

Further High-grade Rubidium Results from Mt Edon Critical Mineral Project

Highlights

- New assay results received from Phase 2 resource upgrade and expansion drilling continues to confirm the high-grade nature of rubidium mineralisation at Mt Edon
- Peak high-grade rubidium assay of 0.67% Rb₂O
- Standout thick, high-grade rubidium intersections include:
 - 35m @ 0.32% Rb₂O from 36m (25ME-D1) including 16m @ 0.41% Rb₂O from 43m
 - 71m @ 0.25% Rb₂O from surface (25ME-D2) including 20m @ 0.34% Rb₂O from 3m
 - 86m @ 0.26% Rb₂O from 5m (25A-25) including 15m @ 0.35% Rb₂O from 35m
 - 83m @ 0.25% Rb₂O from 2m (25A-38) including 17m @ 0.36% Rb₂O from 43m
- Successful completion of the CSIRO Kick-Start rubidium characterisation project, providing valuable mineralogical and geochemical insights
- These outcomes actively support the development of a refined geometallurgical model and will drive optimisation of processing and recovery strategies for rubidium
- Resource upgrade underway incorporating all Phase 2 drilling data and is expected to significantly enhance the project's resource base and classification in the near term

Everest Metals Corporation Ltd (ASX: EMC) ("EMC" or "the Company") is pleased to announce assay results from the remaining diamond (DD) and slimline RC (SLRC) holes from the Phase 2 resource upgrade and expansion drilling program at the Mt Edon Critical Mineral Project (M59/714) in Western Australia. The results complement the high-grade RC intercepts reported on 28 November 2025¹ and reinforce the continuity of thick, near-surface rubidium mineralisation.

The Phase 2 program has delivered consistent high-grade zones, including multiple thick intercepts exceeding 0.30% Rb₂O and a peak assay of up to 0.67% Rb₂O, further highlighting Mt Edon's potential as a globally significant rubidium project. Parallel CSIRO mineralogical and characterisation studies are providing critical data to optimise future beneficiation and recovery processes.

¹ EMC ASX announcement; [Everest Reports up to 0.79% Rb₂O at Mt Edon Critical Mineral Project Ahead of Resource Upgrade](#), dated 28 November 2025

EMC's Executive Chairman and CEO Mark Caruso commented:

"The drill results show remarkable consistency and reliability, strongly reinforcing the high-grade nature of the rubidium mineralisation at Mt Edon. Results from the ongoing CSIRO Rubidium characterisation program are delivering valuable mineralogical and geometallurgical insights that will be used to refine ore beneficiation test work. Together, these outcomes are expected to drive improvements in processing efficiency and rubidium recovery rates. With additional metallurgical studies, recovery optimisation, and broader project evaluation activities now well advanced, the project continues to build momentum toward development."

Resource Upgrade & Expansion Drilling

In September 2025, the Company commenced Mt Edon's Phase 2 resource drilling program, comprising 2,507 metres of step-out and infill drilling comprised of Reverse Circulation ("RC"), Slimline RC ("SLRC"), and Diamond Drilling ("DD"). The primary objectives were to upgrade the existing Mineral Resource Estimate ("MRE") and test potential extensions along strike².

Drill-hole spacing within the Mt Edon deposit MRE area typically ranged from less than 20 m to 40 m along the orebody trend, with holes positioned adjacent to pegmatite outcrops to target deeper intersections. All the infill drill holes were designed to confirm and extend known mineralisation within the established resource area and mineralisation envelope.

The program included 19 x RC holes totalling 1,813 metres and 8 x SLRC holes totalling 502 metres, targeting known zones and priority step-out areas to expand the resource base. Additionally, two DD holes totalling 192 metres were completed to obtain core samples for detailed metallurgical test work, geotechnical assessments and structural data analysis.

RC drilling was completed in September 2025; however, due to wet ground conditions and unpredictable rainfall, the SLRC and DD components of the program were rescheduled to late October 2025 and completed in early November 2025.

Interim drilling results reported in late November 2025, confirmed the continuity and integrity of the previously defined grades while highlighting the potential for resource expansion. Notably, thick, high-grade rubidium intersects, including³:

- 120m @ 0.22% Rb₂O from surface (25A-9) including 26m @ 0.40% Rb₂O from 82m
- 20m @ 0.37% Rb₂O from 50m (25A-12)
- 68m @ 0.31% Rb₂O from 59m (25A-18) including 14m @ 0.40% Rb₂O from 68m
- 29m @ 0.34% Rb₂O from 50m (25A-4) including 17m @ 0.40% Rb₂O from 59m

Assay results have now been received for the remaining 2 x DD and 8 x SLRC drill holes totaling 694 metres. Samples from the SLRC drilling campaign were taken from one-metre splits. In the diamond core, pegmatite intersections were sampled by longitudinally splitting the core, with ¼ core taken every metre. All samples were submitted to the ALS laboratory in Perth, accompanied with Certified Registered

² EMC ASX announcement; [Resource Upgrade Drilling and Expansion at Mt Edon, WA to Commence](#), dated 10 September 2025

³ EMC ASX announcement; [Everest Reports up to 0.79% Rb₂O at Mt Edon Critical Mineral Project Ahead of Resource Upgrade](#), dated 28 November 2025

Material ("CRM"), blanks and duplicates. Assays used a standard multi-element LCT pegmatite suite via a 4-acid digest followed by Lithium Borate Fusion ICP-MS.

Some of the thickest and highest-grade intersections with grades above 0.15% Rb are outlined in Figure 1 and Table 1, with full results shown in Appendix 2.

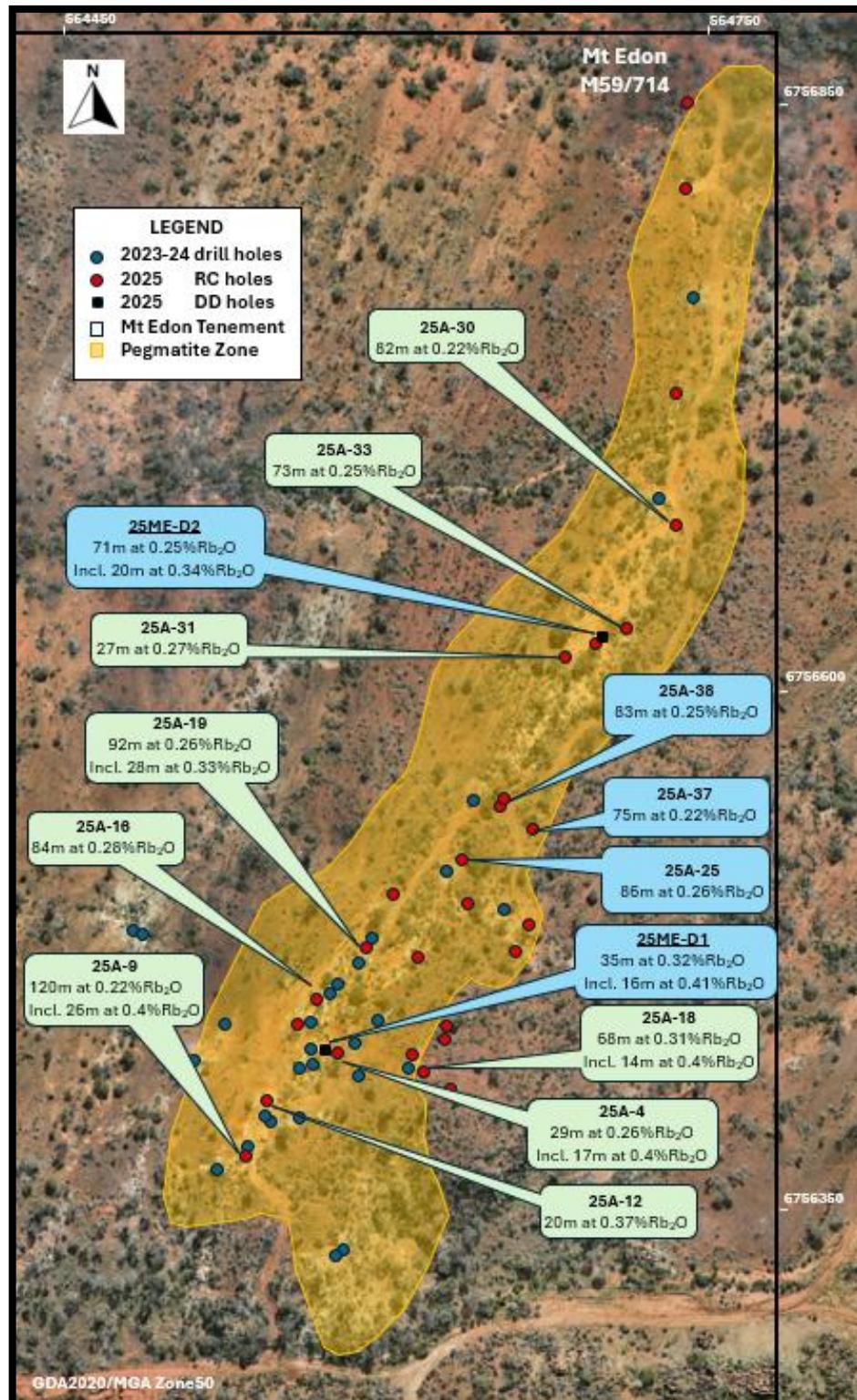
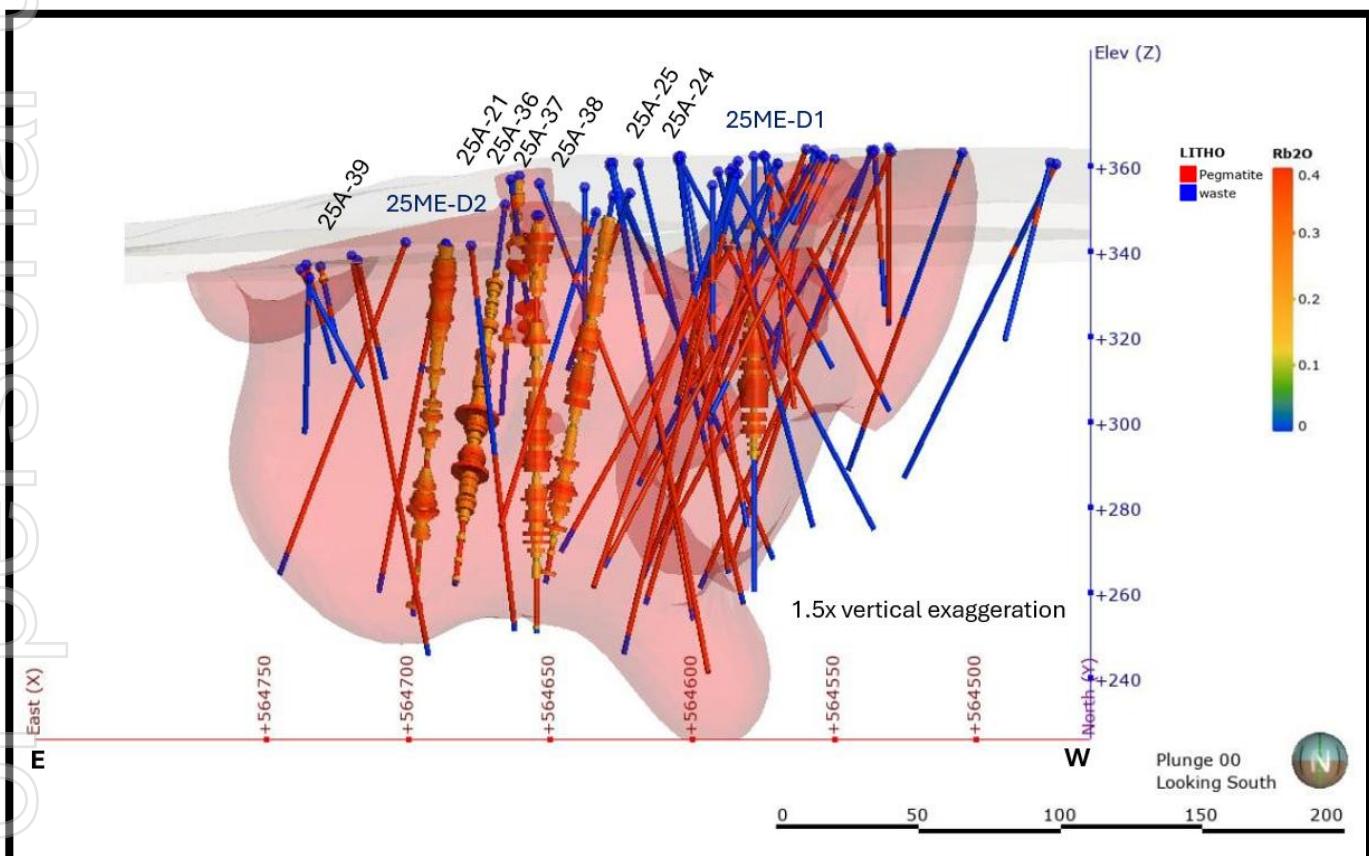



Figure 1: Location of resource drill holes over the high-resolution aerial image in the northeast portion of the Mt Edon mining lease (M59/714), with wireframe outlining the mineralised intercepts

Table 1: Significant rubidium drillhole intercepts from DD and SLRC drilling at Mt Edon

Hole ID	From (m)	To (m)	Interval (m)	Rb ₂ O (%)	Li ₂ O (%)	Notes
25ME-D1	36	71	35	0.32	0.10	Incl. 16m @ 0.41% Rb ₂ O from 43m
25ME-D2	0	71	71	0.25	0.11	From surface, Incl. 20m @ 0.34 % Rb ₂ O from 3m
25A-37	18	93	75	0.22	0.12	Incl. 25m @ 0.31 % Rb ₂ O from 56m Contains peak assay 0.67 % Rb ₂ O (1m, 57-58m)
25A-25	5	92	86	0.26	0.12	Incl. 15m @ 0.35 % Rb ₂ O from 35m
25A-38	2	85	83	0.25	0.11	Incl. 17m @ 0.36 % Rb ₂ O from 43m, and 13m @ 0.32 % Rb ₂ O from 64m
25A-21	15	27	12	0.27	0.11	-
	34	44	10	0.22	0.14	

- Full details of the resource drill holes are provided in Appendix 1.

Figure 2: East–West cross-section (looking south) showing significant near-surface mineralised intersections from recent drilling. Pegmatite intersections are shown in red and mafic schist intersections in blue.

Diamond drill core samples were submitted to Epiroc's core scanning facility for advanced hyperspectral analysis using the Hyperspectral Core Imager (HCI). This program incorporated mineral mapping and textural analysis, combining high-resolution visible near-infrared (VNIR) and shortwave infrared (SWIR) imaging spectroscopy, core photography and 3D laser profiling (Figure 3). Additionally, comprehensive quantitative mineralogical analysis was conducted to accurately determine the relative proportions of rock-forming minerals, providing critical insights into the deposit's mineralisation and supporting ongoing geometallurgical optimisation.

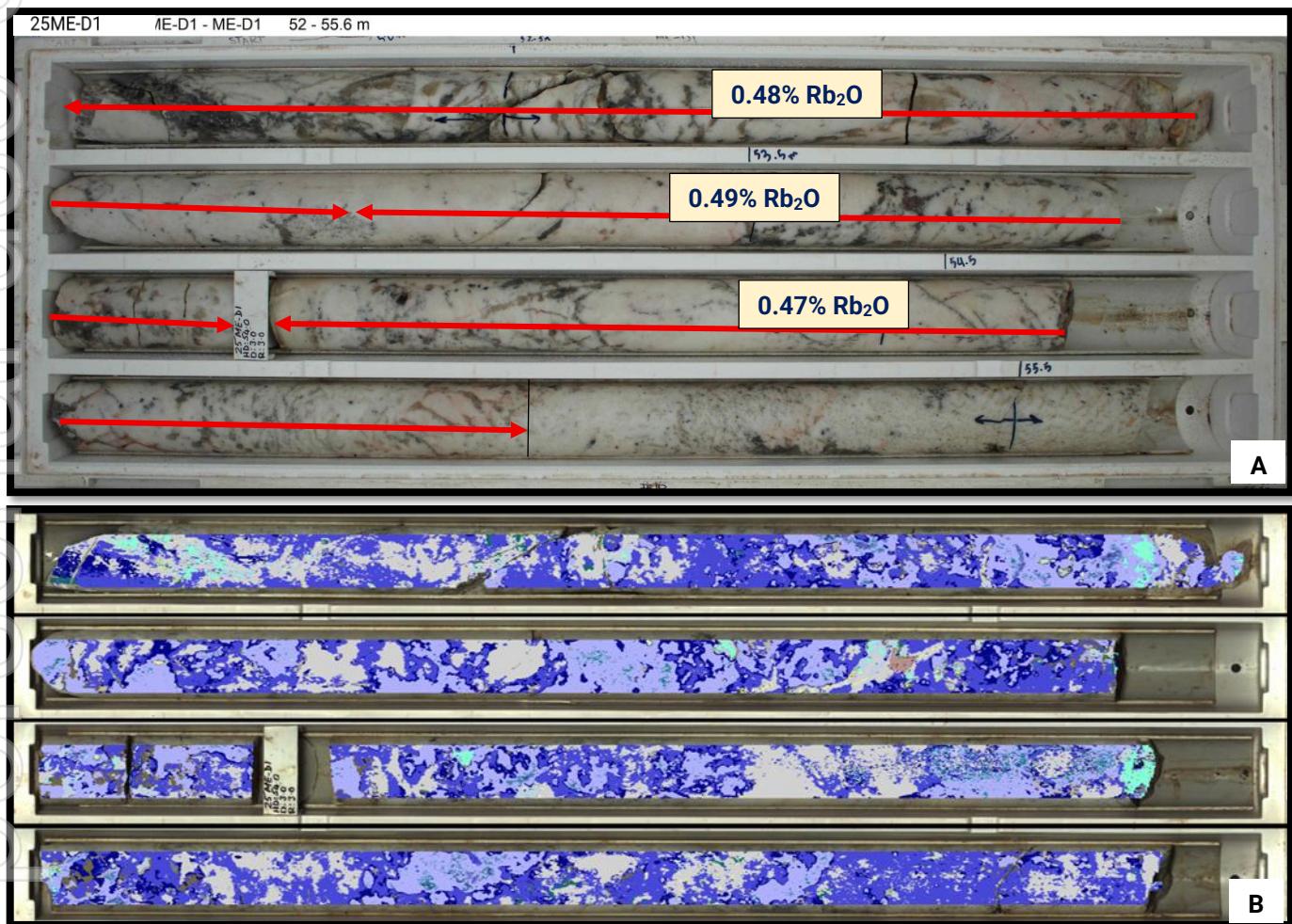


Figure 3: (A) High-grade rubidium mineralisation (0.47–0.49% Rb₂O) intersected in drill hole 25ME-D1 between 52 m and 55 m, comprising three continuous 1 m intervals, as shown on the drill core photographs. (B) Hyperspectral core scanning results provide detailed mineral classification and clearly delineate the pegmatite zone hosting the rubidium mineralisation.

Ongoing drilling results continue to demonstrate strong rubidium and lithium mineralisation, with consistent near-surface mineralisation over a strike length of >500 m (NE–SW orientation). The primary pegmatite within the resource drilling area exhibits a northeast dip, maintains an average thickness of 40 m and has been tested to a vertical depth of >100 m. RC chip logging identified well-developed muscovite-rich zones, with lepidolite mineralisation observed in select intervals.

CSIRO Kick-Start Rubidium Characterisation

The CSIRO-EMC Kick-Start collaborative project was designed to quantify the mineralogical deportment of rubidium within the Mt Edon pegmatite system and to evaluate its implications for resource definition and downstream processing⁴.

CSIRO applied the HyLogger-3 to scan more than 3,000 metres of RC drill chip samples collected from the 2023-2025 drilling campaigns. This work alongside detailed laboratory analyses, including LA-ICP-MS, quantitative XRD, and advanced micro-analyses (Micro-XRF, and TIMA).

These analyses offer insights into the geochemical signatures and mineral distribution of rubidium, as well as its associated pathfinder elements such as lithium and caesium. They also identify minerals based on their chemical composition, quantify major and minor elements within a mineral, understand zoning, alteration, and distinguish visually similar minerals with different chemistry.

Hyperspectral scanning is a highly effective, non-destructive method for detailed mineral classification and mapping of pegmatite rocks, particularly for identifying rubidium and lithium-bearing minerals and their alteration halos. The technique utilises the unique spectral signature (fingerprint) of each mineral in the Visible Near Infrared (VNIR), Shortwave Infrared (SWIR), and Longwave Infrared (LWIR) ranges to generate high-resolution, pixel-by-pixel mineral maps (Figure 4).

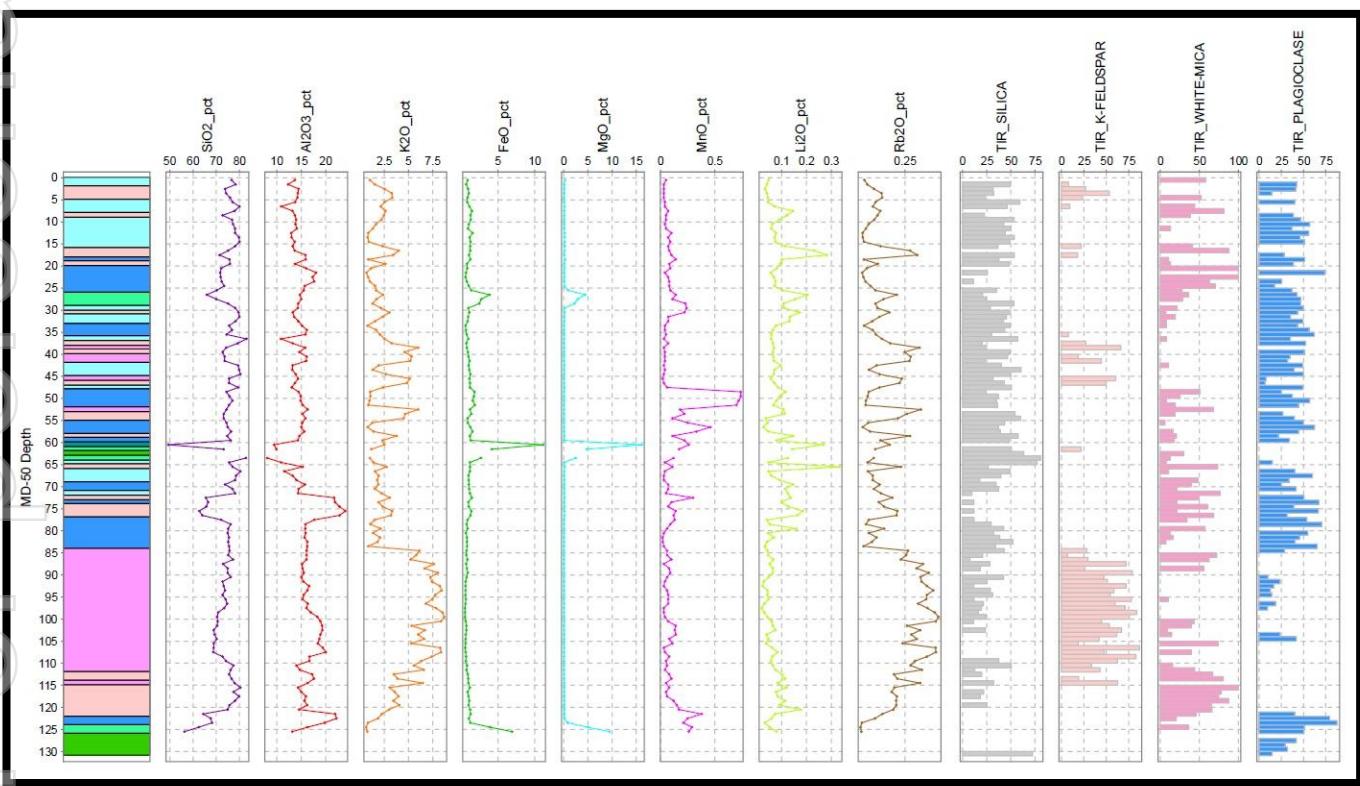


Figure 4: Example of assay geochemistry and semi-quantitative mineral abundances from Hylogger-3 Thermal Infrared (TIR) on RC drill core MD-50

⁴ ASX: EMC announcement; EMC Secures CSIRO Support for Advanced Rubidium, Lithium & Caesium Studies at Mt Edon Project, WA, dated 1 May 2025

Rubidium at Mt Edon is hosted predominantly in K-feldspar (microcline), with a significant but variable contribution from muscovite and a subordinate contribution from lepidolite. In addition to lepidolite, Li-bearing phases include petalite and eucryptite, an assemblage consistent with relatively low-pressure, shallow crustal emplacement of the pegmatite system.

Quantitative EPMA shows that Rubidium contents in muscovite are typically ~0.75wt% Rb_2O , compared to ~0.70wt% in K-feldspar and up to ~1.6wt% in lepidolite; the latter is also enriched in Cs, with average contents of ~0.40wt% Cs_2O . Although K-feldspar contains slightly lower Rubidium concentrations than muscovite, its higher modal abundance in most pegmatite domains results in a predominant proportion of the bulk Rb inventory being hosted outside the target mica phases (Figure 5).

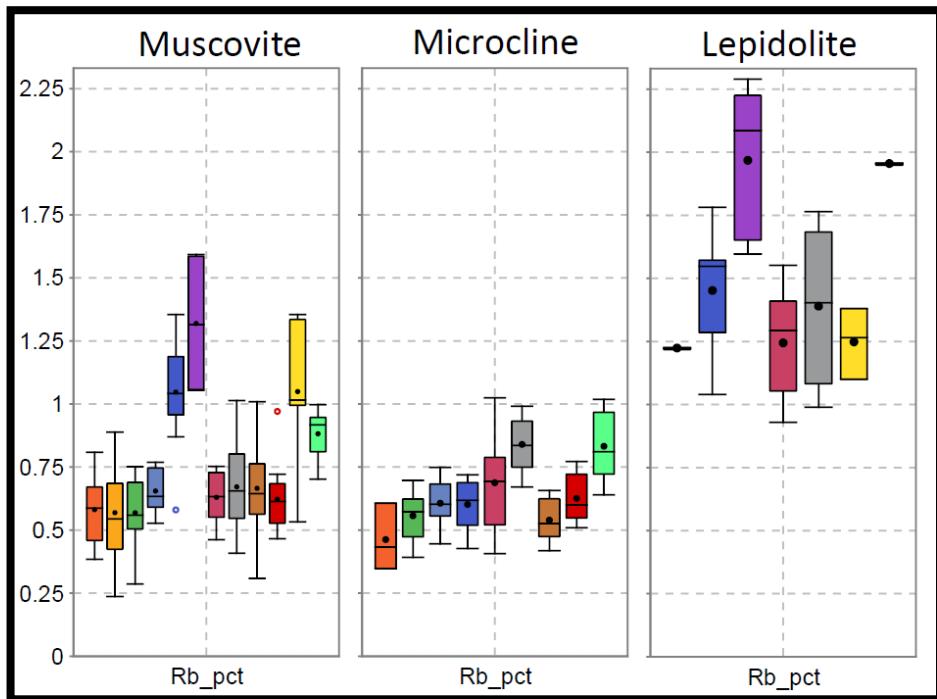


Figure 5: Rubidium content analyses by using Electron Probe Micro Analysis (EPMA)

Mineral abundance estimates were derived from hyperspectral data, with HyLogger TIR measurements covering 3,064m RC samples and 133m core samples from 38 drill holes. Complementary semi-quantitative mineralogical information was obtained from Fourier-Transform Infrared (FTIR) spectroscopy on 164 samples from 12 drill holes, and Raman spectroscopy using a Bruker BRAVO system on 263 down-hole samples from 9 drill holes.

Normative mineralogy was calculated from whole-rock major element compositions obtained by four-acid digestion with ICP-MS finish (ALS methods MES91-PKG and ME-ICP61a) on 1,550 samples from 36 drill holes. The normative calculations, constrained by quantitative mineral chemistry determined by EPMA, were estimated using an iterative constrained least-squares approach. This approach minimises the misfit between measured bulk chemistry and reconstructed compositions derived from mineral proportions, subject to non-negativity constraints.

Mineral abundance estimates from hyperspectral data and normative calculations were validated against, and where necessary adjusted using, quantitative X-ray diffraction (XRD) with Rietveld refinement and

automated mineralogy (TIMA) on 45 representative samples spanning the range of lithologies, mineral assemblages and chemical compositions.

In addition, detailed micro-XRF spectroscopy mineralogical analyses were undertaken on metre-by-metre downhole sub-samples from selected drill holes to characterise mineral assemblages, assess downhole variability, and enable comparative evaluation between intervals (Figure 6).

Overall, the project delivers a quantitative framework for translating bulk Rubidium grades into processing-relevant metrics, including Rubidium in mica versus Rubidium in feldspar deportment. This framework directly supports the construction of a geometallurgical model capable of linking pegmatite subtype, mineralogy and Rubidium deportment to recoverable value, and provides a more defensible basis for resource domaining and project evaluation.

The study demonstrated that weathering has a minimal impact on the rubidium- and lithium-bearing pegmatite zones at Mt Edon and on their geometallurgical parameters. Mineralogical data and compositional averages will be integrated into the pegmatite resource model.

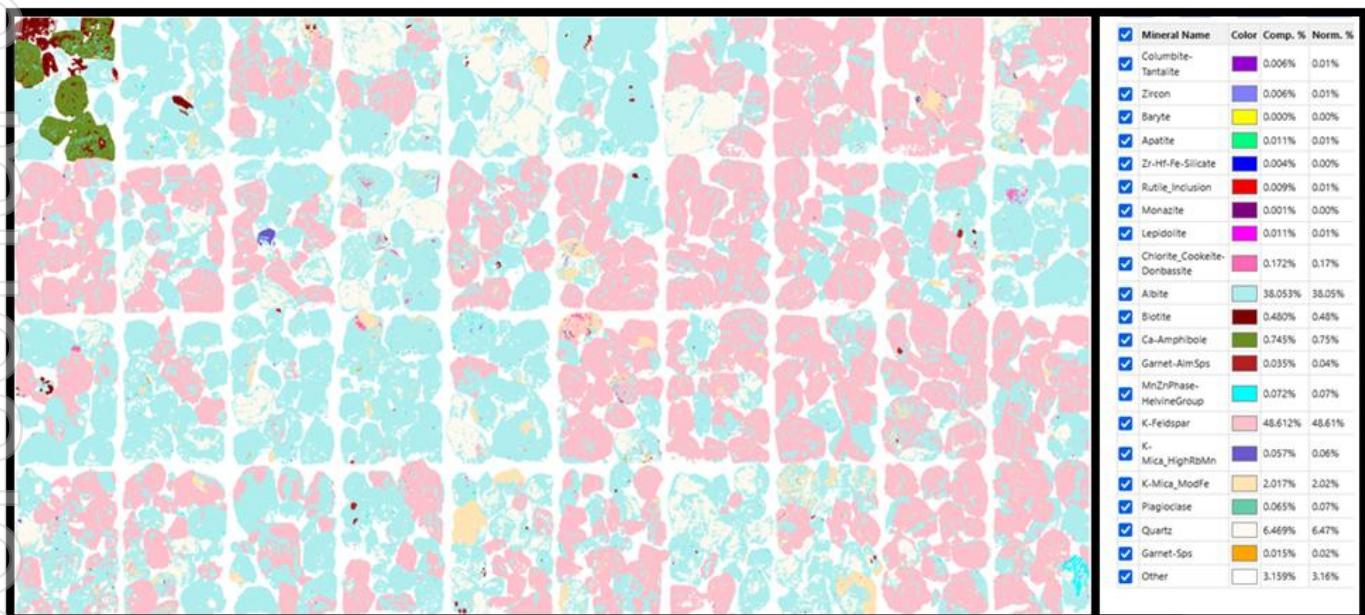


Figure 6: RC chip mineral composition of drill hole 25A-38 over the 0–40 m interval, with each rectangle corresponding to a one-metre downhole sub-sample.

A summary of important assessment and reporting criteria used for this Exploration Results announcement is provided in Appendix 3 – JORC Table 1 in accordance with the checklist in the Australian Code for the Reporting of Exploration Results, Mineral Resources, and Ore Reserves (The JORC Code, 2012 Edition). Criteria in each section apply to all preceding and succeeding sections.

MT EDON PROJECT BACKGROUND

Mt Edon Critical Mineral Project (M59/714) is located 5km southwest of Paynes Find, in the Mid-West region of Western Australia, approximately 420km northeast of Perth (Figure 7).

The project hosts an initial Inferred Mineral Resource Estimate of 3.6 million tonnes grading 0.22% Rubidium Oxide (Rb_2O) and 0.07% Lithium Oxide (Li_2O) at 0.10% Rb_2O cut-off, containing approximately 7,900 tonnes of Rb_2O (Table 2)⁵.

Within this, a high-grade subset of 1.3 million tonnes at 0.33% Rb_2O and 0.07% Li_2O (at 0.25% Rb_2O cut-off) contains about 4,290 tonnes of Rb_2O , representing 56% of the total Rb_2O content. This MRE highlights the significant scale and grade potential of the Mt Edon deposit.

The MRE covers a strike length of only ~400m within a 1.2km lithium-caesium-tantalum ("LCT") pegmatite corridor – a mineralised zone of hosting critical minerals – and extends to a vertical depth of ~100m below surface. The near-surface nature of the deposit supports cost-effective open-pit mining with a low stripping ratio.

Table 2: Mt Edon Maiden Mineral Resource Estimate (JORC Code 2012)

Category	Tonnes (Mt)	Rb_2O (%)	Contained Rb_2O (t)	Li_2O (%)	Contained Li_2O (t)
Inferred	3.6	0.22	7,900	0.07	2,500
Total	3.6	0.22	7,900	0.07	2,500

- Mineral Resources are classified and reported in accordance with JORC Code (2012).
- Mineral Resource estimated at a 0.10% Rb_2O cut-off.
- Mineral Resource is contained within mining licence M59/714.
- All tabulated data have been rounded.

The Mt Edon Critical Mineral Project hosts multiple geological and geophysical targets supported by resource modelling that underpins the MRE. The mineralisation remains open along strike to the northeast and southwest, offering significant potential to expand the initial MRE through follow up drilling. The resource is near-surface with outcropping mineralisation, making it potentially suitable for open-pit mining with a low stripping ratio.

⁵ EMC ASX announcement; [EMC Delivers World-Class Rubidium Resource At Mt Edon Project, WA](#), dated 21 August 2024

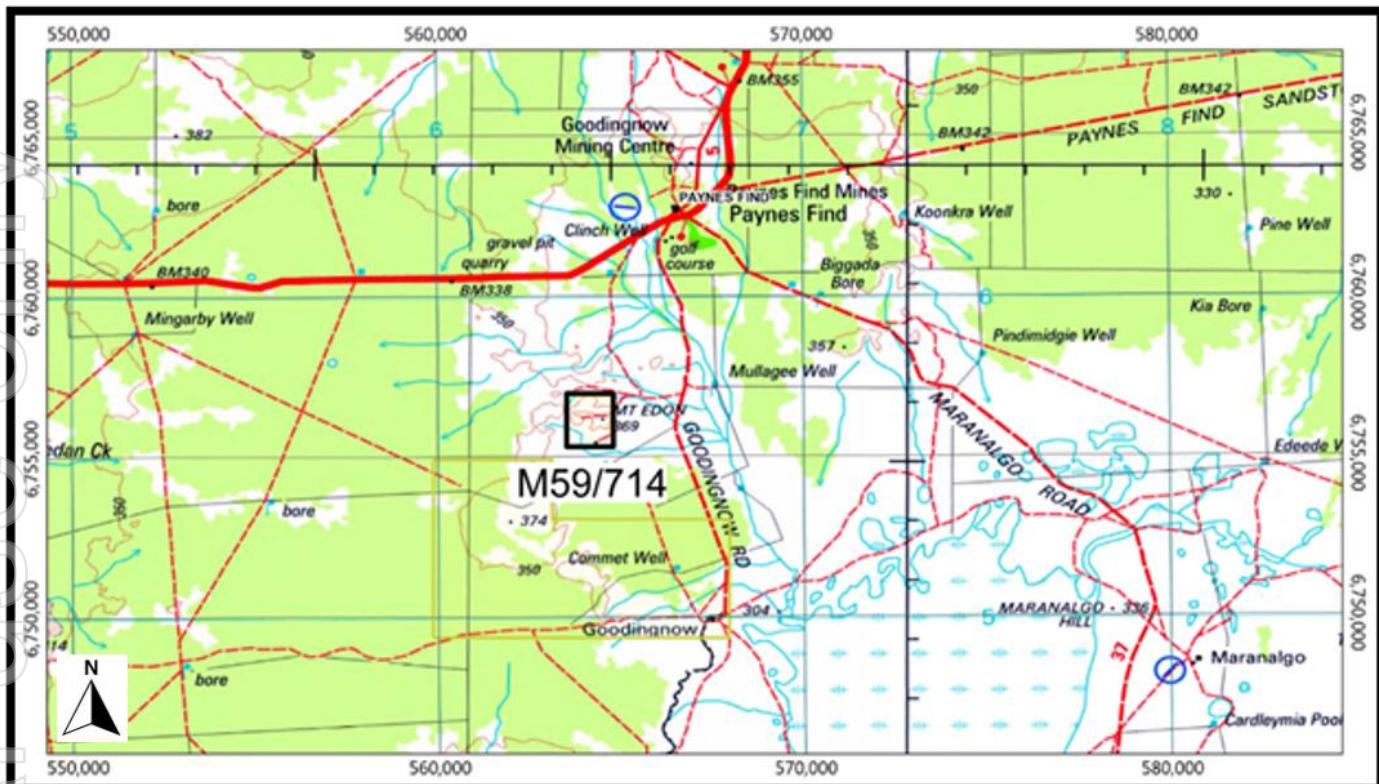


Figure 7: Mt Edon mining lease location map, southwest of Paynes Find, Western Australia

Next Steps for Mt Edon

H1 CY2026

- Secure the international PCT patent for EMC's proprietary rubidium extraction process
- Deliver Mineral Resource upgrade
- MRIWA bench-scale optimisation studies to enhance the rubidium extraction
- Submission of the Mining Proposal application

H2 CY2026

- Complete Engineering Scoping Studies
- AEA-Ignite purification and scalable pilot prototype processing results
- Submit and secure Grant application for pilot plant
- Obtain Mining Proposal approvals

ENDS

This Announcement has been authorised for market release by the Board of Everest Metals Corporation Ltd.

Enquiries:

Mark Caruso | Executive Chair & CEO
Phone: +61 (08) 9468 9855
Email: enquiries@everestmetals.au

Simon Phillips | Business Development & IR
Phone: +61 (08) 9468 9855
Email: enquiries@everestmetals.au

JORC and Previous Disclosure

The information in this announcement that relates to Exploration Results and the Mt Edon Mineral Resource is based on information previously disclosed under the JORC Code (2012) in the following Company ASX announcements that are all available on the Company's website (www.everestmetals.au) and the ASX website (www.asx.com.au) under the Company's ticker code "EMC":

- 21 August 2024, EMC Delivers World-Class Rubidium Resource at Mt Edon Project, WA.
- 18 December 2024, Everest Metals Achieves Up To 91% Rubidium Recovery from Mt Edon.
- 27 February 2025, Rubidium Extraction Patent Application Filed.
- 1 May 2025, EMC Secures CSIRO Support for Advanced Rubidium, Lithium & Caesium Studies at Mt Edon Project, WA.
- 3 June 2025, EMC Advances Australian-First Rubidium Industry at Mt Edon, WA
- 19 June 2025, U.S. Defence Industrial Base Consortium Membership Approved to Advance Mt Edon Rubidium Project, WA
- 28 August 2025, EMC Awarded MRIWA Innovation Grant for Establishing an Australian Rubidium Industry In WA
- 10 September 2025, Resource Upgrade Drilling and Expansion at Mt Edon, WA to Commence
- 28 November 2025, Everest Reports up to 0.79% Rb₂O at Mt Edon Critical Mineral Project Ahead of Resource Upgrade
- 21 January 2026, AEA Ignite Grant Approved to Fast-Track Rubidium Extraction at Mt Edon Critical Mineral Project

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the relevant market announcements continue to apply and have not materially changed.

Competent Person Statement

The information in this report related to Exploration Results and Mineral Resource of Mt Edon is based on information compiled, approved and previously released by Mr Bahman Rashidi, who is a member of the Australasian Institute of Mining and Metallurgy (AusIMM) and a Registered Professional Geoscientist (RPGeo) in the field of Mineral Exploration and Industrial Minerals with the Australian Institute of Geoscientists (AIG). Mr Rashidi is chief geologist and a full-time employee of the Company. He is also a shareholder of Everest Metals Corporation. He has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity, he is undertaking to qualify as a Competent Person in accordance with the JORC Code (2012). The information from Mr Rashidi was prepared under the JORC Code (2012). Mr Rashidi consents to the inclusion in this ASX release in the form and context in which it appears.

Forward Looking and Cautionary Statement

This report may contain forward-looking statements. Any forward-looking statements reflect management's current beliefs based on information currently available to management and are based on what management believes to be reasonable assumptions. It should be noted that a number of factors could cause actual results, or expectations to differ materially from the results expressed or implied in the forward-looking statements.

The interpretations and conclusions reached in this report are based on current geological theory and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for complete certainty. Any economic decisions that might be taken based on interpretations or conclusions contained in this report will therefore carry an element of risk. This report contains forward-looking statements that involve

several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information.

Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this report. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

ASX Listing Rule 5.23.2

Everest Metals Corporation Limited confirms that it is not aware of any new information or data that materially affects the information included in this market announcement and that all material assumptions and technical parameters underpinning the estimates in this market announcement continue to apply and have not materially changed.

ABOUT EVEREST METALS CORPORATION

Everest Metals Corporation Ltd (EMC) is an ASX listed Western Australian resource company focused on discoveries of Gold, Silver, Base Metals and Critical Minerals in Tier-1 jurisdictions. The Company has high quality Precious Metal, Battery Metal, Critical Mineral Projects in Australia and the experienced management team with strong track record of success are dedicated to the mineral discoveries and advancement of these company's highly rated projects.

EMC's key projects include:

REVERE GOLD PROJECT: located in a proven prolific gold producing region of Western Australia along an inferred extension of the Andy Well Greenstone Shear System with known gold occurrences and strong Coper/Gold potential at depth.

MT EDON CRITICAL MINERAL PROJECT: located in the Southern portion of the Paynes Find Greenstone Belt – area known to host swarms of Pegmatites and highly prospective for Critical Metals. The project sits on granted Mining Lease.

MT DIMER TAIPAN GOLD PROJECT: located around 120km north-east of Southern Cross, the Mt Dimer Gold & Silver Project comprises a mining lease, with historic production and known mineralisation, and adjacent exploration license.

For more information about the EMC's projects, please visit the Company website at:

www.everestmetals.au

Appendix 1- Details of resource drill holes completed – Phase 2

Hole_ID	Drill Type	Easting	Northing	Height (m)	Depth (m)	Dip (degrees)	Azimuth (degrees)
25ME-D1	DD	564578.4	6756433	362	102	-90	0
25ME-D2	DD	564686.7	6756627	341	90	-75	150
25A-21	SLRC	564661	6756479	356	76	-60	200
25A-36	SLRC	564664	6756488	357	58	-75	155
25A-24	SLRC	564638	6756498	354	40	-90	0
25A-37	SLRC	564666	6756540	350	103	-60	20
25A-25	SLRC	564628	6756511	352	94	-75	103
25A-38	SLRC	564655	6756557	348	98	-90	0
25A-38T	SLRC	564654	6756557	348	15	-90	0
25A-39	SLRC	564731	6756734	336	18	-60	325

- Grid is GDA2020 - Zone 50
- DD= Diamond Drilling, SLRC =Slimline RC

Appendix 2- Results of RC Resource drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb ₂ O %	Li ₂ O %
25ME-D1	ME-D1-01	14	15	1.13	15.8	79	406	7	28.9	4.61	0.04	0.05
25ME-D1	ME-D1-02	15	16	1.83	157	64	1165	17	16.2	4	0.13	0.17
25ME-D1	ME-D1-03	16	17	2.26	618	131	2780	37	77.9	5.47	0.30	0.49
25ME-D1	ME-D1-04	17	18	0.37	22.4	63	180	<5	19.8	5.54	0.02	0.04
25ME-D1	ME-D1-05	35	36	0.46	26.9	89	299	<5	71.9	6.54	0.03	0.06
25ME-D1	ME-D1-06	36	37	7.85	47	50	3360	15	9.8	1.98	0.37	0.11
25ME-D1	ME-D1-07	37	38	4.53	62.9	92	1585	9	18	2.54	0.17	0.11
25ME-D1	ME-D1-08	38	39	6.46	60.2	41	2210	9	7.7	2.51	0.24	0.12
25ME-D1	ME-D1-09	39	40	8.38	65.8	23	2860	6	7	2.36	0.31	0.07
25ME-D1	ME-D1-10	40	41	4.53	35.3	27	1610	6	8.5	3.14	0.18	0.06
25ME-D1	ME-D1-11	41	42	9.31	65.7	15	3110	<5	8.6	2.19	0.34	0.05
25ME-D1	ME-D1-12	42	43	8.42	67.3	30	3160	9	9.6	1.54	0.35	0.09
25ME-D1	ME-D1-13	43	44	10.45	88.3	15	4090	<5	13.2	2.13	0.45	0.04
25ME-D1	ME-D1-14	44	45	9.88	77.5	20	3910	<5	9	2.01	0.43	0.03
25ME-D1	ME-D1-15	45	46	9.91	80.9	8	4130	<5	7.2	1.86	0.45	0.04
25ME-D1	ME-D1-16	46	47	7.18	124	33	3130	10	19.6	3.03	0.34	0.12
25ME-D1	ME-D1-17	47	48	4.13	94.6	72	1950	12	45.8	3.26	0.21	0.13
25ME-D1	ME-D1-18	48	49	7.58	75.8	26	3320	9	12.4	2.02	0.36	0.10
25ME-D1	ME-D1-19	49	50	8.14	94.4	36	3870	12	27.2	2.59	0.42	0.10
25ME-D1	ME-D1-20	50	51	6.35	61.6	34	2770	7	24.6	2.88	0.30	0.08
25ME-D1	ME-D1-21	51	52	8.09	74.9	40	3460	7	19	2.64	0.38	0.10
25ME-D1	ME-D1-22	52	53	9.73	126.5	25	4400	5	10.8	2.04	0.48	0.06
25ME-D1	ME-D1-23	53	54	10.35	124	14	4480	<5	13	2.07	0.49	0.06

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25ME-D1	ME-D1-24	54	55	9.78	138	11	4310	6	6.7	2.37	0.47	0.07
25ME-D1	ME-D1-25	55	56	8.73	124	23	3920	8	20.8	2.49	0.43	0.25
25ME-D1	ME-D1-26	56	57	10.05	76.7	18	3980	5	8.3	1.82	0.44	0.07
25ME-D1	ME-D1-27	57	58	9.42	91.6	7	3790	<5	4.6	1.98	0.41	0.06
25ME-D1	ME-D1-28	58	59	8.36	98.2	25	3760	6	21	2.04	0.41	0.08
25ME-D1	ME-D1-29	59	60	1.9	44.5	74	935	8	50.5	5.2	0.10	0.10
25ME-D1	ME-D1-30	60	61	6.6	110	141	3350	18	239	3.74	0.37	0.18
25ME-D1	ME-D1-31	61	62	7.79	97.3	38	3610	12	11.5	1.82	0.39	0.10
25ME-D1	ME-D1-32	62	63	2.92	52.6	72	1775	23	17	1.52	0.19	0.22
25ME-D1	ME-D1-33	63	64	6.95	97.5	41	3190	13	16.8	1.38	0.35	0.14
25ME-D1	ME-D1-34	64	65	7.81	158.5	24	3690	8	22.1	1.54	0.40	0.10
25ME-D1	ME-D1-35	65	66	3.74	136	81	2040	9	66	3.48	0.22	0.09
25ME-D1	ME-D1-36	66	67	1.99	26.3	66	930	<5	31.4	4.64	0.10	0.06
25ME-D1	ME-D1-37	67	68	3.8	54.8	64	1840	9	22.5	3.39	0.20	0.10
25ME-D1	ME-D1-38	68	69	1.84	35.6	60	926	10	23.9	4.43	0.10	0.11
25ME-D1	ME-D1-39	69	70	4.18	133	44	1835	11	20.9	3.49	0.20	0.10
25ME-D1	ME-D1-40	70	71	1.72	63.3	66	954	9	18.6	4.71	0.10	0.12
25ME-D1	ME-D1-41	71	72	0.41	12	97	131.5	<5	37.3	5.51	0.01	0.08
25ME-D2	ME-D2-01	0	1	3.53	62.3	42	2320	19	16.1	2.15	0.25	0.16
25ME-D2	ME-D2-02	1	2	4.83	40.1	63	2090	9	18.5	2.68	0.23	0.09
25ME-D2	ME-D2-03	2	3	4.76	38.5	104	1805	12	20.3	2.47	0.20	0.12
25ME-D2	ME-D2-04	3	4	7.6	59	38	2780	6	15.2	3.07	0.30	0.06
25ME-D2	ME-D2-05	4	5	8.44	67	43	3230	5	33.5	2.91	0.35	0.06
25ME-D2	ME-D2-06	5	6	8.59	67.9	18	3350	<5	8.1	2.7	0.37	0.03
25ME-D2	ME-D2-07	6	7	8.12	57.3	34	3110	<5	9.7	2.36	0.34	0.06
25ME-D2	ME-D2-08	7	8	9.81	73.9	19	3690	5	6.3	2.05	0.40	0.05
25ME-D2	ME-D2-09	8	9	8.71	68.4	23	3300	<5	10.5	2.37	0.36	0.04
25ME-D2	ME-D2-10	9	10	7.97	65.4	23	3110	<5	8.3	2.67	0.34	0.03
25ME-D2	ME-D2-11	10	11	9.52	75.2	17	3740	<5	9.8	2.16	0.41	0.03
25ME-D2	ME-D2-12	11	12	8.83	60.8	15	3400	<5	14.5	2.5	0.37	0.03
25ME-D2	ME-D2-13	12	13	8.73	55.7	28	3260	<5	10.4	2.43	0.36	0.03
25ME-D2	ME-D2-14	13	14	7.84	50.6	31	2990	<5	26.1	2.98	0.33	0.05
25ME-D2	ME-D2-15	14	15	6.5	89.9	62	2870	11	18.4	3.11	0.31	0.09
25ME-D2	ME-D2-16	15	16	7.44	79	35	3110	7	11.1	2.42	0.34	0.08
25ME-D2	ME-D2-17	16	17	8.79	60.8	18	3290	<5	5.8	2.49	0.36	0.04
25ME-D2	ME-D2-18	17	18	10.5	69.8	10	3840	<5	3.3	2.14	0.42	0.04
25ME-D2	ME-D2-19	18	19	7.36	70.3	17	2850	6	6.7	2.67	0.31	0.05
25ME-D2	ME-D2-20	19	20	6.69	144.5	36	3110	10	15.4	2.71	0.34	0.08
25ME-D2	ME-D2-21	20	21	7	70.8	42	2590	5	33.9	3.17	0.28	0.05
25ME-D2	ME-D2-22	21	22	5.87	131	24	2320	12	18.6	2.42	0.25	0.19
25ME-D2	ME-D2-23	22	23	7.06	71.3	32	2640	<5	15.8	2.97	0.29	0.04
25ME-D2	ME-D2-24	23	24	5.01	74.6	63	1910	6	21	3.47	0.21	0.09
25ME-D2	ME-D2-25	24	25	5.72	49.3	35	1945	6	11.8	3.62	0.21	0.06
25ME-D2	ME-D2-26	25	26	3.87	73.2	73	1540	13	21	3.57	0.17	0.12
25ME-D2	ME-D2-27	26	27	5.79	81.7	37	1875	9	32.4	3.17	0.21	0.11
25ME-D2	ME-D2-28	27	28	4.85	45.4	67	1750	7	24.6	3.61	0.19	0.09

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25ME-D2	ME-D2-29	28	29	4.64	38.2	30	1640	<5	15.4	3.99	0.18	0.04
25ME-D2	ME-D2-30	29	30	3.72	49.6	71	1480	6	28.8	3.77	0.16	0.06
25ME-D2	ME-D2-31	30	31	7.56	86	32	2760	<5	15.6	3.39	0.30	0.03
25ME-D2	ME-D2-32	31	32	3.17	39.6	127	1335	11	92.6	3.72	0.15	0.10
25ME-D2	ME-D2-33	32	33	4.12	47.7	34	1520	9	10.3	3.37	0.17	0.11
25ME-D2	ME-D2-34	33	34	2.99	62.4	82	1150	11	12.9	2.56	0.13	0.16
25ME-D2	ME-D2-35	34	35	2.34	55.4	71	1020	14	26.3	1.84	0.11	0.15
25ME-D2	ME-D2-36	35	36	0.72	22.5	66	323	6	23.4	5.12	0.04	0.08
25ME-D2	ME-D2-37	36	37	0.52	11.5	78	170.5	<5	22.8	5.32	0.02	0.05
25ME-D2	ME-D2-38	37	38	1.64	60.3	42	927	10	17.8	4.04	0.10	0.15
25ME-D2	ME-D2-39	38	39	5.71	72.6	35	2650	6	19.2	3.29	0.29	0.07
25ME-D2	ME-D2-40	39	40	2.32	46.8	45	942	<5	26.9	5.65	0.10	0.05
25ME-D2	ME-D2-41	40	41	5.4	87.5	89	2410	9	38.9	2.59	0.26	0.11
25ME-D2	ME-D2-42	41	42	7.24	84.7	39	3210	5	21.8	2.5	0.35	0.06
25ME-D2	ME-D2-43	42	43	4.87	69.9	49	2130	6	33.9	3.08	0.23	0.08
25ME-D2	ME-D2-44	43	44	2.89	41.8	72	1240	8	41	4.09	0.14	0.09
25ME-D2	ME-D2-45	44	45	2.31	40.1	54	1125	12	18.6	4.32	0.12	0.11
25ME-D2	ME-D2-46	45	46	6.93	88.6	26	3100	<5	49.7	2.65	0.34	0.04
25ME-D2	ME-D2-47	46	47	4.64	76.9	65	2250	11	30.4	2.73	0.25	0.11
25ME-D2	ME-D2-48	47	48	4.26	86.3	73	1850	8	30.4	3.36	0.20	0.14
25ME-D2	ME-D2-49	48	49	4.41	77.1	26	1900	6	8.1	3.5	0.21	0.12
25ME-D2	ME-D2-50	49	50	0.6	103	9	358	6	7.1	4.98	0.04	0.11
25ME-D2	ME-D2-51	50	51	1.18	302	26	806	8	20.2	4.78	0.09	0.25
25ME-D2	ME-D2-52	51	52	1.68	185	39	1015	15	12	4.3	0.11	0.24
25ME-D2	ME-D2-53	52	53	1.02	61.4	36	652	11	14.5	5.25	0.07	0.15
25ME-D2	ME-D2-54	53	54	0.92	57	29	595	10	20.2	2.62	0.07	0.13
25ME-D2	ME-D2-55	54	55	2.22	70.3	17	1210	10	7.6	1.1	0.13	0.15
25ME-D2	ME-D2-56	55	56	2.85	149.5	35	1690	14	40.9	4.34	0.18	0.18
25ME-D2	ME-D2-57	56	57	3.12	224	79	2080	24	85.9	4.19	0.23	0.25
25ME-D2	ME-D2-58	57	58	3.57	225	57	2430	31	57.2	3.22	0.27	0.19
25ME-D2	ME-D2-59	58	59	5.58	246	54	3230	18	35.1	2.18	0.35	0.15
25ME-D2	ME-D2-60	59	60	3.88	131	40	1975	12	32.5	3.16	0.22	0.13
25ME-D2	ME-D2-61	60	61	6.58	151.5	41	2960	9	45.2	2.51	0.32	0.11
25ME-D2	ME-D2-62	61	62	7.23	126	34	3200	9	20.1	2.16	0.35	0.10
25ME-D2	ME-D2-63	62	63	8.72	121	30	3810	6	30.1	2.26	0.42	0.07
25ME-D2	ME-D2-64	63	64	2.6	86.8	63	1655	21	26.4	0.93	0.18	0.17
25ME-D2	ME-D2-65	64	65	7.85	200	35	4540	10	49.5	2.27	0.50	0.08
25ME-D2	ME-D2-66	65	66	4.58	175.5	80	3210	35	54.2	0.53	0.35	0.23
25ME-D2	ME-D2-67	66	67	3.06	128.5	65	2170	24	39.5	2.42	0.24	0.17
25ME-D2	ME-D2-68	67	68	2.6	95.1	44	1480	9	35.9	4.2	0.16	0.09
25ME-D2	ME-D2-69	68	69	3.71	129	67	2200	13	36.8	3.51	0.24	0.13
25ME-D2	ME-D2-70	69	70	4.3	134	63	2540	22	30.8	2.31	0.28	0.18
25ME-D2	ME-D2-71	70	71	4.78	158.5	41	2670	13	29	2.25	0.29	0.11
25ME-D2	ME-D2-72	71	72	0.87	58.3	87	542	10	51.8	5.11	0.06	0.09
25ME-D2	ME-D2-73	72	73	1.3	93	65	905	17	48.4	4.56	0.10	0.15
25ME-D2	ME-D2-74	73	74	0.86	32.3	97	474	6	69.8	5.35	0.05	0.06
25ME-D2	ME-D2-75	74	75	0.98	46.6	90	584	10	51.5	5.41	0.06	0.11

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25ME-D2	ME-D2-76	75	76	0.73	33.9	96	334	6	52.1	5.9	0.04	0.08
25ME-D2	ME-D2-77	76	77	0.86	41.1	98	455	6	49.6	5.39	0.05	0.08
25ME-D2	ME-D2-78	77	78	0.93	37.1	135	467	8	74	5.39	0.05	0.07
25ME-D2	ME-D2-79	78	79	1.5	53.5	104	796	11	51.2	4.15	0.09	0.10
25ME-D2	ME-D2-80	79	80	1.62	49.6	120	988	17	53.3	4.38	0.11	0.12
25ME-D2	ME-D2-81	80	81	0.45	26.4	94	146	<5	52.2	6.34	0.02	0.08
25ME-D2	ME-D2-82	81	82	0.34	19.1	116	73.1	<5	53.1	6.08	0.01	0.06
25ME-D2	ME-D2-83	82	83	0.39	26.5	84	99	<5	45.3	6.82	0.01	0.06
25ME-D2	ME-D2-84	83	84	0.39	28.4	86	103.5	<5	57.4	6.1	0.01	0.05
25ME-D2	ME-D2-85	84	85	0.65	36.7	67	207	<5	43.1	5.74	0.02	0.05
25ME-D2	ME-D2-86	85	86	0.51	23.9	66	149.5	<5	44.2	4.75	0.02	0.03
25ME-D2	ME-D2-87	86	87	1.04	27.9	50	377	6	60.6	5.44	0.04	0.03
25A21	1905	4	5	0.13	10	8	47.4	<5	1.8	2.55	0.01	0.05
25A21	1906	5	6	0.08	11.3	10	12	<5	2	3.69	0.00	0.04
25A21	1907	6	7	0.53	36	6	240	<5	2	1.13	0.03	0.09
25A21	1908	7	8	0.56	33.1	18	248	<5	13.1	1.42	0.03	0.10
25A21	1916	15	16	8.17	29.8	13	2300	<5	3.7	2.07	0.25	0.03
25A21	1917	16	17	3.05	194.5	52	2320	33	60.1	3.03	0.25	0.23
25A21	1918	17	18	6.72	85.9	36	3570	21	18	3.16	0.39	0.14
25A21	1919	18	19	4.85	51.6	82	2850	32	15.6	2.1	0.31	0.20
25A21	1920	19	20	6.55	51.7	50	2300	13	9.4	1.9	0.25	0.09
25A21	1921	20	21	4.87	31.5	28	1485	8	6.3	1.49	0.16	0.06
25A21	1922	21	22	4.74	98.8	23	1780	8	7.2	4.22	0.19	0.10
25A21	1923	22	23	11.05	76.4	6	4280	<5	10.8	2.23	0.47	0.02
25A21	1924	23	24	10.15	122	6	3740	<5	3.2	2.73	0.41	0.02
25A21	1925	24	25	4.75	81.8	49	1730	12	12.2	3.13	0.19	0.11
25A21	1926	25	26	6.57	57.9	30	1930	8	5.2	1.79	0.21	0.05
25A21	1927	26	27	3.07	180	88	1710	6	38.1	1.41	0.19	0.27
25A21	1934	33	34	1.42	48.3	20	612	6	10.4	0.87	0.07	0.14
25A21	1935	34	35	6.51	488	22	3560	28	27.1	4.15	0.39	0.33
25A21	1936	35	36	2.28	294	19	1290	9	4.7	0.92	0.14	0.23
25A21	1937	36	37	3.02	136.5	24	1750	9	12.4	0.85	0.19	0.28
25A21	1938	37	38	1.44	68.4	8	797	7	4	0.68	0.09	0.17
25A21	1939	38	39	1.09	15.8	68	577	11	25	3.48	0.06	0.06
25A21	1940	39	40	9.22	52	13	3470	8	4.4	1.85	0.38	0.04
25A21	1941	40	41	6.47	20.8	20	2150	6	5	2.01	0.24	0.03
25A21	1942	41	42	4.51	18.4	67	1810	22	10.4	1.21	0.20	0.12
25A21	1943	42	43	3.87	14.7	72	1645	23	10.3	1.03	0.18	0.11
25A21	1944	43	44	6.87	27.3	37	2700	10	22.3	2.18	0.30	0.05
25A21	1963	62	63	1.96	84.1	48	1145	8	24.1	2.2	0.13	0.13
25A21	1964	63	64	3.28	319	39	2860	12	19.2	1.07	0.31	0.29
25A21	1965	64	65	2.2	68.7	57	1445	21	25.2	1.94	0.16	0.07
25A21	1966	65	66	1.1	28.5	64	644	15	31.2	3.36	0.07	0.06
25A21	1967	66	67	1.21	39.9	63	837	15	28.9	2.97	0.09	0.08
25A21	1968	67	68	0.84	29.2	82	531	10	50.3	5.15	0.06	0.05
25A21	1969	68	69	1.46	51.3	92	1010	17	39.5	4.17	0.11	0.08

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A21	1970	69	70	2.28	57.3	80	1490	25	26.6	3.09	0.16	0.12
25A21	1971	70	71	3.3	80	105	2440	38	25.9	1.15	0.27	0.15
25A21	1972	71	72	2.15	79.4	109	1535	23	122	2.26	0.17	0.10
25A21	1973	72	73	1.41	55.1	62	1060	20	49.3	2.84	0.12	0.09
25A36	1977	0	1	3.72	52.5	58	1215	8	14	2.98	0.13	0.07
25A36	1978	1	2	2.61	63.5	71	1500	28	25.8	2.52	0.16	0.15
25A36	1979	2	3	2.19	30.4	27	1075	11	8	2.09	0.12	0.06
25A36	1980	3	4	3.9	55.6	94	1305	12	14.8	3.02	0.14	0.11
25A36	1981	4	5	6.91	71.1	66	2020	14	10.8	1.77	0.22	0.13
25A36	1982	5	6	8.26	39.9	33	2080	8	9	2.11	0.23	0.06
25A36	1983	6	7	7.91	31.8	12	1910	<5	3.5	2.26	0.21	0.03
25A36	1984	7	8	1.68	49.4	39	638	8	11.2	4.95	0.07	0.09
25A36	1985	8	9	3.43	41	58	1010	9	16.1	3.49	0.11	0.07
25A36	1986	9	10	6.75	27.3	43	1800	9	9.2	2.38	0.20	0.04
25A36	1987	10	11	7.34	38.9	11	1655	6	4.5	2.09	0.18	0.04
25A36	1995	18	19	3.75	54.6	60	1440	22	52	2.55	0.16	0.12
25A36	1996	19	20	2.12	21.6	50	821	11	12.8	1.62	0.09	0.07
25A36	1997	20	21	1.1	23.6	65	473	10	18	5.27	0.05	0.06
25A36	1998	21	22	0.93	28	181	373	10	93.1	5.09	0.04	0.07
25A36	2014	37	38	3.64	32.9	92	1455	13	27.1	3.09	0.16	0.10
25A36	2015	38	39	3.08	43.2	49	1430	12	15.7	2.72	0.16	0.09
25A36	2016	39	40	6.22	73.6	31	2490	8	19.4	4.12	0.27	0.04
25A36	2017	40	41	1.62	40.4	44	811	8	29.7	3.56	0.09	0.07
25A36	2018	41	42	1.01	143.5	29	792	7	13.2	2.28	0.09	0.13
25A36	2043	8	9	1.56	135	38	862	8	21.6	2.34	0.09	0.15
25A36	2044	9	10	0.54	28.8	53	316	9	38.8	4.86	0.03	0.09
25A36	2045	10	11	0.31	18.6	66	115	<5	64.3	6.72	0.01	0.04
25A36	2056	21	22	0.96	73.6	26	544	<5	16.4	1.69	0.06	0.17
25A37	2075	0	1	0.19	25.3	8	101	<5	2.8	0.61	0.01	0.08
25A37	2076	1	2	0.18	6.6	53	70.5	<5	41.2	5.15	0.01	0.04
25A37	2093	18	19	1.77	95.5	35	994	7	28.4	2.86	0.11	0.22
25A37	2094	19	20	0.51	47.1	68	283	7	74.1	5.43	0.03	0.10
25A37	2095	20	21	1.56	30.8	98	815	9	94.3	4.96	0.09	0.06
25A37	2096	21	22	5.31	81.6	59	2440	13	34	3.07	0.27	0.07
25A37	2097	22	23	4.04	37.2	55	1470	11	10.8	3.18	0.16	0.11
25A37	2098	23	24	5.69	44	60	1975	11	8.5	2.35	0.22	0.10
25A37	2099	24	25	3.23	32	55	1265	12	16.6	3.34	0.14	0.12
25A37	2100	25	26	2.64	21.4	43	1030	11	13	3.63	0.11	0.10
25A37	2101	26	27	5.11	45.2	24	1815	8	14	3.17	0.20	0.07
25A37	2102	27	28	1.55	29.1	68	898	14	15.6	4.2	0.10	0.12
25A37	2103	28	29	4.58	57.3	109	1905	12	19.9	2.33	0.21	0.17
25A37	2104	29	30	4.64	30.6	42	1560	8	13	3.2	0.17	0.08
25A37	2105	30	31	2.79	37.1	52	1095	9	11.6	3.46	0.12	0.13
25A37	2106	31	32	2.51	28.5	53	923	7	11.5	3.72	0.10	0.10
25A37	2107	32	33	7.83	55.8	23	2530	5	7	2.61	0.28	0.05

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A37	2108	33	34	7.59	65.5	36	2460	8	9.1	2.44	0.27	0.07
25A37	2109	34	35	4.04	55.3	138	1385	8	44.6	3.14	0.15	0.08
25A37	2110	35	36	3.35	47.8	57	1210	9	14	3.27	0.13	0.08
25A37	2111	36	37	2.79	33.2	56	1120	12	18.4	2.76	0.12	0.13
25A37	2112	37	38	3.04	21.4	43	1160	11	12	3.42	0.13	0.10
25A37	2113	38	39	3.21	22.8	52	1285	12	16.2	3.25	0.14	0.11
25A37	2114	39	40	0.99	16.6	73	599	13	67.1	4.57	0.07	0.12
25A37	2115	40	41	7.7	69.7	26	2770	8	13.3	2.17	0.30	0.08
25A37	2116	41	42	7.51	46.7	33	2750	13	9.9	2.09	0.30	0.09
25A37	2117	42	43	5.03	112	87	2150	22	17.4	1.48	0.24	0.25
25A37	2118	43	44	5.14	107	56	2080	14	22	2.73	0.23	0.15
25A37	2119	44	45	7.16	39.4	36	2230	7	9.7	2.44	0.24	0.05
25A37	2120	45	46	5.19	28.9	66	1840	11	12.6	2.36	0.20	0.10
25A37	2121	46	47	6.05	67.6	40	1985	10	9.1	2.53	0.22	0.09
25A37	2122	47	48	7.49	62.8	50	2400	10	9.5	2.44	0.26	0.09
25A37	2123	48	49	7.75	77.9	45	2600	11	16.6	2.18	0.28	0.09
25A37	2124	49	50	7.07	77.3	42	2450	9	11.3	2.57	0.27	0.10
25A37	2125	50	51	3.12	41.6	41	1315	12	9.1	2.61	0.14	0.14
25A37	2126	51	52	4.88	47	96	2040	21	28.8	0.87	0.22	0.22
25A37	2127	52	53	4.65	56.6	75	1835	11	18.4	2.36	0.20	0.16
25A37	2128	53	54	5.37	83	72	2270	15	15.8	1.85	0.25	0.16
25A37	2129	54	55	5.39	40.7	72	2340	19	15.9	1.64	0.26	0.16
25A37	2130	55	56	6.56	49.7	46	2460	8	36.7	1.81	0.27	0.07
25A37	2131	56	57	8	65.3	26	3270	7	10	2.4	0.36	0.08
25A37	2132	57	58	9.95	259	61	6120	<5	127.5	2.1	0.67	0.04
25A37	2133	58	59	5.08	147.5	38	2380	15	25.4	2.49	0.26	0.15
25A37	2134	59	60	5.03	103	57	2250	15	17	2.15	0.25	0.13
25A37	2135	60	61	8.39	70.5	29	3280	10	10.8	1.99	0.36	0.08
25A37	2136	61	62	6.95	65.2	20	2810	7	11	2.5	0.31	0.05
25A37	2137	62	63	3.7	44.4	41	1515	5	22.6	2.71	0.17	0.07
25A37	2138	63	64	2.92	105.5	64	2150	38	23.4	2.63	0.24	0.21
25A37	2139	64	65	2.88	65.8	75	1550	17	21.9	2.08	0.17	0.16
25A37	2140	65	66	1.68	110	282	1375	47	444	2.27	0.15	0.27
25A37	2141	66	67	5.26	125	64	2770	18	41.2	3.27	0.30	0.15
25A37	2142	67	68	6.14	145	56	3210	19	43.1	1.99	0.35	0.32
25A37	2143	68	69	7.64	158	38	3910	82	21.5	2.51	0.43	0.13
25A37	2144	69	70	6.84	154	37	3540	14	14.8	1.87	0.39	0.16
25A37	2145	70	71	6.24	110.5	44	3300	19	17.5	1.12	0.36	0.17
25A37	2146	71	72	5.81	116	37	3040	10	18.2	1.78	0.33	0.12
25A37	2147	72	73	11.05	137.5	9	5260	5	6.7	2.14	0.58	0.05
25A37	2148	73	74	2.9	138	89	1835	29	67.2	0.92	0.20	0.25
25A37	2149	74	75	5.02	156	37	2840	16	24	2.88	0.31	0.24
25A37	2150	75	76	4.6	196	48	2430	17	31.6	2.76	0.27	0.20
25A37	2151	76	77	5.76	149.5	53	2610	13	15.1	2.65	0.29	0.14
25A37	2152	77	78	5.38	116	44	2310	11	17.4	2.47	0.25	0.12
25A37	2153	78	79	5.14	121	87	2380	10	158	2.6	0.26	0.11
25A37	2154	79	80	1.66	44.6	62	841	8	47.6	4.96	0.09	0.08

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A37	2155	80	81	5.77	134.5	36	2840	7	31.1	3.55	0.31	0.07
25A37	2156	81	82	3.83	117	63	2300	19	37.6	2.08	0.25	0.15
25A37	2157	82	83	5.24	111	55	2540	10	39	3.37	0.28	0.09
25A37	2158	83	84	2.39	65.6	74	1445	14	36.2	3.6	0.16	0.12
25A37	2159	84	85	3.35	98.1	64	1650	9	34.6	4.18	0.18	0.10
25A37	2160	85	86	2.59	93.7	71	1325	9	39.4	4.68	0.14	0.10
25A37	2161	86	87	1.35	36.8	81	680	8	57.6	5.17	0.07	0.08
25A37	2162	87	88	0.78	24	82	430	8	44.5	5.2	0.05	0.06
25A37	2163	88	89	1.04	40	101	643	10	48.5	5.02	0.07	0.10
25A37	2164	89	90	1.3	54.5	85	864	12	30.7	3.94	0.09	0.15
25A37	2165	90	91	1.86	76.6	87	1260	18	28.6	3.64	0.14	0.20
25A37	2166	91	92	0.48	20.8	89	168.5	<5	41.9	5.85	0.02	0.05
25A37	2167	92	93	0.46	12.1	114	128	<5	59.7	5.61	0.01	0.03
25A37	2168	93	94	0.49	16.5	89	192.5	<5	59.7	5.26	0.02	0.05
25A37	2169	94	95	0.59	27.2	102	180.5	<5	50.7	5.83	0.02	0.06
25A37	2170	95	96	0.61	22.5	77	343	5	38.8	5.6	0.04	0.07
25A37	2171	96	97	1.63	67.1	78	1165	18	28.9	2.16	0.13	0.20
25A37	2172	97	98	0.6	29.6	67	360	6	32.4	4.9	0.04	0.07
25A37	2173	98	99	0.54	29.2	75	305	5	37	5.46	0.03	0.07
25A37	2174	99	100	0.39	18.6	109	97.1	<5	46.6	6.21	0.01	0.04
25A37	2175	100	101	0.37	13.5	89	80.9	<5	49.1	5.92	0.01	0.04
25A37	2176	101	102	0.79	192.5	75	1095	7	50.7	5.27	0.12	0.09
25A25	2183	5	6	3.12	154.5	83	1725	13	22.3	3.06	0.19	0.19
25A25	2184	6	7	4.68	186	25	2030	17	9.3	2.24	0.22	0.29
25A25	2185	7	8	3.77	123	54	1850	14	23.1	3.43	0.20	0.20
25A25	2186	8	9	5.1	111	52	1835	11	12.8	2.78	0.20	0.16
25A25	2187	9	10	6.5	121	31	2240	11	10.4	2.38	0.24	0.15
25A25	2188	10	11	5.48	166.5	37	2040	11	12.4	2.61	0.22	0.21
25A25	2189	11	12	4.82	119.5	62	1935	11	19	2.54	0.21	0.16
25A25	2190	12	13	4.18	82.5	94	1745	12	20.1	2.64	0.19	0.15
25A25	2191	13	14	6.08	197	68	2630	12	42	3.12	0.29	0.15
25A25	2192	14	15	3.54	46.9	67	1365	8	32.4	3.45	0.15	0.09
25A25	2193	15	16	7.78	75.7	35	2660	6	14.3	2.46	0.29	0.06
25A25	2194	16	17	4.73	65.1	42	1770	12	13.2	2.13	0.19	0.10
25A25	2195	17	18	7.21	54.7	30	2130	7	10.8	2.18	0.23	0.05
25A25	2196	18	19	3.62	42.5	97	1885	16	26.9	3.28	0.21	0.12
25A25	2197	19	20	6.78	105.5	26	2550	12	6.4	1.96	0.28	0.11
25A25	2198	20	21	6.87	75.5	9	2560	6	3.3	2	0.28	0.07
25A25	2199	21	22	7.1	37.7	31	1895	6	7.4	2.34	0.21	0.05
25A25	2200	22	23	6.84	45.4	29	1870	7	5.7	1.82	0.20	0.07
25A25	2201	23	24	5.55	91.1	52	1855	14	10.9	1.75	0.20	0.18
25A25	2202	24	25	7.33	67.7	37	2680	11	10.7	1.58	0.29	0.11
25A25	2203	25	26	7.63	63	31	2750	7	17.2	1.86	0.30	0.08
25A25	2204	26	27	8.08	55.4	20	2540	<5	5.2	2.04	0.28	0.04
25A25	2205	27	28	7.28	66.2	39	2700	9	18.4	2.25	0.30	0.08
25A25	2206	28	29	4.61	131	69	2150	15	24.5	2.81	0.24	0.20

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A25	2207	29	30	2.28	50.3	52	982	8	13	4.58	0.11	0.10
25A25	2208	30	31	4.01	47.7	59	1680	10	22	3.47	0.18	0.11
25A25	2209	31	32	5.32	53.9	35	2070	6	12.4	3.7	0.23	0.05
25A25	2210	32	33	8.06	73.1	18	3190	5	8.7	2.37	0.35	0.04
25A25	2211	33	34	6.76	77.2	39	2680	11	11.2	2.28	0.29	0.09
25A25	2212	34	35	7.03	76.8	20	2710	5	7.7	3.03	0.30	0.05
25A25	2213	35	36	8.75	94.6	20	3480	5	13.4	2.84	0.38	0.05
25A25	2214	36	37	8.17	95.1	18	3230	9	10.6	2.82	0.35	0.07
25A25	2216	38	39	6.73	224	27	3140	28	19.6	2.08	0.34	0.30
25A25	2217	39	40	5.87	332	81	2940	18	25.4	2.42	0.32	0.27
25A25	2218	40	41	4.22	70.7	36	1825	8	10	3.79	0.20	0.08
25A25	2219	41	42	7.19	113.5	24	2910	7	11.2	2.82	0.32	0.07
25A25	2220	42	43	7.51	107	26	3050	8	11	2.66	0.33	0.08
25A25	2221	43	44	7.92	79.9	28	3100	6	10.9	2.01	0.34	0.08
25A25	2222	44	45	7.95	69.3	25	3160	6	14.3	2.69	0.35	0.04
25A25	2223	45	46	8.88	82.3	13	3700	7	7.3	2.41	0.40	0.04
25A25	2224	46	47	8.11	118.5	89	3690	7	39.5	2.9	0.40	0.08
25A25	2225	47	48	7.65	104	88	3400	14	46.9	2.22	0.37	0.12
25A25	2226	48	49	5.67	81.1	35	2540	10	19.8	2.88	0.28	0.09
25A25	2227	49	50	8.37	97.5	16	3570	5	12.2	2.95	0.39	0.04
25A25	2228	50	51	9	95.5	21	3680	6	14.2	2.45	0.40	0.06
25A25	2229	51	52	3.36	50.7	57	1685	18	22.8	1.31	0.18	0.16
25A25	2230	52	53	4.09	60.8	53	1895	16	30.9	3.56	0.21	0.12
25A25	2231	53	54	2.46	47.8	70	1280	18	31	3.43	0.14	0.17
25A25	2232	54	55	2.88	78.8	103	1445	13	95.3	4.44	0.16	0.12
25A25	2233	55	56	1.81	42.2	66	826	8	43.1	5.04	0.09	0.07
25A25	2234	56	57	3.36	84	68	1505	5	29.3	4.69	0.16	0.05
25A25	2235	57	58	3.78	66.5	51	1675	12	18.6	3.69	0.18	0.14
25A25	2236	58	59	2.68	54.7	59	1475	20	12.8	2.99	0.16	0.17
25A25	2237	59	60	2.71	47.5	72	1550	22	11	2.22	0.17	0.16
25A25	2238	60	61	4.05	79.6	30	1790	12	9.3	3.12	0.20	0.10
25A25	2239	61	62	2.95	69.6	29	1390	10	13.5	3.67	0.15	0.11
25A25	2240	62	63	4.62	103	37	2030	10	46.4	3.87	0.22	0.09
25A25	2241	63	64	3.24	67.8	45	1465	9	26.5	3.94	0.16	0.08
25A25	2242	64	65	8.89	105.5	17	3490	7	8.1	1.79	0.38	0.06
25A25	2243	65	66	4.79	125	97	2610	22	135.5	2.09	0.29	0.17
25A25	2244	66	67	4.12	77.4	68	2080	14	40.7	3.56	0.23	0.12
25A25	2245	67	68	3.13	59.9	70	1515	12	53.4	5.2	0.17	0.11
25A25	2246	68	69	3.47	67.8	55	1720	10	31.3	3	0.19	0.11
25A25	2247	69	70	5.62	116	49	2880	12	27.3	3.15	0.31	0.13
25A25	2248	70	71	7.07	132.5	41	3670	10	19.8	2.22	0.40	0.12
25A25	2249	71	72	8.93	140.5	25	4490	7	16.5	1.92	0.49	0.07
25A25	2250	72	73	5.73	116	65	3080	18	71.8	2.15	0.34	0.13
25A25	2251	73	74	6.05	134	66	3140	15	32.6	2.55	0.34	0.15
25A25	2252	74	75	3.27	90.5	72	1870	17	57.8	2.63	0.20	0.15
25A25	2253	75	76	5.14	158	65	3100	21	45	1.65	0.34	0.17
25A25	2254	76	77	3.98	120	67	2560	23	38.5	1.99	0.28	0.16

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A25	2255	77	78	2.76	85.6	71	1865	19	43.8	2.95	0.20	0.15
25A25	2256	78	79	1.69	56.3	83	1220	16	33.7	2.33	0.13	0.16
25A25	2257	79	80	0.65	28.5	85	378	6	49.4	5.03	0.04	0.07
25A25	2258	80	81	6.66	189	30	3240	8	20.9	2.95	0.35	0.10
25A25	2259	81	82	1.84	74	73	1360	20	36.8	3.5	0.15	0.18
25A25	2260	82	83	1.09	58.9	72	788	12	53.2	4.98	0.09	0.12
25A25	2261	83	84	1.55	52.1	93	1115	16	48.7	4.02	0.12	0.14
25A25	2262	84	85	1.23	48.6	93	914	13	54.1	4.53	0.10	0.12
25A25	2263	85	86	0.76	31.9	105	472	8	62.3	5.45	0.05	0.07
25A25	2264	86	87	1.59	68.1	88	1145	14	48	3.83	0.13	0.17
25A25	2265	87	88	0.9	51.9	171	563	8	72.6	4.78	0.06	0.10
25A25	2266	88	89	0.88	62.7	124	531	8	55.3	4.88	0.06	0.10
25A25	2267	89	90	0.97	51.2	114	597	11	74.5	4.57	0.07	0.11
25A25	2268	90	91	0.63	27.2	135	318	<5	65.7	4.35	0.03	0.05
25A25	2269	91	92	1.73	288	55	2310	13	55.9	2.48	0.25	0.29
25A38	2272	0	1	1.36	26.5	182	746	13	181.5	3.58	0.08	0.12
25A38	2273	1	2	0.81	18.8	68	425	10	48.9	5.13	0.05	0.11
25A38	2274	2	3	2.93	57.5	47	1270	11	24.6	3.96	0.14	0.12
25A38	2275	3	4	3.42	64.6	54	1510	12	48.2	1.5	0.17	0.12
25A38	2276	4	5	1.51	52.5	62	839	14	49.3	3.05	0.09	0.18
25A38	2277	5	6	1.57	37.8	74	854	13	43.3	2.97	0.09	0.14
25A38	2278	6	7	4.98	73.9	42	2120	<5	19.6	2.24	0.23	0.04
25A38	2279	7	8	9.7	133	25	4330	5	30.5	2.83	0.47	0.03
25A38	2280	8	9	8.91	131.5	59	4130	9	30	1.87	0.45	0.08
25A38	2281	9	10	6.17	123	131	3140	17	125.5	2.61	0.34	0.14
25A38	2282	10	11	7.13	149.5	136	3560	<5	210	2.71	0.39	0.05
25A38	2283	11	12	1.93	44.1	102	970	8	147.5	3.01	0.11	0.06
25A38	2284	12	13	4.09	72	76	2100	14	39.3	2.7	0.23	0.11
25A38	2285	13	14	0.61	28.3	58	456	9	26.5	1.38	0.05	0.25
25A38	2286	14	15	3.87	74.2	102	1930	17	29.9	3.07	0.21	0.15
25A38	2287	15	16	3.37	84.6	64	1775	14	23.4	4.03	0.19	0.15
25A38	2288	16	17	4.66	66	62	1920	8	21.2	3.87	0.21	0.08
25A38	2289	17	18	6.56	91.1	351	2810	7	630	3.23	0.31	0.07
25A38	2290	18	19	2.99	45.6	104	1390	10	44.6	4.24	0.15	0.11
25A38	2291	19	20	0.79	15	50	283	<5	26.1	6.12	0.03	0.05
25A38	2292	20	21	1.52	34.3	24	609	6	8.4	5.53	0.07	0.10
25A38	2293	21	22	1.86	24.1	38	714	6	13.6	5.47	0.08	0.07
25A38	2294	22	23	1.59	25.2	52	705	11	15.8	5.85	0.08	0.12
25A38	2295	23	24	1.16	24.2	36	508	8	12.6	6.3	0.06	0.09
25A38	2296	24	25	1.14	25.7	40	511	7	11.8	5.13	0.06	0.10
25A38	2297	25	26	4.46	49.7	57	2070	9	20.8	3.62	0.23	0.09
25A38	2298	26	27	4.17	63.9	39	1945	11	16.8	2.49	0.21	0.13
25A38	2299	27	28	5.58	58.2	29	2230	5	14.8	4.25	0.24	0.04
25A38	2300	28	29	7.88	73.8	30	2950	7	16.2	2.62	0.32	0.05
25A38	2301	29	30	9.14	122	27	3820	7	12.4	2.33	0.42	0.06
25A38	2302	30	31	3.63	48.9	55	1570	12	34.1	3.48	0.17	0.11

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A38	2303	31	32	4.07	47.5	69	1780	15	23.3	3.41	0.19	0.11
25A38	2304	32	33	3.87	50.7	46	1720	10	12.8	3.83	0.19	0.09
25A38	2305	33	34	1.83	26.8	65	787	6	28.2	5.58	0.09	0.05
25A38	2306	34	35	2.98	43.4	97	1510	17	29.9	2.86	0.17	0.12
25A38	2307	35	36	4.37	48.4	51	1825	12	17.8	3.26	0.20	0.09
25A38	2308	36	37	2.52	39	55	1300	16	15.4	3.05	0.14	0.11
25A38	2309	37	38	2.28	42.5	99	1240	17	49.2	2.64	0.14	0.13
25A38	2310	38	39	6.35	98	47	2910	13	26.4	3.07	0.32	0.11
25A38	2311	39	40	7.41	99.3	41	3260	6	31.1	2.66	0.36	0.07
25A38	2312	40	41	2.36	37.4	67	1085	6	37.7	4.76	0.12	0.05
25A38	2313	41	42	4.47	58.1	41	2030	6	28.2	4.27	0.22	0.06
25A38	2314	42	43	4.63	70.7	62	2210	11	34.1	3.52	0.24	0.08
25A38	2315	43	44	5.88	84	57	2700	10	33.8	2.8	0.30	0.10
25A38	2316	44	45	5.43	84.7	71	2720	14	34.4	2.07	0.30	0.13
25A38	2317	45	46	7.72	82.3	27	3330	5	18	3.05	0.36	0.07
25A38	2318	46	47	7.41	101.5	44	3470	6	31.6	2.73	0.38	0.08
25A38	2319	47	48	6.01	82.4	38	2710	7	26.2	3.2	0.30	0.07
25A38	2320	48	49	5.55	99.5	84	2980	16	47.5	2.2	0.33	0.16
25A38	2321	49	50	5.52	88.9	55	2580	6	27.3	3.95	0.28	0.08
25A38	2322	50	51	8.12	146	49	3710	12	31.9	2.33	0.41	0.13
25A38	2323	51	52	7.67	123	25	3320	5	14.6	3.08	0.36	0.07
25A38	2324	52	53	9.22	135	31	3970	7	18.6	2.23	0.43	0.09
25A38	2325	53	54	7.43	138	33	3320	8	34.6	2.85	0.36	0.09
25A38	2326	54	55	5.17	90.7	36	2250	7	33.5	2.29	0.25	0.09
25A38	2327	55	56	8.83	155	35	4060	6	53.5	1.95	0.44	0.10
25A38	2328	56	57	9.65	202	27	4550	8	17.4	2.37	0.50	0.12
25A38	2329	57	58	7.65	120	41	3480	7	37.4	2.6	0.38	0.08
25A38	2330	58	59	8.6	124	33	3920	6	38.7	2.68	0.43	0.08
25A38	2331	59	60	5.93	325	45	3430	12	65.2	2.17	0.38	0.12
25A38	2332	60	61	1.83	38.7	33	927	8	20.2	1.51	0.10	0.07
25A38	2333	61	62	2.77	58.4	51	1380	11	23.1	2.7	0.15	0.10
25A38	2334	62	63	2.2	64.1	63	1230	13	35.9	2.24	0.13	0.12
25A38	2335	63	64	4.31	85.5	67	2210	12	45.7	3.3	0.24	0.12
25A38	2336	64	65	6.04	136.5	47	3160	16	28.1	2.03	0.35	0.13
25A38	2337	65	66	5.71	142.5	77	3110	18	43.3	2.55	0.34	0.15
25A38	2338	66	67	8.05	158	48	4150	14	41.8	2.21	0.45	0.12
25A38	2339	67	68	3.96	128.5	86	2810	31	37.6	1.07	0.31	0.19
25A38	2340	68	69	3.54	116	66	2220	20	32.2	2.85	0.24	0.14
25A38	2341	69	70	4.84	151	57	2980	24	17.2	1.02	0.33	0.16
25A38	2342	70	71	4.05	179.5	108	3100	46	36.8	0.57	0.34	0.29
25A38	2343	71	72	6.95	239	81	3770	19	174	1.72	0.41	0.15
25A38	2344	72	73	3.84	83.4	74	1960	14	17.6	2.23	0.21	0.12
25A38	2345	73	74	3.4	76.5	81	2120	26	13.7	0.8	0.23	0.19
25A38	2346	74	75	7.82	142.5	49	3740	16	14.6	1.38	0.41	0.13
25A38	2347	75	76	2.11	115	87	1710	25	87.8	0.59	0.19	0.19
25A38	2348	76	77	6.55	254	41	3540	15	59.1	2.47	0.39	0.22
25A38	2349	77	78	2.12	116	66	1300	11	68.7	4.89	0.14	0.10

Appendix 2
Results of RC Resource Drilling at Mt Edon

Drillhole	Sample ID	From	To	K2O %	Cs ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Na %	Rb2O %	Li2O %
25A38	2350	78	79	4.11	199.5	69	2400	15	47.8	3.09	0.26	0.13
25A38	2351	79	80	2.16	100.5	99	1425	16	79.4	2.83	0.16	0.14
25A38	2352	80	81	1.17	41.9	79	828	12	64.5	4.82	0.09	0.09
25A38	2353	81	82	1.84	80.2	103	1100	14	66.1	4.1	0.12	0.12
25A38	2354	82	83	1.71	90.5	95	1395	22	47.3	3.55	0.15	0.17
25A38	2355	83	84	1.96	63.5	87	1190	14	55.2	4.25	0.13	0.10
25A38	2356	84	85	2.05	94.1	63	1280	12	49.3	4.09	0.14	0.11
25A38	2357	85	86	0.84	41	79	603	9	56.1	4.57	0.07	0.08
25A38	2358	86	87	0.81	32.9	77	468	7	52.1	5.17	0.05	0.07
25A38	2359	87	88	1.02	59.3	44	547	8	38.7	5.69	0.06	0.07
25A38	2360	88	89	0.59	15.6	102	237	5	59.8	6.55	0.03	0.06
25A38	2361	89	90	0.52	29.2	89	243	6	51.1	6.16	0.03	0.06
25A38	2362	90	91	0.58	32.4	117	246	<5	60.6	6.25	0.03	0.06
25A38	2363	91	92	1.2	47.4	83	720	9	42.4	5.3	0.08	0.13
25A38	2364	92	93	0.98	48.9	87	701	9	45	4.89	0.08	0.14
25A38	2365	93	94	0.65	55	68	462	7	36.4	5.05	0.05	0.14
25A38	2366	94	95	0.31	16.5	104	54.9	<5	58.5	6.47	0.01	0.03
25A38	2367	95	96	0.34	20.8	73	68.1	<5	42	6.61	0.01	0.02
25A38	2368	96	97	0.69	191.5	47	854	7	35.7	4.56	0.09	0.11
25A38T	2369	0	1	1.38	147.5	44	838	13	27.6	4.05	0.09	0.19
25A38T	2370	1	2	1.13	27.7	48	476	6	19.2	4.69	0.05	0.06
25A38T	2371	2	3	3.5	38.9	39	1645	10	7.4	1.73	0.18	0.10
25A38T	2372	3	4	4.3	62.1	38	2040	6	17.6	1.94	0.22	0.08
25A38T	2373	4	5	8.02	153.5	9	4400	<5	5.8	1.83	0.48	0.04
25A38T	2374	5	6	7.66	191.5	54	4120	29	52.3	1.73	0.45	0.16
25A38T	2375	6	7	4.53	154	129	2620	31	207	1.29	0.29	0.17
25A38T	2376	7	8	3.84	74.2	115	1840	14	144	3.41	0.20	0.12
25A38T	2377	8	9	1.03	19.4	65	520	6	72.4	3.09	0.06	0.06
25A38T	2378	9	10	0.88	16.7	35	457	5	45.9	3.37	0.05	0.05
25A38T	2379	10	11	0.48	23.9	48	274	<5	60.2	3.88	0.03	0.06
25A38T	2380	11	12	1.14	23.8	31	540	6	31.6	2.4	0.06	0.07
25A38T	2381	12	13	2.5	56.7	69	2030	29	80.1	3.6	0.22	0.17
25A38T	2382	13	14	1.88	95.3	86	1965	37	70	3.29	0.21	0.37
25A38T	2383	14	15	3.87	101	113	2270	16	66.8	3.47	0.25	0.21
25A39	2384	0	1	2.98	19.6	41	1005	7	11.2	3.34	0.11	0.06
25A39	2385	1	2	1.98	12	84	702	8	18.2	3.94	0.08	0.05
25A39	2386	2	3	2.17	14	90	714	9	28	4.11	0.08	0.05
25A39	2387	3	4	3.51	31.8	84	1290	12	20.2	3.59	0.14	0.06
25A39	2388	4	5	0.92	63.8	40	404	6	18.6	2.75	0.04	0.06

- Assay using the process of a 4- acid digest followed by Lithium Borate Fusion ICP-MS.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> All drilling and sampling were undertaken in an industry standard manner. <p><u>Slimline Reverse Circulation (SLRC) samples</u></p> <ul style="list-style-type: none"> Sampling was taken continuously downhole by Reverse Circulation drilling, drill chips A mixture of small, crushed pieces of rock (RC Chips) and pulverised material are systematically collected by drill mounted cyclone and samples splitter. One-meter samples were collected from the drill cyclone and splitter into prenumbered calico bags at a weight of about 2kg each. The cyclone and sample splitter are cleaned after each drill hole. Sample were submitted directly to ALS laboratory in Perth. <p><u>Diamond Drilling (DD) samples</u></p> <ul style="list-style-type: none"> Core samples were 1/4 cored using a diamond saw with 1/4 the core placed in numbered sample bags for assaying and the other 1/4 for metallurgical test work and 1/2 retained in sequence in the core tray. 1/4 core samples were approximately 1.5kg in weight with a minimum weight of 750grams Sample were submitted directly to ALS laboratory in Perth.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<p><u>Slimline Reverse Circulation (SLRC)</u></p> <ul style="list-style-type: none"> Slimline Reverse Circulation (SLRC) drilling was completed by Gyro Drilling, using 85mm diameter bit (3.55 inch) and a total of 8 SLRC holes for a total of 502m were drilled. RC drilling is an industry standard drilling practice. <p><u>Diamond Drilling (DD)</u></p> <ul style="list-style-type: none"> J&S Drilling HQ drilling was undertaken and a total of 2 DD holes for a total of 192m were completed. Down holes surveys are completed on all drill holes using a gyro -Reflex Gyro Sprint-IQ.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> No relationship has been determined between sample recovery and grade, and no sample bias is believed to exist. The RC samples were dry and very limited ground water was encountered in shallow drilling (<90m). HQ diamond core returned excellent core recovery. No sample loss or cavitation were experienced for DD and sample recovery was very good. Due to the style of the deposit, it is considered that any material loss is

Criteria	JORC Code explanation	Commentary
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>not significant to the assessment of mineralisation.</p> <p><u>Slimline Reverse Circulation (SLRC)</u></p> <ul style="list-style-type: none"> Logging of RC chips was undertaken by wet sieving a representative portion of the overall 1m sample recovered from the cyclone and collecting a sub-sample into a labelled, 20 compartment chip tray. RC chips logging is more qualitative in nature as the rock has been crushed during the drilling process and some geological information destroyed during this process. 100% of the intervals are logged and special attention was given to pegmatite intersected. In addition, RC chip trays were submitted for Hylogger mineralogical studies in CSIRO. <p><u>Diamond Drilling (DD)</u></p> <ul style="list-style-type: none"> Each hole was logged by a geologist on pre-printed log sheets. Geological and lithological observations per depth were recorded together with field sections and hand drawn down-the-hole logs. Special attention was given to pegmatite intersected. All diamond drillholes have been photographed in both dry and wet. DD core has been core scanned using hyperspectral core imager at Epiroc core scan facility.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the <i>in situ</i> material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<p><u>Slimline Reverse Circulation (SLRC) samples</u></p> <ul style="list-style-type: none"> All SLRC samples were submitted to certified analytical laboratory, ALS – Perth laboratory. Sample preparation by ALS involved pulverisation of the entire sample (total prep) to a grind size of 85% passing 75 µm and split into smaller subsample/s for analysis (with sub sample size of up to 30g depending on the technique). The ~2 kg sample were considered appropriate sample size for the analysis of RC samples. <p><u>Diamond Drilling (DD) samples</u></p> <ul style="list-style-type: none"> Diamond core has been split longitudinally with core saw and 1/4 core sampled. All DD samples were submitted to certified analytical laboratory, ALS – Perth laboratory.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Sample preparation by ALS involved pulverisation of the entire sample (total prep) to a grind size of 85% passing 75 µm and split into smaller subsample/s for analysis (with sub sample size of up to 30g). RC and DD drilling samples were analysed for a suite of elements by ALS using peroxide fusion method ICP-MS (MS91-PKG, 24 elements), Al₂O₃, As, CaO, Co, Cr₂O₃, Cu, Fe₂O₃, K₂O, Li, MgO, MnO, Ni, Pb, S, SiO₂, TiO₂, Zn, Cs, Nb, Rb, Sn, Ta, Th and U. In addition, Four Acid Digestion With ICP-AES Finish (ME-ICP61) used to assay Na content. Sample preparation checks were carried out by the laboratory as part of its internal procedures. No geophysical tools or handheld instruments were used to determine any element concentrations in this report. ALS Limited laboratory includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates. Inter laboratory cross-checks analysis programmes have not been conducted. Standard reference material ("CRM"), blank samples and duplicates have been inserted into the sample stream and submitted to the lab. The duplicate, CRM and blank sample results are within accepted limits. The adopted QA/QC protocols are appropriate for the Mineral Resource and public reporting and QA/QC system returning acceptable results. Hyperspectral core scanning of diamond drill core (133m) was undertaken at Epiroc's core scanning facility, with HyLogger-3 measurements completed on RC drill chip samples (3,064m) at CSIRO. Rubidium mineralisation identified is mostly associated with Muscovite and K-Feldspar and minor lepidolite confirmed by multiple methods including, RAMAN spectroscopy, TESCAN Integrated Mineral Analyzer (TIMA), Micro XRF spectroscopy and XRD analyses.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Drillholes locations are captured digitally on GPS system and then uploaded into EMC's sample database system (which is backed up daily). Significant intercepts checked and validated using 3D geological software. Assay data is provided as .csv/xls files from ALS and into the EMC sample database. Spot checks are made against the laboratory certificates. Two DD holes were drilled as twins to RC holes, and one SLRC hole was completed, with assay results represented moderate correlation. Adjustments to data include reporting rubidium, in their oxide forms, as it is reported in elemental form in the assay certificates. Formulas used is :Rb2O = Rb x 1.0936
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> Grid system used is Australian Geodetic GDA2020 – MGA Zone 50. The locations of all drillholes were recorded using a Stonex S900A RTK rover to an accuracy of +/-50mm. DD holes were downhole surveyed at approximately 10m spaced intervals, using IMDEX Reflex Gyro Sprint IQ.
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Drill-hole spacing is variable thought the program area. Drill holes positioned near pegmatite outcrops and spacing is considered appropriate for the Mineral Resource. No sample composting has been applied from drill holes.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> In general, the aim was to drill the mineralised structures from different angles, to gain an estimate of the true thickness of the mineralised structures to make a 3D model and mineral resource. The difference between down-hole thickness and true thickness will be allowed for in Mineral Resource Estimation. No orientation-based sampling bias is known.

Criteria	JORC Code explanation	Commentary
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> All samples were assigned a unique sample number in the field. Samples were placed in calico sample bags clearly marked with the assigned sample number and transported by company transport to the ALS sample preparation facility in Wangara, Perth, Western Australia. Duplicate samples of each sample were taken during drilling. Each sample was given a barcode at the laboratory, and the laboratory reconciled the received sample list with physical samples. Barcode readers were used at the different stages of the analytical process. The laboratory uses a LIMS system that further ensures the integrity of results.
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> No audit or review outside the QA/QC samples have been done. Logging have been reviewed by external consultant to EMC and internally as part of normal validation processes by EMC.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section apply to this sections)

Criteria	Statement	Commentary										
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The area is located within Mining Lease M59/714, about 6km southwest of Paynes Find in central Western Australia, covering 192.4 hectares. The tenement M59/714 held by Everest Metals Corporation (51%). EMC have a farm-in agreement to acquire up to 100% of the rights. M59/714 is valid until 26 October 2030. <table border="1" data-bbox="1257 991 2077 1071"> <thead> <tr> <th>Tenement</th> <th>Status</th> <th>Holder1</th> <th>Holder2</th> <th>Area</th> </tr> </thead> <tbody> <tr> <td>M59/714</td> <td>LIVE</td> <td>Everest Metals Corporation</td> <td>Entelechy Resources</td> <td>192.4 Hec.</td> </tr> </tbody> </table> <ul style="list-style-type: none"> The project lies within the Pullagaroo Pastoral Lease. There are no reserves, national parks or other known material impediments to exploration on the tenure. There are no Registered Heritage sites identified within the licence area. The tenement is in good standing, and no known impediments exist. 	Tenement	Status	Holder1	Holder2	Area	M59/714	LIVE	Everest Metals Corporation	Entelechy Resources	192.4 Hec.
Tenement	Status	Holder1	Holder2	Area								
M59/714	LIVE	Everest Metals Corporation	Entelechy Resources	192.4 Hec.								
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Historical tantalum production has been recorded. Pancontinental Mining -1980's. Haddington Resources/Australian Tantalum -2002-2003. MRC Exploration: 2019-2021. 										

Criteria	Statement	Commentary
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> Numerous pegmatites are found located within the southern portion of the Paynes Find greenstone belt, South Murchison. Regional geology consists of partly foliated to strongly deformed and recrystallised granitoids intruding Archean ultramafic and felsic to mafic extrusive. Isolated belts of metamorphosed sediments are present with regional metamorphism attaining greenschist and amphibolite facies. Late pegmatite dykes/ sills intrude the mafic and felsic volcanics in a contrasted position to regional orientation. The mining lease area has proven Lithium rich zones associated with the pegmatites, as well as historical mining for Tantalum (manganotantalite and alluvial deposits: 1969-1974 Mt Edon by Alfredo Pieri), beryl and microcline feldspar (Goodingnow pits, 1975-1978, Mark Calderwood). The zonal nature of this pegmatite field has previously been defined with microcline feldspar (including amazonite) in the east (historically mined) and more complex albite rich zones containing Niobium and Lithium in the west (the current Mining Lease area). Lepidolite-Zinnwaldite (Lithium mica) rich pegmatites have been previously identified. Recent studies highlighted present of economic Rubidium grade in well-developed mica rich zones of Mt Edon pegmatites.
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> A summary of the 10 holes (694 m) is reflected in this release. Total number of drillholes – 8 SLRC and 2 DD The minimum hole length is 15m and maximum 103m East collar ranges – 564578mE to 564738mE. North collar ranges – 6756296mN to 6756870mN. Collar elevation ranges – 333mRL to 362mRL. Azimuth ranges – drill sections are orientated in different angle to hit the mineralised zones, ranges from 0° to 325°. Dip ranges – drilled between 60° and 90°.
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values 	<ul style="list-style-type: none"> As all samples are 1 metre in length, calculated weighted average intervals are continuous intervals of a mineralised zone and do not include unsampled intervals or unmineralised intervals. No metal equivalent values are reported. Conversion of elemental analysis (ppm) to stoichiometric oxide (%) was undertaken by EMC geological staff using standard conversion factors related to each element.

Criteria	Statement	Commentary
	<i>should be clearly stated.</i>	
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	<ul style="list-style-type: none"> In general, drilling is designed to intersect the mineralised zone at a normal angle, but this is not always possible. The geometry of mineralisation is well understood. Mineralised intervals reported are down-hole lengths but are believed to be close to true thickness when drilled perpendicular to the plane of mineralisation.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Maps, sections, and plan view are provided in this report.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> This report provides the total information available to date and is considered to represent a balanced report. The report shows drill collars for all holes completed.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> No other data is material to this report; further details will be reported in future releases when data is available.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Comprehensive testwork for the extraction and purification of rubidium is continuing at ECU's Mineral Recovery Research Centre (MRRC). Beneficiation metallurgical testwork is ongoing. Work is underway to update the Mineral Resource.