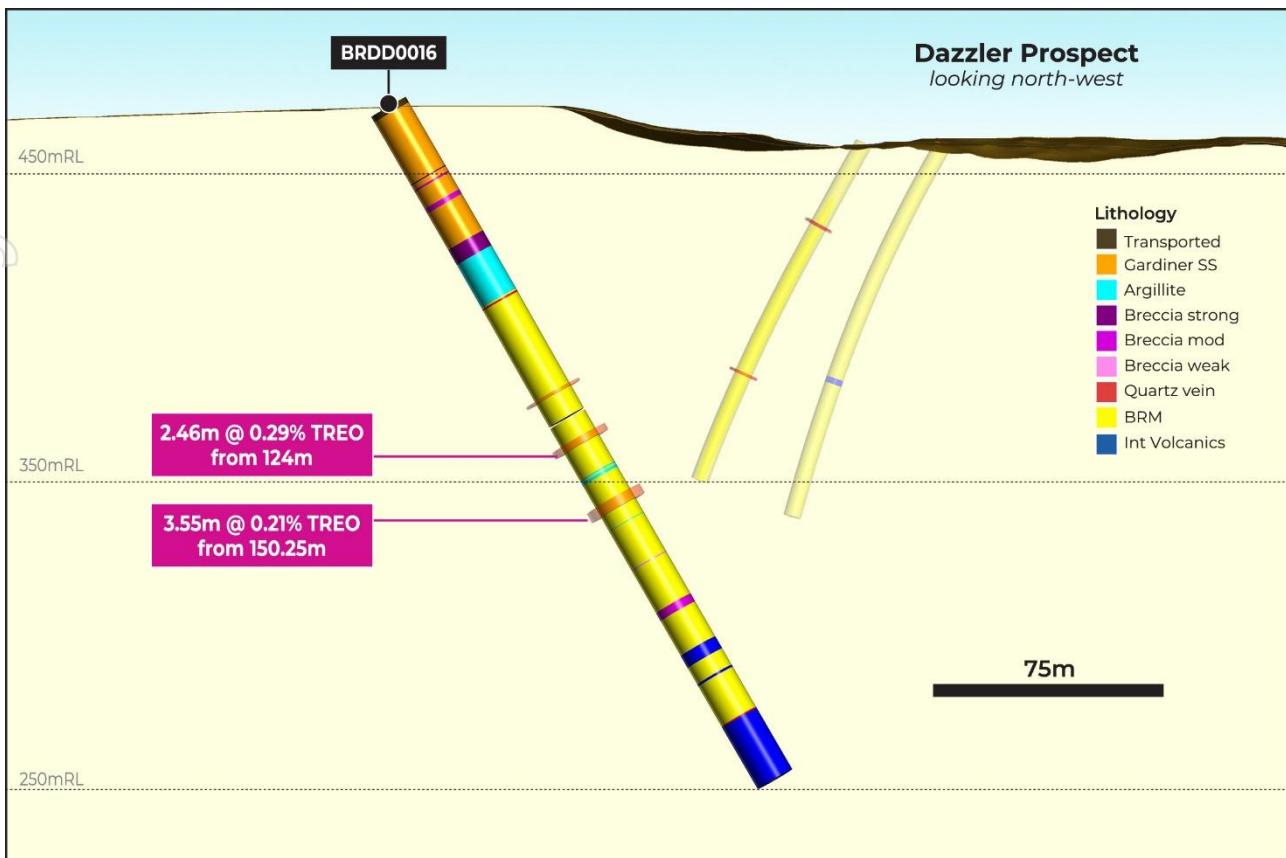

Table 3 details the significant intercepts for Dazzler while **Figure 6** illustrates the drill hole collar locations in plan view, with significant intercepts illustrated in section by **Figure 7**.

Table 3: Significant intercepts from DD assays results. $\geq 2m$ @0.15% TREO cut-off or equivalent, $\leq 2m$ waste.

Prospect	Hole ID	From	To	Interval	TREO (%)	Dy2O3 (ppm)	Tb4O7 (ppm)	Y2O3_ppm	MHREO:TREO
Dazzler	BRDD0016	124	126.5	2.46	0.29	150.61	20.67	1015.45	0.49
		147	150.3	3.55	0.21	39.23	6.27	243.75	0.23


Notes:

- TREO = Total Rare Earth Oxides – La_2O_3 , CeO_2 , Pr_6O_{11} , Nd_2O_3 , Sm_2O_3 , Eu_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3 , Y_2O_3 .
- MHREO = Medium – Heavy Rare Earth Oxides – Total of Sm_2O_3 , Eu_2O_3 , Gd_2O_3 , Tb_4O_7 , Dy_2O_3 , Ho_2O_3 , Er_2O_3 , Tm_2O_3 , Yb_2O_3 , Lu_2O_3 , Y_2O_3 ..
- True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

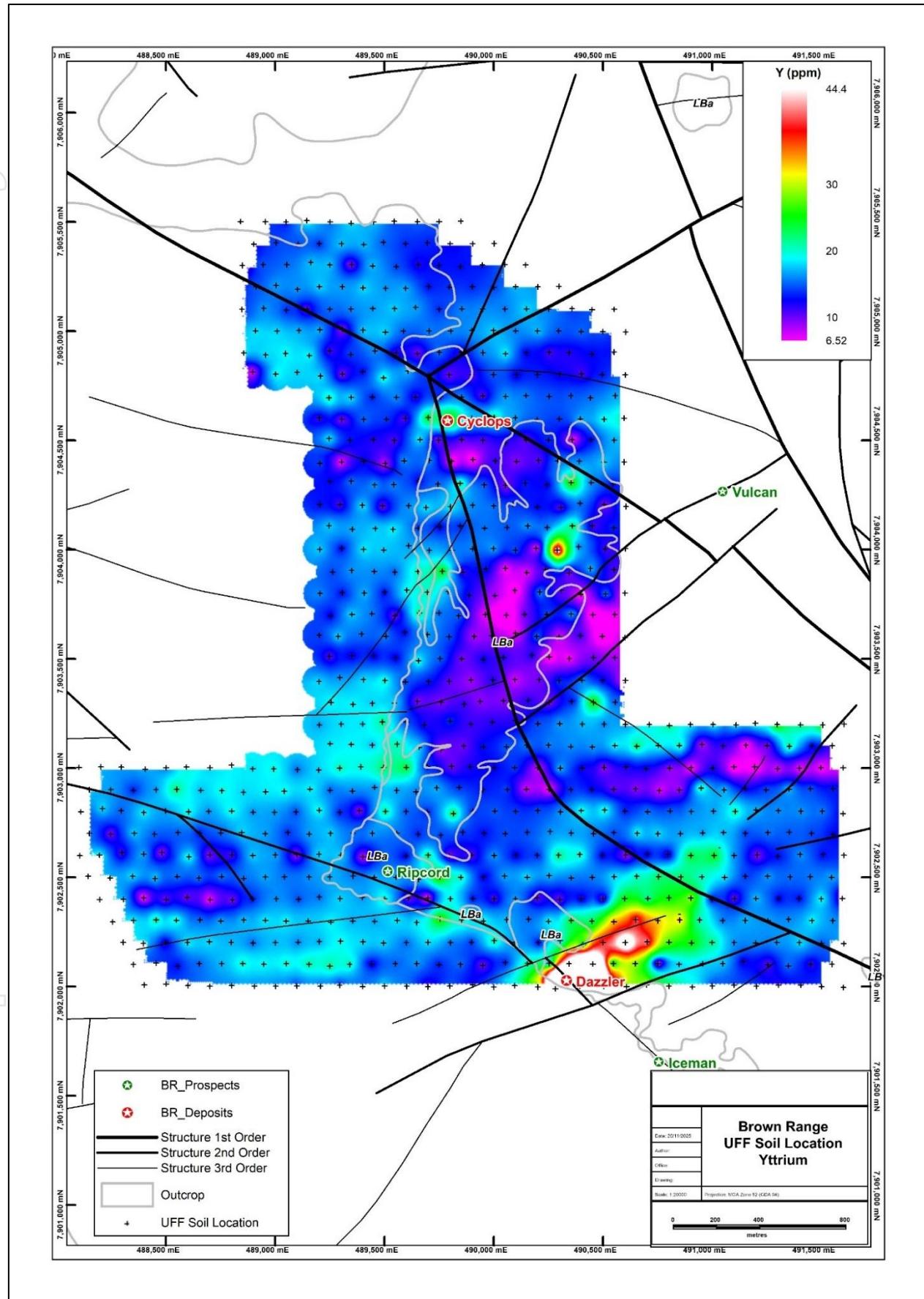
Figure 6: Plan view of the Dazzler deposit-Ripcord prospect's 2025 DD collar locations.

Green line illustrates the section of the Dazzler Prospect shown in Figure 7 below. True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

Figure 7: Cross section facing north-west illustrating the Dazzler DD (thick) with previously drilled holes (thinner) by lithology. TREO \geq 0.15% is illustrated as translucent red halos around holes.

True width of mineralisation in relation to the angles of drilling and drill hole mineralisation lengths is not known.

UFF soil program


The UFF technique developed by CSIRO was originally designed to detect deep sub-surface geochemical anomalies. It subsequently has been widely applied throughout Western Australia, with this program being the first time the technique has been trialed at Browns Range for HREE.

More than 80% of the Company's tenement portfolio at Browns Range is under cover, meaning that this technique is an ideally suited, inexpensive, non-invasive, early exploration tool.

The UFF soil sampling program was designed on a 100 m nominal offset grid covering approximately 3 km of sub-cropping unconformity between the Dazzler and Cyclops deposits including a broad area of prospective structures. A total of 772 samples was collected. Due to the chemically and physically resistive nature of detrital xenotime and florencite, Labwest used a stronger multi-acid digestion method for REE analysis of soil samples.

The program defined low-level yttrium anomalies (HREE proxy) for second-order follow-up, including north-east of Dazzler and both west and south-east of Cyclops in the Gardner Sandstone, as illustrated by **Figure 8**.

Complete analysis of specific elemental ratios will be undertaken to map the spatial distribution of sub-surface lithologies and structures (sedimentary, mafic, and ultramafic lithologies) to aid future exploration targeting.

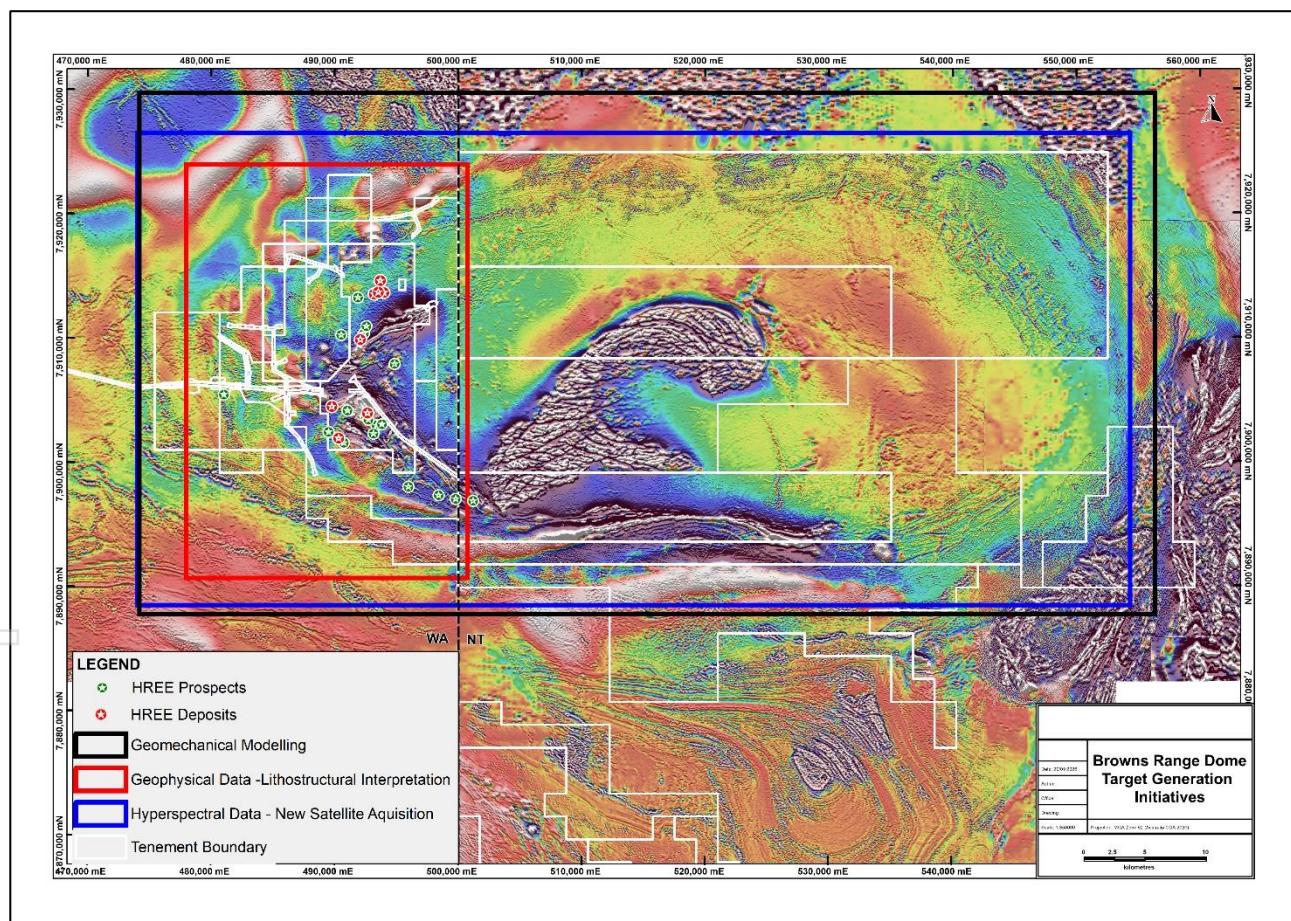


Figure 8: Browns Range Ultrafine fraction soil geochemistry (yttrium)

Regional Target Generation Initiatives (WA and NT)

Northern Minerals' tenement portfolio across Western Australia and the Northern Territory host many HREE prospects and exploration targets in addition to the flagship Wolverine HREE deposit. To make new HREE discoveries, the Company recently embarked on a series of data acquisition and processing initiatives, whose boundaries are illustrated by **Figure 9**. The data from these new initiatives will be used to inform development of a mineral systems model for HREE mineralisation across the Browns Range Dome (BRD) and further south in the Boulder Ridge project area west of the Coomarie Dome.

A scaled mineral systems approach considers the origin of the deposits within the framework of lithospheric processes down to mineralisation processes operating at the camp scale. The identification of mappable field proxies of these mineralisation processes (specific alteration minerals, aeromagnetic lineaments, key geochemical soil signatures) is critical to exploration targeting and development of accurate local exploration models.

Figure 9: Browns Range regional target generation initiatives, magnetic RTP 1VD background image.

Geophysical Data

Geophysical data acquisition, processing and interpretation for the creation of a foundational litho-structural map across Western Australia and the Northern Territory was completed in FY25. Specifically, a new litho-structural geology map of the western margin of the BRD was produced. The new map is a synthesis of regional geology using recently reprocessed airborne magnetic data supplemented by radiometric and gravity survey data plus soils data, drilling data and proprietary geological maps. The new litho-structural geology map provides a geological baseline for overlaying more detailed property scale datasets used for generation of specific HREE targets. Consultants generated a total of 41 targets, with 12 ranked as high priority. Several of these high-priority targets merited further evaluation.

However, a mineral systems analysis of the geological features of the HREE deposits together with new insights gained from the deep drilling programs below the Wolverine and Dazzler deposits indicates that some of the most prospective targets were not captured by the targeting exercise. These target areas will benefit from the construction of more detailed litho-structural maps at the 1:10,000 scale versus the current 1:25,000 scale. Follow-up field reconnaissance is planned to assess structural controls over HREE mineralisation at the targeted sites.

Geomechanical Modelling

Geomechanical modelling (GMEX) across the Western Australia and Northern Territory areas of the BRD is a specialised technique developed by GILDAE Pty Ltd that uses geological and geophysical datasets in computer simulations to determine the behaviour of faults under different stress fields during deformation. The technique is ideally suited for the Browns Range HREE deposits because they are structurally controlled hydrothermal fluid systems directly related to zones of rock failure and brecciation. Consequently, the GMEX structural targets represent optimal sites of HREE mineralisation. Together with the recently updated 2024 litho-structural map of the BRD, re-processed aeromagnetic imagery and new hyperspectral minerals maps, the GMEX targets will be incorporated into the mineral systems model used for identification of the most prospective targets in the Browns Range.

GMEX outputs consist of a series of geo-referenced GIS layers including rock failure “Predictor” maps and a series of “Comparison” maps showing failure results from application of the various principal stress directions.

Hyperspectral Data

Satellite-sourced hyperspectral imagery has been acquired across the entire BRD and adjacent volcano-sedimentary rocks. The hyperspectral data is a step-change improvement over government-sponsored satellite-based hyperspectral imagery, which cannot be used for mineral mapping at the property scale due to relatively poor spatial resolution (typically 20 m to 100 m). These technical obstacles, however, have been overcome by deploying hyperspectral imaging sensors with 5 m spatial resolution on private commercial satellites. This imagery is more economical and less logically challenging to acquire compared to traditional airborne hyperspectral surveys.

Production of geo-referenced GIS maps of hyperspectral data that identify surface exposures of hematite, goethite and jarosite are the key outputs. These are the main hydrothermal alteration minerals associated with the HREE mineralisation in the Browns Range. Hyperspectral mineral maps will be overlain on geophysical imagery, geomechanical targets of rock failure and dilation and litho-structural maps to identify high-priority targets. These new targets will be ground-

truthed (e.g. helicopter reconnaissance) and tested for HREE mineralisation by rock chip sampling and measurement of Y abundances using handheld pXRF instruments.

AI Data Modelling – Target Generation

Complementary to traditional geological interpretation, an exploration AI platform using both proprietary and publicly available exploration datasets covering the BRD and Coomarie Dome are being entered into a cloud-based platform, where simulations interrogate and analyse multi-variate datasets simultaneously. The resulting AI models identify relationships, patterns and generate new insights that are used to identify the most prospective HREE targets. Additionally, the AI models allow for identification of those datasets that have the most influence on predicted areas of mineralisation.

The results of the AI models are tested against existing targets and the new targets against geological, geochemical and geophysical datasets used to construct the mineral systems model for Browns Range HREE mineralisation. These datasets are presently being identified and assembled for input into the AI model. Importantly, the geological characteristics of the Wolverine MRE and wider deposit “footprint” will be used to train the AI to search for analogous Wolverine-style deposits in the Browns Range. This is in addition to recognising other styles of HREE mineralisation such as Dazzler and others predicted from the mineral systems model.

For further information:

Shane Hartwig

Managing Director

T: +61 (0)8 9481 2344

E: Info@northernminerals.com.au

For media:

Peter Klinger

Purple

T: +61 (0)411 251 540

E: pklinger@purple.au

About Northern Minerals

Northern Minerals Limited (ASX: NTU) (**Northern Minerals** or the **Company**) owns 100% of the Browns Range Heavy Rare Earths Project in the East Kimberley region of Western Australia (the **Project**). The Project's deposits are uniquely rich in the heavy rare earth elements dysprosium (Dy) and terbium (Tb).

Dysprosium and terbium are critical in the production of dysprosium neodymium iron-boron (DyNdFeB) magnets used in clean energy, military, and high technology solutions. Dysprosium and terbium are prized because their unique properties improve the durability of magnets by increasing their resistance to demagnetisation.

The Project's flagship deposit is Wolverine, which is thought to be the highest-grade dysprosium and terbium ore body in Australia. The Company is preparing to bring Wolverine into production with the objective of providing a reliable alternative source of dysprosium and terbium to production sourced from China.

Northern Minerals has completed a definitive feasibility study for a commercial-scale operation focused on mining and beneficiating ore from the Wolverine deposit, for delivery to Iluka Resources' (ASX: ILU) under-construction rare earths refinery at Eneabba, also in Western Australia.

In addition to Wolverine, Northern Minerals has several additional deposits and prospects within the Project that contain dysprosium and other heavy rare earth elements, hosted in xenotime mineralisation.

For more information, please visit northernminerals.com.au.

COMPETENT PERSON STATEMENTS

The information in this report that relates to Sampling Techniques and Data and Reporting of Exploration Results is based on, and fairly represents, information compiled by Kurt Warburton, a full-time employee of Northern Minerals Ltd. Mr Warburton is a Member of the Australian Institute of Geoscientists. Mr Warburton has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr Warburton consents to the disclosure of the information in this report in the form and context in which it appears.

The information in this report that relates to geological interpretation of Exploration Results and Regional Target Generation Initiatives (WA and NT) is based on, and fairly represents, information compiled by Dr Stephen Rowins, a full-time employee of Northern Mineral Limited. Dr Rowins is a Member of the Australian Institute of Geoscientists and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Dr Rowins consents to the disclosure of the information in this report in the form and context in which it appears.

Appendix 1: Drilling Programs Significant Intercepts

Table 4: Drill hole collar and significant intercept details (≥ 2 m @0.15% TREO cut-off or equivalent, ≤ 2 m waste).

Prospect	Hole ID	Drill Type	X	Y	Z	Depth	Dip	Azimuth	From	To	Interval	TREO (%)	Dy2O3 (ppm)	Tb4O7 (ppm)	Y2O3_ppm	MHREO : TREO
RC	BRRCD0001	DD	489653	7902285	451	294	-60	22				No Significant Intercepts				
RC	BRRCD0002	DD	489607	7902295	455	303	-59	22				No Significant Intercepts				
RC	BRRCD0003	DD	489540	7902324	451	305	-58	17				No Significant Intercepts				
RC	BRRCD0004	DD	489710	7902410	448	201	-60	201				No Significant Intercepts				
DZ	BRDD0015	DD	490027	7902280	445	249	-60	225				No Significant Intercepts				
DZ	BRDD0016	DD	490088	7902054	472	252	-60	46	124	126.46	2.46	0.29	150.61	20.67	1015.45	0.49
DZ	BRDD0017	DD	489939	7902175	469	252	-60	46	146.7	150.25	3.55	0.21	39.23	6.27	243.75	0.23
DZ	BRDD0018	DD	489836	7902203	465	249	-60	25				No Significant Intercepts				
DZ	BRDD0019	DD	490016	7902272	445	282	-60	50				No Significant Intercepts				
RS	BRRSD0001	DD	493225	7902342	442	150	-72	226	5	9	4	0.19	172.09	22.58	1163.82	0.93
RS	BRRSD0002	DD	492995	7902411	438	252	-60	227	14	43	29	0.3	296.46	40.53	1882.29	0.96
RS	BRRSD0003	DD	492958	7902609	437	174	-60	217				No Significant Intercepts				
RS	BRRSD0004	DD	493084	7902542	439	189	-60	225				No Significant Intercepts				
RS	BRRSD0005	DD	492800	7902740	436	271	-60	0				No Significant Intercepts				
RS	BRRSD0006	DD	493078	7902539	440	261	-60	358				No Significant Intercepts				
RS	BRRSD0007	DD	492690	7902878	436	250	-61	204				No Significant Intercepts				
RS	BRRSD0008	DD	492633	7902956	436	252	-60	224				No Significant Intercepts				
REG	BRR0601	RC	491741	7904063	426	102	-61	230				No Significant Intercepts				
REG	BRR0602	RC	491739	7903760	426	102	-61	50				No Significant Intercepts				
REG	BRR0603	RC	491717	7902312	434	96	-62	46				No Significant Intercepts				
REG	BRR0604	RC	491659	7902126	436	102	-61	47				No Significant Intercepts				
REG	BRR0605	RC	491539	7902007	438	102	-61	45				No Significant Intercepts				
REG	BRR0606	RC	491191	7902074	437	102	-60	51				No Significant Intercepts				
REG	BRR0607	RC	490918	7902085	438	96	-61	49				No Significant Intercepts				
REG	BRR0608	RC	492661	7902935	436	102	-61	318				No Significant Intercepts				
REG	BRR0609	RC	492755	7902818	436	102	-61	319				No Significant Intercepts				
REG	BRR0610	RC	492623	7902992	435	102	-61	138				No Significant Intercepts				
REG	BRR0611	RC	492452	7903169	434	102	-61	48				No Significant Intercepts				
REG	BRR0612	RC	492244	7903311	431	48	-61	48				Abandoned				
REG	BRR0613	RC	492245	7903311	431	102	-61	48				No Significant Intercepts				
REG	BRR0614	RC	492022	7903503	429	102	-61	49				No Significant Intercepts				
REG	BRR0615	RC	491881	7903641	427	102	-61	50				No Significant Intercepts				
REG	BRR0616	RC	491714	7903487	427	102	-61	229				No Significant Intercepts				
REG	BRR0617	RC	491735	7903420	427	102	-61	48				No Significant Intercepts				
REG	BRR0618	RC	491558	7903859	426	102	-60	47				No Significant Intercepts				
REG	BRR0619	RC	491206	7904138	424	84	-61	137				No Significant Intercepts				
VU	BRR0620	RC	491056	7904264	424	102	-61	315	17	25	8	0.22	142.63	21.62	980.25	0.66
VU	BRR0620	RC	491056	7904264	424	102	-61	315	31	54	23	0.65	565.93	90.31	3884.17	0.88
REG	BRR0621	RC	490899	7904381	424	102	-61	136				No Significant Intercepts				
REG	BRR0622	RC	490683	7904517	424	102	-61	139				No Significant Intercepts				
REG	BRR0623	RC	490431	7904748	426	102	-61	320				No Significant Intercepts				
REG	BRR0624	RC	490377	7904824	425	96	-61	137				No Significant Intercepts				
REG	BRR0625	RC	490195	7905037	425	102	-61	319				No Significant Intercepts				
REG	BRR0626	RC	490038	7905215	424	102	-60	311				No Significant Intercepts				
REG	BRR0627	RC	489796	7905407	423	102	-61	230				No Significant Intercepts				
REG	BRR0628	RC	489440	7905692	420	102	-60	43				No Significant Intercepts				
REG	BRR0629	RC	491735	7902996	428	108	-61	48				No Significant Intercepts				
REG	BRR0630	RC	491715	7902768	429	88	-60	232				No Significant Intercepts				
REG	BRR0631	RC	491733	7902654	430	102	-61	48				No Significant Intercepts				
VU	BRR0632	RC	491015	7904294	424	96	-61	125	9	11	2	0.22	160.25	27.35	1128.5	0.78
VU	BRR0632	RC	491015	7904294	424	108	-61	4				No Significant Intercepts				
VU	BRR0633	RC	491071	7904260	424											

Notes: Coordinates, azimuths, and dips have been rounded for table layout. TREO = Total Rare Earth Oxides – La2O3, CeO2, Pr6O11, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3,

Er2O3, Tm2O3, Yb2O3, Lu2O3, Y2O3. MHREO = Medium – Heavy Rare Earth Oxides – Total of Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3, Y2O3.

DZ = Dazzler; REG = Regional RC; VU = Vulcan; RS = Rockslder; RC = Ripcord

Table 5: Significant intercepts Individual elemental oxide abundances, (≥ 2 m @0.15% TREO cut-off or equivalent, ≤ 2 m waste).

Prospect	Hole ID	Drill Type	From	To	Interval	La ₂ O ₃ (ppm)	CeO ₂ (ppm)	Pr ₆ O ₁₁ (ppm)	Nd ₂ O ₃ (ppm)	Sm ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd ₂ O ₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Lu ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)
DZ	BRDD0016	DD	124	126.5	2.46	212.05	539.62	77.66	353.45	96.42	13.49	107.41	20.67	150.61	34.76	110.87	18.02	118.41	16.9	1015.45
			147	150.3	3.55	274.56	735.42	112.15	471.14	86.37	7.44	44.73	6.27	39.23	8.19	23.27	3.35	20.12	2.75	243.75
RS	BRRSD001	DD	5	9	4	25.48	55.1	8.44	45.73	40.02	7.9	90.93	22.58	172.09	37.86	110.34	15.76	88.59	12.38	1163.82
			14	43	29	9.92	36.91	8.08	60.1	74.1	13.53	163.04	40.53	296.46	61.95	177.23	25.6	145.85	20.23	1882.29
			51	61	10	94.47	298.1	48.38	227.12	70.57	11.73	97.44	18.43	110.84	19.22	44.89	5.23	25.54	3.56	691
VU	BRR0620	RC	17	25	8	93.09	253.13	51.34	245.24	80.29	11.3	112.37	21.62	142.63	28.85	77.52	9.87	52.25	7.45	980.25
			31	54	23	99.49	264.17	40.56	219.96	186.3	35.17	430.91	90.31	565.93	114.16	305.03	38.18	202.63	28.67	3884.17
VU	BRR0632	RC	9	11	2	58.55	194.5	39.8	203.6	83.05	13.7	152.4	27.35	160.25	29.35	78.5	10.1	54.95	7.1	1128.5
			14	43	29	121.8	406.38	58.09	287	157.54	27.05	327.79	67.6	416.93	79.32	204.53	24.8	131.62	17.54	3012.66

- Notes:
- Rounding may have caused computational discrepancies.
- DZ = Dazzler; RS = Rockslider; VU = Vulcan

Appendix 2: UFF Soil Sampling Results

Table 6: UFF Soil Sampling: Individual elemental abundances for Yttrium (ppm). No ppm grade cut off has been applied. (next page)

Sample ID	East	North	Y (ppm)
BRSS007413	488400.3	7902007.6	13.65
BRSS007414	488500.9	7902012.2	14.32
BRSS007415	488599.6	7902004	15.00
BRSS007416	488700.4	7902000.5	15.86
BRSS007417	488800.8	7902004.1	16.14
BRSS007418	488904.5	7902001.4	16.11
BRSS007419	489002	7902000.8	16.00
BRSS007420	489099.1	7902002.7	13.98
BRSS007421	489206.4	7902001.3	15.05
BRSS007422	489294.9	7902005.6	13.12
BRSS007423	489400.1	7901999.8	15.10
BRSS007424	489500.7	7902002.3	18.65
BRSS007425	489601.3	7902000.7	15.95
BRSS007426	489698.3	7901999.2	9.52
BRSS007427	489799.4	7902002.2	15.31
BRSS007428	489902.9	7902007.4	12.12
BRSS007429	490000.2	7901997.8	15.14
BRSS007430	490095.7	7902004.3	17.25
BRSS007431	490201.5	7901997.8	22.18
BRSS007432	490282	7901990.1	80.90
BRSS007433	490394.3	7902001.6	288.58
BRSS007434	490504	7902000.3	33.58
BRSS007435	490607.6	7902000.1	25.87
BRSS007436	490699	7902007.9	28.63
BRSS007437	490801.7	7902001.7	24.47
BRSS007438	490909.2	7901998.2	19.77
BRSS007439	491000.3	7902002.4	13.56
BRSS007440	491099.8	7902006.9	14.36
BRSS007441	491202	7902000.7	14.39
BRSS007442	491303	7902006.7	11.47
BRSS007443	491405.3	7902006.6	13.12

Sample ID	East	North	Y (ppm)
BRSS007444	491500.2	7901999.5	13.86
BRSS007445	491600.6	7901995.6	16.88
BRSS007446	491547.3	7902102.5	14.82
BRSS007447	491450.6	7902101.9	10.68
BRSS007448	491348.5	7902095	16.27
BRSS007449	491254.7	7902099	9.84
BRSS007450	491142.2	7902114.8	11.32
BRSS007451	491047.7	7902104	18.01
BRSS007452	490956.1	7902105.1	17.56
BRSS007453	490848.1	7902102	17.80
BRSS007454	490751.3	7902105	3.62
BRSS007455	490647.3	7902104.7	28.21
BRSS007456	490547.5	7902104.6	19.32
BRSS007457	490453.1	7902103.3	64.75
BRSS007458	490344.2	7902104.1	43.56
BRSS007459	490253.7	7902106	12.82
BRSS007460	490154.5	7902106.1	20.45
BRSS007461	490052.7	7902109.7	12.95
BRSS007462	489948.7	7902096.8	8.61
BRSS007463	489847.4	7902100.9	15.83
BRSS007464	489750	7902099.8	13.05
BRSS007465	489646.9	7902105.1	17.00
BRSS007466	489549.2	7902104	14.99
BRSS007467	489443	7902103	10.69
BRSS007468	489340.2	7902100.5	21.41
BRSS007469	489249.7	7902093.2	22.02
BRSS007470	489155	7902101.8	21.82
BRSS007471	489050.6	7902105.1	20.43
BRSS007472	488948.4	7902102.6	19.50
BRSS007473	488851.3	7902105.1	20.53
BRSS007474	488755.3	7902104.1	17.44

Sample ID	East	North	Y (ppm)
BRSS007475	488653.5	7902104.5	15.19
BRSS007476	488553.7	7902093.4	12.28
BRSS007477	488455.1	7902107.4	14.17
BRSS007478	488350.6	7902100.5	16.42
BRSS007479	488303.8	7902202.4	18.88
BRSS007480	488396.5	7902197.6	19.40
BRSS007481	488498.7	7902201.5	10.31
BRSS007482	488598.1	7902200.5	19.65
BRSS007483	488699.3	7902205.3	18.66
BRSS007484	488797.9	7902202.2	17.40
BRSS007485	488898.7	7902199.4	14.97
BRSS007486	489000.3	7902200.9	17.24
BRSS007487	489105.3	7902203.2	15.85
BRSS007488	489201.4	7902205.6	16.73
BRSS007489	489299.1	7902207.9	19.54
BRSS007490	489401.2	7902205.4	18.39
BRSS007491	489495.9	7902199.4	18.54
BRSS007492	489599.5	7902200.7	14.96
BRSS007493	489699.3	7902202.9	18.73
BRSS007494	489802.5	7902200.5	15.27
BRSS007495	489898.2	7902203.2	13.66
BRSS007496	490002.4	7902209.3	22.58
BRSS007497	490095.1	7902203.4	16.49
BRSS007498	490204.2	7902201.9	11.96
BRSS007499	490304.1	7902210.3	16.44
BRSS007500	490409.1	7902192.1	22.09
BRSS007501	490499.5	7902201.8	40.07
BRSS007502	490601.6	7902202	57.41
BRSS007503	490702.2	7902204.4	43.03
BRSS007504	490802.3	7902203.2	27.39
BRSS007505	490904.8	7902200.2	26.82

Sample ID	East	North	Y (ppm)
BRSS007506	490999.5	7902201.5	22.13
BRSS007507	491099.7	7902201.1	16.38
BRSS007508	491198.4	7902199.7	16.75
BRSS007509	491295.6	7902201.6	17.01
BRSS007510	491398.4	7902200.4	19.01
BRSS007511	491499.6	7902197.9	15.06
BRSS007512	491601.6	7902196.9	18.61
BRSS007513	491551.5	7902300.5	16.57
BRSS007514	491455.7	7902301.5	19.70
BRSS007515	491349.4	7902307.4	16.42
BRSS007516	491254.8	7902301.8	16.83
BRSS007517	491151.2	7902302.7	17.85
BRSS007518	491047.2	7902301.5	15.43
BRSS007519	490942	7902304.1	19.46
BRSS007520	490851	7902304.5	34.37
BRSS007521	490751.1	7902300.7	33.51
BRSS007522	490650.3	7902305.6	42.08
BRSS007523	490549.9	7902296.7	34.44
BRSS007524	490449.3	7902299.3	21.85
BRSS007525	490354.2	7902302.3	25.50
BRSS007526	490251	7902297.9	19.79
BRSS007527	490159.2	7902307.5	15.54
BRSS007528	490058.8	7902306.2	17.68
BRSS007529	489952.2	7902298.8	20.39
BRSS007530	489852.1	7902304.6	20.89
BRSS007531	489754.6	7902309.1	30.81
BRSS007532	489647.6	7902292.7	19.29
BRSS007533	489558.2	7902302.4	19.14
BRSS007534	489455.1	7902298.3	16.85
BRSS007535	489355.1	7902300.1	17.12
BRSS007536	489254.7	7902295.2	19.43

Sample ID	East	North	Y (ppm)
BRSS007537	489150.6	7902299.9	18.13
BRSS007538	489049.6	7902300.1	19.61
BRSS007539	488955.1	7902303.5	19.29
BRSS007540	488856.5	7902303.9	18.09
BRSS007541	488751.8	7902299.7	17.73
BRSS007542	488655.7	7902305	15.54
BRSS007543	488548.1	7902303	21.60
BRSS007544	488455	7902304.8	22.23
BRSS007545	488351.4	7902302.1	19.41
BRSS007546	488256.6	7902295.3	18.41
BRSS007547	488196.6	7902397.9	19.72
BRSS007548	488305.6	7902398.7	18.21
BRSS007549	488399.1	7902405.9	2.59
BRSS007550	488500.3	7902398.5	8.91
BRSS007551	488596.1	7902408.7	8.69
BRSS007552	488702.7	7902397.7	4.71
BRSS007553	488803.4	7902396.1	8.22
BRSS007554	488897.7	7902400.5	13.02
BRSS007555	489005.4	7902400.8	16.38
BRSS007556	489107.9	7902399.4	14.18
BRSS007557	489202.2	7902409.2	15.21
BRSS007558	489296.1	7902402.1	18.50
BRSS007559	489398.5	7902408.5	16.33
BRSS007560	489500.7	7902401.3	21.16
BRSS007561	489610.2	7902404.3	7.99
BRSS007562	489698.1	7902403.8	2.58
BRSS007563	489801.5	7902401.9	19.79
BRSS007564	489904.3	7902402.3	12.42
BRSS007565	490001.4	7902401.8	9.05
BRSS007566	490098.3	7902400.4	17.43
BRSS007567	490198.7	7902404	8.48

Sample ID	East	North	Y (ppm)
BRSS007568	490301.4	7902398	8.53
BRSS007569	490400.3	7902402.5	10.22
BRSS007570	490499.3	7902401.8	7.46
BRSS007571	490599	7902402.4	25.74
BRSS007572	490705.6	7902403.2	19.84
BRSS007573	490801.7	7902406.1	24.79
BRSS007574	490901.8	7902405.4	30.62
BRSS007575	490998.1	7902399.2	11.16
BRSS007576	491101.5	7902403.5	8.72
BRSS007577	491200.8	7902403.7	18.49
BRSS007578	491304.2	7902402.6	11.66
BRSS007579	491397.3	7902402.5	12.16
BRSS007580	491498.5	7902400.6	20.38
BRSS007581	491595.5	7902403.7	7.67
BRSS007582	491546.5	7902500	17.61
BRSS007583	491447.9	7902502.5	15.97
BRSS007584	491355.5	7902500.5	15.80
BRSS007585	491253.2	7902504.7	17.29
BRSS007586	491151.7	7902504.5	13.95
BRSS007587	491056.7	7902499.8	19.06
BRSS007588	490952.6	7902501.7	20.08
BRSS007589	490856.3	7902501.8	22.43
BRSS007590	490754.4	7902502.7	23.75
BRSS007591	490654.3	7902504.6	21.04
BRSS007592	490551.3	7902502.4	18.93
BRSS007593	490450.9	7902500.1	16.10
BRSS007594	490354.8	7902496.7	16.24
BRSS007595	490253.5	7902507.7	17.82
BRSS007596	490153	7902499.5	19.26
BRSS007597	490049.6	7902505.7	17.47
BRSS007598	489953.3	7902500.8	11.94

Sample ID	East	North	Y (ppm)
BRSS007599	489848.7	7902500	21.65
BRSS007600	489752.7	7902502.9	31.94
BRSS007601	489655.7	7902490.5	17.58
BRSS007602	489553	7902499.8	17.81
BRSS007603	489453.5	7902499.4	17.61
BRSS007604	489355.8	7902505.7	16.02
BRSS007605	489249.3	7902500.4	17.41
BRSS007606	489155	7902500.7	16.73
BRSS007607	489042.5	7902501.6	15.91
BRSS007608	488955	7902500.9	17.45
BRSS007609	488855.7	7902494.9	16.14
BRSS007610	488753.9	7902503.6	16.76
BRSS007611	488650.6	7902495.5	16.49
BRSS007612	488551.8	7902503.4	16.15
BRSS007613	488450.2	7902493.7	18.62
BRSS007614	488348.2	7902504.3	19.21
BRSS007615	488244.8	7902496.4	17.18
BRSS007616	488144.2	7902505.3	17.25
BRSS007617	488105.4	7902599	19.25
BRSS007618	488195.2	7902601.7	20.34
BRSS007619	488299	7902612.9	9.87
BRSS007620	488398.2	7902606.5	18.07
BRSS007621	488481	7902613.6	6.63
BRSS007622	488604.6	7902594	20.94
BRSS007623	488699.6	7902603.3	8.26
BRSS007624	488801.4	7902603.7	9.69
BRSS007625	488897.2	7902600.1	18.72
BRSS007626	489000.1	7902602.1	17.23
BRSS007627	489099.1	7902604.7	7.48
BRSS007628	489199.6	7902606.1	18.90
BRSS007629	489299.7	7902600.8	18.72

Sample ID	East	North	Y (ppm)
BRSS007630	489400.9	7902593.4	6.09
BRSS007631	489497.4	7902600.2	15.78
BRSS007632	489597.9	7902598.4	11.63
BRSS007633	489699.5	7902601.5	23.03
BRSS007634	489796.2	7902599.8	7.35
BRSS007635	489898.7	7902601.3	9.77
BRSS007636	490001.2	7902599.9	17.44
BRSS007637	490101.4	7902601.3	11.47
BRSS007638	490198.9	7902600.7	13.33
BRSS007639	490297.3	7902600.8	22.98
BRSS007640	490394.3	7902604.5	21.34
BRSS007641	490497.2	7902600.4	11.84
BRSS007642	490603	7902602.5	7.17
BRSS007643	490703.3	7902605.8	11.80
BRSS007644	490796.7	7902604.8	9.32
BRSS007645	490902	7902600.2	25.39
BRSS007646	491008.1	7902599.7	26.11
BRSS007647	491099.6	7902600.4	16.30
BRSS007648	491205.4	7902602.1	7.63
BRSS007649	491301	7902595.7	12.68
BRSS007650	491401.6	7902605	16.90
BRSS007651	491507.1	7902604.4	12.57
BRSS007652	491602.4	7902600.6	13.27
BRSS007653	491552.9	7902695.5	12.48
BRSS007654	491454.9	7902700.8	14.41
BRSS007655	491352.2	7902706.4	14.91
BRSS007656	491254.4	7902704.9	15.92
BRSS007657	491151.9	7902700.7	13.80
BRSS007658	491051.6	7902705.1	17.35
BRSS007659	490956.1	7902703.3	16.37
BRSS007660	490854.5	7902700.1	16.76

Sample ID	East	North	Y (ppm)
BRSS007661	490751.7	7902698.8	19.39
BRSS007662	490657.1	7902701.1	20.49
BRSS007663	490549.7	7902704.6	14.63
BRSS007664	490456.5	7902698.9	15.59
BRSS007665	490354.5	7902702.8	16.19
BRSS007666	490257.4	7902709.2	16.49
BRSS007667	490152.9	7902705.8	14.67
BRSS007668	490052.1	7902699.5	14.73
BRSS007669	489955.7	7902701.8	12.54
BRSS007670	489857.3	7902706	13.91
BRSS007671	489757.4	7902692.7	14.20
BRSS007672	489653.8	7902697.1	13.15
BRSS007673	489556.6	7902701.3	15.75
BRSS007674	489443.5	7902700.4	17.41
BRSS007675	489356.5	7902701.1	16.04
BRSS007676	489253.3	7902701.2	18.57
BRSS007677	489155.8	7902698.6	17.25
BRSS007678	489057.1	7902705.3	13.65
BRSS007679	489849.2	7905503.7	18.35
BRSS007680	489750.1	7905501.7	14.92
BRSS007681	489650.3	7905500.9	15.35
BRSS007682	489544.7	7905502.6	14.18
BRSS007683	489596.9	7905399.9	13.64
BRSS007684	489696.5	7905403.9	13.55
BRSS007685	489800.8	7905399.9	12.17
BRSS007686	489903.5	7905399.7	13.52
BRSS007687	490001.9	7905400.9	13.50
BRSS007688	490145.8	7905303.1	14.59
BRSS007689	490050.4	7905304.9	15.83
BRSS007690	489948.5	7905302.2	13.01
BRSS007691	489847.7	7905294.4	12.91

Sample ID	East	North	Y (ppm)
BRSS007692	489749.5	7905301.5	13.13
BRSS007693	489654.8	7905304.1	11.58
BRSS007694	489702.2	7905204.3	12.81
BRSS007695	489797.3	7905201.6	13.93
BRSS007696	489902.1	7905203.5	13.45
BRSS007697	490000.3	7905199.7	14.28
BRSS007698	490100.1	7905203.1	17.71
BRSS007699	490201.7	7905202.4	16.53
BRSS007700	490298.2	7905205	14.67
BRSS007701	490551.3	7905100	13.53
BRSS007702	490450	7905098.6	15.02
BRSS007703	490358.6	7905102.4	13.74
BRSS007704	490251.4	7905100.4	16.14
BRSS007705	490149.8	7905101.5	18.75
BRSS007706	490052	7905100.9	15.74
BRSS007707	489949.2	7905101.1	16.53
BRSS007708	489854	7905101.6	16.42
BRSS007709	489751.1	7905100.3	13.52
BRSS007710	489702.9	7905000.6	16.39
BRSS007711	489803.4	7904999.9	16.54
BRSS007712	489900.2	7905003.4	16.69
BRSS007713	489998	7905003.7	18.60
BRSS007714	490100.7	7905001.5	15.98
BRSS007715	490200.5	7905001.3	18.18
BRSS007716	490297.5	7905001.1	15.07
BRSS007717	490399.7	7904998.3	15.81
BRSS007718	490499.2	7904997.7	15.27
BRSS007719	490603.5	7904996.1	10.49
BRSS007720	490550.8	7904904	12.85
BRSS007721	490449.2	7904895.1	12.80
BRSS007722	490343.7	7904900.9	11.57

Sample ID	East	North	Y (ppm)
BRSS007723	490254.1	7904902.5	10.33
BRSS007724	490150.5	7904899.7	12.07
BRSS007725	490054.2	7904896.8	19.82
BRSS007726	489951	7904901.3	16.76
BRSS007727	489849.2	7904902.5	11.09
BRSS007728	489751.1	7904902.4	16.21
BRSS007729	489650.9	7904896.9	8.73
BRSS007730	489553.9	7904901.3	10.20
BRSS007731	489700.9	7904799.4	14.15
BRSS007732	489796.1	7904799.7	8.76
BRSS007733	489899.4	7904799	10.23
BRSS007734	489998.9	7904800.9	15.23
BRSS007735	490103.6	7904799.9	11.48
BRSS007736	490200.5	7904800.6	13.47
BRSS007737	490302.5	7904803.6	12.29
BRSS007738	490402.6	7904805.1	9.96
BRSS007739	490496.8	7904801.9	13.30
BRSS007740	490601.3	7904800.5	15.74
BRSS007741	490555.6	7904704.1	17.09
BRSS007742	490443.4	7904694.3	15.83
BRSS007743	490352.8	7904704.6	15.33
BRSS007744	490253.6	7904701.3	15.06
BRSS007745	490147.9	7904705	16.28
BRSS007746	490055	7904700.7	17.29
BRSS007747	489949.2	7904702.4	8.70
BRSS007748	489852.6	7904697.9	16.37
BRSS007749	489755.7	7904699.7	12.63
BRSS007750	489700.6	7904604.7	27.21
BRSS007751	489797.4	7904598.4	32.94
BRSS007752	489899.6	7904601.7	17.71
BRSS007753	490001.7	7904605.3	24.00

Sample ID	East	North	Y (ppm)
BRSS007754	490098.6	7904602.6	17.25
BRSS007755	490197.9	7904594.1	15.26
BRSS007756	490301.1	7904598.2	14.18
BRSS007757	490396.5	7904597.8	18.07
BRSS007758	490504.9	7904596.9	20.20
BRSS007759	490596.9	7904602.1	22.57
BRSS007760	490551.7	7904501.1	17.38
BRSS007761	490446.1	7904502.3	12.81
BRSS007762	490503.8	7904400.1	18.51
BRSS007763	490597	7904400.5	15.80
BRSS007764	491603.2	7903201	17.56
BRSS007765	491504.8	7903197.4	27.55
BRSS007766	491404.6	7903198.6	22.74
BRSS007767	491297.7	7903199	28.82
BRSS007768	491197.4	7903205.5	21.59
BRSS007769	491108.9	7903197.2	19.12
BRSS007770	491003.8	7903199.4	19.82
BRSS007771	490901	7903199	18.90
BRSS007772	490803.8	7903195.2	22.24
BRSS007773	490711.8	7903199	19.33
BRSS007774	490602.4	7903199.4	16.17
BRSS007775	490504.7	7903200.7	15.83
BRSS007776	490405.9	7903200.7	17.55
BRSS007777	490302.8	7903203.2	17.14
BRSS007778	490202.1	7903203.4	15.10
BRSS007779	490151.4	7903104.1	16.47
BRSS007780	490250.5	7903104.8	16.51
BRSS007781	490352.8	7903097.9	16.60
BRSS007782	490452	7903096.8	16.89
BRSS007783	490554.9	7903103.7	19.99
BRSS007784	490654.8	7903100.1	23.91

Sample ID	East	North	Y (ppm)
BRSS007785	490753.3	7903103.7	20.00
BRSS007786	490849.2	7903103.4	22.04
BRSS007787	490953.2	7903108	6.49
BRSS007788	491049.7	7903101.1	11.42
BRSS007789	491154.5	7903104.4	3.66
BRSS007790	491251.2	7903103.7	8.80
BRSS007791	491352.4	7903099.4	23.33
BRSS007792	491456	7903102	12.22
BRSS007793	491549.4	7903102.8	11.22
BRSS007794	491599.2	7903001.7	5.02
BRSS007795	491497.4	7903002	5.34
BRSS007796	491398.3	7902999.3	4.82
BRSS007797	491299	7902996.9	6.24
BRSS007798	491194.4	7903005.9	3.80
BRSS007799	491099	7903004.9	4.22
BRSS007800	491001.9	7902999.7	12.39
BRSS007801	490903.3	7903002.7	3.87
BRSS007802	490804.7	7902999.6	8.06
BRSS007803	490697.1	7902996.5	12.05
BRSS007804	490606.1	7903005.4	11.73
BRSS007805	490505.3	7903002.5	7.88
BRSS007806	490405.6	7902999.4	11.78
BRSS007807	490305.1	7903000.2	18.28
BRSS007808	490202.9	7903001.4	6.37
BRSS007809	490095.5	7903001.4	14.79
BRSS007810	490001.4	7903001.8	12.28
BRSS007811	489949.5	7902901	13.19
BRSS007812	490062.4	7902901.5	14.73
BRSS007813	490149.7	7902903	6.57
BRSS007814	490252.7	7902901.7	4.34
BRSS007815	490352.4	7902901.7	14.12

Sample ID	East	North	Y (ppm)
BRSS007816	490449.2	7902902.2	12.49
BRSS007817	490549.4	7902903.5	9.46
BRSS007818	490649.3	7902903.9	8.36
BRSS007819	490758.6	7902895.4	6.09
BRSS007820	490850	7902899.1	7.84
BRSS007821	490948.7	7902908.6	22.07
BRSS007822	491055	7902899.3	18.11
BRSS007823	491151.5	7902906.7	12.20
BRSS007824	491246.3	7902900.1	14.79
BRSS007825	491351.8	7902903	18.52
BRSS007826	491450.1	7902905.2	15.28
BRSS007827	491553.1	7902904.9	13.93
BRSS007828	491598.6	7902791.8	12.05
BRSS007829	491503.3	7902802.2	16.34
BRSS007830	491405	7902802.4	16.86
BRSS007831	491302.5	7902804.2	16.51
BRSS007832	491199.9	7902807.2	17.71
BRSS007833	491105.1	7902801.8	22.04
BRSS007834	491006	7902802.5	16.71
BRSS007835	490904	7902800.7	16.60
BRSS007836	490807	7902803.4	15.41
BRSS007837	490703.8	7902800.2	16.24
BRSS007838	490600.5	7902802.5	13.06
BRSS007839	490507.4	7902807.8	21.58
BRSS007840	490400.5	7902805.1	20.63
BRSS007841	490305.8	7902799.1	16.87
BRSS007842	490201.4	7902805.1	14.96
BRSS007843	490100.9	7902802	14.45
BRSS007844	490004.7	7902803.2	15.44
BRSS007845	489905.3	7902800.6	13.51
BRSS007846	488954.3	7902700	17.11

Sample ID	East	North	Y (ppm)
BRSS007847	488846.5	7902704.7	18.75
BRSS007848	488750.9	7902703.7	15.34
BRSS007849	488653.9	7902700.8	13.00
BRSS007850	488555.3	7902704.1	15.09
BRSS007851	488447.6	7902697.7	15.22
BRSS007852	488354.5	7902701.8	18.80
BRSS007853	488248.1	7902697.5	7.86
BRSS007854	488150	7902701.2	16.15
BRSS007855	488110.4	7902800.2	6.24
BRSS007856	488209.5	7902814	19.15
BRSS007857	488294.8	7902804.6	15.04
BRSS007858	488399	7902795.8	19.62
BRSS007859	488498.9	7902804.5	16.42
BRSS007860	488603.3	7902800	20.38
BRSS007861	488696	7902801.4	16.31
BRSS007862	488800.5	7902803.1	20.29
BRSS007863	488899	7902798.3	16.18
BRSS007864	488996.5	7902797.5	16.65
BRSS007865	489094.6	7902798.8	14.14
BRSS007866	489201.2	7902806.8	20.56
BRSS007867	489294.4	7902797.1	13.22
BRSS007868	489385.9	7902804.7	7.03
BRSS007869	489504.5	7902801.4	22.91
BRSS007870	489598.1	7902801.2	14.69
BRSS007871	489696.1	7902799.3	13.12
BRSS007872	489643.6	7902891.1	15.84
BRSS007873	489739.7	7902909.6	17.70
BRSS007874	489841.5	7902911.9	14.11
BRSS007875	489815.3	7902791.4	24.65
BRSS007876	489555.6	7902897.5	16.53
BRSS007877	489454.9	7902912.1	16.28

Sample ID	East	North	Y (ppm)
BRSS007878	489353.4	7902894.9	16.49
BRSS007879	489250.5	7902898.4	15.05
BRSS007880	489159.5	7902903	19.36
BRSS007881	489041.5	7902894.2	19.98
BRSS007882	488955.7	7902891.8	18.95
BRSS007883	488854.1	7902888.8	18.14
BRSS007884	488756.5	7902896.1	19.88
BRSS007885	488659.9	7902898.6	17.35
BRSS007886	488548.8	7902902.3	23.03
BRSS007887	488454.4	7902900.7	16.63
BRSS007888	488351.3	7902898.4	12.78
BRSS007889	488247.8	7902902.1	17.01
BRSS007890	488149.8	7902900.9	18.25
BRSS007891	488102.5	7903003.2	16.93
BRSS007892	488202	7903005.8	17.25
BRSS007893	488295.7	7903004.1	16.53
BRSS007894	488405.3	7902994.8	17.09
BRSS007895	488500.8	7903001.5	15.43
BRSS007896	488593.7	7903005	20.42
BRSS007897	488701.8	7903001.5	17.84
BRSS007898	488799.9	7903013.5	19.12
BRSS007899	488897.6	7902996.9	18.40
BRSS007900	488992.7	7902996.1	19.88
BRSS007901	489101.9	7902992.4	15.12
BRSS007902	489199.4	7902990.8	18.16
BRSS007903	489294.6	7902999.6	21.32
BRSS007904	489391.6	7903005.9	20.07
BRSS007905	489495.4	7903002.5	23.46
BRSS007906	489599.9	7903003	26.06
BRSS007907	489695.3	7903006	12.88
BRSS007908	489658.4	7903094.6	18.93

Sample ID	East	North	Y (ppm)
BRSS007909	489251.9	7903111.9	18.66
BRSS007910	489348	7903108.7	18.92
BRSS007911	489444.1	7903105.4	17.15
BRSS007912	489202.2	7903197.2	16.71
BRSS007913	489302.3	7903200.6	18.22
BRSS007914	489399.6	7903201.7	18.43
BRSS007915	489490.6	7903211.1	22.63
BRSS007916	489256.1	7903300.4	19.32
BRSS007917	489355.5	7903291.8	19.15
BRSS007918	489443.6	7903296	17.81
BRSS007919	489545.6	7903298	18.36
BRSS007920	489502	7903401.1	20.73
BRSS007921	489403.6	7903404.5	18.77
BRSS007922	489295.6	7903414.1	16.68
BRSS007923	489199.5	7903395.7	18.59
BRSS007924	489595.8	7903395.2	14.69
BRSS007925	489701.8	7903396	13.40
BRSS007926	489796.7	7903397.6	10.05
BRSS007927	489895.1	7903403.3	8.21
BRSS007928	489997.1	7903402.5	12.42
BRSS007929	490097.5	7903404.1	6.55
BRSS007930	490045.1	7903307.7	9.04
BRSS007931	489937.8	7903304.7	8.80
BRSS007932	489863.9	7903292.2	11.54
BRSS007933	489759.2	7903301.2	8.73
BRSS007934	489650.9	7903305.7	8.72
BRSS007935	489600.7	7903210.9	13.93
BRSS007936	489682.5	7903198.4	11.54
BRSS007937	489799.5	7903215.2	14.56
BRSS007938	489894.8	7903200.5	11.19
BRSS007939	489994.3	7903210	11.87

Sample ID	East	North	Y (ppm)
BRSS007940	489952.6	7903098.6	13.62
BRSS007941	489862.6	7903100.9	9.54
BRSS007942	489758.2	7903085.1	7.42
BRSS007943	489807.3	7903008.6	9.43
BRSS007944	489892.6	7903006.3	12.39
BRSS007945	490555.8	7903301.5	15.10
BRSS007946	490455.7	7903301.2	28.69
BRSS007947	490356.2	7903304.8	12.76
BRSS007948	490253.7	7903300.7	8.34
BRSS007949	490158.4	7903310.4	11.89
BRSS007950	490099.2	7903216.5	11.38
BRSS007951	490057.4	7903098.1	15.52
BRSS007952	490208.6	7903404.3	9.84
BRSS007953	490298.6	7903401.2	14.39
BRSS007954	490404.4	7903401.7	17.03
BRSS007955	490498.5	7903401.5	12.85
BRSS007956	490602.8	7903401	3.02
BRSS007957	490553.6	7903505	8.68
BRSS007958	490456.6	7903505.6	10.07
BRSS007959	490345.8	7903501.2	5.44
BRSS007960	490252.9	7903508.6	3.70
BRSS007961	490174.5	7903516.6	12.69
BRSS007962	490197.7	7903602.6	17.13
BRSS007963	490299.4	7903601.2	6.67
BRSS007964	490397.7	7903606	12.07
BRSS007965	490496.5	7903603.1	2.50
BRSS007966	490601	7903597.8	9.06
BRSS007967	490553.9	7903702.4	6.53
BRSS007968	490454.4	7903701.8	3.17
BRSS007969	490355	7903704.1	18.47
BRSS007970	490209.8	7903805.6	17.18

Sample ID	East	North	Y (ppm)
BRSS007971	490309.3	7903815.5	10.45
BRSS007972	490400	7903794.8	3.94
BRSS007973	490512	7903797	17.47
BRSS007974	490600.9	7903800.7	3.12
BRSS007975	490550.7	7903907.3	10.72
BRSS007976	490442.2	7903912.7	18.60
BRSS007977	490345.8	7903893.1	7.57
BRSS007978	490237	7903909.9	9.40
BRSS007979	490151.8	7903895	5.85
BRSS007980	490053	7903914	5.21
BRSS007981	489964.9	7903911.4	13.66
BRSS007982	490096.9	7903812.6	4.07
BRSS007983	490005.6	7903789.7	8.91
BRSS007984	490242.6	7903702.4	15.22
BRSS007985	490140.6	7903703.7	10.28
BRSS007986	490057.9	7903698.8	1.67
BRSS007987	489960.9	7903702.6	6.39
BRSS007988	489989.4	7903606.9	9.25
BRSS007989	490099.3	7903617.5	5.48
BRSS007990	489911.3	7903602.6	7.66
BRSS007991	490043.7	7903506.6	12.24
BRSS007992	489952.8	7903497.6	13.48
BRSS007993	489853.2	7903500.4	9.15
BRSS007994	489754	7903500.9	15.65
BRSS007995	489551.8	7903503.9	11.39
BRSS007996	489451.7	7903513.3	11.78
BRSS007997	489351.6	7903514.8	11.45
BRSS007998	489248.2	7903511	9.60
BRSS007999	489888.4	7903790.8	11.76
BRSS008000	490602.2	7904004.3	11.73
BRSS008001	490510.4	7904003.5	10.39

Sample ID	East	North	Y (ppm)
BRSS008002	490359.8	7904108.3	23.73
BRSS008003	490451.9	7904109	9.90
BRSS008004	490549.6	7904099.3	13.95
BRSS008005	490604.6	7904197.3	17.48
BRSS008006	490505.8	7904205.8	8.17
BRSS008007	490395.1	7904211.5	15.37
BRSS008008	490307.9	7904193.6	9.23
BRSS008009	490199.7	7904194.8	12.54
BRSS008010	490086.8	7904207.8	14.43
BRSS008011	490052.9	7904293.8	8.68
BRSS008012	490144.3	7904304.4	13.94
BRSS008013	490242.7	7904296.4	11.64
BRSS008014	490354.1	7904307.1	31.55
BRSS008015	490446.2	7904306.6	15.98
BRSS008016	490545.3	7904301.2	12.73
BRSS008017	488841.5	7905501.3	14.13
BRSS008018	488955.1	7905500.6	14.38
BRSS008019	489048.8	7905499.1	12.49
BRSS008020	489144.8	7905505.9	21.28
BRSS008021	489251.3	7905499.8	15.23
BRSS008022	489347.6	7905493.7	18.49
BRSS008023	489450.1	7905499.3	18.04
BRSS008024	489495	7905407	15.02
BRSS008025	489405.9	7905396.7	17.74
BRSS008026	489303.4	7905400	18.26
BRSS008027	489201.9	7905401.3	13.26
BRSS008028	489105.9	7905397.2	14.52
BRSS008029	489003.6	7905404.3	14.53
BRSS008030	488902.2	7905398.5	12.21
BRSS008031	488849.4	7905301.2	4.48
BRSS008032	488944.5	7905304.4	15.12

Sample ID	East	North	Y (ppm)
BRSS008033	489052.9	7905304.6	15.48
BRSS008034	489162.3	7905314.1	17.98
BRSS008035	489249.5	7905302.7	18.24
BRSS008036	489349.1	7905304	7.64
BRSS008037	489445.4	7905298.3	18.26
BRSS008038	489554.3	7905294.8	14.40
BRSS008039	489597.2	7905195.5	17.68
BRSS008040	489506.1	7905196.1	16.55
BRSS008041	489402.3	7905198.3	18.98
BRSS008042	489306.3	7905202.7	17.04
BRSS008043	489202.8	7905203.7	18.88
BRSS008044	489102.7	7905191.5	16.81
BRSS008045	489004.2	7905209.7	17.17
BRSS008046	488912.2	7905202.9	15.18
BRSS008047	488847.4	7905099.1	12.35
BRSS008048	488947.4	7905104.5	16.82
BRSS008049	489051.9	7905095.8	13.44
BRSS008050	489145.4	7905100.1	8.66
BRSS008051	489249.8	7905100	15.65
BRSS008052	489346.4	7905101.3	16.34
BRSS008053	489446.2	7905103.7	16.52
BRSS008054	489546.3	7905102.9	18.43
BRSS008055	489642.8	7905108.2	17.25
BRSS008056	489457	7904909.6	16.54
BRSS008057	489586.7	7904999.8	15.18
BRSS008058	489504.2	7904994.7	18.80
BRSS008059	489402.2	7905004.2	18.79
BRSS008060	489307	7905008.8	7.21
BRSS008061	489204	7905005.7	18.25
BRSS008062	489108.4	7905002.4	17.67
BRSS008063	489008.7	7905000	18.50

Sample ID	East	North	Y (ppm)
BRSS008064	488910.4	7905002.1	18.99
BRSS008065	488857	7904900.3	19.65
BRSS008066	488896.9	7904813.7	4.80
BRSS008067	488956.2	7904890.8	18.96
BRSS008068	489047.7	7904897.5	19.53
BRSS008069	489156.6	7904888	19.86
BRSS008070	489248.8	7904910.6	10.24
BRSS008071	489345.3	7904893.3	14.53
BRSS008072	489400.3	7904815.4	12.69
BRSS008073	489307.6	7904803.1	7.66
BRSS008074	489206.5	7904794.5	19.05
BRSS008075	489099.4	7904810.8	18.03
BRSS008076	489002.5	7904803.8	20.30
BRSS008077	489245.8	7904694.6	22.07
BRSS008078	489348.2	7904696.5	19.67
BRSS008079	489445	7904698.7	12.95
BRSS008080	489495.8	7904786.8	20.90
BRSS008081	489606.6	7904817.7	18.68
BRSS008082	489555	7904696.6	16.88
BRSS008083	489642.4	7904698.7	10.32
BRSS008084	489595.2	7904601.2	9.51
BRSS008085	489509.1	7904596.6	14.54
BRSS008086	489405	7904596.2	15.87
BRSS008087	489305.7	7904595.4	8.13
BRSS008088	489201.6	7904602.2	10.43
BRSS008089	489246.5	7904508.2	19.91
BRSS008090	489343.1	7904499.4	13.37
BRSS008091	489449	7904503.2	11.84
BRSS008092	489544.4	7904499.3	9.97
BRSS008093	489662.3	7904503.7	19.64
BRSS008094	489747.5	7904501.2	7.84

Sample ID	East	North	Y (ppm)
BRSS008095	489852.9	7904502.5	9.43
BRSS008096	489950.7	7904499.6	10.15
BRSS008097	490053.3	7904488.8	11.64
BRSS008098	490147.5	7904502.2	9.80
BRSS008099	490251.2	7904502.1	14.11
BRSS008100	490360	7904502.6	4.57
BRSS008101	490391	7904404.1	16.33
BRSS008102	490294.2	7904406.7	16.19
BRSS008103	490205.9	7904407.6	9.83
BRSS008104	490104.4	7904403.5	8.60
BRSS008105	490006.5	7904406.1	11.42
BRSS008106	489906	7904411.8	3.81
BRSS008107	489807.9	7904404.3	3.57
BRSS008108	489705.2	7904407.4	17.16
BRSS008109	489589.3	7904406.7	17.23
BRSS008110	489503	7904393.7	6.14
BRSS008111	489403.4	7904403.7	13.26
BRSS008112	489302.9	7904402.1	4.58
BRSS008113	489204.3	7904394.1	14.64
BRSS008114	489250.2	7904311.9	12.82
BRSS008115	489348.5	7904312.4	16.21
BRSS008116	489455.1	7904296.1	17.47
BRSS008117	489542.1	7904297.5	16.78
BRSS008118	489491.3	7904200.2	8.70
BRSS008119	489398.5	7904202.8	19.35
BRSS008120	489295.4	7904206.9	9.65
BRSS008121	489203.5	7904206.1	12.92
BRSS008122	489245.7	7904109	18.62
BRSS008123	489352.5	7904093.1	17.44
BRSS008124	489457.6	7904096.3	18.21
BRSS008125	489539.8	7904092.5	19.88

Sample ID	East	North	Y (ppm)
BRSS008126	489496.3	7903998.4	18.03
BRSS008127	489404.4	7904000.8	19.46
BRSS008128	489304.7	7904006	11.76
BRSS008129	489203.4	7904000.8	18.58
BRSS008130	489263.1	7903897.1	14.10
BRSS008131	489348.9	7903904.6	16.79
BRSS008132	489453.4	7903899.6	16.26
BRSS008133	489547.2	7903897.1	14.66
BRSS008134	489501.3	7903805.3	12.37
BRSS008135	489407.3	7903800.6	17.87
BRSS008136	489306.5	7903802.3	12.46
BRSS008137	489205	7903799.2	16.56
BRSS008138	489253.8	7903696.6	11.88
BRSS008139	489351.3	7903703.4	18.68
BRSS008140	489443.2	7903706.8	16.09
BRSS008141	489547.9	7903697.2	8.37
BRSS008142	489594.1	7903620.9	12.38
BRSS008143	489506.4	7903603.8	16.63
BRSS008144	489394.5	7903613.3	15.75
BRSS008145	489288.1	7903602.7	19.36
BRSS008146	489201.2	7903608.3	14.18
BRSS008147	489655.4	7904314.4	12.20
BRSS008148	489743.7	7904298.8	15.46
BRSS008149	489846.2	7904303.5	23.40
BRSS008150	489956.8	7904295.6	15.62
BRSS008151	489999.7	7904199.3	15.97
BRSS008152	489902.9	7904202.9	16.30
BRSS008153	489801.6	7904195.5	19.38
BRSS008154	489846.3	7904108.3	13.25
BRSS008155	489755.3	7904102.3	11.79
BRSS008156	489654.3	7904098.1	14.12

Sample ID	East	North	Y (ppm)
BRSS008157	489610.5	7904201.1	16.60
BRSS008158	489690.5	7904192.8	19.39
BRSS008159	489610.7	7904018.2	16.72
BRSS008160	489704.8	7903995.7	16.83
BRSS008161	489809.6	7903995.9	15.76
BRSS008162	489902.9	7904003.6	16.46
BRSS008163	489998.6	7904004.7	18.22
BRSS008164	490098.1	7903997.7	15.63
BRSS008165	490194.4	7904006.3	3.20
BRSS008166	490244.5	7904100.6	15.06
BRSS008167	490156	7904108.7	17.16
BRSS008168	490060.8	7904101.7	14.91
BRSS008169	489958.7	7904098.3	15.55
BRSS008170	490290.7	7903997.3	53.37
BRSS008171	490389.1	7904013.1	15.52
BRSS008172	489858.2	7903898.5	9.74
BRSS008173	489764.9	7903901.1	28.32
BRSS008174	489653	7903899.9	20.98
BRSS008175	489602.5	7903814.6	20.08
BRSS008176	489696.3	7903805.5	21.14
BRSS008177	489791.6	7903807.8	16.77
BRSS008178	489839.9	7903696	15.85
BRSS008179	489749.1	7903710.4	15.22
BRSS008180	489660.1	7903710.2	22.80
BRSS008181	489697.6	7903611.4	16.98
BRSS008182	489795.5	7903600.5	14.92
BRSS008183	489655.6	7903491.2	20.68
BRSS008184	489557.5	7903109.7	21.55

Appendix 3: JORC Code Table 1.

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<p><i>Sampling techniques</i></p>	<p><i>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i></p>	<p>Reverse circulation (RC) holes:</p> <ul style="list-style-type: none"> The 33 RC holes reported in the 'greenfields' RC Regional Tracks program were drilled along easy access tracks that intercepted key structural features identified from geophysical work and partly tested previously by soil geochemistry. Of the 33-hole RC Regional Tracks program, all 33 holes were logged for lithological data, 32 holes were sampled and submitted for laboratory analysis, with one hole, (BRR012) abandoned due to unfavourable ground conditions. This confirmed a new prospect named Vulcan that was previously identified by anomalism in the soil geochemistry. RC samples were collected through the face-sampling hammer through the return air hose and then split into subsamples by either: <ul style="list-style-type: none"> Static cone splitter at the base of the RC cyclone mounted on-board the rig to produce an original or primary sample, a field duplicate sample, and a coarse reject sample. Manual riffle splitter of all sample returned. Sample weights targeted 2 kg – 5 kg. The 3,251 assay results received for the period are reported from 32 holes. Results for all samples submitted have been received. <p>Diamond core:</p> <ul style="list-style-type: none"> The 17 HQ diamond holes (with PQ collars) for 4184.27 m were drilled into Ripcord (4 holes for 1102.5 m) Dazzler (5 for 1283.53 m) and Rockslider (8 for 1798.24 m) from surface. 1140 samples for 13 diamond holes were sent for analysis. Results for all samples submitted have been received. Zones of geological interest and mineralised zones were identified and marked up to geological contacts by geologists. The core was cut, with half core submitted to an external accredited laboratory for ICP=MS assay analysis, except for field duplicates, which used a further cut of the side to be submitted for analysis into two for a ¼ core duplicate. <p>Soil samples:</p> <ul style="list-style-type: none"> 772 UFF soil samples were collected in the south of the Browns Range Project, covering an area between the Dazzler and Cyclops deposits. UFF Soil samples were collected by digging a hole to a depth of between 15-30 centimetres and collecting approximately 200 grams of material, sieved to -2mm in the field, from the bottom of each hole. Samples were submitted to Labwest in Malaga for multi-element analysis. 50g subsamples were then sieved at the laboratory to the -2um "Ultrafine" fraction for ICP-MS analysis.
	<p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p>	<ul style="list-style-type: none"> Surface diamond and RC holes were angled to intersect the targeted mineralised zones at optimal angles. RC samples were collected at one metre intervals and subsampled via cone or riffle splitters. The diamond drill holes sampled and assayed were double or triple tubed HQ sized core. Diamond core was half-core sampled at nominal one-metre

Criteria	JORC Code explanation	Commentary
		<p>intervals and constrained to geological boundaries where appropriate.</p> <ul style="list-style-type: none"> In the field a portable XRF handheld tool was used to provide a preliminary indication of mineralisation and assist with sample selection. For diamond core, a reading time of 10 seconds was used, with spot readings taken. The pXRF instrument is calibrated and serviced annually or more frequently. At the start of each sampling session, standards and silica blanks are analysed as a calibration check. Sampling and assay results are carried out under NTU protocols which include QAQC procedures in line with industry standard practice. Soil samples were taken on a consistent grid of 100 m by 100 m to ensure unbiasedness of thematic interpolation mapping. All sampling was carried out under NTU protocols and employed QAQC procedures in line with industry standard practice that are fit for purpose. NTU's and laboratory QAQC policies were used to monitor and ensure quality results, which include industry standard levels of insertion of standards, blanks, duplicates, repeats, and umpire analyses.
	<p><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</i></p>	<p>Diamond core samples:</p> <ul style="list-style-type: none"> Diamond core was drilled using triple tube PQ3 for collar stability and otherwise HQ3 sizes. Diamond core was half-core sampled at nominal 1 m intervals and constrained to geological boundaries where appropriate. <p>RC samples:</p> <ul style="list-style-type: none"> RC samples were collected on one metre intervals and subsampled via cone or riffle splitters to achieve a target 2 kg – 5 kg sample weight. <p>Diamond and RC samples:</p> <ul style="list-style-type: none"> Sampling was carried out under NTU protocols and employed QAQC procedures in line with industry good practice. Samples were submitted to an independent NATA accredited contract laboratory for crushing and pulverising. Samples up to 3kg were crushed and pulverised in their entirety. Samples above 3kg were crushed to 2 mm, from which a split up to 3 kg was taken and pulverised, and the coarse reject retained. The pulverised portion was subsampled for analysis. The portion of the pulp of not consumed by analysis was archived for future reference. Analysis of the rare earth element suite was conducted using a sodium peroxide fusion digest with Inductively coupled plasma mass spectrometry (ICP-MS). An extended geochemical suite was used for the RC samples to provide pathfinder exploration assays. Depending on the analyte required, the assaying used either a 4 Acid Digest and Optical Emission Spectroscopy or Aqua Regia Digest with Mass Spectrometry.
Drilling techniques	<p>Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc).</p>	<ul style="list-style-type: none"> Diamond drill holes used HQ sized core, although PQ sized core was used for establishing collar stability, converting to HQ once ground conditions stabilised. Diamond core was orientated using the Reflex ACT orientation tool. RC drilling used bit diameters of 140 mm using face sampling hammer with hole depths ranging from 88 m to 108 m.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p>	<ul style="list-style-type: none"> • Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the drillers. • Diamond recovery is measured by measuring the recovered core and comparing with the drilled interval between drillers blocks. Assessment showed that more than 98% of core intervals had recoveries greater than 90%. Recovery near surface • RC recovery was assessed by a combination of weight of bulk sample against a nominal recovery mass, and via subjective assessment based on volume recovered. • RC recoveries were observed to be generally acceptable with recoveries typically 80% or greater. • Sample recoveries for RC and diamond core were digitally recorded in the geologists' logs and entered into the database.
	<p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p>	<p>Diamond:</p> <ul style="list-style-type: none"> • Diamond drilling has utilised triple tube techniques and drilling fluids where required to assist with maximising recoveries in less competent ground. • Diamond core was reconstructed into continuous runs on an angle iron cradle for orientation marking. • Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the drillers. • Recovered core was measured and compared against driller's blocks. <p>RC:</p> <ul style="list-style-type: none"> • RC sample recoveries were visually checked for recovery, moisture and contamination. • The cyclone and splitter were routinely cleaned, ensuring no material build up.
	<p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<ul style="list-style-type: none"> • No relationship has been established between sample recovery and grade.
Logging	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i></p>	<ul style="list-style-type: none"> • Diamond core was geologically and geotechnically logged using predefined lithological, mineralogical, and physical characteristics (such as colour, weathering, fabric) logging codes. • Core trays were photographed after mark-up prior to sampling. • Geotechnical logging of all diamond core consisted of recording core recovery, RQDs, number of fractures, core state (i.e. whole, broken) and hardness. In addition, nine diamond holes (BRWD0026-0034) were drilled specifically for geotechnical purposes and were logged by both NTU geologists and external consultants. Samples were also selected for destructive testing. • RC logging was completed at the rig by the geologist directly onto a laptop in the field using a proprietary geological logging package with in-built validation. Logging information was reviewed by the responsible geologist prior to final load into the database. • RC cuttings were collected into chip trays for each metre interval and the entire tray was photographed. • This detail is considered common industry practice and is at the appropriate level of detail for the purpose. <p><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i></p> <ul style="list-style-type: none"> • Logging was qualitative in nature except for the determination of core recoveries and geotechnical criteria such as RQD and fracture frequency which was quantitative.

Criteria	JORC Code explanation	Commentary
		Core photos were collected by geologists for all diamond drilling to aid geological interpretation.
Sub-sampling techniques and sample preparation	<p><i>The total length and percentage of the relevant intersections logged.</i></p> <p><i>If core, whether cut or sawn and whether quarter, half or all cores taken.</i></p>	<ul style="list-style-type: none"> All recovered intervals from drill holes were geologically logged in full. Diamond core was cut in half using an electric core saw. Sample intervals were marked on the core by the responsible geologist considering lithological and structural features, together with indicative results from handheld XRF measurements. Core selected for duplicate analysis was further cut to quarter core with both quarters submitted blind individually for analysis. Where possible, core was sampled to leave the orientation line in the core tray. Half and quarter core has been retained.
	<p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p>	<ul style="list-style-type: none"> RC samples were collected from the full recovered interval by either riffle splitting or using a static cone splitter. Most samples were collected dry with a minor number being moist due to ground conditions or excessive dust suppression. Samples were split without drying.
	<p><i>For all sample types, the nature, quality, and appropriateness of the sample preparation technique.</i></p>	<ul style="list-style-type: none"> The sample preparation techniques employed for the samples follow industry standard practice at Intertek Genalysis Laboratory. Samples were oven dried, crushed if required and pulverised prior to a pulp packet being removed for analysis. Sample sizes are considered appropriate to correctly represent mineralisation based on the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology, and assay value ranges.
	<p><i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i></p>	<ul style="list-style-type: none"> As a NATA accredited testing authority, the laboratory undertook industry standard QAQC to ensure sample representivity.
	<p><i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i></p>	<ul style="list-style-type: none"> Field duplicates were regularly taken from RC samples. Duplicate analysis was performed on diamond core, where two quarter cores over the same interval were independently assayed. For diamond core samples, 634 pairs were available. Field duplicate insertion rates for RC and diamond core targeted 1:20, with increased frequency in mineralized zones.
	<p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<ul style="list-style-type: none"> Sample sizes are appropriate for the grain size of the material being sampled.
Quality of assay data and laboratory tests	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> Samples assayed by Genalysis for rare earth elements were fused with sodium peroxide within a nickel crucible and dissolved with hydrochloric acid for analysis. Fusion digestion ensures complete dissolution of the refractory minerals such as xenotime, which are only partially dissolved if the pulp is digested in acids. The digestion solution, suitably diluted, is analysed by ICP Mass Spectroscopy (ICP-MS) for the determination of the REE (La – Lu) plus Y, Th and U. <p>Soil samples:</p> <ul style="list-style-type: none"> The Ultrafine soil technique utilises a 50g subsample from which a - 2 micron fraction is extracted. The -2 micron fraction then underwent multielement analysis using a multi-acid digest with an Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) or Optical Emission Spectrometry (ICP-OES) finish for a suite of 62 elements. Code (UFF-MMA-04). The method is a partial digest for more resistive / refractory minerals such as xenotime or zircon.

Criteria	JORC Code explanation	Commentary
	<p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> • Northern Minerals extensively uses portable X-ray fluorescence (pXRF) technology. • In the field a series of Niton (XL3T-950 GOLDD+) and Olympus Vanta XRF handheld tools were used to assist with the identification of mineralised zones for sample collection and submission. • A reading time of 30 seconds was used, with readings taken for every metre of RC drilling. • Intervals for which readings returned yttrium (Y) of 200 ppm or greater, or at geologist discretion such as within mineralised zones, were selected for analysis.
	<p><i>Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> • Certified reference materials, using values across the range of mineralisation, were inserted randomly. • Insertion rates targeted 1:20 for duplicates, blanks, and standards, with increased frequency in mineralised zones. • Results highlight that sample assay values are suitably accurate and unbiased. Blanks were inserted in the field and developed from local host rock following chemical analysis. • Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits, and replicates as part of the in-house procedures. • Umpire laboratory campaigns are used to routinely conduct round robin analysis. Results of round robin analysis are acceptable. • Certified reference materials demonstrate that sample assay values are accurate. <p>Soil samples:</p> <ul style="list-style-type: none"> • Samples were prepared and analysed as per the laboratory's own, standard QA/QC procedures including CRM's and blank material to monitor laboratory performance.
<p><i>Verification of sampling and assaying</i></p>	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p>	<ul style="list-style-type: none"> • Diamond drill core photographs have been reviewed for the recorded sample intervals. • High range values are routinely resubmitted for repeat analysis with results comparing within acceptable limits.
	<p><i>The use of twinned holes.</i></p>	<ul style="list-style-type: none"> • No twinned holes were drilled for the exploration.
	<p><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> • Geological field data was collected into a proprietary logging package (OCRIS) with in-built validation. • All data was checked by the responsible geologist and digitally transferred to Perth for loading to the database. • Databashed is used as the database storage and management software and incorporates numerous data validation and integrity checks, using a series of defined data loading tools. • Data is stored on a secure company owned SQL server subject to electronic backup offsite. <p>Soil samples:</p> <ul style="list-style-type: none"> • Sample information collected in the field was initially handwritten onto printed templates. This information was compiled by a Senior Geologist onto an Excel template and verified by the exploration manager before being imported to NTU's SQL database. Electronic copies of the field and data entry templates are stored on the NTU's network directory.
	<p><i>Discuss any adjustment to assay data.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> • The assay data were reported as both elemental assays and oxides rare earth elements. • Oxide calculations from REE to REO were completed by the laboratory using the equivalent oxide compound and checked by Northern Minerals. No issues were identified. • The oxides were calculated from the element according to the following factors below: CeO₂ – 1.2284, Dy₂O₃ – 1.1477,

Criteria	JORC Code explanation	Commentary
		<p>Er₂O₃ – 1.1435, Eu₂O₃ – 1.1579, Gd₂O₃ – 1.1526, Ho₂O₃ – 1.1455, La₂O₃ – 1.1728, Lu₂O₃ – 1.1371, Nd₂O₃ – 1.1664, Pr₆O₁₁ – 1.2082, Sm₂O₃ – 1.1596, Tb₄O₇ – 1.1421, Tm₂O₃ – 1.1421, Y₂O₃ – 1.2699, Yb₂O₃ – 1.1387</p>
<i>Location of data points</i>	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> • Drill collar locations have been surveyed with a high accuracy KGPS receiver with an accuracy of +/- 0.02 metres. • Collars were surveyed using a DGPS by Northern Minerals staff, who were trained by contract surveyors. • Diamond down hole surveys were completed by the drilling contractor using an AXIS Champ gyroscope survey tool at the time of drilling.
	<p><i>Specification of the grid system used.</i></p>	<ul style="list-style-type: none"> • The grid system used is MGA94 Zone 52. All reported coordinates are referenced to this grid.
	<p><i>Quality and adequacy of topographic control.</i></p>	<ul style="list-style-type: none"> • Topographic surfaces were prepared from LiDAR survey data collected in 2013. • Ground control was established by contract surveyors, which they consider to be better than 20 cm.
<i>Data spacing and distribution</i>	<p><i>Data spacing for reporting of Exploration Results.</i></p>	<p>Diamond and RC:</p> <ul style="list-style-type: none"> • Drilling was completed at variable drill spacings and orientations • Soil samples:
	<p><i>Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied</i></p>	<ul style="list-style-type: none"> • Soil samples were collected on an offset 100m by 100m grid. • Mineral Resources and Ore Reserves are not being reported.
	<p><i>Whether sample compositing has been applied</i></p>	<ul style="list-style-type: none"> • No sample compositing applied prior to laboratory analysis.
<i>Orientation of data in relation to geological structure</i>	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></p>	<p>Dazzler North and Ripcord:</p> <ul style="list-style-type: none"> • Diamond drilling was designed at an orientation perpendicular to the interpreted structural and/or lithological trend. • Scissor holes were utilised to obtain information regarding dip orientation of the targeted structures, increasing the likelihood of down-dip sampling of mineralised structures in these holes. <p>Rockslider:</p> <ul style="list-style-type: none"> • Diamond drilling was designed at an orientation perpendicular to the interpreted structural and/or lithological trend. <p>Regional RC:</p> <ul style="list-style-type: none"> • Drilling was restricted to existing access tracks, and where interpreted structures were accessible, drilling was oriented normal to the strike.
	<p><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	<ul style="list-style-type: none"> • Current knowledge from analysis during the preparation of other Browns Range MREs indicates that the orientation of drilling with respect to overall structural and lithological trends is not expected to introduce any sampling bias.
<i>Sample security</i>	<p><i>The measures taken to ensure sample security.</i></p>	<ul style="list-style-type: none"> • Chain of custody was managed by NTU. • Samples were collected on site under supervision of a

Criteria	JORC Code explanation	Commentary
		<p>responsible geologist and stored in bulk bags on site prior to transport by company truck or utility to Halls Creek commercial transport yard.</p> <ul style="list-style-type: none"> The samples were stored in a secure area until loaded and delivered to Labwest or Genalysis Laboratories in Perth. Laboratory dispatch sheets are completed and forwarded electronically as well as being placed with transported samples. Dispatch sheets are compared against received samples and discrepancies reported and corrected.
<i>Audits or reviews</i>	<i>The results of any audits or reviews of sampling techniques and data.</i>	<ul style="list-style-type: none"> Internal review by the Competent Persons and senior geological staff of the techniques, data integrity, and consistency of the drilling data and drill hole database shows sufficient quality to support exploration results and estimation of Mineral Resources. External reviews in 2022, 2024, and 2025 by internationally recognised mining and exploration industry consultants on Wolverine MRE data collection and storage systems and procedures that were identical or contemporaneous to Wolverine MREs in 2022 and 2025 found no material risks for reporting exploration results and Mineral Resources.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</i></p>	<ul style="list-style-type: none"> The works completed covering the drilling and soil sampling programs were at the Company's Browns Range Project approximately 150 km south-east of Halls Creek and adjacent to the Northern Territory border in the Tanami Desert. Drilling and soil sampling were all completed within recently granted tenement M80/650. Northern Minerals owns 100% of all mineral rights to M80/650. The tenement extends to the Wolverine deposit and includes the designed Browns Range Project processing facilities and designed mining infrastructure. The fully determined Jaru Native Title Claim is registered over the Browns Range Project area and the fully determined Tjurabalan claim is located in the south of the project area. The tenure is held with full security, and no impediments are known to operate in the area.
Exploration done by other parties	<p><i>Acknowledgment and appraisal of exploration by other parties.</i></p>	<ul style="list-style-type: none"> No previous systematic exploration for REE mineralisation has been completed by other parties prior to Northern Minerals at Browns Range. Regional exploration for uranium mineralisation was completed in the 1980s without success.
Geology	<p><i>Deposit type, geological setting, and style of mineralisation.</i></p>	<ul style="list-style-type: none"> The Browns Range prospects are located on the western side of the Browns Range Dome, a Paleoproterozoic dome formed by a granitic core intruding the Paleoproterozoic Browns Range Metamorphics (meta-arkoses, feldspathic meta-sandstones and schists) and an Archaean orthogneiss and schist unit to the south. The dome and its aureole of metamorphics are surrounded by the Mesoproterozoic Gardiner Sandstone (Birrindudu Group). The Browns Range xenotime mineralisation is typically hosted in hydrothermal quartz and hematite veins and breccias within the meta-arkoses of the Archaean Browns Range Metamorphics. Various alteration styles and intensities have been observed; namely silicification, sericitisation and kaolinite alteration. Cyclops and Rockslider- mineralisation is hosted by a sub-vertical quartz-hematitic fault breccia(s) that trend approximately east-west, within the Browns Range Metamorphics. Mineralisation is again related to the presence of hydrothermal xenotime. The Dazzler area prospects are located on a scarp slope that marks the unconformity between the younger overlying Gardiner Sandstone and the older Browns Range Metamorphics. At both prospects it is currently unclear what the controls on mineralisation are, however, there is a clear spatial association between the unconformity and the most anomalous zones, with mineralisation occurring in both units above and below the unconformity. At Banshee, xenotime mineralisation is hosted within coarser grained arkose units of the Browns Range Metamorphics and is considered bedding conformable.
Drill hole information	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <p><i>easting and northing of the drill hole collar</i></p> <p><i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i></p>	<p>The body of this report includes tabulations that provide all material summary information required.</p>

Criteria	JORC Code explanation	Commentary
	<p><i>dip and azimuth of the hole down hole length and interception depth hole length</i></p> <p><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></p>	
<i>Data aggregation methods</i>	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p> <p><i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p> <p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	<ul style="list-style-type: none"> Significant intercepts for drilling assays are reported $\geq 0.15\%$ TREO for intervals of ≥ 2 m with ≤ 2 m of continuous internal waste. For the soil samples, to illustrate zones of yttrium continuity in figures, assay data were grouped by grade ranges in Figure 8. No cut-off grade has been applied to the soil sample assay results presented in Table 6. No other weighting, averaging, or cutting / capping were applied.
<i>Relationship between mineralisation widths and intercept lengths</i>	<p><i>These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').</i></p>	<ul style="list-style-type: none"> The assay results from drilling reported here are at an early stage of understanding in relation to the mineralisation geometries for each deposit. Therefore, the true widths in relation to the angles of drilling and drill hole mineralisation lengths reported here are not known.
<i>Diagrams</i>	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i></p>	<ul style="list-style-type: none"> Appropriate tables, maps, sections and figures are included in the report.
<i>Balanced Reporting</i>	<p><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p> <p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i></p>	<ul style="list-style-type: none"> Diamond and RC collars were surveyed by RTK DGPS, which has an accuracy at Browns Range of <5 cm Diamond and RC holes were surveyed down hole by the drilling contractor using an industry standard north-seeking gyro. Soil samples were surveyed using hand-held GPS, which has an accuracy of 5 m.

Criteria	JORC Code explanation	Commentary
<i>Other substantive exploration data</i>	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	<p>All substantive data for this announcement have been reported. Geophysical, hyperspectral, and geomechanical surveys and imaging are being processed for further analysis.</p>
<i>Further work</i>	<p><i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<p>Rockslider:</p> <ul style="list-style-type: none"> • Relogging of RC chips for standardisation of previous geological observations with the new diamond core logging will be undertaken to determine if mineralisation controls can be established for drill planning. • Following this, a small RC and DD drilling program will be planned to attempt to improve the understanding of the mineralisation styles (stock-work, breccia, or stratigraphic lodes), structural controls, and, if possible, to define the orientation, extent, and tenor of the mineralisation. <p>Vulcan:</p> <ul style="list-style-type: none"> • Extension of the UFF soil sampling program is planned this FY to determine if the technique identifies anomalies indicating the subsurface mineralisation intercepted by the Regional RC Tracks program. • Following this, a small, follow-up RC and DD drilling campaign will be planned to attempt to define: <ul style="list-style-type: none"> ◦ The mineralisation extent, trend, and tenor of the deposit. ◦ The structures hosting or controlling the mineralisation. ◦ Whether further mafic andesite mineralisation is present. <p>Dazzler and Dazzler–Ripcord:</p> <ul style="list-style-type: none"> • The Dazzler – Ripcord drilling confirmed the lithostratigraphic architecture extends northwest of the Dazzler MRE (NTU ASX announcement 07 April 2020). The mineralisation intercepted confirmed that the Dazzler MRE volumes are well defined without further need for exploration of near-surface, unconformity hosted mineralisation dominantly in and around the argillite. • Further drilling of the Dazzler – Ripcord trend is not warranted at this stage, but the intercept of the deeper mafic andesite unit first identified by the EIS Dazzler drilling (NTU ASX announcement 16 May 2025) continues to be a focus for the South Domain (around and east of Dazzler) for Browns Range exploration. • The Dazzler Mineral Resource estimate will be updated if in-progress modelling determines material changes exists. • Mining studies for Dazzler will determine if the following are warranted: <ul style="list-style-type: none"> ◦ Resource development, geotechnical, and hydrogeological drilling ◦ Geotechnical and hydrological studies. ◦ Ore Reserve estimate, if appropriate. ◦ Grade control drilling, should project development warrant it. ◦ Further metallurgical programmes, if required.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> ○ Infrastructure designs and capital cost estimates for integration of Dazzler with the Browns Range Project processing. <p>Soil geochemistry inputs to regional exploration:</p> <ul style="list-style-type: none"> ● Analysis of specific elemental ratios will be used to map the spatial distribution of sub-surface lithologies and structures (sedimentary, mafic, and ultramafic lithologies) to aid exploration targeting. <p>Regional targeting:</p> <ul style="list-style-type: none"> ● From the geophysical data, continue investigation of the high priority targets provided by the consultancy for further evaluation. ● As the mineral systems analysis of the geological features of the HREE deposits together with new insights gained from the deep drilling programs below the Wolverine and Dazzler deposits have indicated that some of the best HREE targets were not captured by the geophysical targeting exercise, construct more detailed litho-structural maps at the 1:10,000 scale versus the current 1:25,000 scale. ● Undertake follow-up field reconnaissance to assess structural controls over HREE mineralisation at the targeted sites. ● On completion of the processing of the geomechanical, geophysical, and hyperspectral dataset, data will be used to inform development of a mineral systems model for HREE mineralisation across the Browns Range Dome (BRD) and further south in the Boulder Ridge project area west of the Coomarie Dome. ● The re-processed aeromagnetic imagery, new hyperspectral minerals maps, and GMEX modelling will be incorporated into the mineral systems model in tandem with the 2024 litho-structural map of the BRD, to identify the most prospective targets in the Browns Range. ● Using the data and knowledge generated about the origin of HREE deposits from the lithospheric processes defined by the mineral systems approach to apply to target the mineralisation processes at the camp scale. ● The mappable field proxies generated of these mineralisation processes (specific alteration minerals, aeromagnetic lineaments, key geochemical soil signatures) will be used for exploration targeting and development of accurate local exploration models. ● On an ongoing basis, on receipt of AI models, identify relationships, patterns and generate new insights to determine the most prospective HREE targets. Additionally, use the AI models allow the most influential datasets for mineralisation prediction by testing against existing targets, and the new targets, against geological, geochemical and geophysical datasets used to construct the mineral systems model for Browns Range HREE mineralisation.