

2nd February 2026

Gimlet Phase 3 Infill RC Drilling Confirms High-Grade Gold Deposit and Supports Resource Upgrade

HIGHLIGHTS:

- First batch of assay results from the Phase 3 drilling program at the Gimlet deposit comprises 44 holes for a total of 3,759m of RC drilling. Significant high-grade intersections include:

Drill hole **25GRC002** - **14m @ 3.28 g/t Au from 47m**

- Includes 2m @12.81 g/t from 59m

Drill hole **25GRC010** - **10m @8.47 g/t Au from 44m**

- Includes 2m @47.52 g/t Au from 44

Drill hole **25GRC014** - **14m @ 7.58 g/t Au from 33m**

- Includes 4m @102.06 g/t Au from 33

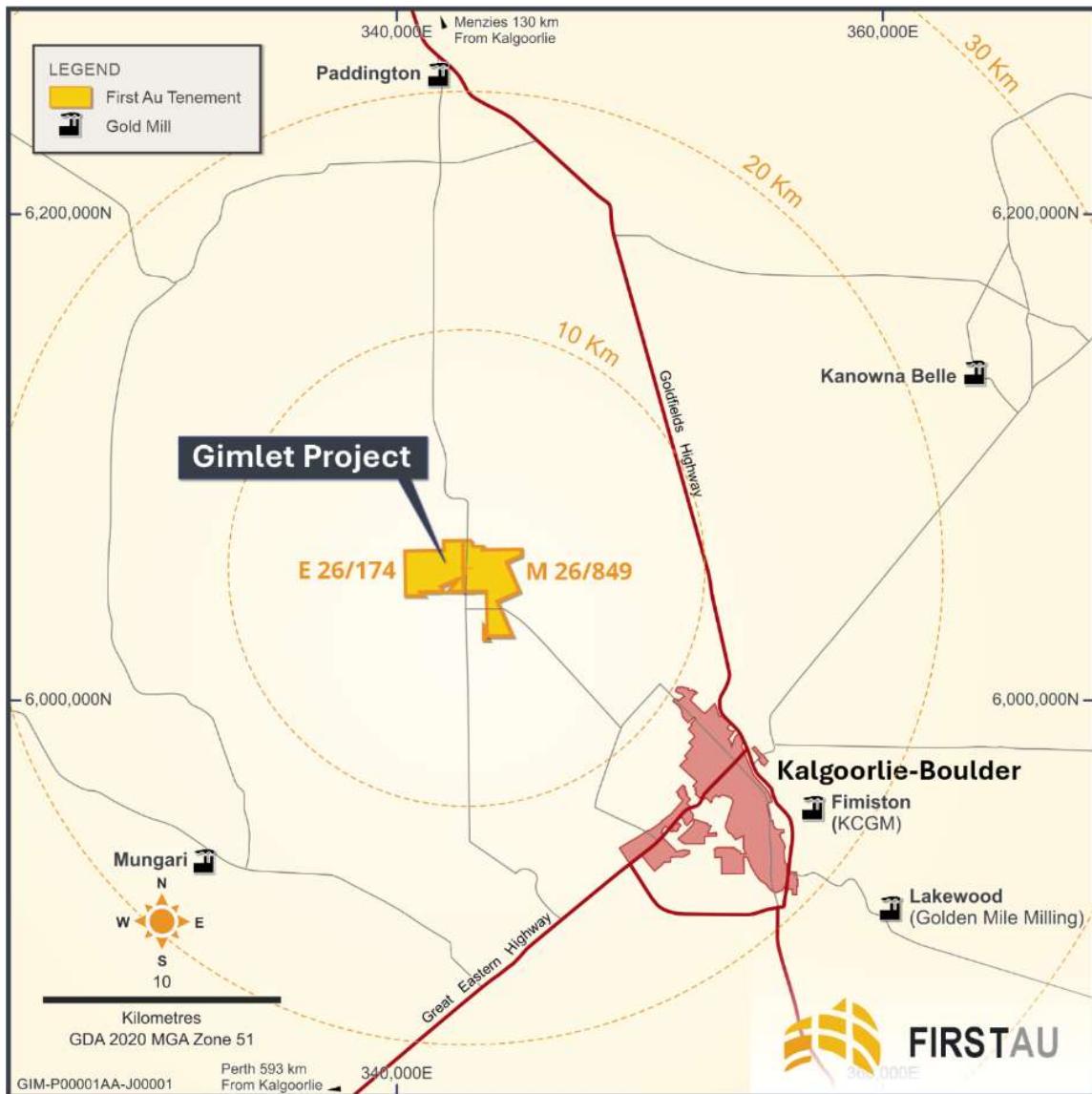
Drill hole **25GRC016** - **15m @ 5.23g/t Au from 87m**

- Includes 1m @68.49 g/t Au from 95m

Drill hole **25GRC018** - **32m @2.23g/t Au from 41m**

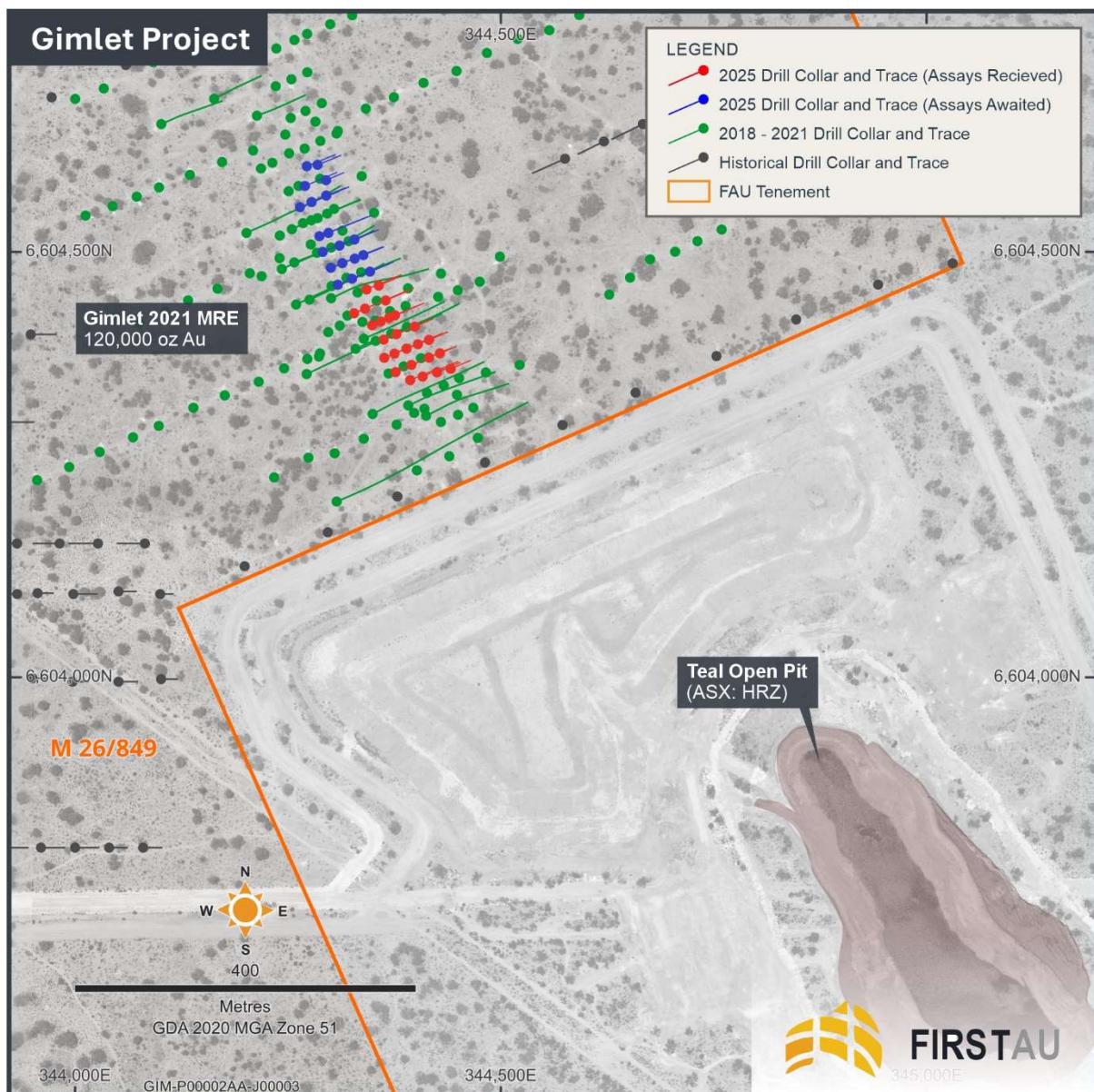
- Includes 4m @11.32 g/t from 62

Drill hole **25GRC024** - **8m @ 6.38g/t Au from 41m**


- Includes 1m @55.49 g/t from 42m

- Exceptionally high-grade intercepts were confirmed across the deposit with multiple holes returning significant intervals.
- Assays have been received for drillholes 25GRC001 to 25GRC025, with remaining results (25GRC026 to 25GRC048) expected in early March.
- Results will inform a refreshed Mineral Resource Estimate and may underpin mining studies.
- Diamond core drilling will be planned following receipt of all drill results and completion of the mineral resource update. This is expected to provide metallurgical samples, structural insight and specific gravity measurements.

Executive Chairman Daniel Raihani commented:


“These initial Phase 3 drilling results at Gimlet have returned multiple high-grade gold zones and reinforce our confidence in the geological model. With further assays pending, we are encouraged by what we are seeing to date and look forward to completing a refreshed Mineral Resource Estimate, which we expect will support an upgrade in resource classification and help guide the next stage of development and mining studies.”

First Au Limited (ASX: FAU) ("First Au", "FAU" or "the Company") is pleased to advise that it has received the first batch of assay results for the recent **Reverse Circulation (RC)** drilling program at the **Gimlet Gold Project**, located in the world-class **Kalgoorlie region of Western Australia**. Assay results for drillholes **25GRC001 to 25GRC025** have been received, with the remaining assay results for 23 drillholes, 25GRC026 to 25GRC048, anticipated to be received in early March.

Figure 1. Gimlet Gold Project location map

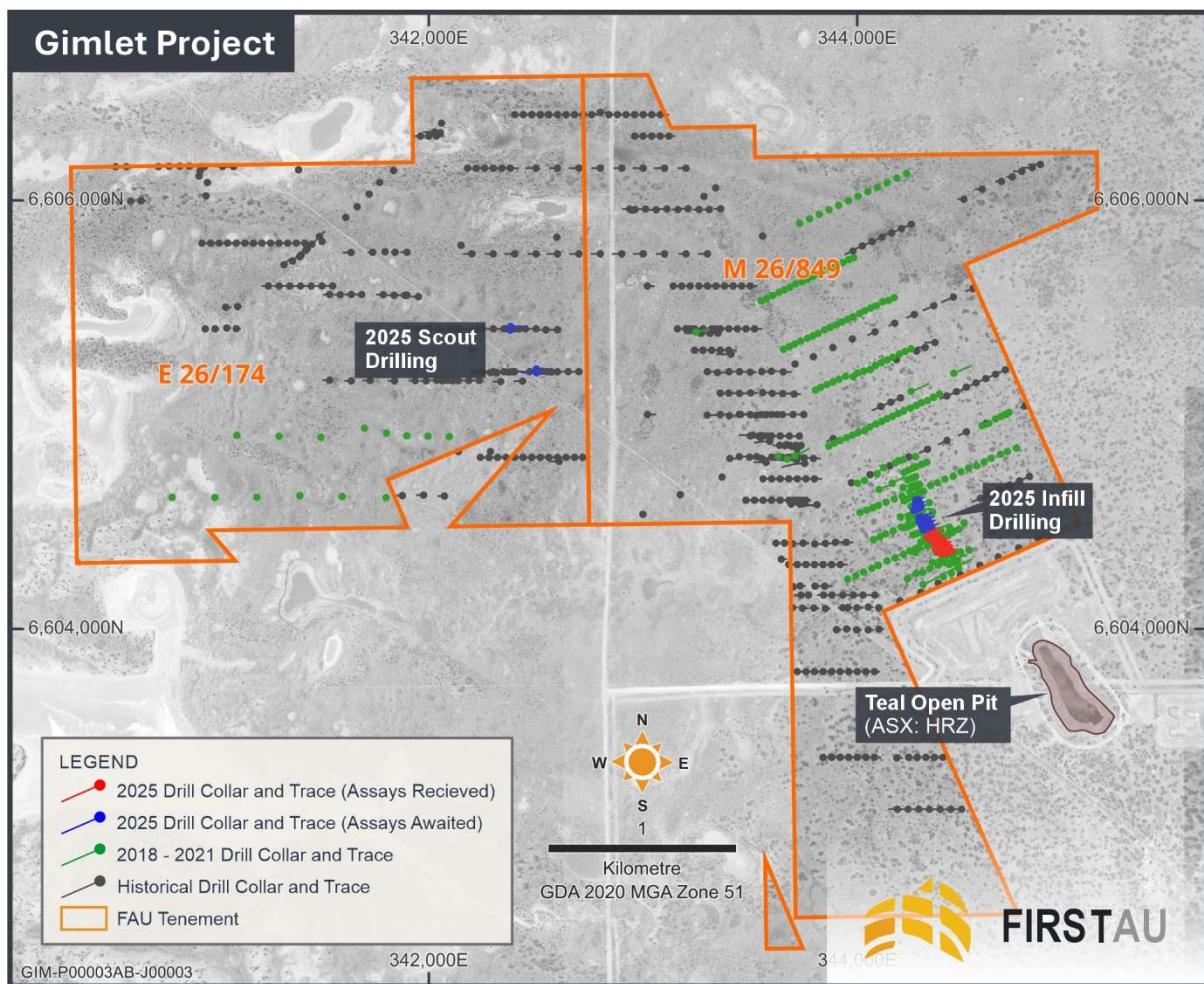
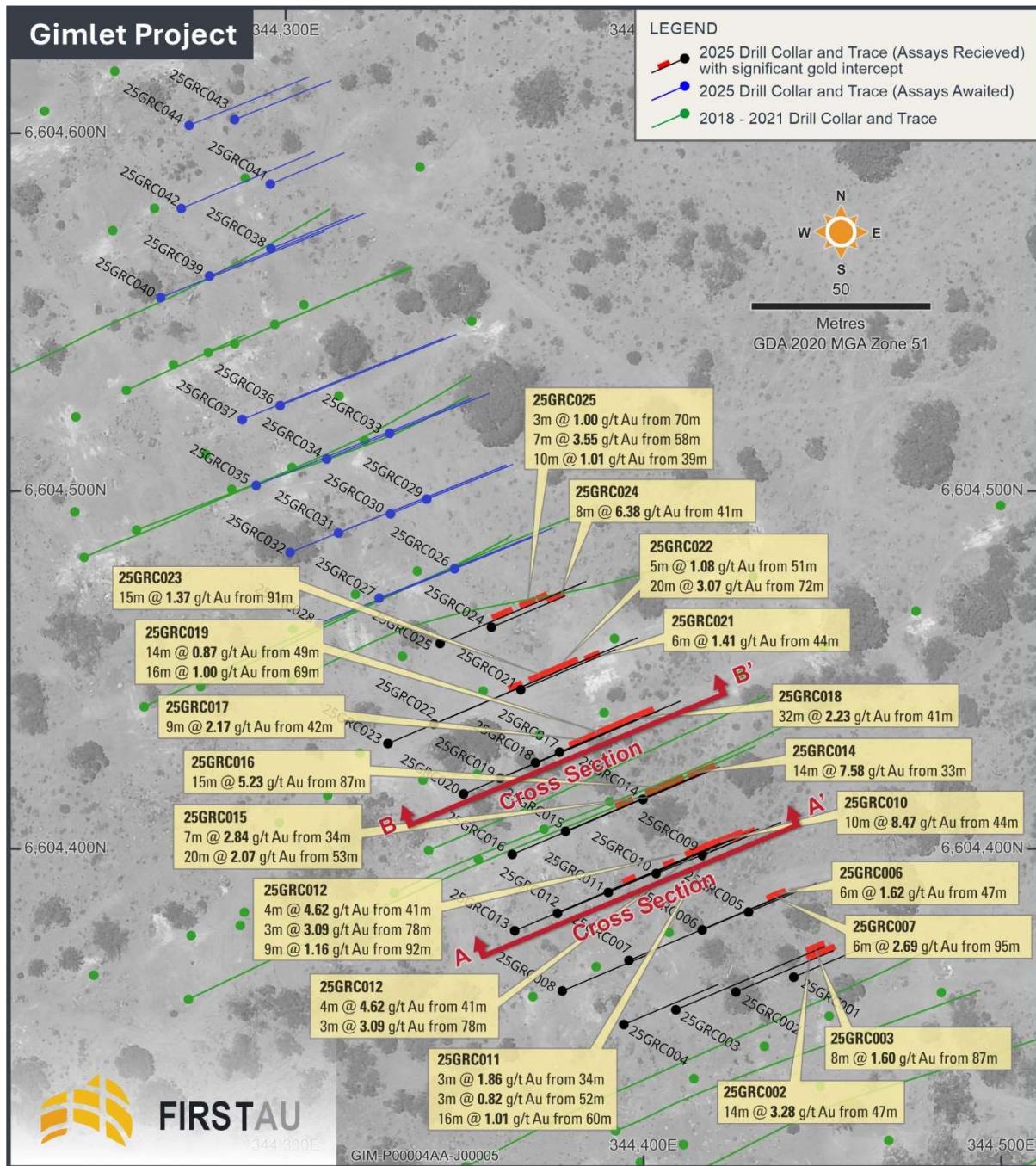

The RC infill drilling was completed on mining lease M26/849 and comprised 44 RC holes totalling 3,759m, drilled on a 15m x 20m pattern. This infill drilling was designed to test areas of the deposit where historic drilling and grid coverage was wider spaced, by adding new drill holes between existing collars to reduce overall drill spacing and increase sample density. The aim of the program is to improve confidence in the geological interpretation and continuity of mineralisation, and to support a potential upgrade of the existing Gimlet Mineral Resource from Inferred to Indicated classification.

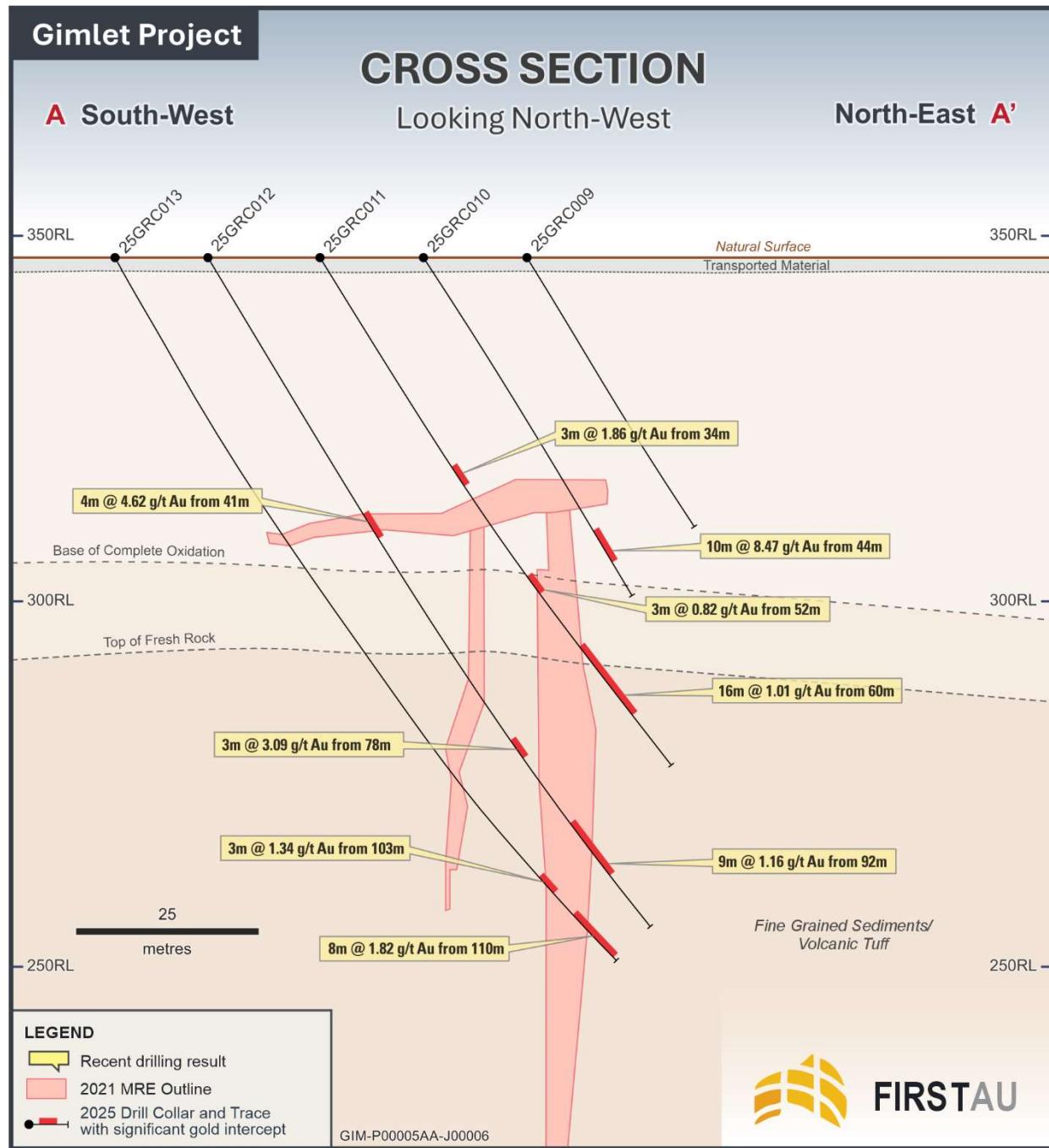
Figure 2. Collar positions of 2025 drill holes (red & blue dots) and historic drill holes in green and black, M26/849.


Additionally, four scout holes, totalling 476m, were completed in the exploration licence E26/174. The 2025 scout drilling was proposed for an investigation to test the exploration potential. The assay results for these holes remain pending.

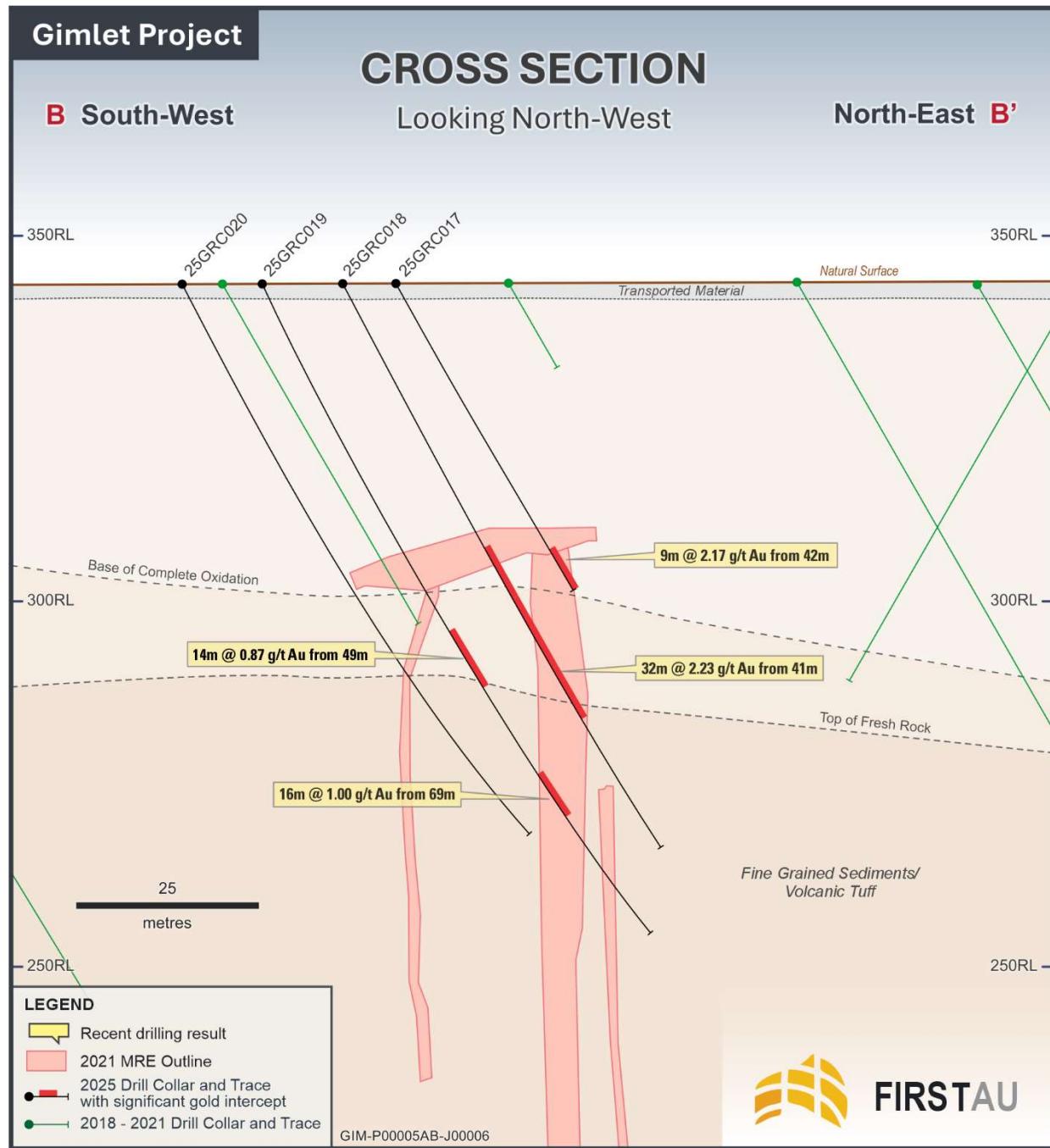
All drilling was RC and was conducted on a drill-for-equity basis by Newcam Minerals (refer ASX Announcement dated 8th July 2025 for details).

Figure 3. Collar positions of the 2025 drilling on M26/849 and adjoining E26/174 (red & blue dots)

Initial geological observations from the first batch of assay results have confirmed zones of **strong alteration typically associated with mineralisation at Gimlet**, reinforcing the existing geological model of the deposit. Additionally, previously unknown pegmatites were intersected; these will be sent for assay and may warrant further investigation.


Figure 4. Collar Location of Phase 3 RC Drilling Program at Gimlet Gold Project

The significant intercepts table for the first batch of assay results from the Gimlet Gold Phase 3 Drilling program is noted below. The combined average grade of all 1m intervals of greater than 0.3g/t Au with an internal dilution of 2m.


Table 1. Gimlet Gold Project Drill Hole with a significant interval with average grade (Cut off Au +0.3 g/t)

Hole ID	From	To	Interval	Average Grade Au g/t
25GRC001	No Significant results			
25GRC002	47.00	61.00	14.00	3.28
25GRC003	87.00	95.00	8.00	1.60
25GRC004	47.00	48.00	1.00	0.39
25GRC005	No Significant results			
25GRC006	47.00	53.00	6.00	1.62
25GRC007	95.00	101.00	6.00	2.69
25GRC008	45	46	1	1.59
25GRC009	45	46	1	1.09
25GRC010	44.00	54.00	10.00	8.47
25GRC011	34.00	37.00	3.00	1.86
25GRC011	52.00	55.00	3.00	0.82
25GRC011	60.00	76.00	16.00	1.01
25GRC012	41.00	45.00	4.00	4.62
25GRC012	78.00	81.00	3.00	3.09
25GRC012	92.00	101.00	9.00	1.16
25GRC013	103.00	106.00	3.00	1.34
25GRC013	110.00	118.00	8.00	1.82
25GRC014	33.00	47.00	14.00	7.58
25GRC015	34.00	41.00	7.00	2.84
25GRC015	53.00	73.00	20.00	2.07
25GRC016	87.00	102.00	15.00	5.23
25GRC017	42.00	51.00	9.00	2.17
25GRC018	41.00	73.00	32.00	2.23
25GRC019	49.00	63.00	14.00	0.87
25GRC019	69.00	85.00	16.00	1.00
25GRC020	87.00	88.00	1.00	1.20
25GRC021	44.00	50.00	6.00	1.41
25GRC022	51.00	56.00	5.00	1.08
25GRC022	72.00	92.00	20.00	3.07
25GRC023	91.00	106.00	15.00	1.37
25GRC024	41.00	49.00	8.00	6.38
25GRC025	39.00	49.00	10.00	1.01
25GRC025	58.00	65.00	7.00	3.55
25GRC025	70.00	73.00	3.00	1.00

For personal use only

Figure 5. Cross-section (A-A') looking north showing Au mineralisation of a significant interval with 2021 MRE mineralisation outline, recent RC drilling. The drilling intercept width are down hole width.

Figure 6: Cross-section (B-B') looking north showing Au mineralisation of a significant interval with 2021 MRE mineralisation outline, recent RC drilling. The drilling intercept width are down hole width.

Mineral Resource

The Gimlet Mineral Resource Estimate (MRE) is based on reverse circulation (RC) and diamond (DH) drill hole data completed by BM Geological Services (BMGS). The MRE utilised 63 RC and 8 DH drill holes to create 3-dimensional (3D) mineralisation wireframes and weathering surfaces. The mineralisation interpretation was completed on 40m spaced drilling and a 0.5 grams per tonne gold (g/t Au) lower cut-off to define extents.

The resource was classified as inferred based on drill density, geological understanding and grade continuity. The MRE contains 1,166 thousand tonnes at 3.2 g/t Au for 120 thousand ounces above a 1 g/t Au cut-off. Refer to ASX Release dated 23 June 2021 titled, “JORC Resource Increases at Gimlet to Inferred Resource of 120,000 ounces Au”. The current drilling program aims at increasing confidence in the resource and upgrading to an Indicated category.

Table 2. Gimlet Project June 2021 MRE at 1g/t cut off.

June-21 Inferred MRE	Tonnes	Grade (g/t AU)	Ounces
Oxide	70,800	2.53	5,800
Transitional	93,400	3.21	9,600
Fresh	1,001,700	3.24	104,200
Combine Total	1,165,900	3.19	119,600

¹Refer to ASX Release dated 23 June 2021 titled, “JORC Resource Increases at Gimlet to Inferred Resource of 120,000 ounces Au”.

Next Steps

Once the remaining assays are received, the Company will:

- Conduct further detailed geological and structural interpretation to help refine 3D models of the mineralised zones;
- Update the Mineral Resource Estimate to incorporate the results of the recent drilling, and
- Prioritise targets for follow-up drilling and sampling; and
- Diamond core drilling will be planned after receiving all the drilling results and the mineral resource update. This is expected to provide metallurgical samples, structural insight and specific gravity measurements.

ENDS

This announcement was approved for release by First Au Limited’s Board.

For more information, please visit www.firstau.com.

Enquiries in relation to this announcement, please contact:

Company

Daniel Raihani
Executive Chairman
Phone +61 410 777 777
draihani@firstau.com

Investor relations

Lucas Robinson
Investor Relations
Phone +61(0) 408 228 889
lucas@corporatestorytime.com

Paul Berson
Investor Relations
Phone +61(0) 421 647 445
paul@corporatestorytime.com

ABOUT THE GIMLET PROJECT

The Gimlet Gold Project lies approximately 15 km NW of Kalgoorlie and consists of two adjoining licenses: EL26/174 [4.37 km²] and ML26/849 [5.21 km²] of highly prospective tenure within the world-renowned Eastern Goldfields. The area is well supported by infrastructure and potential toll treatment options. The Project contains an inferred resource of 120,000 oz's Au @ 3.19 g/t Au (Ref to ASX Release dated 23 June 2021 titled, "JORC Resource increases at Gimlet to Inferred Resource of 120,000 ounces Au".)

COMPETENT PERSON'S STATEMENT

The information in this announcement relating to the Exploration data & Geological Interpretation is based on and fairly represents work conducted by Mr Manohar Ghorpade, Chief Geologist, Newcam Minerals Pty Ltd. Mr Ghorpade is a Competent Person as defined by the JORC Code (2012) and a Member of the Australian Institute of Mining and Metallurgy (AusIMM).

Mr. Ghorpade declares he has sufficient experience relevant to the style of mineralisation and deposit type under consideration to qualify as a Competent Person. Mr. Ghorpade has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

PREVIOUSLY REPORTED EXPLORATION RESULTS AND MINERAL RESOURCE ESTIMATES

The information in this announcement relating to previously reported exploration results were reported in FAU announcements as specified in the notes to this announcement. The mineral resource estimate for the Gimlet Project was first reported in FAU's ASX release dated 23 June 2021. FAU announcements are available on the ASX platform. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcement, and, in the case of estimates of mineral resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

Appendix 1: Gimlet Gold Project – Reverse Circulation (RC) Drill hole details.

Drill Hole Collar Data						
Collar ID	Easting	Northing	RL	Azimuth	Dip	EOH Depth (m)
25GRC001	344441.035	6604362.606	347.119	67	-60	51
25GRC002	344424.867	6604358.433	347.141	67	-61	61
25GRC003	344408.093	6604353.486	346.918	67	-62	96
25GRC004	344393.539	6604349.361	346.905	67	-62	61
25GRC005	344428.407	6604380.799	347.101	67	-60	41
25GRC006	344415.463	6604375.802	347.092	67	-62	61
25GRC007	344394.986	6604367.255	346.937	67	-63	101
25GRC008	344376.353	6604358.738	346.849	67	-63	61
25GRC009	344415.551	6604396.617	347.132	67	-59	46
25GRC010	344402.571	6604391.561	347.060	68	-57	56
25GRC011	344389.224	6604386.274	347.045	67	-58	86
25GRC012	344375.014	6604380.429	347.013	67	-59	111
25GRC013	344363.069	6604375.569	346.989	67	-59	121
25GRC014	344398.890	6604412.275	347.154	67	-63	51
25GRC015	344377.277	6604403.384	347.073	67	-61	86
25GRC016	344362.357	6604396.889	347.039	67	-61	121
25GRC017	344375.589	6604425.518	347.132	67	-60	51
25GRC018	344368.843	6604422.535	347.146	67	-61	91
25GRC019	344358.979	6604418.219	347.159	67	-63	106
25GRC020	344348.756	6604413.807	347.104	67	-62	91
25GRC021	344364.755	6604442.927	347.180	67	-62	61
25GRC022	344340.461	6604433.346	347.175	67	-62	111
25GRC023	344327.632	6604427.897	347.143	67	-61	156
25GRC024	344356.556	6604460.416	347.323	67	-64	51
25GRC025	344342.194	6604455.870	347.269	67	-64	101
25GRC026	344346.257	6604476.761	347.365	68	-64	56
25GRC027	344325.168	6604468.556	347.321	68	-62	111
25GRC028	344308.447	6604461.456	347.201	68	-60	106
25GRC029	344338.459	6604496.222	347.433	68	-61	51
25GRC030	344328.341	6604492.101	347.396	68	-61	76
25GRC031	344313.774	6604486.760	347.353	68	-60	101
25GRC032	344300.267	6604481.321	347.387	68	-59	116
25GRC033	344328.113	6604514.610	347.474	68	-63	51
25GRC034	344310.515	6604507.434	347.450	68	-61	101
25GRC035	344290.792	6604500.042	347.417	68	-59	126
25GRC036	344297.496	6604522.370	347.626	68	-60	106
25GRC037	344286.909	6604518.468	347.569	68	-60	121
25GRC038	344294.904	6604566.232	347.826	68	-66	61
25GRC039	344277.749	6604558.587	347.942	68	-65	111
25GRC040	344264.120	6604552.558	347.887	68	-66	121
25GRC041	344294.763	6604584.269	347.958	67	-64	51
25GRC042	344269.892	6604577.461	347.948	67	-62	86
25GRC043	344284.790	6604602.313	348.098	68	-69	81
25GRC044	344272.095	6604600.694	348.074	68	-68	96
25GRC045	342502.445	6605194.817	343.571	270	-60	136
25GRC046	342501.615	6605212.313	343.414	90	-60	151
25GRC047	342380.010	6605394.842	343.083	270	-60	31
25GRC048	342380.810	6605410.983	343.137	90	-60	151

Appendix 2. Gimlet Gold Project – Drill hole sample assay results for all intervals with greater than 0.3 gram/tonne, with highlighted intervals showing assay values greater than 1.0 gram/tonne.

Hole_ID	Sample_ID	From	To	Interval	Au Grade g/t
25GRC002	NX003067	47	48	1.00	1.97
25GRC002	NX003070	50	51	1.00	4.36
25GRC002	NX003071	51	52	1.00	0.56
25GRC002	NX003073	53	54	1.00	4.78
25GRC002	NX003074	54	55	1.00	6.32
25GRC002	NX003076	55	56	1.00	0.50
25GRC002	NX003078	57	58	1.00	0.46
25GRC002	NX003079	58	59	1.00	0.53
25GRC002	NX003080	59	60	1.00	7.62
25GRC002	NX003081	60	61	1.00	17.99
25GRC003	NX003093	33	34	1.00	0.46
25GRC003	NX003094	34	35	1.00	0.32
25GRC003	NX003147	81	82	1.00	0.60
25GRC003	NX003153	87	88	1.00	4.49
25GRC003	NX003154	88	89	1.00	5.11
25GRC003	NX003155	89	90	1.00	1.44
25GRC003	NX003156	90	91	1.00	0.30
25GRC003	NX003157	91	92	1.00	0.39
25GRC003	NX003159	93	94	1.00	0.32
25GRC003	NX003160	94	95	1.00	0.60
25GRC004	NX003194	47	48	1.00	0.39
25GRC006	NX003273	47	48	1.00	1.80
25GRC006	NX003274	48	49	1.00	0.81
25GRC006	NX003276	49	50	1.00	4.31
25GRC006	NX003277	50	51	1.00	1.28
25GRC006	NX003279	52	53	1.00	1.47
25GRC006	NX003280	53	54	1.00	0.30
25GRC006	NX003284	57	58	1.00	0.31
25GRC006	NX003285	58	59	1.00	0.33
25GRC007	NX003316	36	37	1.00	2.23
25GRC007	NX003323	43	44	1.00	0.38
25GRC007	NX003328	47	48	1.00	0.38
25GRC007	NX003378	95	96	1.00	0.56
25GRC007	NX003379	96	97	1.00	3.15
25GRC007	NX003380	97	98	1.00	2.48
25GRC007	NX003381	98	99	1.00	3.40
25GRC007	NX003382	99	100	1.00	2.67
25GRC007	NX003383	100	101	1.00	3.88
25GRC008	NX003420	45	46	1.00	1.59
25GRC008	NX003426	50	51	1.00	0.50
25GRC009	NX003471	45	46	1.00	1.09
25GRC010	NX003502	44	45	1.00	36.93
25GRC010	NX003503	45	46	1.00	58.11
25GRC010	NX003504	46	47	1.00	3.71
25GRC010	NX003505	47	48	1.00	2.15
25GRC010	NX003506	48	49	1.00	0.60
25GRC010	NX003509	51	52	1.00	0.39
25GRC010	NX003511	53	54	1.00	0.30

Hole_ID	Sample_ID	From	To	Interval	Au Grade g/t
25GRC011	NX003534	34	35	1.00	4.66
25GRC011	NX003535	35	36	1.00	0.58
25GRC011	NX003536	36	37	1.00	0.35
25GRC011	NX003553	52	53	1.00	0.66
25GRC011	NX003554	53	54	1.00	0.97
25GRC011	NX003555	54	55	1.00	0.84
25GRC011	NX003561	60	61	1.00	0.48
25GRC011	NX003562	61	62	1.00	0.31
25GRC011	NX003565	64	65	1.00	1.70
25GRC011	NX003566	65	66	1.00	3.56
25GRC011	NX003567	66	67	1.00	2.19
25GRC011	NX003568	67	68	1.00	2.53
25GRC011	NX003569	68	69	1.00	2.23
25GRC011	NX003570	69	70	1.00	1.10
25GRC011	NX003571	70	71	1.00	0.58
25GRC011	NX003572	71	72	1.00	0.47
25GRC011	NX003577	75	76	1.00	0.30
25GRC012	NX003620	41	42	1.00	16.06
25GRC012	NX003621	42	43	1.00	0.76
25GRC012	NX003622	43	44	1.00	1.02
25GRC012	NX003623	44	45	1.00	0.66
25GRC012	NX003639	59	60	1.00	0.54
25GRC012	NX003643	63	64	1.00	1.15
25GRC012	NX003659	78	79	1.00	0.64
25GRC012	NX003660	79	80	1.00	8.03
25GRC012	NX003661	80	81	1.00	0.61
25GRC012	NX003673	92	93	1.00	1.04
25GRC012	NX003674	93	94	1.00	1.21
25GRC012	NX003676	94	95	1.00	1.06
25GRC012	NX003677	95	96	1.00	0.64
25GRC012	NX003678	96	97	1.00	0.47
25GRC012	NX003679	97	98	1.00	0.48
25GRC012	NX003680	98	99	1.00	3.28
25GRC012	NX003681	99	100	1.00	1.07
25GRC012	NX003682	100	101	1.00	1.23
25GRC013	NX003729	46	47	1.00	0.67
25GRC013	NX003751	67	68	1.00	0.34
25GRC013	NX003778	93	94	1.00	1.17
25GRC013	NX003788	103	104	1.00	0.51
25GRC013	NX003789	104	105	1.00	1.62
25GRC013	NX003790	105	106	1.00	1.88
25GRC013	NX003795	110	111	1.00	3.86
25GRC013	NX003801	111	112	1.00	1.20
25GRC013	NX003802	112	113	1.00	1.64
25GRC013	NX003803	113	114	1.00	1.65
25GRC013	NX003804	114	115	1.00	1.68
25GRC013	NX003805	115	116	1.00	0.71
25GRC013	NX003806	116	117	1.00	0.90
25GRC013	NX003807	117	118	1.00	2.95

Hole_ID	Sample_ID	From	To	Interval	Au Grade g/t
25GRC014	NX003834	33	34	1.00	213.82
25GRC014	NX003835	34	35	1.00	185.09
25GRC014	NX003836	35	36	1.00	6.78
25GRC014	NX003837	36	37	1.00	2.54
25GRC014	NX003839	38	39	1.00	0.31
25GRC014	NX003840	39	40	1.00	3.46
25GRC014	NX003841	40	41	1.00	6.11
25GRC014	NX003842	41	42	1.00	2.40
25GRC014	NX003845	44	45	1.00	2.55
25GRC014	NX003846	45	46	1.00	0.92
25GRC014	NX003847	46	47	1.00	0.66
25GRC015	NX003872	34	35	1.00	11.38
25GRC015	NX003873	35	36	1.00	3.10
25GRC015	NX003874	36	37	1.00	2.01
25GRC015	NX003876	37	38	1.00	0.44
25GRC015	NX003877	38	39	1.00	1.71
25GRC015	NX003878	39	40	1.00	0.91
25GRC015	NX003879	40	41	1.00	0.34
25GRC015	NX003886	47	48	1.00	1.03
25GRC015	NX003892	53	54	1.00	0.37
25GRC015	NX003894	55	56	1.00	0.37
25GRC015	NX003895	56	57	1.00	0.89
25GRC015	NX003901	57	58	1.00	0.30
25GRC015	NX003902	58	59	1.00	1.12
25GRC015	NX003903	59	60	1.00	5.01
25GRC015	NX003904	60	61	1.00	1.45
25GRC015	NX003905	61	62	1.00	0.33
25GRC015	NX003906	62	63	1.00	0.92
25GRC015	NX003907	63	64	1.00	5.42
25GRC015	NX003908	64	65	1.00	5.92
25GRC015	NX003909	65	66	1.00	7.44
25GRC015	NX003910	66	67	1.00	1.12
25GRC015	NX003911	67	68	1.00	1.21
25GRC015	NX003912	68	69	1.00	5.48
25GRC015	NX003913	69	70	1.00	2.79
25GRC015	NX003914	70	71	1.00	0.37
25GRC015	NX003916	72	73	1.00	0.48
25GRC016	NX003955	39	40	1.00	0.45
25GRC016	NX003956	40	41	1.00	0.38
25GRC016	NX003959	43	44	1.00	0.35
25GRC016	NX003966	50	51	1.00	0.41
25GRC016	NX004009	87	88	1.00	0.45
25GRC016	NX004010	88	89	1.00	3.24
25GRC016	NX004011	89	90	1.00	3.56
25GRC016	NX004012	90	91	1.00	2.01
25GRC016	NX004013	91	92	1.00	2.00
25GRC016	NX004014	92	93	1.00	3.50
25GRC016	NX004015	93	94	1.00	1.58
25GRC016	NX004016	94	95	1.00	1.54

Hole_ID	Sample_ID	From	To	Interval	Au Grade g/t
25GRC016	NX004017	95	96	1.00	68.49
25GRC016	NX004018	96	97	1.00	3.82
25GRC016	NX004019	97	98	1.00	2.63
25GRC016	NX004020	98	99	1.00	3.11
25GRC016	NX004021	99	100	1.00	7.47
25GRC016	NX004022	100	101	1.00	2.48
25GRC016	NX004023	101	102	1.00	1.09
25GRC016	NX004030	107	108	1.00	0.36
25GRC017	NX004076	42	43	1.00	0.58
25GRC017	NX004079	45	46	1.00	3.01
25GRC017	NX004080	46	47	1.00	1.05
25GRC017	NX004081	47	48	1.00	3.58
25GRC017	NX004082	48	49	1.00	5.67
25GRC017	NX004083	49	50	1.00	3.69
25GRC017	NX004084	50	51	1.00	1.73
25GRC018	NX004119	41	42	1.00	0.52
25GRC018	NX004120	42	43	1.00	1.40
25GRC018	NX004121	43	44	1.00	0.46
25GRC018	NX004123	45	46	1.00	2.30
25GRC018	NX004128	49	50	1.00	0.54
25GRC018	NX004129	50	51	1.00	2.13
25GRC018	NX004130	51	52	1.00	0.49
25GRC018	NX004131	52	53	1.00	2.00
25GRC018	NX004134	55	56	1.00	1.10
25GRC018	NX004137	58	59	1.00	0.46
25GRC018	NX004139	60	61	1.00	2.35
25GRC018	NX004140	61	62	1.00	3.92
25GRC018	NX004141	62	63	1.00	13.72
25GRC018	NX004142	63	64	1.00	14.39
25GRC018	NX004143	64	65	1.00	10.60
25GRC018	NX004144	65	66	1.00	6.55
25GRC018	NX004145	66	67	1.00	4.64
25GRC018	NX004146	67	68	1.00	1.32
25GRC018	NX004147	68	69	1.00	0.32
25GRC018	NX004152	72	73	1.00	0.37
25GRC019	NX004205	44	45	1.00	0.41
25GRC019	NX004210	49	50	1.00	0.30
25GRC019	NX004214	53	54	1.00	0.41
25GRC019	NX004215	54	55	1.00	1.55
25GRC019	NX004216	55	56	1.00	0.50
25GRC019	NX004218	57	58	1.00	1.02
25GRC019	NX004220	59	60	1.00	1.77
25GRC019	NX004221	60	61	1.00	1.16
25GRC019	NX004223	62	63	1.00	5.05
25GRC019	NX004231	69	70	1.00	0.83
25GRC019	NX004234	72	73	1.00	0.99
25GRC019	NX004235	73	74	1.00	0.42
25GRC019	NX004238	76	77	1.00	0.44
25GRC019	NX004239	77	78	1.00	1.96

Hole_ID	Sample_ID	From	To	Interval	Au Grade g/t
25GRC019	NX004240	78	79	1.00	0.76
25GRC019	NX004241	79	80	1.00	1.18
25GRC019	NX004244	82	83	1.00	0.31
25GRC019	NX004245	83	84	1.00	7.86
25GRC019	NX004246	84	85	1.00	0.39
25GRC020	NX004294	42	43	1.00	0.73
25GRC020	NX004308	51	52	1.00	0.39
25GRC020	NX004344	86	87	1.00	0.33
25GRC020	NX004345	87	88	1.00	1.20
25GRC020	NX004348	90	91	1.00	0.68
25GRC021	NX004385	44	45	1.00	5.19
25GRC021	NX004386	45	46	1.00	0.46
25GRC021	NX004387	46	47	1.00	2.21
25GRC021	NX004390	49	50	1.00	0.34
25GRC021	NX004402	56	57	1.00	0.39
25GRC022	NX004441	45	46	1.00	3.20
25GRC022	NX004442	46	47	1.00	1.50
25GRC022	NX004447	51	52	1.00	1.64
25GRC022	NX004449	53	54	1.00	0.84
25GRC022	NX004451	54	55	1.00	2.18
25GRC022	NX004452	55	56	1.00	0.63
25GRC022	NX004456	59	60	1.00	0.36
25GRC022	NX004469	72	73	1.00	0.88
25GRC022	NX004470	73	74	1.00	2.05
25GRC022	NX004474	77	78	1.00	2.21
25GRC022	NX004476	78	79	1.00	0.44
25GRC022	NX004477	79	80	1.00	2.82
25GRC022	NX004478	80	81	1.00	0.39
25GRC022	NX004479	81	82	1.00	3.11
25GRC022	NX004480	82	83	1.00	0.78
25GRC022	NX004482	84	85	1.00	0.48
25GRC022	NX004484	86	87	1.00	3.68
25GRC022	NX004486	88	89	1.00	1.00
25GRC022	NX004487	89	90	1.00	2.08
25GRC022	NX004488	90	91	1.00	50.44
25GRC022	NX004489	91	92	1.00	0.59
25GRC023	NX004552	48	49	1.00	0.71
25GRC023	NX004574	70	71	1.00	0.32
25GRC023	NX004576	71	72	1.00	0.35
25GRC023	NX004580	75	76	1.00	0.51
25GRC023	NX004601	91	92	1.00	3.18
25GRC023	NX004602	92	93	1.00	1.52
25GRC023	NX004605	95	96	1.00	0.40
25GRC023	NX004607	97	98	1.00	0.46
25GRC023	NX004608	98	99	1.00	1.01
25GRC023	NX004609	99	100	1.00	0.84
25GRC023	NX004610	100	101	1.00	1.27
25GRC023	NX004611	101	102	1.00	0.53
25GRC023	NX004612	102	103	1.00	8.35

Hole_ID	Sample_ID	From	To	Interval	Au Grade g/t
25GRC023	NX004613	103	104	1.00	1.36
25GRC023	NX004614	104	105	1.00	0.80
25GRC023	NX004615	105	106	1.00	0.46
25GRC024	NX004692	41	42	1.00	4.71
25GRC024	NX004693	42	43	1.00	55.49
25GRC024	NX004694	43	44	1.00	1.80
25GRC024	NX004695	44	45	1.00	1.69
25GRC024	NX004701	45	46	1.00	1.36
25GRC024	NX004702	46	47	1.00	0.67
25GRC024	NX004703	47	48	1.00	0.32
25GRC024	NX004704	48	49	1.00	0.45
25GRC025	NX004730	39	40	1.00	2.70
25GRC025	NX004733	42	43	1.00	3.46
25GRC025	NX004735	44	45	1.00	0.42
25GRC025	NX004737	46	47	1.00	1.89
25GRC025	NX004738	47	48	1.00	0.60
25GRC025	NX004739	48	49	1.00	0.39
25GRC025	NX004744	53	54	1.00	0.56
25GRC025	NX004749	58	59	1.00	1.89
25GRC025	NX004752	60	61	1.00	0.67
25GRC025	NX004753	61	62	1.00	17.85
25GRC025	NX004754	62	63	1.00	1.75
25GRC025	NX004755	63	64	1.00	1.63
25GRC025	NX004756	64	65	1.00	0.91
25GRC025	NX004762	70	71	1.00	0.49
25GRC025	NX004763	71	72	1.00	1.81
25GRC025	NX004764	72	73	1.00	0.71

Appendix 3: JORC Tables

Section 1: Sampling Techniques and Data

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	<p><i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</i></p> <p><i>Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used.</i></p> <p><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> 1m RC samples using a face hammer with samples collected under a cone splitter. 4m composite RC samples collected via scoop from sample bag. 4 m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1 m split samples and submitted to the lab for further analysis. All assays conducted for Newcam Minerals were performed by Nagrom. Samples are crushed, pulverised, and a 50 g charge is analysed by Fire Assay.
Drilling techniques	<p><i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> The RC drilling rig, owned and operated by VM Drilling, was used to obtain the samples. RC drilling conducted by a 115mm Hammer face bit RC drill holes were oriented by the drill contractor using a Reflex TN14 Gyrocompass tool. A downhole survey was completed by a gyro-tool for all the drill holes. All holes had single-shot surveys performed at 5 metre intervals until the end of the drill hole.
Drill sample recovery	<p><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i></p>	<p>Newcam Minerals:</p>

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	<p><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i></p> <p><i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i></p>	<ul style="list-style-type: none"> RC samples are weighed at the laboratory to monitor recoveries. There is no known relationship between sample recovery and grade.
Logging	<p><i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i></p> <p><i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.</i></p> <p><i>The total length and percentage of the relevant intersections logged.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> Reverse Circulation chip sample logging was conducted using chip samples on a 1 m basis, prepared by conducting both dry and wet sieves. Logging was done in accordance with the Newcam Logging code. Qualitative – alteration, colour, grain size, lithology, oxidation, mineralogy, structure, texture, vein style, vein assemblage. Quantitative – estimates are made of quartz veining, sulphide and alteration percentages.
Subsampling techniques and sample preparation	<p><i>If core, whether cut or sawn and whether quarter, half or all core taken.</i></p> <p><i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i></p> <p><i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i></p> <p><i>Quality control procedures adopted for all subsampling stages to maximise representativity of samples.</i></p> <p><i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i></p> <p><i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> RC samples were submitted either as individual 1 m samples taken onsite from the cone splitter or as 4 m composite samples scooped from the onsite drill samples. Any 4m composites that exceeded 0.2g/t or where otherwise noted as anomalous were selected for re-sample and had 1m sample bags dispatched to the lab with these results overwriting the prior composite results. Field duplicates, blanks and standards were submitted for quality assurance and quality control (QAQC) analysis. Repeat assays were undertaken on pulp samples at the discretion of the laboratory.
Quality of assay data and laboratory tests	<p><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> All assay work was conducted by Nagrom utilising FA/AAS analysis with a 50g charge. Newcam Minerals submitted QA/QC samples with duplicates every 20 samples and one blank and one standard every 50 samples, utilising multiple different CRM providers.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	<p><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i></p> <p><i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i></p>	
Verification of sampling and assaying	<p><i>The verification of significant intersections by either independent or alternative company personnel.</i></p> <p><i>The use of twinned holes.</i></p> <p><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i></p> <p><i>Discuss any adjustment to assay data.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> • Holes are not deliberately twinned. • Geological and sampling data were entered directly into a formatted Excel file in the field, which was then verified. Data was then formatted and imported into a database, passing through further validation before acceptance into the database. • No verification of significant intersections undertaken.
Location of data points	<p><i>Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i></p> <p><i>Specification of the grid system used.</i></p> <p><i>Quality and adequacy of topographic control.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> • Collars were picked up by a qualified surveyor in MGA94 Z 51 format utilising a Topcon Hiper VR, RTK GPS Units. Locations were also cross-checked with a handheld GPS. • RC Holes were surveyed at EOH depth only. • Topographic control is considered adequate.
Data spacing and distribution	<p><i>Data spacing for reporting of Exploration Results.</i></p>	<ul style="list-style-type: none"> • Exploration results are reported for single holes only. • Data spacing highly variable from wide spaced ~20 m x ~40 m to close spaced infill drilling at ~15 m x ~20 m.

Personal Use Only

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	<p><i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i></p> <p><i>Whether sample compositing has been applied.</i></p>	<ul style="list-style-type: none"> • Drillhole spacing is adequate to establish geological and grade continuity for the Gimlet deposit. • Drill composites have been length weighted, 0.5 g/t lower cut-off, not top cut, maximum 1 m internal dilution.
Orientation of data in relation to geological structure	<p><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i></p> <p><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i></p>	<ul style="list-style-type: none"> • It is considered that the orientation of the drilling and sampling suitably captures the likely "structures" for each exploration domain.
Sample security	<p><i>The measures taken to ensure sample security.</i></p>	<p>Newcam Minerals:</p> <ul style="list-style-type: none"> • Samples were collected from the field and immediately recorded, and dispatched to Nagrom utilising Newcam Minerals employees or appropriately qualified contractors.
Audits or reviews	<p><i>The results of any audits or reviews of sampling techniques and data.</i></p>	<ul style="list-style-type: none"> • Sampling and assay techniques are industry standard. No specific audit or review has been undertaken at this stage in the program.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i></p> <p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<p>Tenement M 26/849 and E26/174 are adjacent to each other and share the common boundary, of which First Au holds a 100% controlling interest.</p> <p>The tenements are in good standing with the WA DMIRS.</p>
Exploration done by other parties	<p><i>Acknowledgment and appraisal of exploration by other parties.</i></p>	<p>Drilling, sampling and assay procedures and methods as stated in the database and confirmed from WAMEX reports and hardcopy records are considered acceptable and to industry standards of the time. There is sufficient understanding of drilling, sampling and assay methodologies for the majority of drilling in the Gimlet area. Newcam Minerals is confident that previous operators completed work to standards considered acceptable for the time.</p>
Geology	<p><i>Deposit type, geological setting and style of mineralisation.</i></p>	<p>The geology in the tenement is prospective for gold, dominated by metamorphosed felsic and intermediate volcanic rocks of the Black Flag Group of the Kalgoorlie Terrane, Yilgarn Craton. This Archean geology is overlain by Cainozoic sediments, including some areas covered with salt lakes, which have previously inhibited the effectiveness of some of the historic exploration.</p> <p>Mineralisation is interpreted to be related to an NNW-SSE near-vertical structure observed in the magnetic imagery and the geological logging of the drilling. Mineralisation at Gimlet occurs as: 1) a supergene blanket within the saprolite clays; 2) a supergene-enriched shear zone, at the fresh rock/oxide interface in the transition zone; and 3) sheared felsic to intermediate volcanic and volcanic-derived sedimentary fresh rock, containing lenses, disseminated and stringer sulphides, with quartz vein material.</p> <p>Pyrite appears to be the dominant sulphide phase, while arsenopyrite, sphalerite and galena have also been identified in the logging. In several cases, the mineralised structures are bifurcated and can appear as several lodes. The fresh mineralised zone often shows a broader halo of disseminated pyrite (with associated sericite, carbonates-quartz), containing lower grade mineralisation (~ 10 - 500 ppb Au).</p>
Drillhole information	<p><i>A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes:</i></p> <ul style="list-style-type: none"> <i>• easting and northing of the drillhole collar</i> 	<p>Detailed information regarding the drill hole information is reported in the announcement and the previous announcement as follows:</p> <p>ASX release date 14 December 2018</p>

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar</i> <i>dip and azimuth of the hole</i> <i>downhole length and interception depth</i> <i>hole length.</i> 	ASX release dated 18 March 2019 and 28 May 2019 ASX release dated 28 October 2019 and 4 March 2020 ASX release dated 4 November 2020 ASX release dated 29 January 2021 ASX release dated 23 June 2021 ASX release dated 17 November 2025
Data aggregation methods	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p> <p><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p> <p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	Mineral intercepts are reported as raw, with no top cutting conducted. Mineral intercepts reported have an Au value greater than 0.5g/t. Internal dilution is restricted to 1m or less within intercept intervals. Metal equivalent calculations are not required as the Gimlet project is gold only.
Relationship between mineralisation widths and intercept lengths	<p><i>These relationships are particularly important in the reporting of Exploration Results.</i></p> <p><i>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</i></p> <p><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').</i></p>	Mineral intercepts have been recorded as downhole widths. The multiple different orientations of mineralisation present, with not all visually identifiable, means an accurate true width is not possible.
Diagrams	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.</i></p>	Appropriate plan views and section views have been provided in this announcement.
Balanced reporting	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i></p>	No misleading results have been presented in this announcement.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	<p>There is no other meaningful and material exploration data.</p>
Further work	<p><i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i></p>	<ul style="list-style-type: none"> • Further resource work is ongoing, and findings are part of a greater re-modelling effort to produce a new updated Gimlet Mineral Resource Estimate. The details of which will be released in due course. • Planned further work includes: <ul style="list-style-type: none"> • Conduct further detailed geological and structural interpretation to help refine 3D models of the mineralised zones; • Update the Mineral Resource Estimate to incorporate the results of the recent drilling; • Prioritise targets for follow-up drilling and sampling; and <p>Diamond core drilling will be planned after receiving all the drilling results and the mineral resource update. This is expected to provide metallurgical samples, structural insight and specific gravity measurements.</p>