

ASX Announcement – 2 February 2026

First Mt Ida Extensional and Exploration Results for 2026

Final Baldock infill results received, Ore Reserve due mid-year

- **Initial Extensional drilling below current Baldock Resource supports rapid 2026 growth, results include:**
 - 3 metres at 5 g/t from 103 metres, and
 - 10 metres at 3.2 g/t gold from 416 metres, and
 - 2 metres at 9 g/t gold from 448 metres in EMEX019 (central Baldock)
 - 6 metres at 2.3 g/t gold from 51 metres, and
 - 1 metre at 10 g/t gold from 300 metres in EMEX022 (central Baldock)
 - 2 metres at 12.3 g/t gold from 187 metres in BMRD009 (northern Baldock)
- **Exploration results returned from West Knell on the Ballard Fault**
 - 10 metres at 6.4 g/t gold from 28 metres in WKEX053
 - 3 metres at 5.7 g/t gold from 77 metres in WKEX058
 - 2 metres at 5.1 g/t gold from 161 metres in WKEX053A
- **Final Baldock Infill assays received, significant results include:**
 - 6 metres at 18.6 g/t gold from 226 metres in DFS120
 - 4 metres at 8.4 g/t gold from 181 metres in DFS122
 - 2 metres at 14.6 g/t from 202 meters in DFS592
- **2026 drilling focus is Resource Growth targeted from both Baldock Extensions and 53 Regional Exploration Targets**
 - 220,000m drill program underway for 2026
 - Accelerating Drilling Program with recent \$61M Placement¹
 - Second Diamond Drill rig being mobilised to site to expedite Baldock Extensional program
 - Five drill rigs planned, 3 x Reverse Circulation and 2 x Diamond Drill
- **Baldock Maiden Ore Reserve due mid-year, CY26**
 - Results of Phase 1 86,000m infill drill program will inform Baldock JORC Resource currently being updated
 - Feasibility level Geotechnical and Metallurgy studies ongoing

¹ Refer ASX Announcement lodged by Ballard on 23 January 2026 for further information

P: +61 8 6466 7500

E: info@ballardmining.com.au

A: Level 2, 18 Richardson Street,
West Perth WA 6005

ASX: BM1

ballardmining.com.au

Commenting on Ballard's active Growth program, Managing Director Paul Brennan said:

"We are pleased to get off the mark in 2026 with the first high-grade extensional drilling results from Baldock, outside the existing Baldock 930koz gold resource. They demonstrate that the deposit extends both at depth and along strike. Pre-collars are currently being drilled at Baldock for the diamond tails, which will target 350 – 750m depth. We expect the bulk of the 2026 resource growth to come from this program at Baldock as per our previously announced October 2025 Exploration Target².

At the same time we continue to work through the pipeline of 53 regional exploration targets which has started 2026 with the highly encouraging 10m at 6.4 g/t drill result at West Knell."

Ballard Mining (ASX:BM1) ("Ballard" or "the Company") is pleased to provide an update on drilling and 2026 planned activities at its Mt Ida Gold Project, located 540km northeast of Perth in the Goldfields region of Western Australia (Figure 14). The Mt Ida Gold Project covers 26km of prospective greenstone belt, folded around the Copperfield Granite (Figure 13).

Ballard is pursuing a dual stream Resource Growth and Project Development strategy. The Company is aiming to announce a Maiden Ore Reserve at Baldock mid-year that underpins an initial 5-6 year mine life and a defined pathway to deliver longer mine life for a standalone operation. Baldock Ore Reserve workstreams are ongoing and the Company's focus for the next 12 months is Resource Growth (extensional and regional) to add scale.

Baldock Extensional Growth Results

The Company has received initial resource extension assay results from below the current Baldock Mineral Resource which includes 21 drill holes for 6,322 metres that have been drilled below the northern (Nebula), central (Meteor) and southern (Baldock) parts of the Baldock deposit (Figures 1-10). Better results include 10 metres at 3.2 g/t gold, 2 metres at 9 g/t gold and 2 metres at 12.3 g/t gold. The full assay results table is set out in Appendix B.

During 2026, extensive resource growth drilling will be conducted at the Baldock deposit targeting the entire 3 kilometre strike length below the current drilling which on average is only 350 metres deep (Figure 1). The aim of the drilling is to substantially increase the existing Baldock resource, targeting 350 – 750m depth (refer Figure 1).

Leveraging off Baldock is a logical strategy as Baldock is fully permitted for both open pit and underground mining. Baldock is expected to be predominantly an underground mine. Once the decline, ventilation, escapeway network, power and other services are established, the extraction of additional identified resources becomes an incremental opportunity.

² Refer ASX Announcement lodged by Ballard on 28 October 2025 for further information

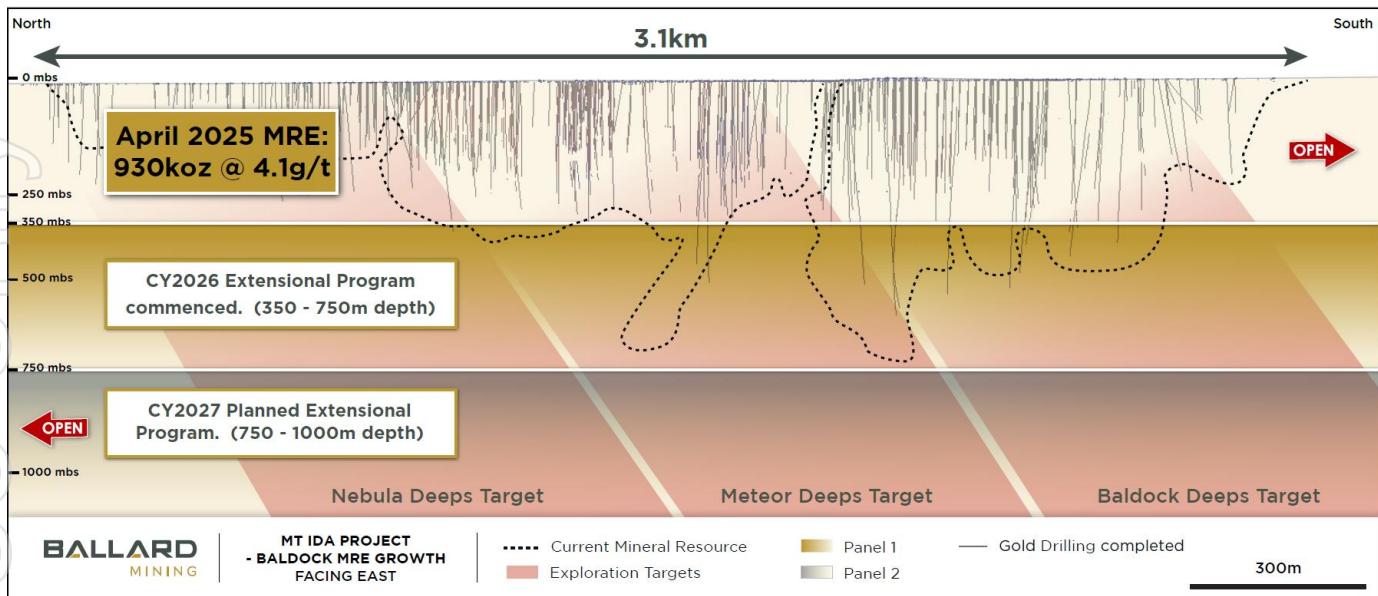
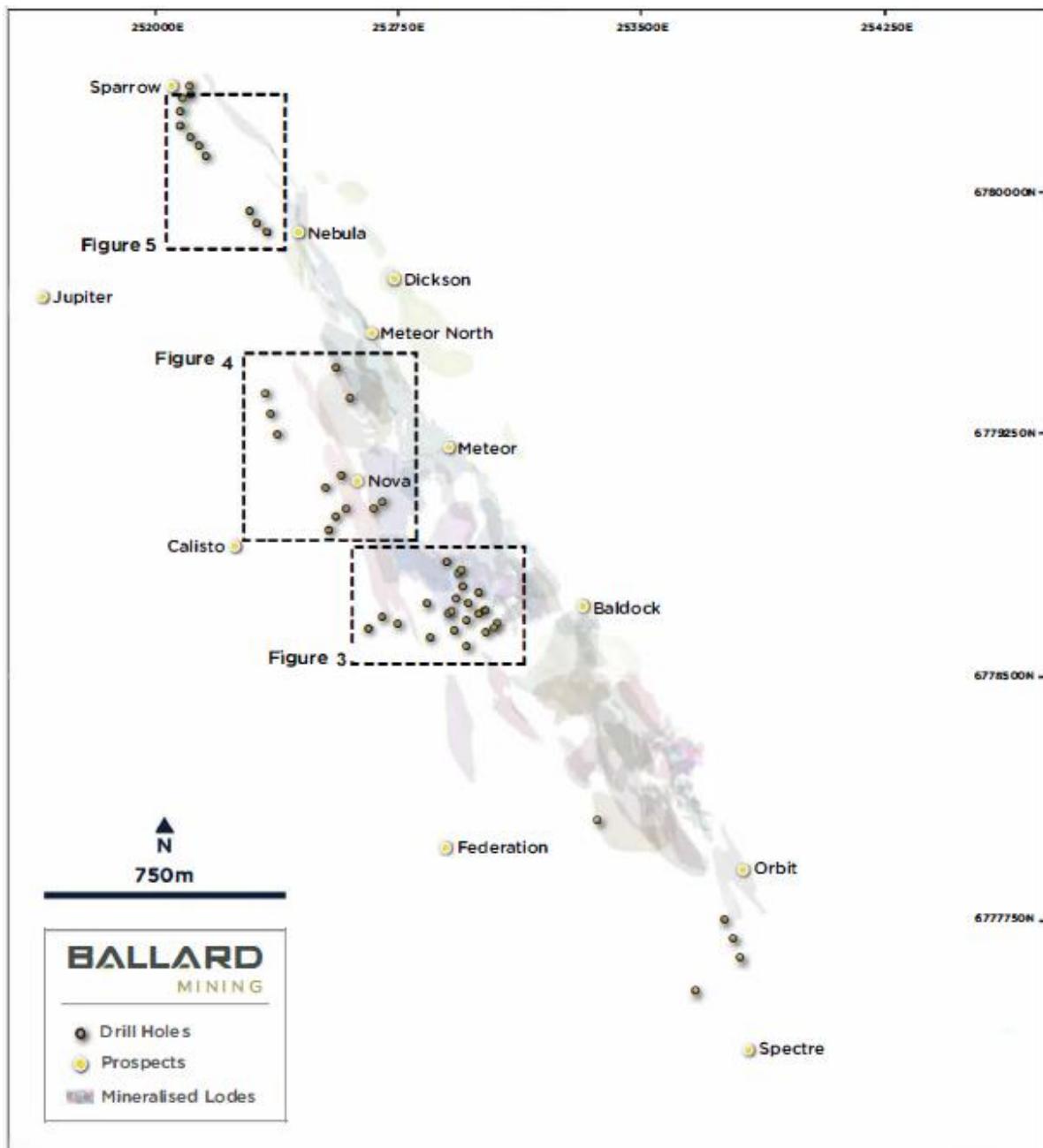


Figure 1 - Long section of the Baldock trend showing drill density and more importantly, the vast undrilled areas below current drilling. The deeper sections of the MRE outline were informed by Lithium drilling³


Final Baldock Infill Drilling Results and MRE Update

The Company has also received the final assay results from the 2025 Baldock 86,000m infill drilling campaign. This includes 33 drill holes for 8,662 metres that have been drilled at the northern, central and southern parts of the Baldock zone (Figures 1-10). Better results include 6 metres at 18.6 g/t gold, 4 metres at 8.4 g/t gold and 2 metres at 14.6 g/t gold. The full assay results table is set out in Appendix B.

The results continue to demonstrate the presence of multiple high-grade gold lodes within the Baldock system, with mineralisation intersected over a broad range of depths and positions within the deposit.

The Company now has sufficient data to calculate a new Mineral Resource estimate (MRE) with a focus on converting inferred resources to indicated resources. The updated MRE is expected within the current March Quarter.

³ Refer to the Ballard IPO Prospectus lodged with the Australian Securities and Investment Commission (“ASIC”) and dated 30 May 2025 (as amended by the Supplementary Prospectus lodged with ASIC and dated 17 June 2025) and the Disclaimer and Appendix A for further information on the MRE

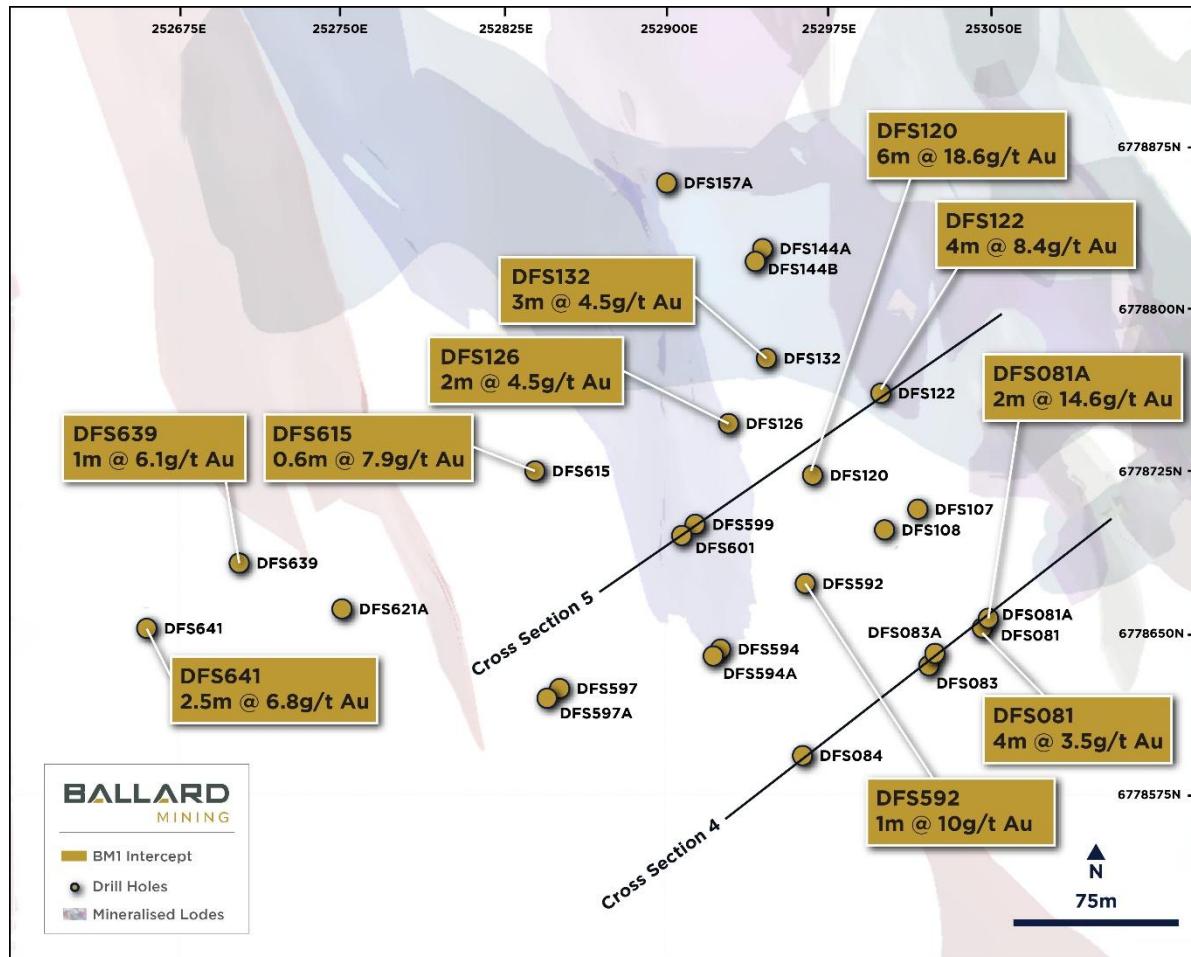


Figure 3 – Selected final infill assay results from Baldock

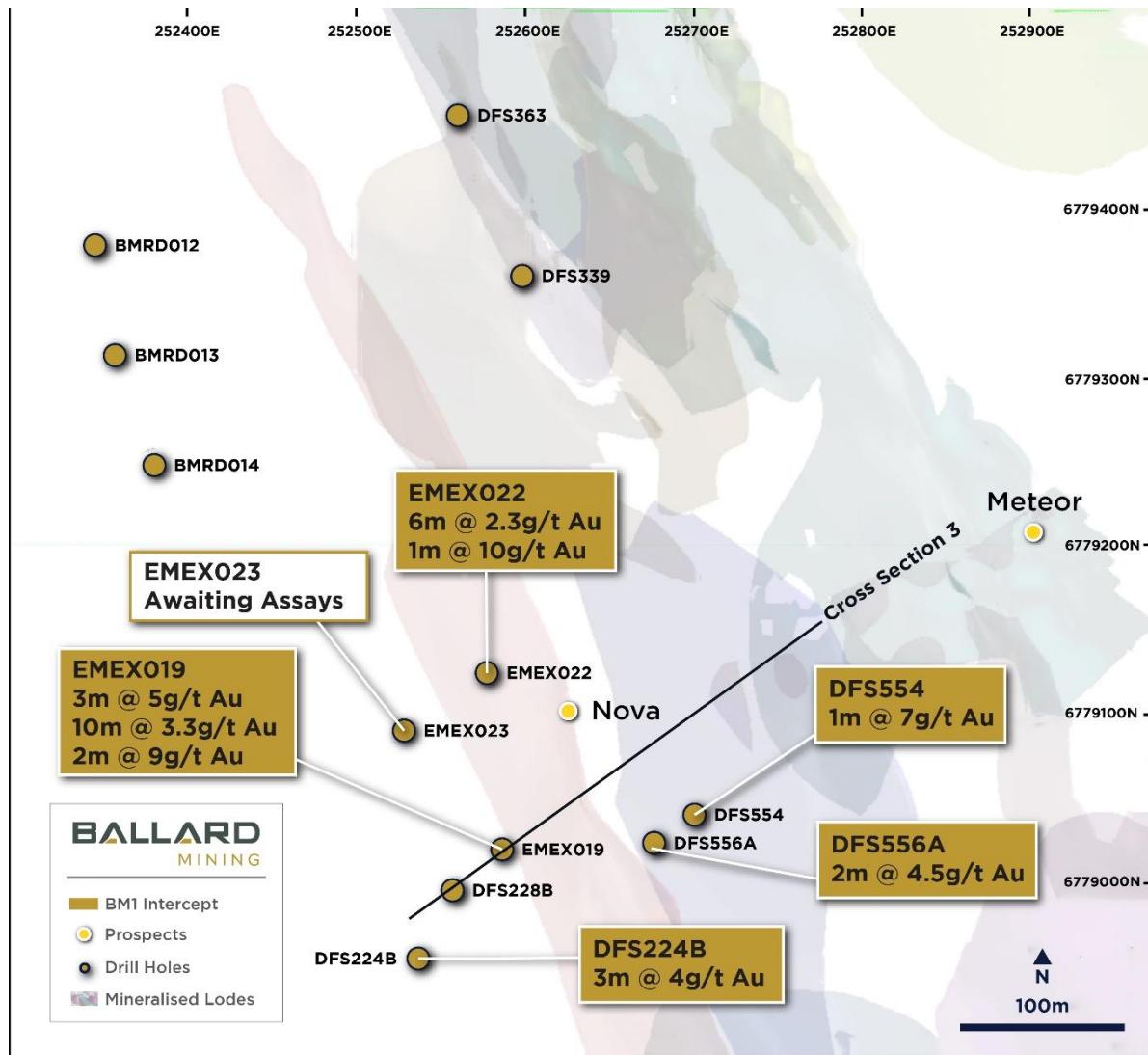


Figure 4 - Initial Baldock extensional growth assay results targeting an EM conductor immediately below the existing resource

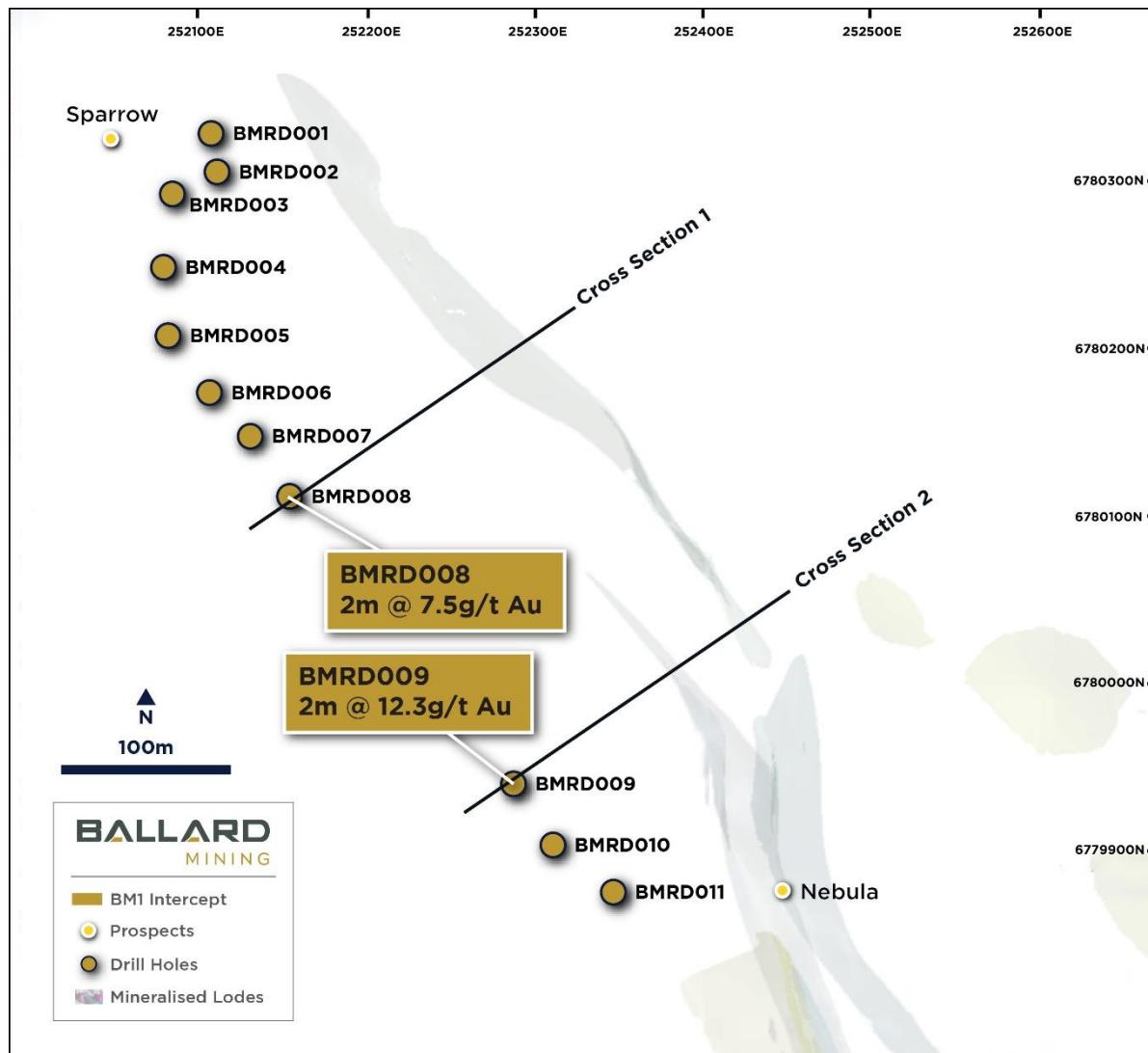


Figure 5 - Northern Baldock extension growth assay results showing a 200 metre untested gap in the drilling results

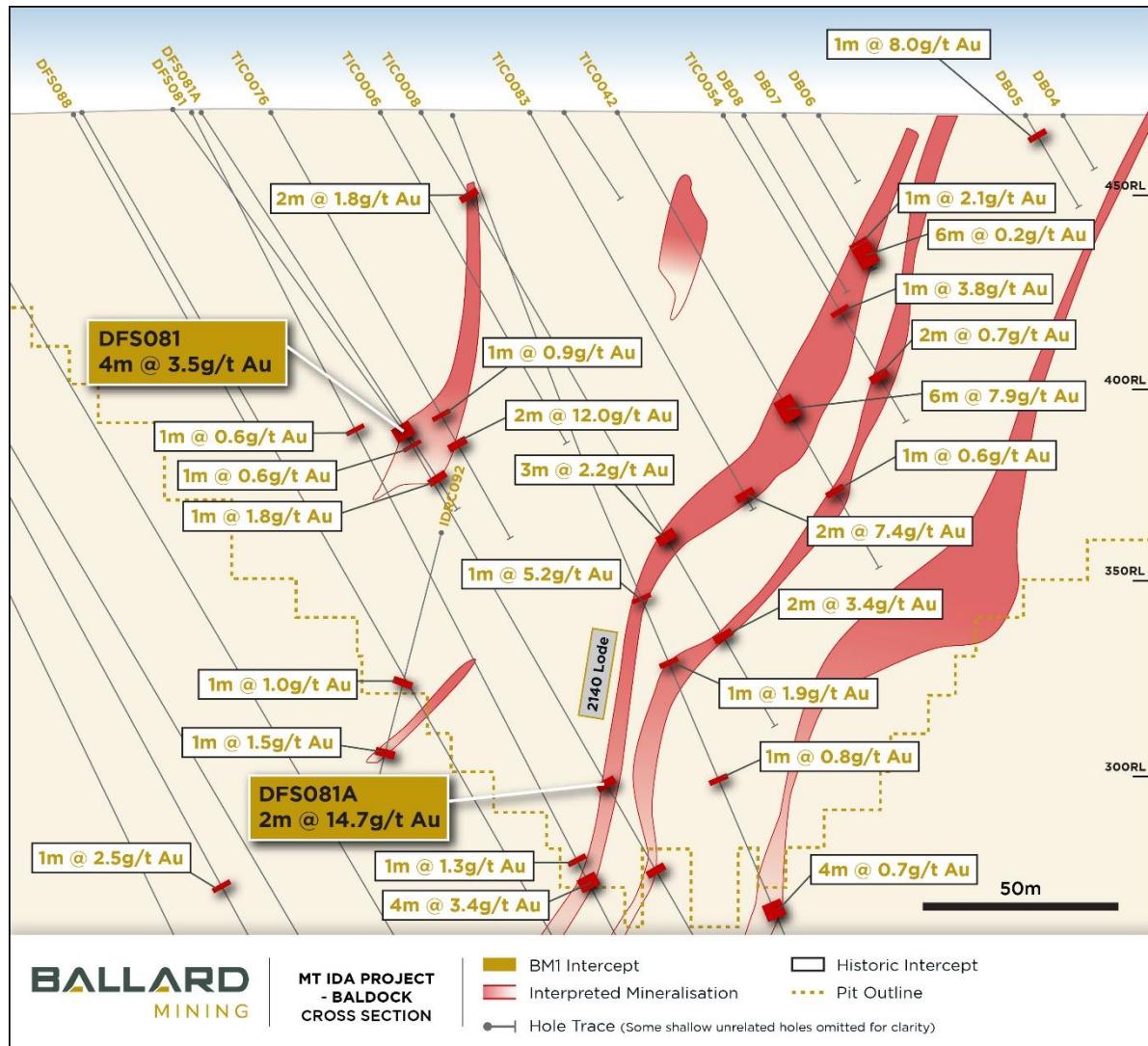


Figure 6 - Cross section 4 showing new infill assay results for lodes 2140 and 2160

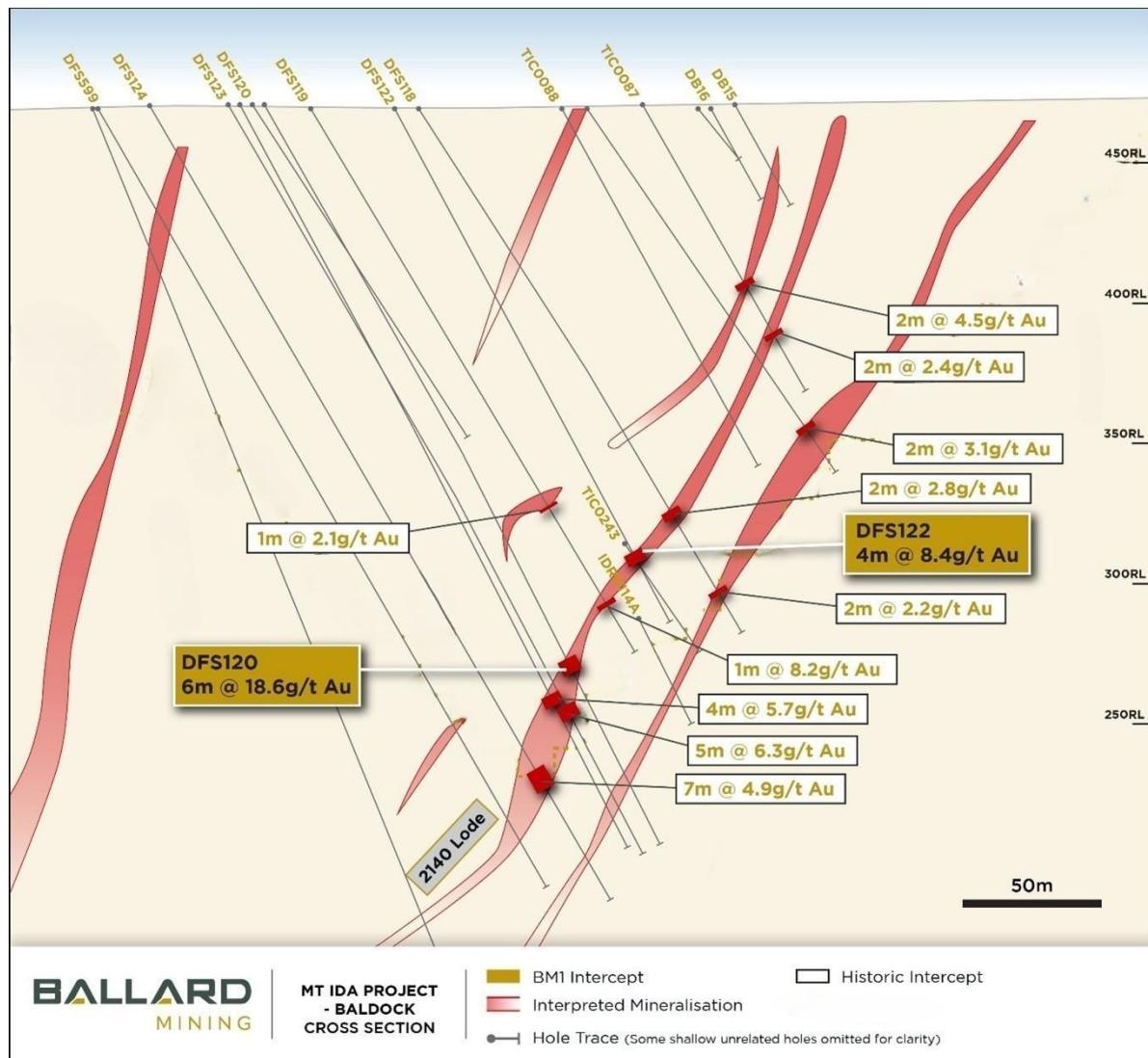


Figure 7 – Cross section 5 showing new infill assay results for lode 2140.

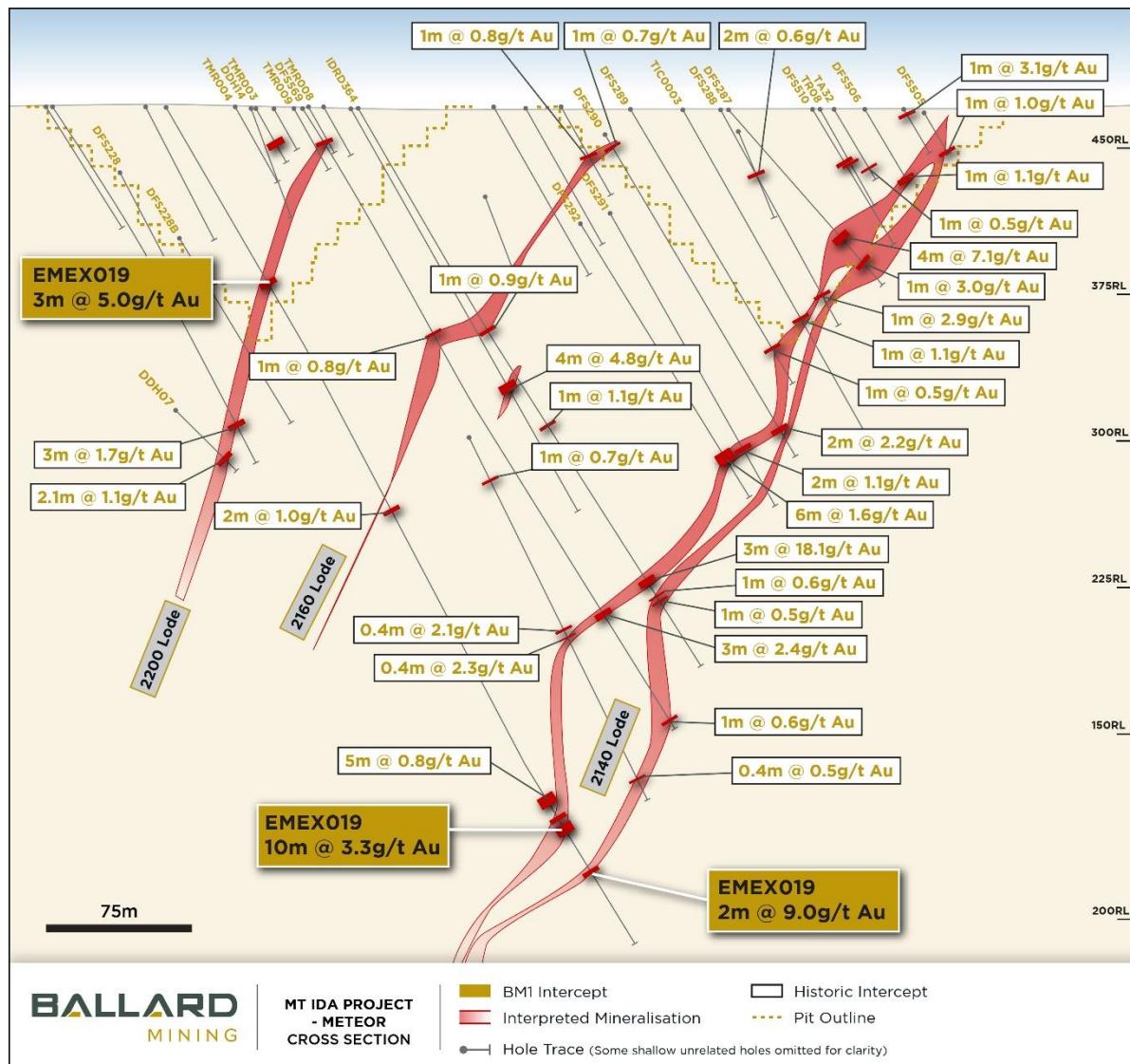


Figure 8 - Cross section 3 showing high grade assays results below the existing Mineral Resource in lodes 2140 and 2113 in the central part of the Baldock system (Meteor)

For personal use only

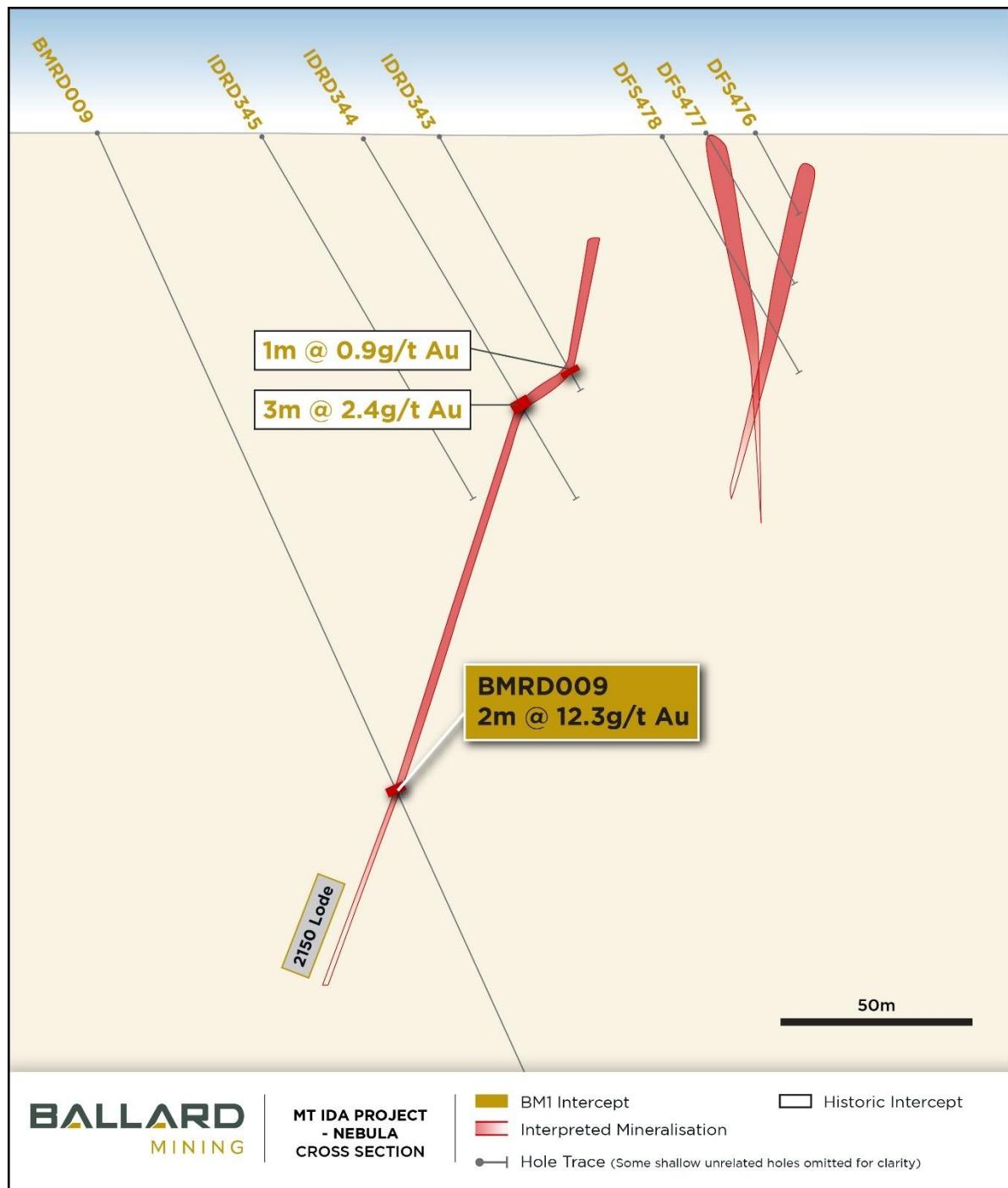


Figure 9 - Cross section 2 showing high grade assays results below the existing Mineral Resource in lode 2150 in the northern part of the Baldock system (Nebula)

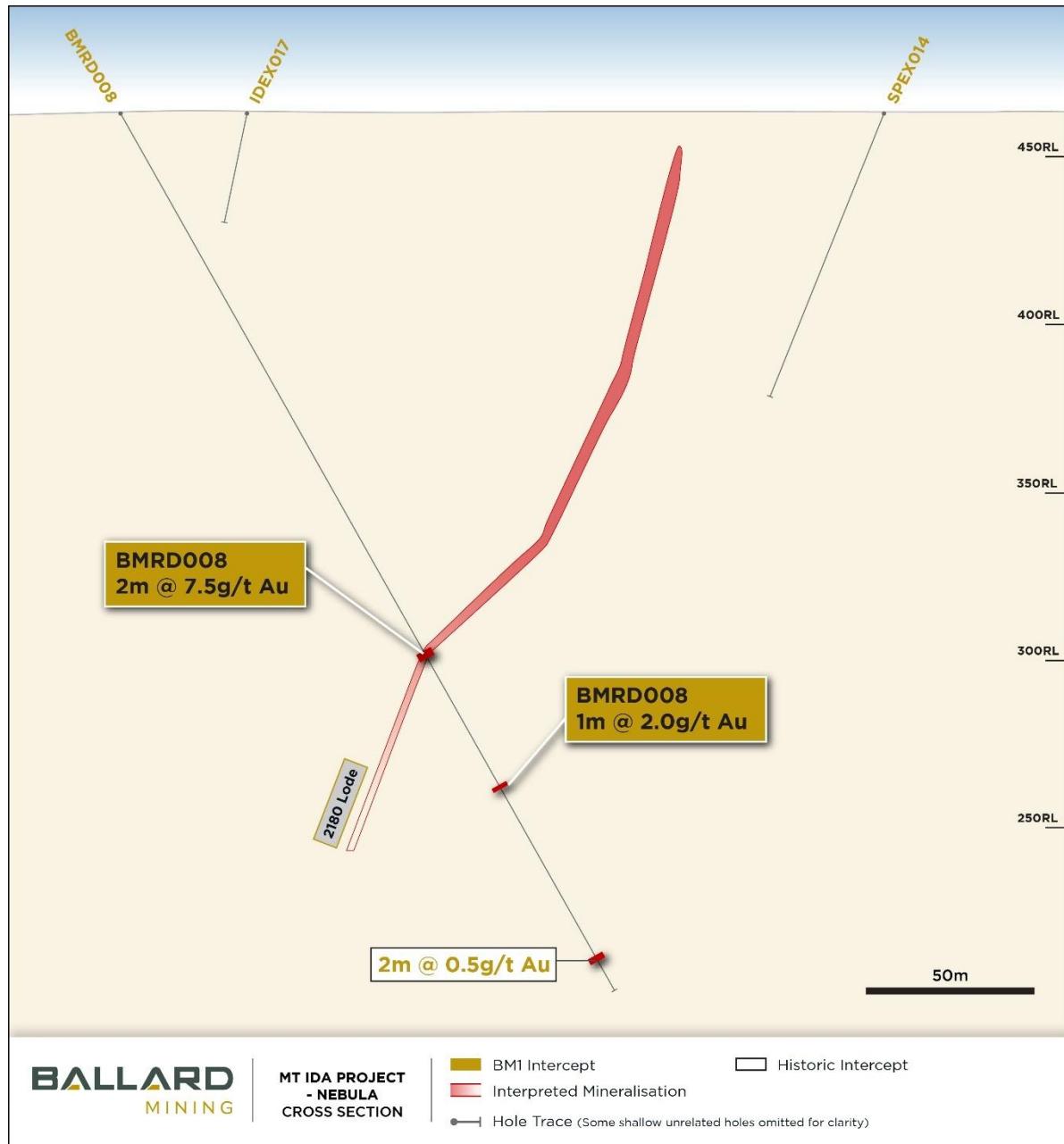


Figure 10 -Cross section 1 showing high grade assays results below the existing Mineral Resource in lode 2180 in the northern part of the Baldock system (Nebula) 200 metres north of cross section 2.

Regional Resource Growth and Exploration Targets

The Company has also received initial 2026 regional resource growth assay results which consist of 59 drill holes for 9,049 metres drilled at West Knell, Alya, Neptune and Orion. Better results include 10 metres at 6.4 g/t gold, 3 metres at 5.7 g/t gold, 2 metres at 5 g/t gold and 1 metre at 11 g/t gold at West Knell (Figures 11-12). The full assay results table is set out in Appendix B.

Additional drilling will focus on the identification of new resource opportunities across Ballard's broader landholding (e.g. Neptune, Astro and Pluto) via systematic testing of all 53 exploration targets (Figure 13). The targets have been prioritised based on known mineralisation, structural prospectivity, geochemical anomalism and geophysical signatures where alteration associated with mineralisation can often be identified.

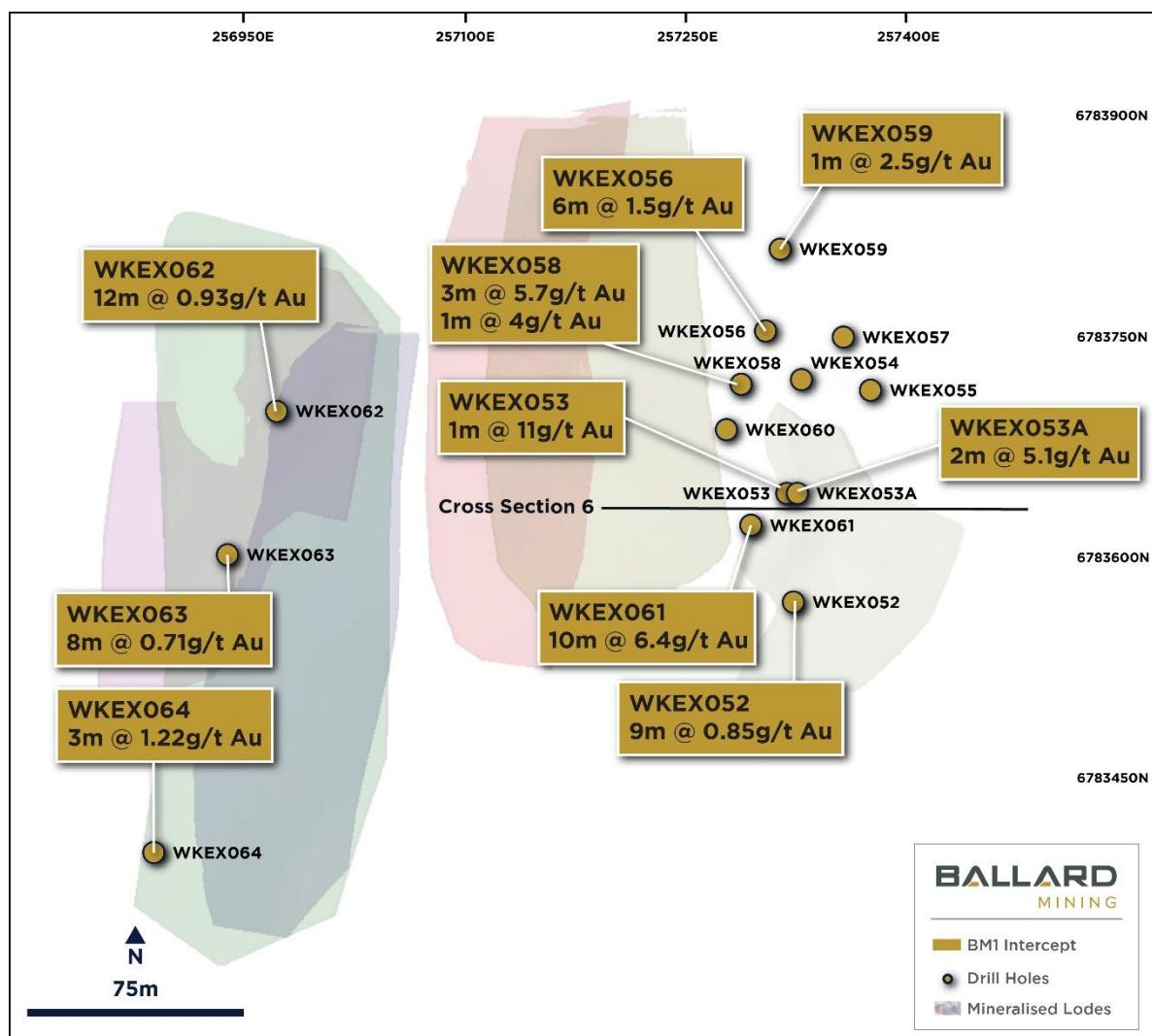


Figure 11 – Initial 2026 drilling results from the regional exploration program at West Knell on the Ballard Fault

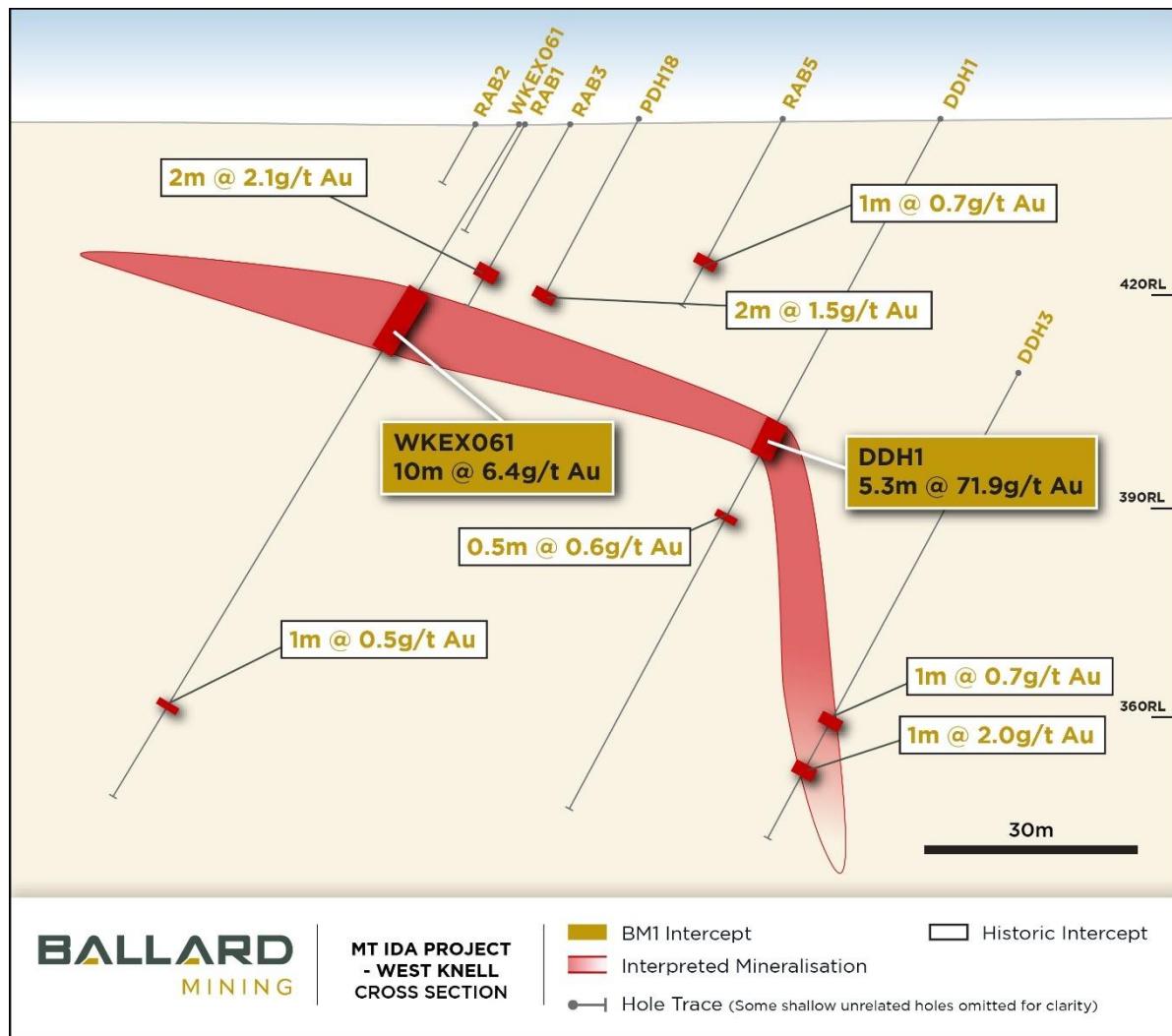


Figure 12 - Cross section through West Knell showing shallow high grade intervals, possibly supergene mineralisation

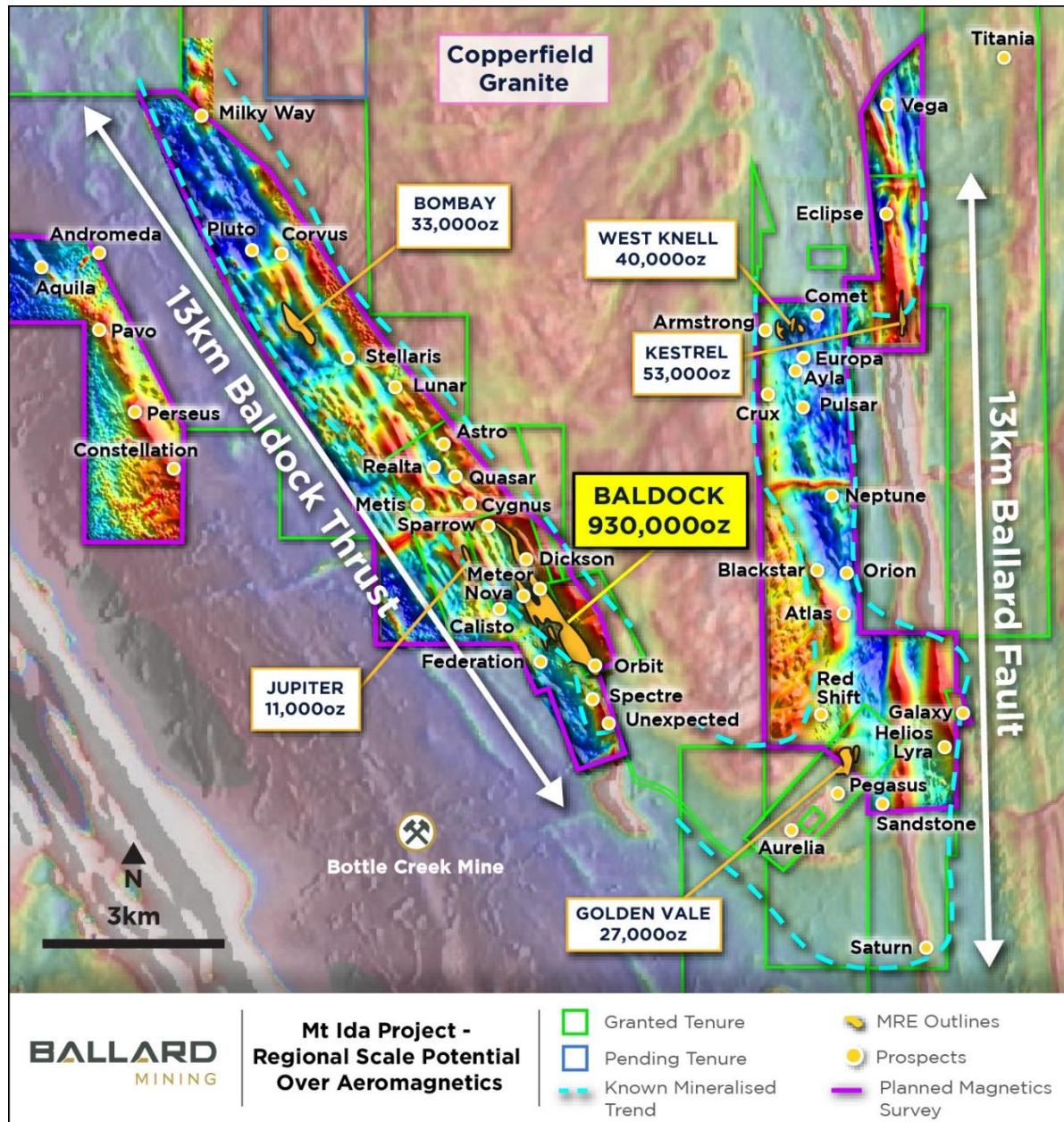


Figure 13 - Aeromagnetic image showing the existing 53 exploration targets within Ballard Mining's tenure

Project Background

The Mt Ida Gold Project hosts a JORC 2012-compliant Mineral Resource Estimate totalling 10.3 million tonnes @ 3.3 g/t Au for 1.1 million ounces⁴ of contained gold. The Baldock deposit, which hosts 930koz @ 4.1 g/t⁴ forms the basis for initial development opportunities at Mt Ida.

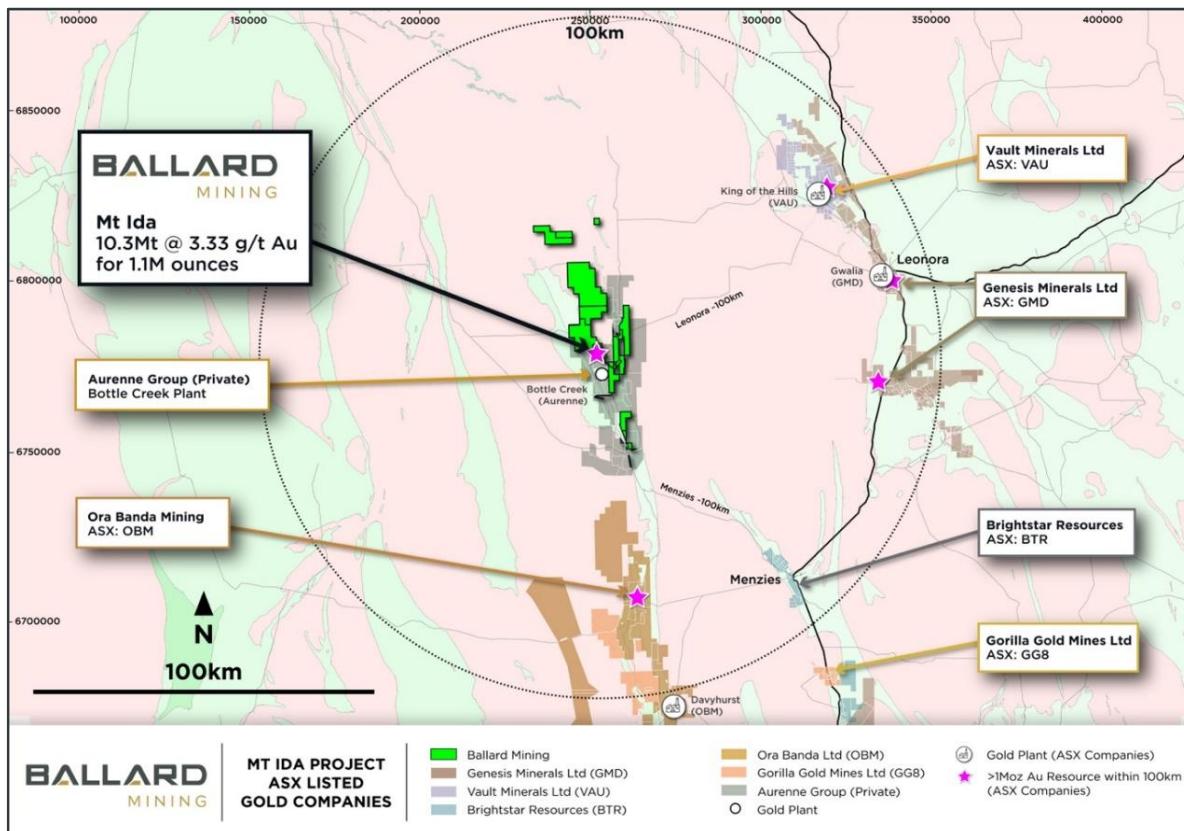


Figure 14 - Ballard's Mt Ida Gold Project, located in Western Australia's Goldfield Region

The Project includes six granted mining leases and is fully permitted for mining including an approved Mining Proposal, Mine Closure Plan and Native Vegetation Clearing Permit.

Mining approvals are in place for both open pit and underground mining at the Baldock deposit. A Works Approval for up to 2.0 Mtpa Processing and Tails Storage Facility has been received as well as a granted 3.7 GL/yr water abstraction license.

-END-

This release is authorised by the Board of Directors of Ballard Mining Limited.

For further information visit our website at ballardmining.com.au or contact:

PAUL BRENNAN
Managing Director
info@ballardmining.com.au

TIM MANNERS
Executive Director

⁴ Refer to the Ballard IPO Prospectus lodged with ASIC and dated 30 May 2025 (as amended by the Supplementary Prospectus lodged with ASIC and dated 17 June 2025) for further information on the MRE

About Ballard Mining

Ballard Mining Limited (ASX: BM1) is an exploration and development company focused on advancing its Mt Ida asset towards production. With current JORC compliant resources of 10.3Mt @ 3.3 g/t Au, strong balance sheet and an experienced team driving the project development, Ballard is pursuing a growth and development strategy.

The Mt Ida Project has high grade gold resources with 93% located on granted mining leases. The main Baldock area has received full open cut and underground mining approvals with a Works Approval for a 2.0 Mtpa Processing Plant and Tailings Storage Facility. Ballard is rapidly advancing the Mt Ida Project through a dual stream plan to increase confidence in the current MRE and increase the global resource inventory via an aggressive exploration program. All modifying factors will be advanced simultaneously.

Competent Person's Statement

Information in this announcement that relates to exploration results is based upon work undertaken by Mr Todd Hibberd, a Competent Person who is a Member of the Australasian Institute of mining and Metallurgy (AusIMM). Mr. Hibberd has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code"). Mr. Hibberd consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Ballard in accordance with the JORC Code in its Prospectus lodged with ASIC and dated 30 May 2025 (as amended by the Supplementary Prospectus lodged with ASIC and dated 17 June 2025) (the **Prospectus**). The Company confirms that it is not aware of any new information or data that materially affects the information included in the Prospectus. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the Prospectus, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the Prospectus continue to apply and have not materially changed. Refer to the Prospectus for further information.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on Ballard management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Ballard, which could cause actual results to differ materially from such statements. Ballard makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing Rules.

Appendix A: April 2025⁵ Mineral Resource Estimate

Cut off	Deposit	Indicated			Inferred			Total		
		Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
		(000s)	g/t Au	(000s)	(000s)	g/t Au	(000s)	(000s)	g/t Au	(000s)
Open cut Au 0.5 g/t	Baldock	2,600	4.5	365	1,570	3.6	200	4,120	4.2	563
	Kestrel	-	-	-	940	1.6	48	940	1.6	48
	Golden Vale	-	-	-	496	1.7	27	496	1.7	27
	Bombay				711	1.3	30	711	1.3	30
	West Knell				238	3.3	25	238	3.3	25
	Jupiter				50	1.7	3	50	1.7	3
Underground Au 1.5 g/t	Mt Ida Tailings	-	-	-	500	0.5	8	500	0.5	8
	Baldock	242	4.8	37	2,610	4.0	338	2,850	4.0	368
	Kestrel	-	-	-	80	1.8	5	80	1.8	5
	Bombay				30	3.0	3	30	3.0	3
	West Knell				192	2.4	15	192	2.4	15
	Jupiter				90	2.7	8	90	2.7	8
All	Baldock	2,840	4.5	402	4,220	3.9	532	7,000	4.1	930
	Kestrel	-	-	-	1,000	1.7	53	1,000	1.7	53
	Golden Vale	-	-	-	496	1.7	27	496	1.7	27
	Bombay				740	1.4	33	740	1.4	33
	West Knell				420	2.9	40	420	2.9	40
	Jupiter				140	2.3	11	140	2.3	11
	Mt Ida Tailings				500	0.5	8	500	0.5	8
Total		2,840	4.5	402	7,500	3.0	699	10,310	3.3	1,102

⁵ Refer to the Ballard IPO Prospectus lodged with ASIC and dated 30 May 2025 (as amended by the Supplementary Prospectus lodged with ASIC and dated 17 June 2025) for further information on the MRE

Appendix B: Recent Project Data

Appendix B1: Recent Exploration Significant Intercepts reported in this announcement

* Intersections reported about 0.5 g/t with a maximum of 2 metres of internal dilution

* NSI values indicate that No Significant Intersection was identified

Hole ID	From	To	Length	Gold g/t	Lode
WKEX053	41	42	1	11	West Knell
WKEX061	28	38	10	6.38	West Knell
WKEX058	77	80	3	5.73	West Knell
WKEX053A	161	163	2	5.07	West Knell
WKEX058	135	136	1	4.28	West Knell
WKEX059	165	166	1	2.51	West Knell
WKEX053	161	163	2	2.34	West Knell
WKEX060	66	67	1	1.93	West Knell
WKEX056	55	61	6	1.5	West Knell
WKEX053A	46	48	2	1.32	West Knell
WKEX059	221	222	1	1.23	West Knell
WKEX064	21	24	3	1.22	West Knell
WKEX058	72	73	1	1.11	West Knell
WKEX053A	105	106	1	1.06	West Knell
WKEX053	24	33	9	0.97	West Knell
WKEX053	111	113	2	0.96	West Knell
WKEX062	16	28	12	0.93	West Knell
WKEX052	145	154	9	0.85	West Knell
WKEX060	75	77	2	0.84	West Knell
WKEX058	128	131	3	0.79	West Knell
WKEX053	187	188	1	0.77	West Knell
WKEX052	78	79	1	0.75	West Knell
WKEX054	36	37	1	0.73	West Knell
WKEX053	59	60	1	0.72	West Knell
WKEX063	20	28	8	0.71	West Knell
WKEX059	170	171	1	0.64	West Knell
WKEX053A	40	41	1	0.62	West Knell
WKEX061	97	98	1	0.59	West Knell
WKEX053A	21	24	3	0.55	West Knell
WKEX053A	29	30	1	0.53	West Knell
WKEX053A	175	176	1	0.52	West Knell
WKEX055				NSI	West Knell
WKEX057				NSI	West Knell
BMRD009	187	189	2	12.27	Nebula
BMRD008	184	186	2	7.48	Nebula
BMRD003	147	148	1	2.28	Nebula
BMRD008	230	231	1	1.97	Nebula

For personal use only

Hole ID	From	To	Length	Gold g/t	Lode
BMRD006	136	138	2	1.81	Nebula
BMRD002	65	66	1	1.75	Nebula
BMRD010	264	265	1	1.57	Nebula
BMRD004	169	172	3	1.34	Nebula
BMRD004	93	94	1	1.16	Nebula
BMRD007	198	199	1	1.08	Nebula
BMRD001	100	101	1	0.86	Nebula
BMRD005	52	53	1	0.86	Nebula
BMRD011	238	239	1	0.72	Nebula
BMRD002	127	128	1	0.67	Nebula
BMRD008	288	290	2	0.57	Nebula
EMEX002	110	111	1	0.76	Metis
EMEX001	346	348	2	0.69	Metis
EMEX002	258	260	2	0.63	Metis
EMEX003				NSI	Metis
EMEX022	300	301	1	10.03	Meteor Extension
EMEX019	448	450	2	9.05	Meteor Extension
EMEX019	103	106	3	4.96	Meteor Extension
EMEX019	416	426	10	3.16	Meteor Extension
EMEX022	51	57	6	2.32	Meteor Extension
EMEX019	236	238	2	1.05	Meteor Extension
EMEX019	403	408	5	0.8	Meteor Extension
EMEX019	504	505	1	0.7	Meteor Extension
EMEX022	45	46	1	0.64	Meteor Extension
BMRD013	334	335	1	1.33	Meteor
BMRD012				NSI	Meteor
BMRD014				NSI	Meteor
KSRD026	47	48	1	3.39	Kestrel
KSRD024	157	159	2	2.92	Kestrel
KSRD025	75	76	1	0.6	Kestrel
KSRD023				NSI	Kestrel
KSRD027				NSI	Kestrel
KSRD028				NSI	Kestrel
KSRD029				NSI	Kestrel
KSRD030				NSI	Kestrel
BMEX191	91	95	4	1.23	Golden Vale
BMEX191	83	84	1	0.95	Golden Vale
BMEX191	97	98	1	0.64	Golden Vale
BMEX176	40	41	1	4.78	Alya
BMEX182	44	46	2	3.61	Alya
BMEX180	22	23	1	2.79	Alya

For personal use only

Hole ID	From	To	Length	Gold g/t	Lode
BMEX184	38	39	1	1.39	Alya
BMEX183	20	28	8	1.25	Alya
BMEX181	21	23	2	1.13	Alya
BMEX176	31	32	1	0.82	Alya
BMEX183	4	8	4	0.71	Alya
BMEX175				NSI	Alya
BMEX177				NSI	Alya
BMEX178				NSI	Alya
BMEX179				NSI	Alya
BMEX186				NSI	Alya
EMEX007				NSI	Realta
EMEX008				NSI	Realta
EMEX009				NSI	Realta
EMEX011				NSI	Realta
EMEX012				NSI	Realta
BMEX185	20	23	3	1.01	Orion
BMEX185	27	28	1	0.74	Orion
BMEX187				NSI	Orion
BMEX188				NSI	Orion
BMEX189				NSI	Orion
BMEX190				NSI	Orion
BMRD016	118	120	2	1.65	Orbit
BMRD018	328	329	1	1.13	Orbit
BMRD015				NSI	Orbit
BMRD017				NSI	Orbit
BMEX167	98	99	1	1.97	Neptune
BMEX171	91	93	2	1.5	Neptune
BMEX174	93	94	1	1.35	Neptune
BMEX167	94	95	1	0.95	Neptune
BMEX167	124	125	1	0.89	Neptune
BMEX171	141	142	1	0.65	Neptune
BMEX164	165	166	1	0.59	Neptune
BMEX173	110	111	1	0.5	Neptune
BMEX163				NSI	Neptune
BMEX165				NSI	Neptune
BMEX166				NSI	Neptune
BMEX168				NSI	Neptune
BMEX169				NSI	Neptune
BMEX170				NSI	Neptune
BMEX172				NSI	Neptune

Appendix B2: Recent DFS Significant Intercepts reported in this announcement

* Intersections reported about 0.5 g/t with a maximum of 2 metres of internal dilution

* NSI values indicate that No Significant Intersection was identified

Hole ID	From	To	Length	Gold g/t	Lode
DFS120	226	232	6	18.62	Baldock
DFS081A	202	204	2	14.67	Baldock
DFS592	262	263	1	10.24	Baldock
DFS122	181	185	4	8.39	Baldock
DFS615	367.17	367.8	0.63	7.91	Baldock
DFS554	104	105	1	7.57	Baldock
DFS641	194.39	196.89	2.5	6.77	Baldock
DFS639	516.41	517.38	0.97	6.15	Baldock
DFS556A	297	299	2	4.54	Baldock
DFS126	258	260	2	4.46	Baldock
DFS641	573.05	574.15	1.1	4.35	Baldock
DFS224B	200	203.05	3.05	4.06	Baldock
DFS132	221	224	3	4.02	Baldock
DFS594A	320	321	1	3.69	Baldock
DFS601	382	384	2	3.67	Baldock
DFS081	222	226	4	3.48	Baldock
DFS641	199.73	200.47	0.74	3.42	Baldock
DFS108	184	186	2	3.31	Baldock
DFS621A	84	85	1	3.3	Baldock
DFS615	349.84	350.51	0.67	3.24	Baldock
DFS641	488.97	490.32	1.35	2.85	Baldock
DFS363	172.53	173.17	0.64	2.76	Baldock
DFS639	463.8	464.7	0.9	2.56	Baldock
DFS084	229	230	1	2.55	Baldock
DFS556A	165	166	1	2.46	Baldock
DFS081	239	240	1	2.39	Baldock
DFS107	191	192	1	2.12	Baldock
DFS641	556.33	565.3	8.97	1.98	Baldock
DFS081A	96	103	7	1.65	Baldock
DFS621A	68	76	8	1.65	Baldock
DFS126	269	270	1	1.49	Baldock
DFS107	199	201	2	1.44	Baldock
DFS132	255	256	1	1.42	Baldock
DFS639	503.35	505.44	2.09	1.41	Baldock
DFS081	217	218	1	1.39	Baldock
DFS108	215	216	1	1.21	Baldock
DFS108	247	249	2	1.19	Baldock
DFS081A	228	230	2	1.18	Baldock

For personal use only

Hole ID	From	To	Length	Gold g/t	Lode
DFS554	271	272	1	1.13	Baldock
DFS363	197.27	197.89	0.62	1.08	Baldock
DFS339	221.25	221.77	0.52	1.07	Baldock
DFS599	252	253	1	1.03	Baldock
DFS592	210	211	1	0.93	Baldock
DFS615	329.69	330.47	0.78	0.93	Baldock
DFS601	54	62	8	0.92	Baldock
DFS615	339.51	340.36	0.85	0.92	Baldock
DFS108	192	195	3	0.9	Baldock
DFS592	194	195	1	0.88	Baldock
DFS107	229	230	1	0.84	Baldock
DFS641	403.68	404.45	0.77	0.84	Baldock
DFS556A	315	317	2	0.82	Baldock
DFS108	243	244	1	0.79	Baldock
DFS641	494.33	495.04	0.71	0.78	Baldock
DFS674A	248.98	250	1.02	0.77	Baldock
DFS081A	267	268	1	0.72	Baldock
DFS601	353	354	1	0.71	Baldock
DFS556A	0	1	1	0.7	Baldock
DFS599	309	312	3	0.69	Baldock
DFS081	92	93	1	0.66	Baldock
DFS639	534.14	534.69	0.55	0.62	Baldock
DFS599	193	194	1	0.61	Baldock
DFS621A	115	116	1	0.57	Baldock
DFS641	534.04	535.11	1.07	0.57	Baldock
DFS594	50	51	1	0.56	Baldock
DFS601	361	362	1	0.55	Baldock
DFS599	64	65	1	0.54	Baldock
DFS615	292.77	293.31	0.54	0.54	Baldock
DFS083				NSI	
DFS083A				NSI	
DFS144A				NSI	
DFS144B				NSI	
DFS157A				NSI	
DFS228B				NSI	
DFS597				NSI	
DFS597A				NSI	

Appendix B3: Collar Information for holes reported in this announcement

Hole ID	Depth	East	North	RL	Azi	Dip
BMEX163	161	257,753	6,781,090	453.7	227	- 58.3
BMEX164	215	257,773	6,781,117	453.8	227	- 60.0
BMEX165	89	257,717	6,781,006	454.3	228	- 60.2
BMEX166	125	257,745	6,781,035	452.3	229	- 59.7
BMEX167	161	257,776	6,781,053	451.5	229	- 59.5
BMEX168	59	257,638	6,781,097	461.6	231	- 60.0
BMEX169	53	257,630	6,781,141	462.3	231	- 60.1
BMEX170	101	257,669	6,781,176	460.8	226	- 60.1
BMEX171	161	257,689	6,781,194	460.5	229	- 60.1
BMEX172	53	257,605	6,781,176	463.5	229	- 60.6
BMEX173	125	257,637	6,781,198	462.2	230	- 60.7
BMEX174	191	257,669	6,781,218	460.4	232	- 59.4
BMEX175	84	257,240	6,782,943	447.0	272	- 55.4
BMEX176	162	257,285	6,782,944	447.0	277	- 56.3
BMEX177	162	257,299	6,782,899	447.0	271	- 56.2
BMEX178	168	257,309	6,782,850	447.0	271	- 56.8
BMEX179	96	257,255	6,782,792	447.0	275	- 56.2
BMEX180	168	257,291	6,782,800	447.0	274	- 55.7
BMEX181	96	257,269	6,782,748	447.0	272	- 54.9
BMEX182	174	257,303	6,782,761	447.0	274	- 55.8
BMEX183	102	257,249	6,782,705	447.0	268	- 55.6
BMEX184	174	257,299	6,782,705	447.0	271	- 55.3
BMEX185	125	258,183	6,779,577	453.0	276	- 54.9
BMEX186	174	258,224	6,779,570	453.0	270	- 54.7
BMEX187	144	258,190	6,779,521	453.0	269	- 54.4
BMEX188	180	258,227	6,779,514	453.0	271	- 54.4
BMEX189	144	258,186	6,779,474	453.0	268	- 54.9
BMEX190	102	258,181	6,779,632	453.0	267	- 55.4
BMEX191	102	258,045	6,775,711	469.0	271	- 59.2
BMRD001	108	252,108	6,780,327	461.7	55	- 59.8
BMRD002	132	252,111	6,780,304	461.8	55	- 60.2
BMRD003	186	252,084	6,780,292	461.9	55	- 59.5
BMRD004	234	252,080	6,780,248	462.0	56	- 60.4
BMRD005	282	252,081	6,780,207	462.3	55	- 60.2
BMRD006	306	252,107	6,780,172	462.6	56	- 60.3
BMRD007	300	252,131	6,780,147	462.7	55	- 60.3
BMRD008	300	252,154	6,780,111	463.0	56	- 60.5
BMRD009	318	252,287	6,779,939	464.4	54	- 65.5
BMRD010	280	252,310	6,779,904	464.9	56	- 64.5
BMRD011	318	252,346	6,779,876	465.0	54	- 65.4
BMRD012	306	252,344	6,779,377	468.7	56	- 60.2

Hole ID	Depth	East	North	RL	Azi	Dip
BMRD013	438	252,356	6,779,313	468.8	58	- 60.1
BMRD014	438	252,380	6,779,248	469.2	58	- 60.2
BMRD015	258	253,808	6,777,634	477.0	55	- 59.6
BMRD016	228	253,785	6,777,696	477.0	55	- 60.9
BMRD017	240	253,758	6,777,754	477.0	57	- 59.8
BMRD018	372	253,665	6,777,533	479.0	53	- 59.9
EMEX001	354	250,436	6,781,052	462.0	49	- 60.6
EMEX002	324	250,482	6,780,969	461.0	55	- 60.2
EMEX003	252	250,367	6,781,125	464.0	50	- 59.6
EMEX007	240	251,302	6,780,900	460.0	55	- 57.8
EMEX008	216	251,325	6,780,813	460.0	55	- 59.5
EMEX009	222	251,245	6,780,976	460.0	57	- 59.0
EMEX011	294	251,256	6,780,868	461.0	54	- 59.0
EMEX012	174	251,320	6,780,909	460.0	54	- 57.6
EMEX019	510	252,586	6,779,019	471.0	57	- 60.3
EMEX022	438	252,578	6,779,124	470.0	57	- 60.1
EMEX023	390	252,528	6,779,090	470.4	59	- 58.5
KSRD023	173	259,062	6,784,410	439.0	276	- 55.1
KSRD024	167	259,047	6,784,498	438.0	274	- 54.4
KSRD025	95	258,982	6,784,613	439.0	273	- 55.5
KSRD026	179	259,041	6,784,616	437.0	278	- 54.3
KSRD027	56	258,936	6,784,698	439.0	273	- 55.4
KSRD028	61	258,929	6,784,780	438.0	273	- 54.8
KSRD029	69	258,918	6,784,870	436.0	274	- 55.5
KSRD030	107	258,909	6,784,956	436.0	275	- 55.7
WKEX052	287	257,322	6,783,568	444.9	274	- 60.7
WKEX053	213	257,322	6,783,643	445.0	272	- 60.8
WKEX053A	300	257,327	6,783,643	445.0	271	- 60.4
WKEX054	59	257,288	6,783,717	445.3	248	- 58.6
WKEX055	137	257,373	6,783,716	447.0	273	- 60.1
WKEX056	89	257,303	6,783,753	446.0	273	- 59.9
WKEX057	137	257,355	6,783,751	447.3	273	- 60.4
WKEX058	305	257,329	6,783,719	446.0	270	- 60.8
WKEX059	263	257,315	6,783,808	446.1	273	- 61.0
WKEX060	95	257,280	6,783,685	445.0	275	- 60.9
WKEX061	113	257,297	6,783,623	445.0	276	- 60.6
WKEX062	101	256,974	6,783,699	443.0	270	- 59.9
WKEX063	38	256,941	6,783,602	443.0	270	- 55.0
WKEX064	78	256,890	6,783,400	444.0	269	- 59.9
DFS081	264.0	253,046.3	6,778,653.8	471.4	55.1	-62.2
DFS081A	276.0	253,047.6	6,778,654.9	471.3	52.3	-58.1
DFS083	96.0	253,019.0	6,778,635.0	472.0	53.9	-61.9
DFS083A	204.0	253,019.0	6,778,635.0	472.0	55.6	-62.4

Hole ID	Depth	East	North	RL	Azi	Dip
DFS084	246.0	252,964.0	6,778,595.0	460.0	55.2	-59.2
DFS107	264.0	253,015.5	6,778,707.2	471.6	53.4	-58.9
DFS108	270.0	253,000.3	6,778,697.5	471.7	54.7	-59.4
DFS120	300.0	252,967.4	6,778,723.2	471.3	55.5	-59.9
DFS122	210.0	252,995.0	6,778,759.0	471.0	56.1	-61.4
DFS126	312.0	252,926.0	6,778,742.0	471.0	54.9	-59.6
DFS132	258.0	252,944.1	6,778,776.2	471.3	53.1	-59.3
DFS144A	36.0	252,941.0	6,778,824.0	471.0	51.0	-60.7
DFS144B	96.0	252,941.0	6,778,824.0	471.0	55.5	-59.9
DFS157A	204.0	252,898.0	6,778,856.0	471.0	54.8	-57.0
DFS224B	243.0	252,536.8	6,778,954.6	471.0	60.2	-58.1
DFS228B	192.0	252,560.0	6,778,988.0	471.0	59.0	-56.9
DFS339	237.3	252,598.8	6,779,359.9	468.4	55.0	-61.2
DFS339	237.3	252,598.8	6,779,359.9	468.4	55.0	-61.2
DFS363	249.0	252,559.7	6,779,455.0	467.5	55.3	-60.7
DFS554	300.0	252,700.0	6,779,039.0	472.0	54.7	-59.6
DFS556A	348.0	252,675.0	6,779,022.0	472.0	53.2	-58.2
DFS592	300.0	252,964.4	6,778,672.4	472.0	53.6	-59.4
DFS594	162.0	252,921.0	6,778,640.0	472.0	56.6	-59.3
DFS594A	330.0	252,921.0	6,778,640.0	472.0	52.7	-57.7
DFS597	42.0	252,844.0	6,778,621.0	473.0	54.1	-56.4
DFS597A	126.0	252,844.0	6,778,621.0	473.0	59.7	-54.0
DFS599	324.0	252,909.0	6,778,695.0	472.0	53.1	-59.9
DFS601	396.0	252,909.0	6,778,695.0	472.0	54.2	-66.8
DFS615	404.4	252,838.9	6,778,724.6	472.1	54.3	-55.0
DFS621A	246.0	253,097.0	6,778,568.0	472.0	64.5	-56.2
DFS639	564.1	252,702.7	6,778,682.4	473.3	53.1	-57.8
DFS641	624.0	252,659.5	6,778,652.2	473.7	60.5	-56.5
DFS674A	261.0	253,366.0	6,778,056.8	475.3	55.1	-56.6