

Drill Results Confirm Mineralisation at Norseman PGE Project

Highlights

- Results from recent RC drill campaign confirm prospective zones of palladium-platinum-gold at the Mission Sill prospect
- Drill results include wide zones of shallow Platinum Group Elements (PGE);
 - 8m @ 1.33 g/t 3E¹ from 24m within 44m @ 0.78 g/t 3E (NRC514)
 - 8m @ 1.20 g/t 3E from 8m within 40m @ 0.92 g/t 3E (NRC513)
 - 8m @ 0.66 g/t 3E from 40m (NRC510)
- Assay results are four metre composite samples with one metre sampling planned to delineate higher grade zones for follow up drilling
- Diamond core drilling targeting potential mineralisation beneath the 17.5Mt Callisto resource is scheduled to begin in three weeks
- New metallurgical test work planned for the Callisto deposit as palladium-platinum-gold-rhodium-copper metal prices have increased since the Callisto Mineral Resource estimate in 2023²

Galileo Mining Ltd (ASX: GAL, “Galileo” or the “Company”) is pleased to provide drill results and updated work programs for the Company’s 100% owned Norseman project in Western Australia.

Galileo Managing Director Brad Underwood commented: “Results from our recent RC drill campaign at Norseman have confirmed strongly anomalous PGE mineralisation near surface at the Mission Sill prospect. We are consistently seeing results above 1 g/t (3E PGE) which we believe may represent the shallow expression of a deeper and bigger mineralised system. We have an extensive 10km of prospective strike at the Mission Sill and the latest drilling has identified a structural target

¹ 3E = Pd + Pt + Au expressed in g/t

² Refer to ASX announcement dated 2nd October 2023

that may have localised mineralisation in the bedrock.

We look forward to advancing the Mission Sill prospect while at the same time undertaking further work at our existing Callisto deposit. At Callisto we will be completing the first deep exploration drill hole beneath the resource looking for repeats of the intrusive sill which hosts the sulphide mineralisation. This drill hole will also provide us with additional samples for metallurgical test work as we note that the metal price environment has improved since the Callisto resource was first published in 2023.

With over \$9 million in funding³ Galileo is very well positioned to continue exploration for high value PGE-gold deposits in one of the most prospective regions of Western Australia.”

Approximately 2,000m of RC drilling was undertaken in December 2025 targeting anomalous aircore geochemical anomalies and structural/geological boundaries. RC drilling was completed at priority prospects including Mission Sill (15 drill holes), Jimberlana South (one drill hole) and Callisto North (two drill holes), focusing on interpreted ultramafic–mafic contacts and structural positions considered favourable for sulphide-hosted PGE-gold mineralisation. These geological settings are analogous to that which hosts mineralisation at the existing Callisto palladium-platinum-gold-rhodium-nickel-copper deposit. The location of the prospects relative to the existing Callisto resource is shown in Figure 4.

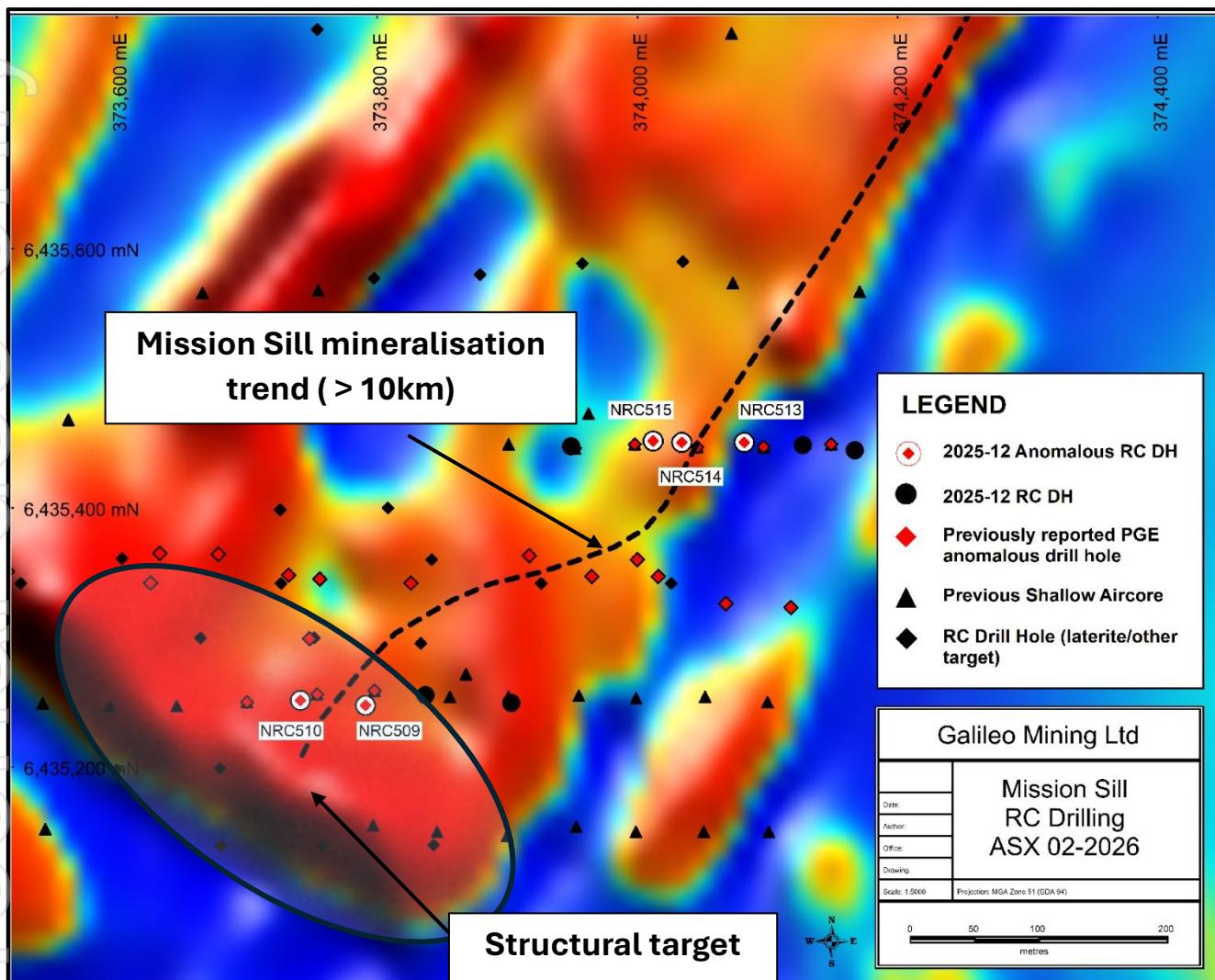

Multiple drill intersections from the Mission Sill prospect confirm and expand on aircore drill results with broad intersections of anomalous PGE greater than 0.4 g/t recorded in five drill holes from two sections spaced 200m apart (see Figure 1 and Appendices for details). These results have highlighted a structural target at the southern end of the 10km long Mission Sill prospect where the magnetic imagery is distinctively reoriented. One metre split samples will be collected and assayed over selected intervals to help determine the location of higher-grade zones prior to follow up drilling.

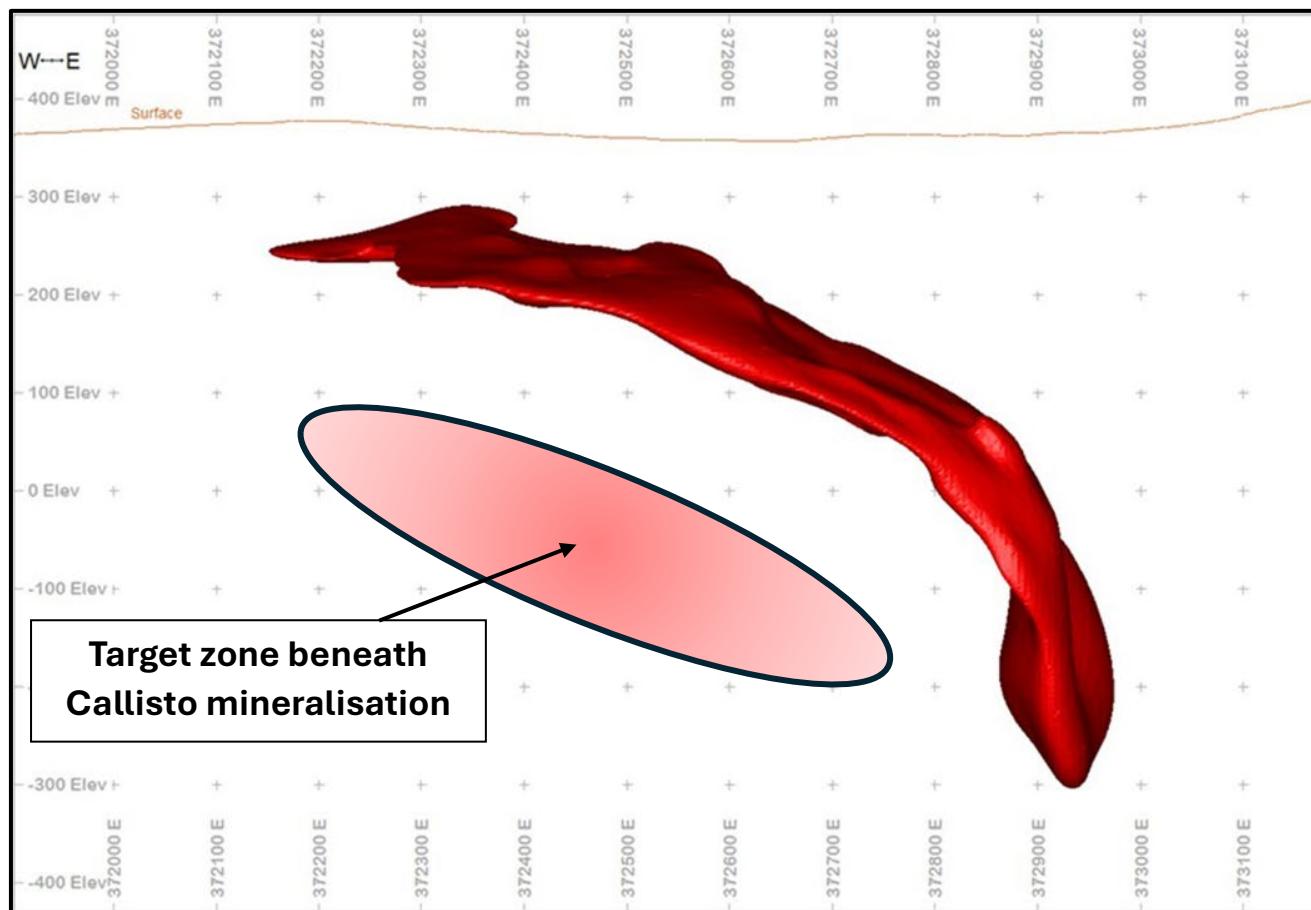
Table 1 –Anomalous RC drill sample assays above 0.4 g/t 3E (further details in Appendices)

Hole ID	From (m)	To (m)	Interval (m)	3E (Pd+ Pt+ Au; g/t)	Palladium (g/t)	Platinum (g/t)	Gold (g/t)	Copper (%)	Nickel (%)
NRC509	24	32	8	0.54	0.30	0.23	<0.01	0.06	0.63
NRC510	20	28	8	0.50	0.32	0.19	<0.01	0.04	0.37
and	44	52	8	0.66	0.39	0.25	<0.01	0.07	0.50
NRC513	0	40	40	0.92	0.73	0.19	<0.01	0.09	0.23
including	8	16	8	1.20	1.00	0.19	<0.01	0.11	0.34
NRC514	4	48	44	0.78	0.58	0.13	0.06	0.09	0.18
including	24	32	8	1.33	1.09	0.17	0.07	0.10	0.11
NRC515	20	36	16	0.52	0.34	0.17	0.01	0.07	0.25

³ As at 31 December 2025, see ASX Quarterly Report released on 21st January 2026

Figure 1 – Mission Sill reported RC drilling with anomalous drill holes, mineralisation trend, and structural targets. TMI-1VD magnetic background image. See Appendices for drill hole details.

Drill holes at the Jimberlana and Callisto North prospects successfully intersected disseminated sulphides at the predicted geological contacts however mineralisation was below the reporting cut-off of 0.4 g/t. Results from these areas highlight the overall prospectivity of the Norseman project, in particular the Callisto trend where mapped ultramafic lithologies occur over 20km strike. Additional one metre split samples from these prospects will be collected to assist in understanding sulphide and metal deportment at mafic-ultramafic lithological contacts.


Upcoming diamond drill program

In 2025 Galileo successfully applied for Western Australian state funding to drill beneath the Callisto PGE-nickel-copper deposit at Norseman.⁴ Up to \$180,000 is available to assist in drilling costs through the Exploration Incentive Scheme (EIS). Diamond core drilling will focus directly below the Callisto

⁴ Refer to ASX announcement dated 30th April 2025

resource to test for additional mineralisation and to increase the understanding of how the deposit was formed. As well as the potential of making a new discovery, the information obtained from drilling will assist in further exploration along strike from Callisto and in the Norseman project area. The initial EIS diamond drill hole is planned to 600m with further extensions possible as determined by results. Diamond drill contractors have provided an expected start date in three weeks (last week in February).

Figure 2 – Callisto mineralisation schematic cross section and target zone for EIS funded diamond core drilling beneath the resource.

Improving Metal Prices

Since the release of the Callisto Mineral Resource Estimate in October 2023⁵ metal prices have improved for palladium, platinum, gold, rhodium, and copper compared to the price assumptions made in the resource estimate. Table 2 shows the different metal prices between those used to calculate the Mineral Resource Estimate and the spot price as at 2nd February 2026.

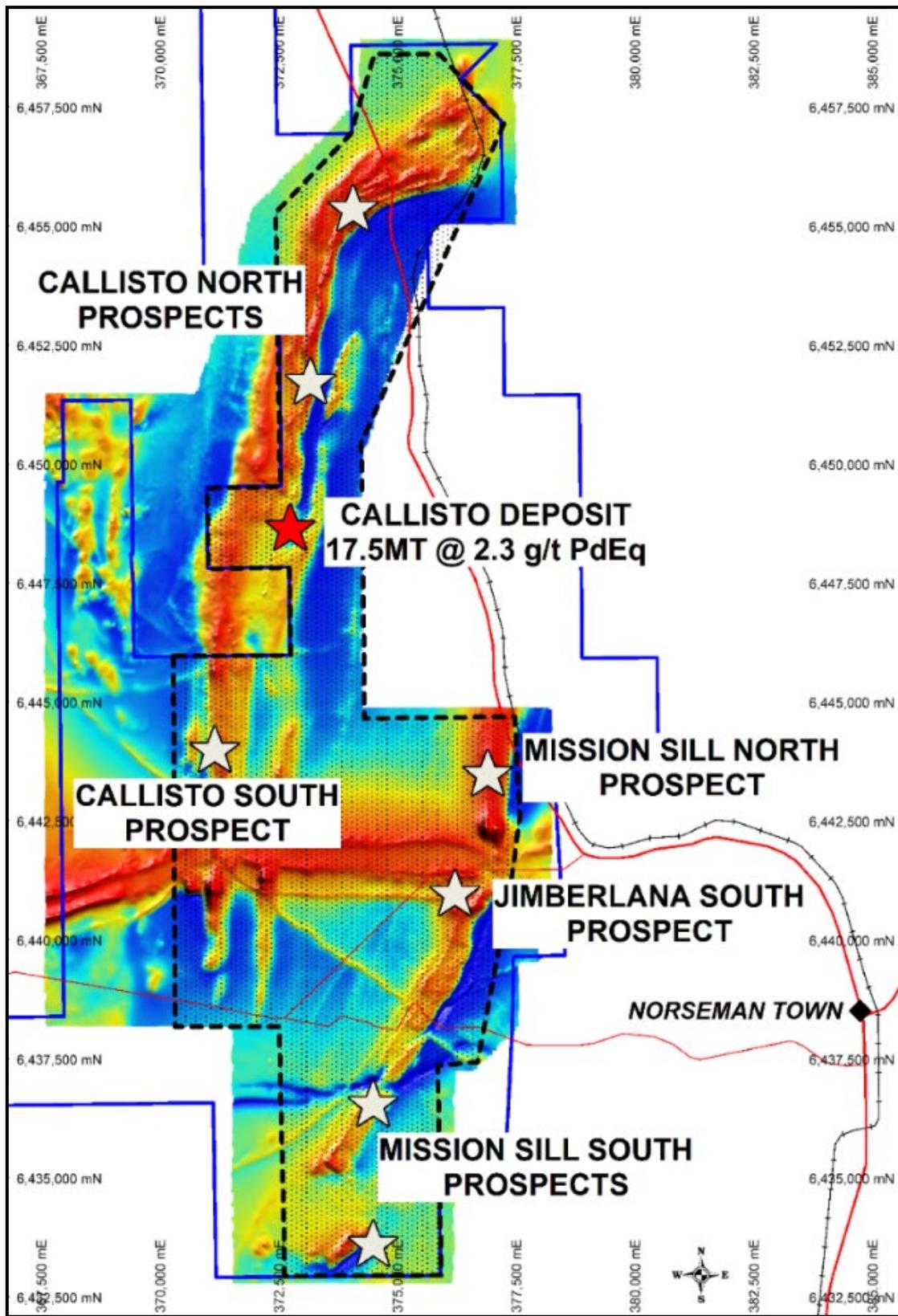
Based on the strong improvement in metal prices, Galileo intends to undertake new metallurgical test work with the aim of optimising the Company's understanding of metal extraction from the Callisto resource. Early-stage metallurgical results⁶ showed excellent metallurgical recoveries from industry

⁵ Refer to ASX announcement dated 2nd October 2023

⁶ Refer to ASX announcement dated 20th February 2023

standard sulphide flotation test work. New metallurgical samples will be obtained from the diamond drill hole planned to test for mineralisation beneath the Callisto resource. This drill hole will intersect the Callisto mineralisation at shallow levels before continuing deeper to test the undrilled zones immediately beneath the resource.

Table 2: Comparison of metal prices used in the 2023 Callisto Mineral Resource Estimate and current spot prices (USD)


Metal	Mineral Resource Estimate ⁵ (USD)	Spot Price - 2 February 2025* (USD)
Palladium	\$1,600	\$1,639
Platinum	\$975	\$2,067
Gold	\$1,870	\$4,725
Rhodium	\$9,420	\$10,000
Copper	\$8,420	\$13,548
Nickel	\$23,800	\$17,446

* Source: Kitco <https://www.kitco.com/price/precious-metals>

Figure 3 – Sulphide flotation metallurgical test work of drill core sample from NRCD337 (details in ASX announcement dated 20/02/2023)

Figure 4 – Norseman Project outline (blue line) with recently completed gravity survey (black dashed line), Callisto Deposit (red star), and prospects requiring follow up drilling (grey stars). December 2025 drilling was completed at the Mission Sill South, Jimberlana South, and Callisto North prospects.

Figure 5 – Callisto deposit and prospective geological trends at Galileo's Norseman project.

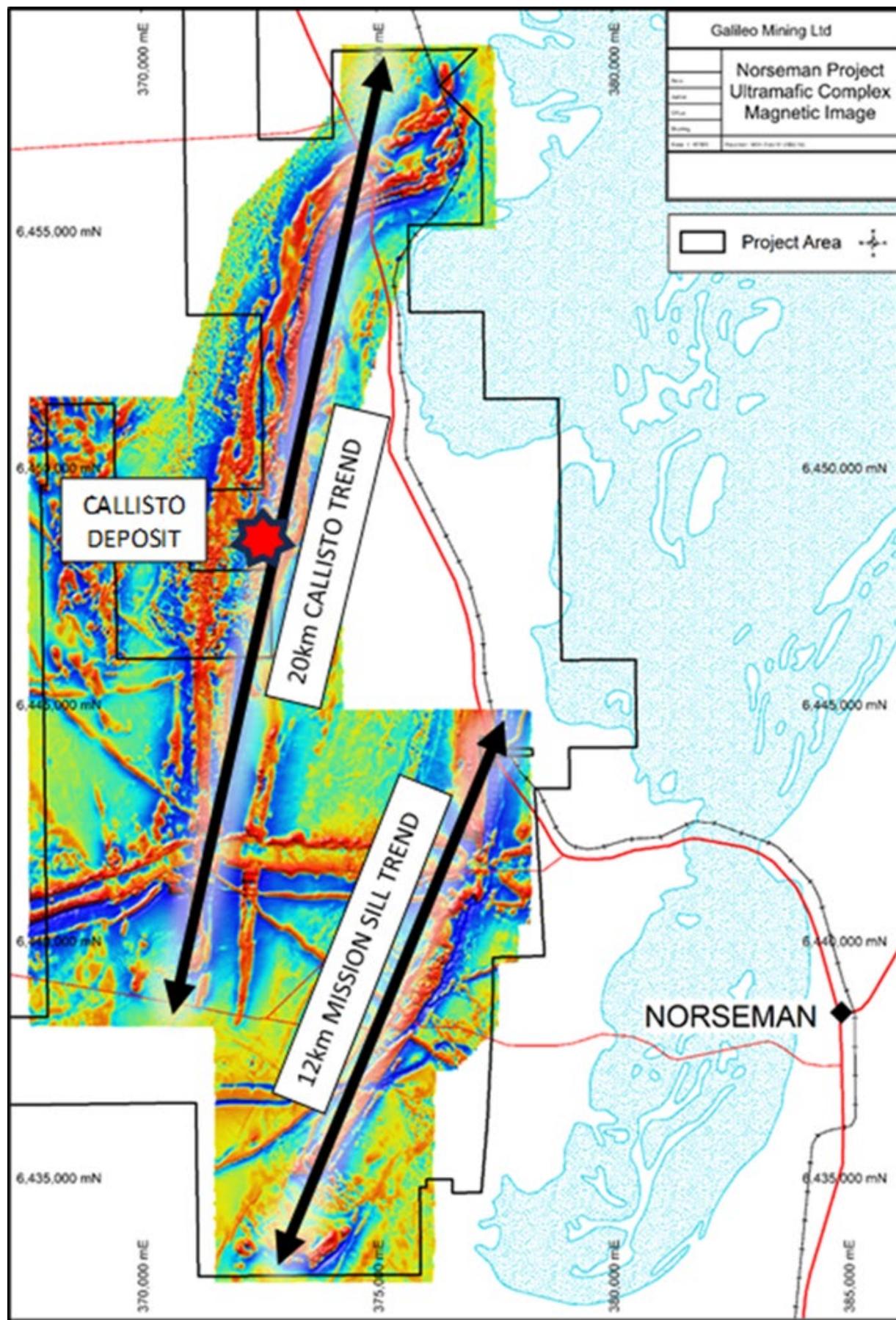
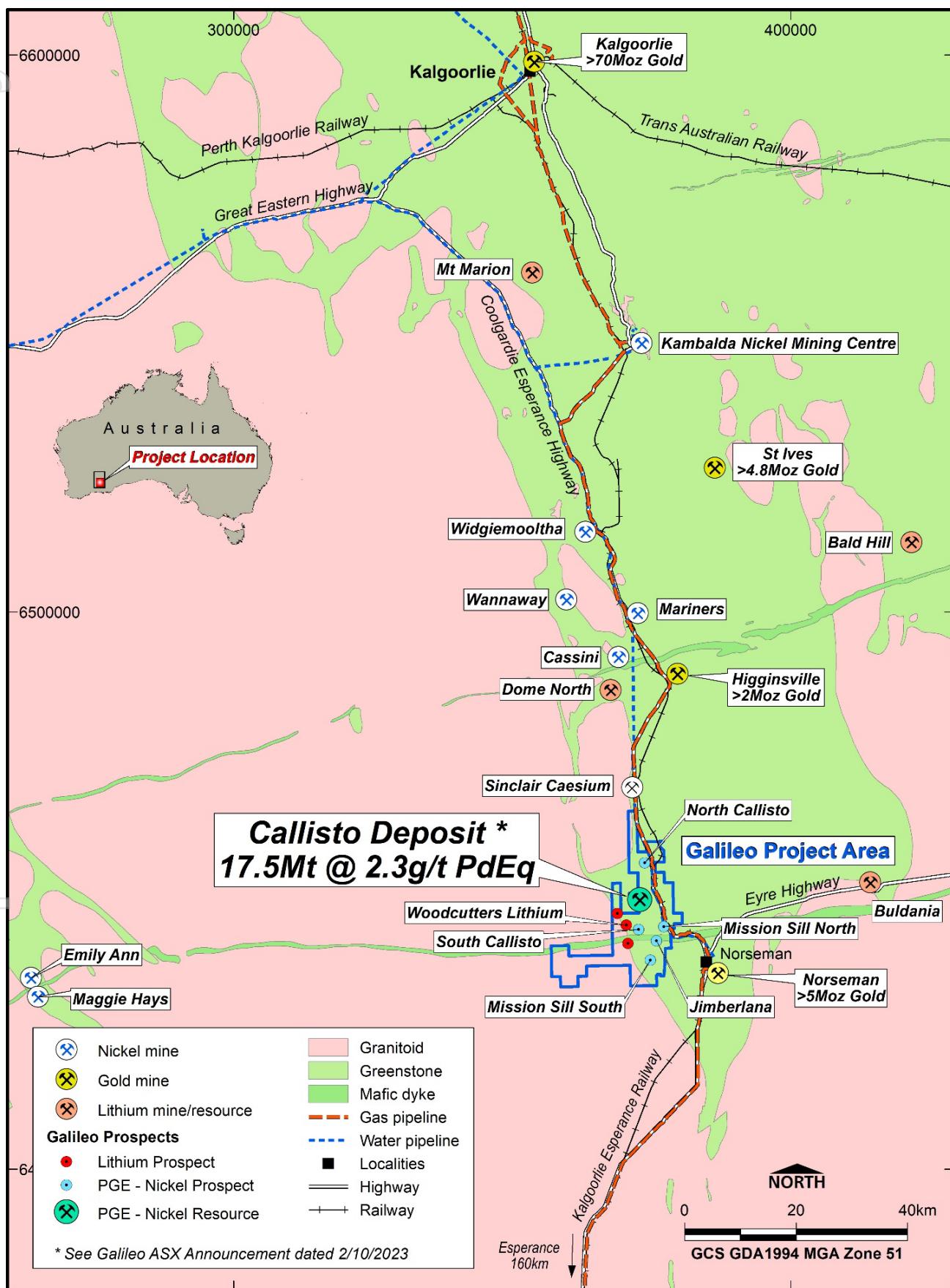



Figure 6 – Norseman project location map with a selection of mines, resources, and infrastructure in the region.

About Galileo Mining:

Galileo Mining Ltd (ASX: GAL) is focussed on the exploration and development of PGE (palladium-platinum), nickel, copper, and cobalt resources in Western Australia. GAL's tenements near Norseman are highly prospective for new discoveries as shown by the Callisto deposit. GAL also has Joint Ventures with the Creasy Group over tenements in the Fraser Range which are prospective for nickel-copper sulphide deposits similar to the operating Nova mine.

Norseman (100% GAL)

The wholly owned Norseman project contains the Callisto Discovery and adjacent regional prospects Jimberlana and Mission Sill with potential for palladium, platinum, nickel, copper, cobalt, and rhodium mineralisation. Galileo's tenure at Norseman comprises mining, exploration, and prospecting licenses covering a total area of 255 km².

The Callisto deposit was discovered in 2022 and is the first deposit of its type identified in Australia, analogous in mineralisation style to the Platreef deposits found in South Africa. An initial Mineral Resource Estimate was reported in 2023 with 17.5 Mt @ 1.04g/t 4E⁷, 0.20% Ni, 0.16% Cu (2.3g/t PdEq⁸ or 0.52% NiEq⁹).

Table 1 - Callisto Deposit Maiden Mineral Resource Estimate (JORC 2012) (see ASX announcement: 2 October 2023)

Reporting Criteria	JORC	Mass (Mt)	Grades							Metal accumulations										
			Pd (ppm)	Pt (ppm)	Au (ppm)	Rh (ppm)	Ni (%)	Cu (%)	PdEq (ppm)	NiEq (%)	4E (ppm)	Pd (Koz)	Pt (Koz)	Au (Koz)	Rh (Kt)	Ni (Kt)	Cu (Kt)	PdEq (Koz)	NiEq (Kt)	4E (Koz)
Above 60mRL and out-off > 0.5g/t PdEq	Indicated	7.96	0.92	0.16	0.048	0.030	0.22	0.19	2.5	0.58	1.16	235.3	41.5	12.4	7.8	17.3	14.9	639	45.8	296.9
	Inferred	8.76	0.74	0.14	0.043	0.025	0.19	0.14	2.0	0.47	0.94	207.2	38.6	12.1	7.0	16.3	12.3	576	41.3	264.9
	Sub total	16.72	0.82	0.15	0.046	0.027	0.20	0.16	2.3	0.52	1.04	442.5	80.1	24.5	14.8	33.6	27.1	1,216	87.1	561.8
Below 60mRL and out-off > 1.5g/t PdEq	Inferred	0.76	0.78	0.13	0.036	0.027	0.19	0.14	2.1	0.49	0.97	18.9	3.2	0.9	0.7	1.4	1.1	51	3.7	23.6
	Total	17.48	0.82	0.15	0.045	0.027	0.20	0.16	2.3	0.52	1.04	461.4	83.3	25.3	15.4	35.0	28.2	1,267	91	585.4

Metal equivalent price assumptions of Callisto Resource released on 2nd October 2023

Based on metallurgical test work completed to date, the Company believes that Callisto's mineralisation is amenable to concentration using a conventional crushing, milling and flotation process and has Reasonable Prospects for Eventual Economic Extraction.

Metallurgical recovery assumptions used for metal equivalent value calculations were: Pd – 82%, Pt – 78%, Au – 79%, Rh – 63%, Ni – 77%, Cu – 94%

Metal price assumptions, based on 12 month calculated averages to 11th September 2023, were used for metal equivalent values: Pd – US\$1,600/oz, Pt – US\$975/oz, Au – US\$1,870/oz, Rh – US\$9,420/oz, Ni - US\$23,800/t, Cu – US\$8,420/t

Fraser Range (67% GAL / 33% Creasy Group JV)

Galileo is actively exploring for magmatic massive sulphide- nickel-copper deposits across its Fraser Range tenements covering over 600km² of highly prospective ground in the Albany-Fraser Orogen. The project is well positioned within the nickel-copper bearing Fraser Range Zone, with the Nova-Bollinger mine located between 30km and 90km from Galileo tenure.

⁷4E = Palladium (Pd) + Platinum (Pt) + Gold (Au) + Rhodium (Rh) expressed in g/t

⁸PdEq (Palladium Equivalent) = Pd (g/t) + 0.580 x Pt (g/t) + 1.13 x Au (g/t) + 4.52 x Rh (g/t) + 4.34 x Ni (%) + 1.88 x Cu (%)

⁹NiEq (Nickel equivalent) = Ni % + 0.230 x Pd (g/t) + 0.133 x Pt (g/t) + 0.259 x Au (g/t) + 1.04 x Rh (g/t) + 0.432 x Cu (%)

Competent Person Statement

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Brad Underwood, a Member of the Australasian Institute of Mining and Metallurgy, and a full time employee of Galileo Mining Ltd. Mr Underwood has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Underwood consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

With regard to the Company's ASX Announcements referenced in the above Announcement, the Company is not aware of any new information or data that materially affects the information included in the Announcements.

Authorised for release by the Galileo Board of Directors.

Investor information: phone Galileo Mining on + 61 8 9463 0063 or email info@galmining.com.au

Media:

David Tasker
Chapter One Advisors
E: dtasker@chapteroneadvisors.com.au
T: +61 433 112 936

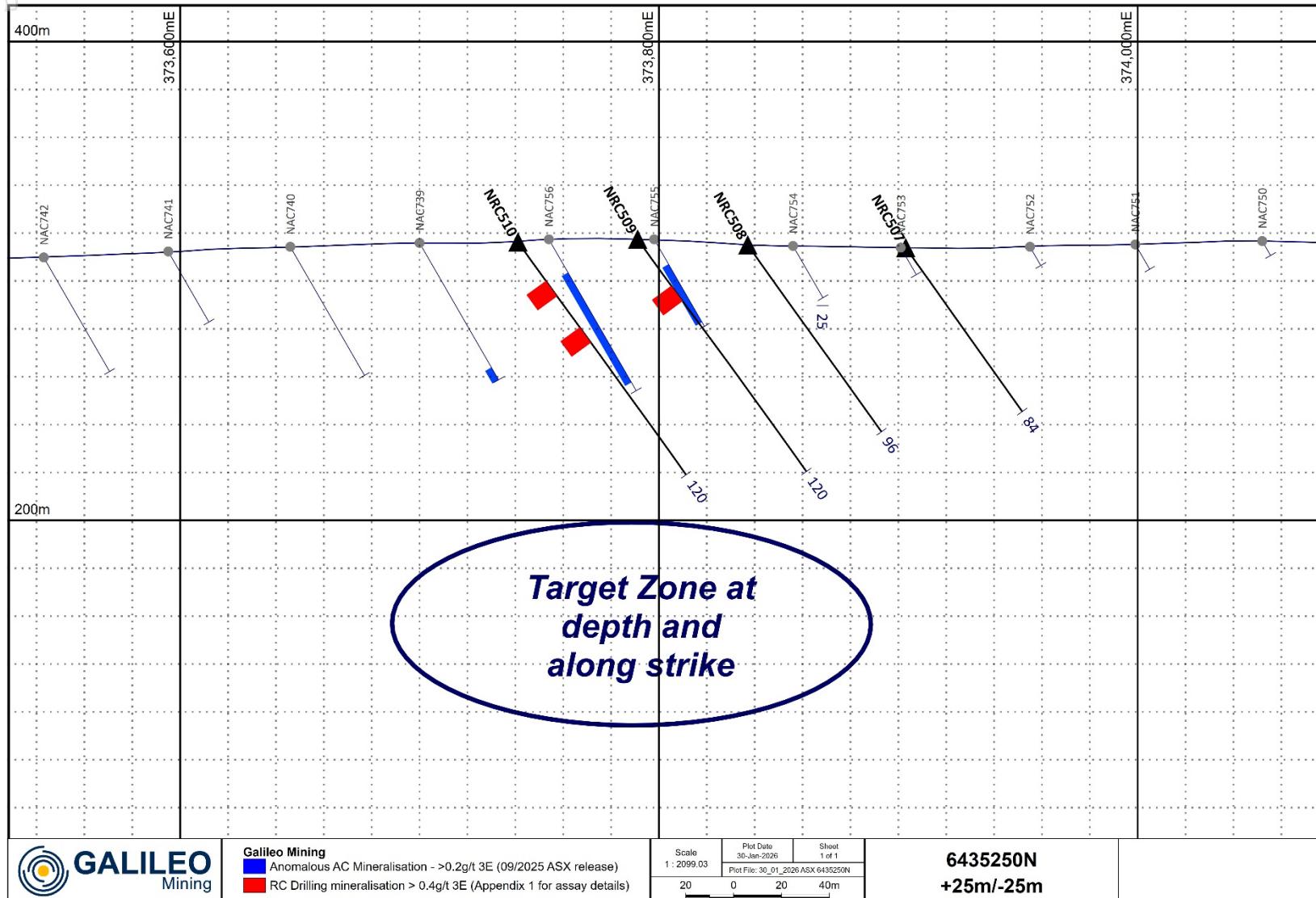
Appendix 1: Anomalous RC Drill Hole Intersections

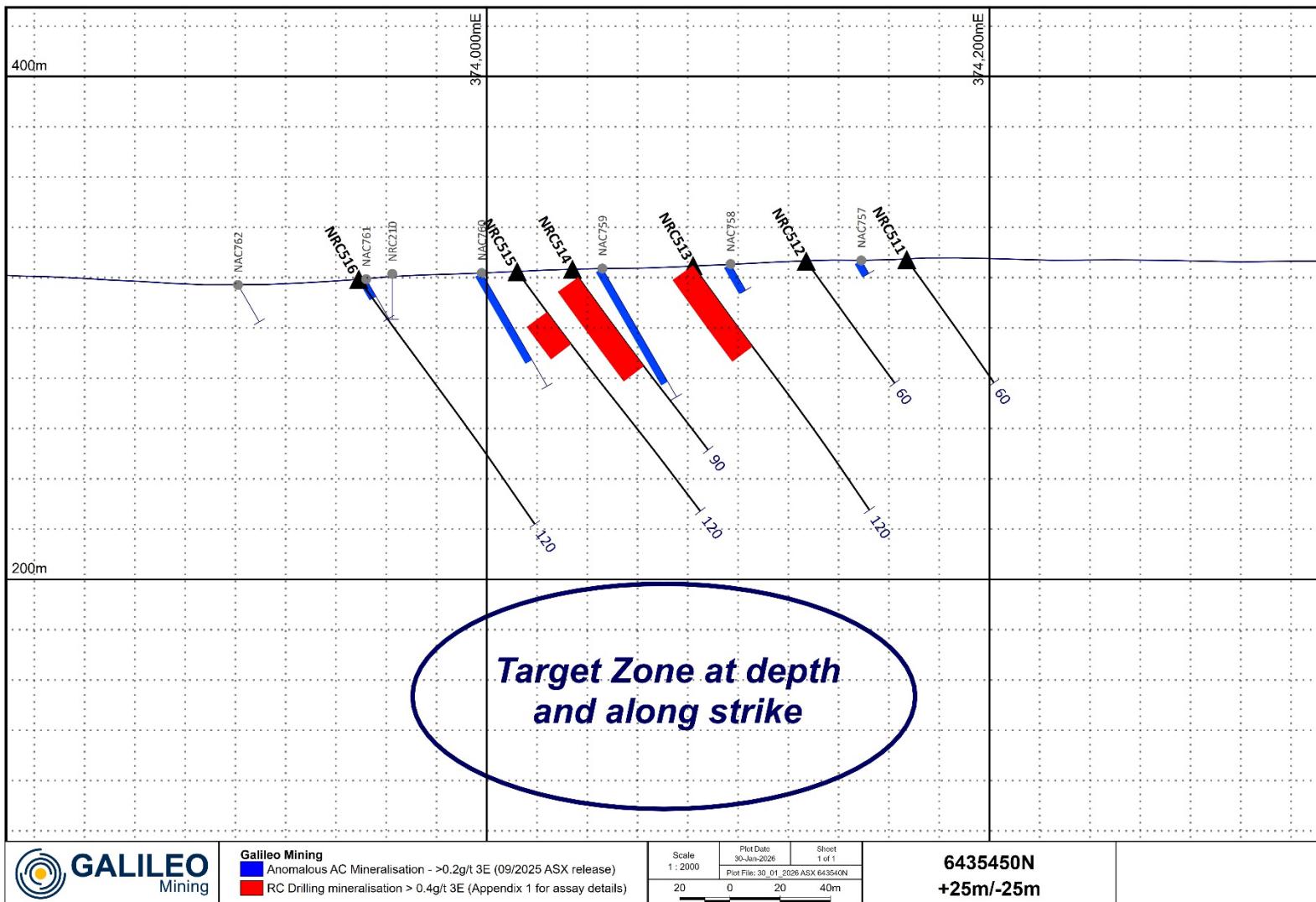
>0.4g/t 3E cut-off over minimum 8 metre interval (2 x 4m composite samples), maximum one sample internal dilution. Reported as downhole width, true width unknown. 3E = Palladium (Pd) + Platinum (Pt) + Gold (Au); expressed in g/t.

Hole ID	From (m)	To (m)	Interval (m)	3E (Pd+ Pt+ Au; g/t)	Palladium (g/t)	Platinum (g/t)	Gold (g/t)	Copper (%)	Nickel (%)
NRC509	24	32	8	0.54	0.30	0.23	<0.01	0.06	0.63
NRC510	20	28	8	0.50	0.32	0.19	<0.01	0.04	0.37
and	44	52	8	0.66	0.39	0.25	<0.01	0.07	0.50
NRC513	0	40	40	0.92	0.73	0.19	<0.01	0.09	0.23
including	8	16	8	1.20	1.00	0.19	<0.01	0.11	0.34
NRC514	4	48	44	0.78	0.58	0.13	0.06	0.09	0.18
including	24	32	8	1.33	1.09	0.17	0.07	0.10	0.11
NRC515	20	36	16	0.52	0.34	0.17	0.01	0.07	0.25

Appendix 2: Reported Drill Hole Collar Details

Hole ID	East	North	RL	Azimuth	Dip	Total Depth (m)
NRC507	373903	6435249	314	90	-55	84
NRC508	373837	6435255	315	90	-55	96
NRC509	373791	6435247	317	90	-55	120
NRC510	373741	6435251	316	90	-55	120
NRC511	374167	6435444	327	90	-55	60
NRC512	374127	6435448	327	90	-55	60
NRC513	374082	6435450	325	90	-55	120
NRC514	374034	6435450	323	90	-55	90
NRC515	374012	6435451	322	90	-54	120
NRC516	373949	6435447	319	90	-54	120


Note: Easting and Northing coordinates are GDA94 Zone 51.



Appendix 3: Drill Sections with Anomalous Results

(see Figure 1 for plan view and Appendices 1 and 2 for drill hole details)

Section 1: 6,435,250N

Section 2: 6,435,450N

Appendix 3:

Galileo Mining Ltd – Norseman Project

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Reverse Circulation (RC) drilling was used to obtain one metre individually bagged chip samples from pre-collars and RC test drill holes. Each RC bag was spear sampled to provide a 4-metre representative composite sample for analyses. A 1m sample split for each metre is collected at the time of drilling from the drill rig mounted cone splitter. Selected 1m split sample intervals were selected from zones of interest and sent to the laboratory for analysis with remainder of drill hole assayed using 4m composite samples. QAQC standards (blank & reference) and duplicate samples were included routinely with 1 per 20 samples being a standard or duplicate. Samples were sent to an independent commercial assay laboratory. All assay sample preparation comprised oven drying, pulverising and splitting to a representative assay charge pulp. A 50g Lead Collection Fire Assay with ICP-MS finish is used to determine Au, Pt and Pd results. A four acid digest is used for sample digest with a 48 element analysis suite including Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr by ICP-OES finish. QAQC standards (blank & reference) and duplicate samples were included routinely with 1 per 20 samples being a standard or duplicate. Samples have been sent to an independent commercial assay laboratory
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple</i> 	<ul style="list-style-type: none"> RC drilling was undertaken by Raglan Drilling using a 5.5" face sampling drill bit.

	<p>or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</p>	<ul style="list-style-type: none"> All RC holes were surveyed during drilling using a north seeking gyro tool
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> RC sample recoveries are visually estimated for each metre with poor or wet samples recorded in drill and sample log sheets. The sample cyclone was routinely cleaned at the end of each 6m rod and when deemed necessary. No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Geological logging of RC drill holes was done on a visual basis with logging including lithology, grainsize, mineralogy, texture, deformation, mineralisation, alteration, veining, colour and weathering. Logging of RC drill chips is qualitative and based on the presentation of representative drill chips retained for all 1m sample intervals in the chip trays. All RC drill holes were logged in their entirety
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the <i>in situ</i> material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> All RC assays reported are from 1m cone split samples. 1m cone split samples were collected for all metres at the time of drilling from the drill rig mounted cone splitter. Selected 1m cone split samples for intervals deemed of interest by the geologist supervising the drill rig were submitted for priority assay. The samples are dried and pulverised before analysis. QAQC reference samples and duplicates are routinely submitted with each batch. The sample size is considered appropriate for the mineralisation style, application and analytical techniques used. QAQC standards (blank & reference) and duplicate samples were included routinely with 1 per 20 samples being a standard or duplicate. Samples have been sent to Intertek-Genalysis, an independent commercial assay laboratory where the samples are weighed to the nearest gram.

		<ul style="list-style-type: none"> The samples are dried, crushed to nominal 2mm and pulverised to nominal 85% passing 75um before analyses. QAQC reference samples and duplicates are routinely inserted for submission with each batch.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> RC Chip and diamond core samples are analysed for a multielement suite (48 elements) by ICP-OES following a four-acid digest. Assays for Au, Pt, Pd are completed by 50gram Fire Assay with an ICP-MS finish. The assay methods used are considered appropriate. QAQC standards and duplicates are routinely included at a rate of 1 per 20 samples Further internal laboratory QAQC procedures included internal batch standards and blanks Sample preparation was completed at Intertek Genalysis Laboratory, (Kalgoorlie) with digest and assay conducted by Intertek-Genalysis Laboratory Services (Perth) using a four acid (4A/MS48) for multi-element assay and 50gram Fire Assay with an ICP-MS finish for Au, Pt, Pd, (FA50/MS). A Niton portable handheld XRF (pXRF) has been used only to assist field logging and as a guide for sample selection. No pXRF values are reported.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Field data is collected on site using a standard set of logging templates entered directly into a laptop computer. Data is then sent to the Galileo database manager for validation and upload into the database. Assays are as reported from the laboratory and stored in the Company database and have not been adjusted in any way.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> Drill hole collars are surveyed with a handheld GPS with an accuracy of +/- 5m which is considered sufficient for drill hole location accuracy. Co-ordinates are in GDA94 datum, Zone 51. Downhole depths are in metres measured downhole from the collar location on surface.

		<ul style="list-style-type: none"> Topographic control has an accuracy of 2m based on detailed satellite imagery derived DTM or on laser altimeter data collected from aeromagnetic surveys
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Drill hole spacing was designed to target potential mineralisation as indicated by previous drilling and geological interpretation. This spacing has been deemed adequate for first pass assessment only and is not considered sufficient to determine JORC Compliant Inferred Resources and therefore laboratory assay results and additional drilling would be required. RC drill holes were sampled from surface on a 4m composite basis or as 1m, 2m, or 3m samples as determined by the end of hole depth or under instruction from the geologist supervising the program. 1m cone split RC samples were collected through zones of geological interest.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> It is unknown whether the orientation of sampling achieves unbiased sampling as interpretation of quantitative measurements of mineralised zones/structures has not yet been completed. The drilling is oriented either perpendicular to the lithological strike and dip of the target rock or as holes adjacent to previous aircore drilling.
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> Each sample was put into a tied off calico bag and then several placed in large plastic "polyweave" bags which were zip tied closed. Samples were delivered directly to the laboratory in Kalgoorlie by Galileo staff.
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> Continuous improvement internal reviews of sampling techniques and procedures are ongoing. No external audits have been performed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The Norseman Project comprises two mining leases, four exploration licenses, and eighteen prospecting covering 251km² of contiguous tenure All tenements within the Norseman Project are 100% owned by Galileo Mining Ltd. A 1% Net Smelter Royalty is payable to Australian Gold Resources Pty Ltd on mine production from within the Norseman Project (NSR does not apply to production from any laterite operations) The Norseman Project is centred around a location approximately 10km north-west of Norseman on vacant crown land. All tenements in the Norseman Project are 100% covered by the Ngadju Native Title Determined Claim. The tenements are in good standing and there are no known impediments.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<p>Between the mid-1960's and 2000 exploration was conducted in the area for gold and base-metals (most notably Ni sulphides). Exploration focussed on the Mt Thirsty Sill and eastern limb of the Mission Sill.</p> <p>Central Norseman Gold Corporation/WMC (1966-1972)</p> <ul style="list-style-type: none"> Explored the Jimberlana Dyke for Ni-Cu-PGE-Cr. Soil sampling generated several Cu anomalies 160-320ppm Cu. <p>Barrier Exploration and Jimberlana Minerals Between (1968 and 1974)</p> <ul style="list-style-type: none"> Explored immediately south of Mt Thirsty for Ni-Cu sulphide. IP, Ground Magnetic Surveys, Soil Sampling, Soil Auger Sampling and Diamond Drilling was completed. <p>Resolute Limited, Great Southern Mines Ltd and Dundas Mining Pty Ltd (1993-1996)</p> <ul style="list-style-type: none"> Gold focussed exploration. Several gold anomalies were identified in soil geochemistry but were not followed up. Resolute assayed for Au, Ni, Cu, Zn but did not assay for PGE. Resolute Limited drilled laterite regolith

For Personal Use Only

	<p>profiles over the ultramafic portions of the Mt Thirsty Sill and identified a small Ni-Co Resource with high Co grades.</p> <p>Kinross Gold Corp Australia (1999)</p> <ul style="list-style-type: none"> Completed a 50m line spaced aeromagnetic survey. <p>2000-2004</p> <ul style="list-style-type: none"> Australian Gold Resources (“AGR”) held “Mt Thirsty Project” from 2000 to 30th June 2004. Works identified Ni-Co resources on the Project. Anaconda Nickel Ltd (“ANL”) explored AGR Mt Thirsty Project as part of the AGR/ANL Exploration Access Agreement 2000-2001. <p>AGR/ANL (2000-2001)</p> <ul style="list-style-type: none"> Mapping focussed on identifying Co-Ni enriched regolith areas. RC on 800mx100m grid at Mission Sill targeting Ni-Co Laterite (MTRC001-MTRC035). Nickel assay maximum of 0.50%, Co 0.16%, Cu to 0.23%. Concluded the anomalous Cu-PGE association suggested affinity with Bushveldt or Stillwater style PGE mineralisation. A lack of an arsenic correlation cited as support for magmatic rather than hydrothermal PGE source. <p>AGR (2003-2004)</p> <ul style="list-style-type: none"> Soil sampling over the Mission Sill and Jimberlana Dyke. RC drilling (MTRC036-052) confirmed shallow PGE anomalism with best results of 1m at 2.04 combined Pt-Pd in MTRC038 from surface. Petrography identified sulphide textures indicative of primary magmatic character. Sixty samples were re-assayed for PGE when assays returned >0.05% Cu. A further 230 samples were re-assayed based on the initial Au-Pd-Pt results. The best combined result for Au-Pd-Pt was 5.7g/t. <p>Galileo</p> <ul style="list-style-type: none"> Galileo commenced exploration on the Norseman Project from 30th June 2004 after sale of the tenements by AGR.
--	---

Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> The Norseman target geology and mineralisation style is PGE-nickel-copper mineralisation related to layered intrusions (sills and dykes) and komatiite nickel sulphide mineralisation occurring within the GSWA mapped Mount Kirk Formation (and intrusions into this formation) The Mount Kirk formation is described as “Acid and basic volcanic rocks and sedimentary rocks, intruded by basic and ultrabasic rocks”
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Refer to Appendices 1 and 2.
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> Tables of relevant assay intervals of significance are included in previous releases. Parts-per-billion and parts-per-million data reported from the assay laboratory have been converted to grams-per-tonne for Au, Pd, Pt. Parts-per-million data reported from the assay laboratory for Cu and Ni have been converted to percent values and reported as percent values rounded to 2 decimal places. 3E intercepts have been calculated as the sum of Au, Pd and Pt assays in grams-per-tonne.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg ‘down hole length, true width not known’). 	<ul style="list-style-type: none"> The drilling is oriented perpendicular to the lithological strike and dip of the target rock unit It is unknown whether the orientation of sampling achieves unbiased sampling of possible structures as no measurable structures are recorded in drill chips. No quantitative measurements of

		mineralised zones/structures exist, and all drill intercepts are reported as down hole length in metres, true width unknown.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Project location map and plan map of the drill hole locations with respect to each other and with respect to other available data are included in the text. Drill hole locations have been determined with hand-held GPS drill hole collar location (Garmin GPS 78s) +/- 5m in X/Y/Z dimensions
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> All available relevant information is presented.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Detailed 50m line spaced aeromagnetic data has been used for interpretation of underlying geology. Data was collected by Magspec Airborne Surveys Pty Ltd using a Geometrics G-823 caesium vapor magnetometer at an average flying height of 30m. 28 lines (for 657 stations) of 200m or 400m line x 100m station spaced Moving Loop Electromagnetic survey data was collected over the prospect using a 200m loop. Data was collected using a Smartem receiver and Fluxgate receiver coil at base frequencies of 1.0Hz to 0.25Hz and 28-30 Amp current. Two conductor plates were modelled. Based on the available drill logs these conductors appear to represent the position of sulphide rich sediment beneath the target mafic-ultramafic intrusion. Consultants from Omni GeoX delineated the layered units within the sill using geochemical relationships identified by K-means cluster analysis and manual geochemical interpretive workflows. Pole-Dipole Induced Polarisation (IP) survey data was collected using a pole-dipole array with a SMARTem 16 channel 24-bit receiver system (EMIT). A Search-Ex WB50 50KVA transmitter was utilised with a 100m receiver spacing. Dipole-Dipole Induced Polarisation (IP) survey data was collected using a dipole-dipole array with a SMARTem

		<p>16 channel 24-bit receiver system (EMIT). A Search-Ex WB50 50KVA transmitter was utilised with a 50m receiver spacing.</p> <ul style="list-style-type: none"> • Modelling and interpretation of IP survey geophysical data was undertaken by Terra Resources • Mapping of the Norseman Project Area prospective for PGE-nickel was undertaken at a 1:10,000 scale by Model Earth Pty Ltd • Consultants from Omni GeoX undertook geochemical analyses of available surface and drill hole samples from the Mission Sill prospect. Ni-Cr ratios were plotted and used to define the western contact of the Mission Sill intrusive complex. • Ground Gravity survey data was collected by Daishsat Geodetic Surveyors on 400m north-south spaced lines at 100m east-west station spacing.
Further work	<ul style="list-style-type: none"> • <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> • <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> • Diamond core drilling • RC drill testing • Air core drill testing