

Outstanding Wide High-Grade Copper-Gold Intercepts in First RC Holes at Nanadie Project, WA

Highlights

- **Multiple significant intercepts** returned from the **first five holes** of a **23-hole Phase 1** Reverse Circulation (RC) drilling campaign at the 100%-owned **Nanadie Copper-Gold Project**, **sitting on a granted Mining Lease in WA**, which **intersected wide zones of disseminated chalcopyrite mineralisation** with **several higher-grade zones**, some of which extend to end of hole (EOH), including:
 - ❖ **62m @ 1.55% Cu, 0.66g/t Au** to end of hole (EOH) from 256m (NANRC004), including:
 - **22m @ 2.78% Cu, 1.25g/t Au** from 261m, plus:
 - **10m @ 0.63% Cu, 0.25g/t Au** from 80m, **11m @ 0.48% Cu, 0.16g/t Au** from 104m, **16m @ 0.76% Cu, 0.26g/t Au** from 140m, **43m @ 0.44% Cu, 0.16g/t Au** from 166m.
 - ❖ **97m @ 0.73% Cu, 0.30g/t Au** to **EOH** from 203m (NANRC001), plus:
 - **18m @ 0.87% Cu, 0.26g/t Au** from 89m, **11m @ 0.58% Cu, 0.13g/t Au** from 125m, **14m @ 0.42% Cu, 0.12g/t Au** from 178m.
 - ❖ **27m @ 0.48% Cu, 0.16g/t Au** from 119m, **11m @ 1.23% Cu, 0.26g/t Au** from 235m, **36m @ 0.58% Cu, 0.17g/t Au** from 262m, and **15m @ 0.86% Cu, 0.17g/t Au** from 304m (NANRC005)
 - ❖ **17m @ 0.60% Cu, 0.19g/t Au** from 105m, **14m @ 0.58% Cu, 0.20g/t Au** from 252m and **22m @ 0.42% Cu, 0.12g/t Au** from 272m (NANRC002)
- Importantly, the higher-grade mineralisation of NANRC001, NANRC002, NANRC004, and NANRC005 **extends well beyond the current MRE block model** and demonstrate that the system is **completely open at depth** and has **excellent potential to materially expand** on the current **40.4Mt Mineral Resource Estimate (MRE)**¹.
- **NANRC004 and NANRC001 are particularly strongly mineralised**, with each hole – inclusive of zones of unmineralised waste – returning **317m @ 0.51% Cu, 0.19g/t Au to EOH**, and **300m @ 0.42% Cu, 0.16g/t Au to EOH** respectively.
- Geological observations in the remainder of the Phase 1 drillholes awaiting assays **strongly indicate that the combined mineralised system is open along strike, laterally, and is completely open at depth**.
- Geological logging has outlined a **widely mineralised host mafic intrusive package over 150m wide, and at least 900m long**, flanked by amphibolite (that is also mineralised in places), and younger granitoid rocks to the west.
- Nanadie currently has a shallow Inferred MRE containing **162,000t of copper and 130,000oz of gold**¹ within a large, granted Mining Lease, representing a substantial near-surface metal

accumulation primed for exploration growth and favourable for future bulk-tonnage mine studies.

- **Assays and geological observations to date strongly support continued MRE expansion drilling**, with a **Phase 2 RC program** in planning, commencing immediately following receipt of remaining Phase 1 assays and prioritisation of targets.
- With **\$13.4m in cash** as of Dec 31, 2025, Solstice is well funded to aggressively pursue the growth and development of this exciting asset.

Solstice Minerals' Chief Executive Officer and Managing Director, Mr Nick Castleden, said:

"This is an extraordinary set of first results from our 100%-owned Nanadie Copper Gold Project in WA and represents a strong validation of the potential the geological team saw in the data. This is not a typical single-zone system, but a broad stack of mineralised mafic intrusive rocks, with disseminated sulphide-style copper-gold distributed over significant intervals. A best-ever grade intercept in drillhole NANRC004 and the wide intercepts returned in drillholes NANRC001 and NANRC004 that end in mineralisation, show that this is a system with potential for real scale as well as substantial zones of higher-grade material outside of the existing MRE."

"The system is clearly wide open at depth, and drill chip logging in the remaining holes has opened new geological targets and confirmed our belief that the MRE can be materially increased. Importantly, the mineralisation at Nanadie starts just below surface below shallow soil cover and extends over significant strike, width and depth, features that may allow for future high-volume, low-strip extraction. Additionally, the under-explored soil-covered setting presents excellent future growth opportunities as we step onto extensional targets."

"Copper is seen as having an excellent long-term supply-demand outlook, as high-quality copper growth assets in established tier-1 mining jurisdictions and with investable approvals timelines become increasingly rare. We've made a cracking first step toward growing this asset and look forward to reporting the balance of our Phase 1 drilling results, and our future plans."

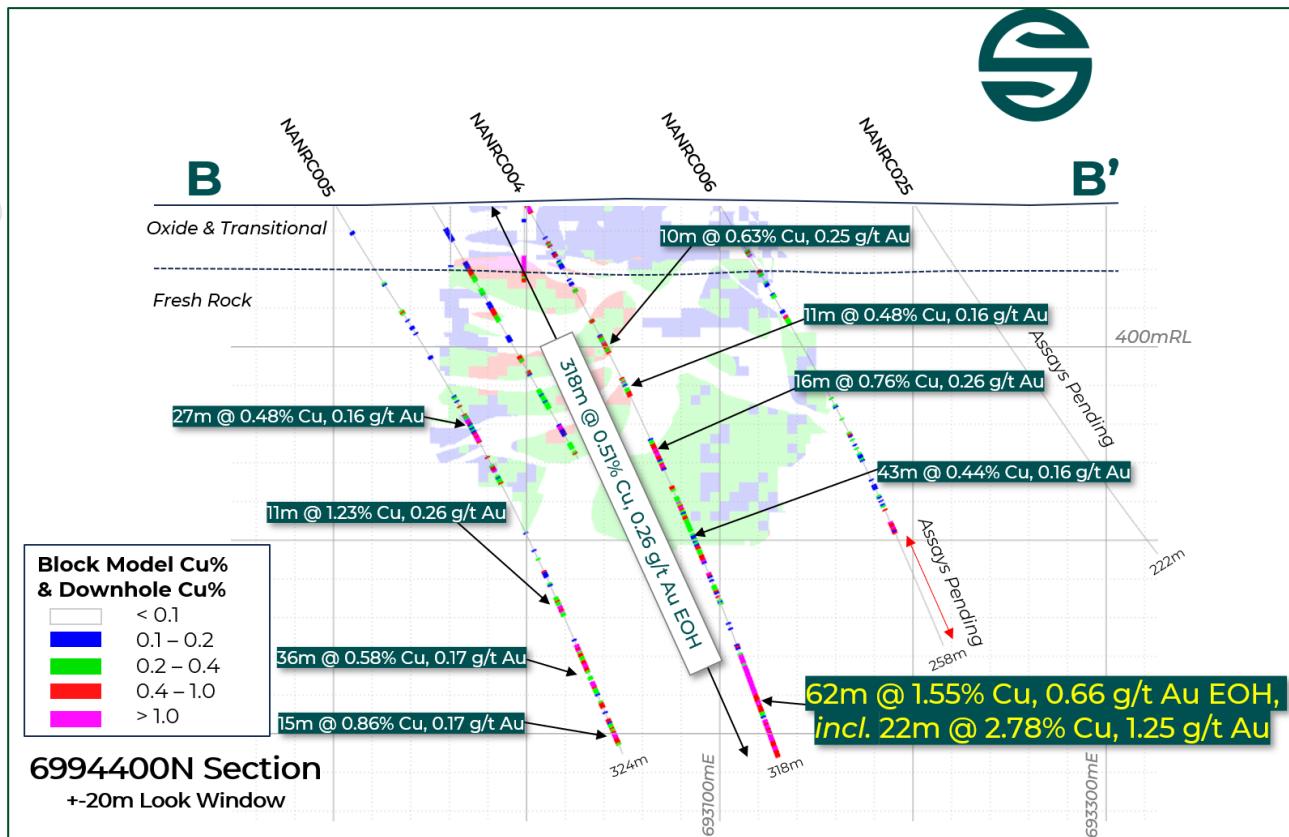
Nanadie Copper-Gold Drilling Update

Solstice Minerals Limited (**Solstice** or the **Company**) is pleased to report initial assay results from a **23-hole** (6,030m) **Phase 1** MRE expansion drilling program at its advanced 100%-owned **Nanadie Copper-Gold Project** located northwest of Sandstone in WA's Goldfields.

Phase 1 drilling achieved good sample quality and EOH depths in excess of 300m, with the majority of drillholes completed on 40m spaced intermediate drill traverses (i.e. between existing higher-density drill lines) and drilled to depths beyond previous drilling.

Analytical results have been received for the **first five holes** in the southern part of the deposit (**Figure 1**), which **intersected multiple zones of disseminated chalcopyrite mineralisation** and returned **numerous significant intercepts**, some of which extend to end of hole (EOH).

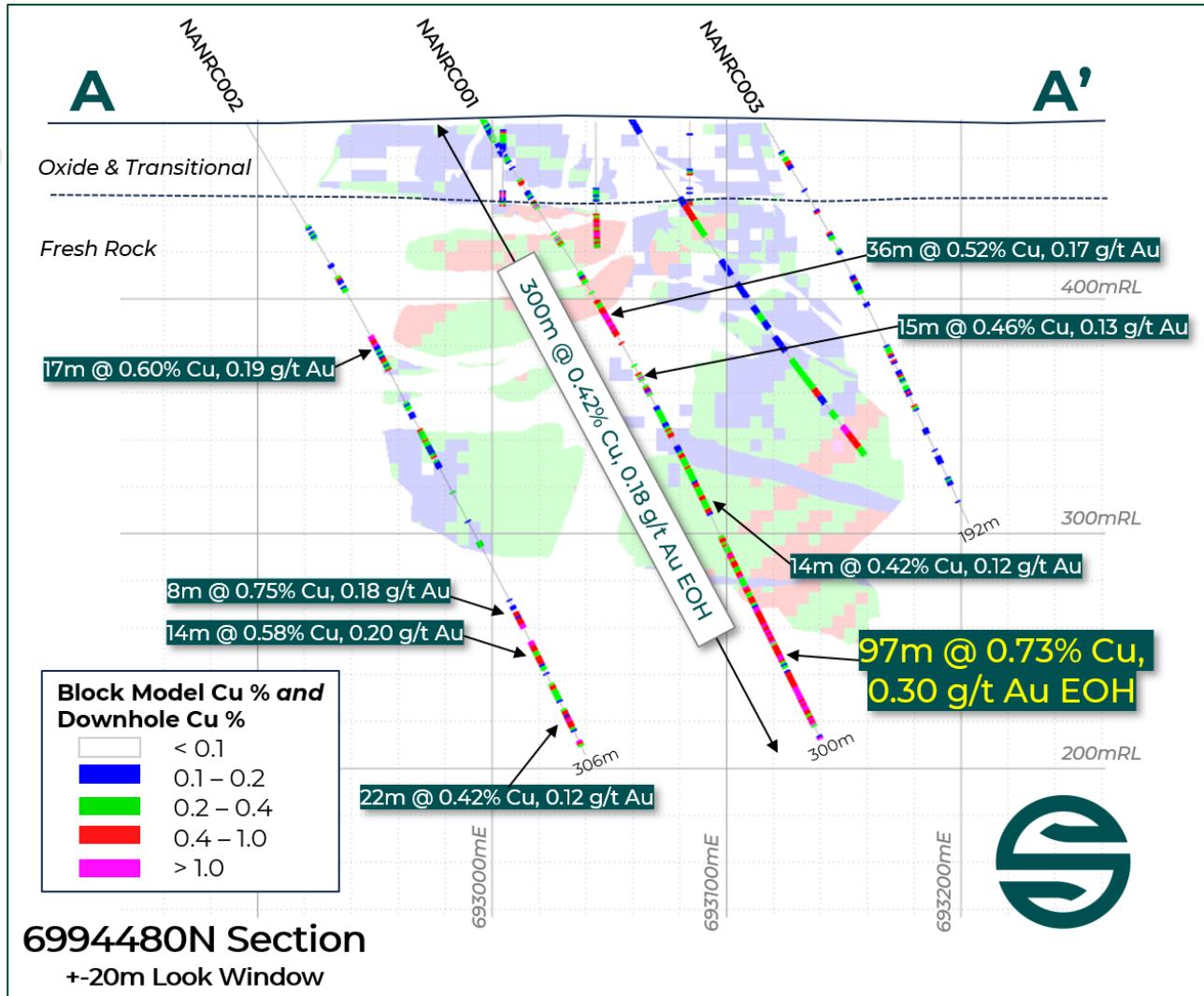
NANRC004, NANRC005 and NANRC006 were drilled on a section in the southern part of the MRE area (B-B' in **Figure 1** and **Figure 2**).



NANRC004 is very strongly mineralised, with significant intercepts outside of the existing MRE including **62m @ 1.55% Cu, 0.66g/t Au** to EOH from 256m. The lower zone in NANRC004 includes **22m @ 2.78% Cu** and **1.25g/t Au** from 261m, which is **the best >1% Cu intercept in the entire Nanadie Project area to-date**, with consistent high grades and individual samples up to **8.1% Cu** and **4.5g/t Au** (Photo 1 and Table 2).

Figure 1. Nanadie Deposit aeromagnetic imagery showing completed (white) Phase 1 RC drill collars, holes reported this release (blue) and downhole copper values in all previous drilling, projected to surface. Cross-sections are labelled A-A' and B-B'.

Shallower results include **10m @ 0.63% Cu, 0.25g/t Au** from 80m, **11m @ 0.48% Cu, 0.16g/t Au** from 104m, **16m @ 0.76% Cu, 0.26g/t Au** from 140m, and **43m @ 0.44% Cu, 0.16g/t Au** from 166m. The entire hole – inclusive of zones of unmineralised waste – returned **300m @ 0.42% Cu, 0.16g/t Au** to EOH.


Figure 2. Nanadie Project cross-section 6994400N showing Phase 1 drillholes NANRC004 to NANRC006, and NANRC025 relative to the 2022 MRE block model and historical drilling.

NANRC005 also returned strong intercepts including **27m @ 0.48% Cu, 0.16g/t Au** from 119m, **11m @ 1.23% Cu, 0.26g/t Au** from 235m, **36m @ 0.58% Cu, 0.17g/t Au** from 262m, and **15m @ 0.86% Cu, 0.17g/t Au** from 304m.

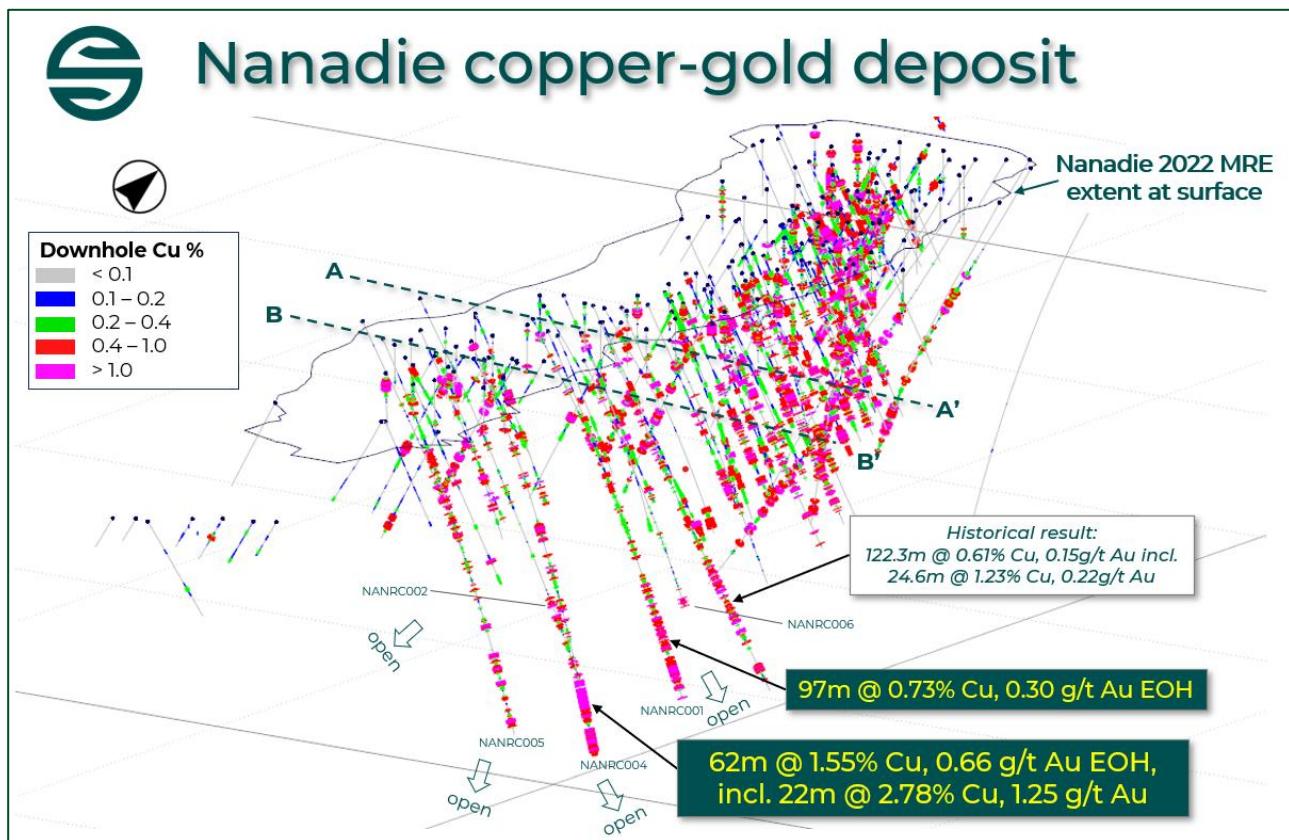
NANRC006 tested the eastern side of the system, intersecting zones of anomalism well to the east of the MRE. Assay results are pending for the lower part of this hole. An additional drillhole NANRC025 was subsequently drilled to further test this area (assay results are also pending) (Figure 2).

NANRC001, NANRC002 and NANRC003 were drilled on a section in the central-southern part of the deposit (A-A' in Figure 1 and Figure 3).

NANRC001 is widely mineralised, with separate zones of significant mineralisation encountered including a continuous interval of strong mineralisation outside of the existing MRE from 203m totalling **97m @ 0.73% Cu, 0.30g/t Au to EOH** and shallower hits of **18m @ 0.87% Cu, 0.26g/t Au** from 89m, **11m @ 0.58% Cu, 0.13g/t Au** from 125m, and **14m @ 0.42% Cu, 0.12g/t Au** from 178m. This zone includes several higher-grade segments such as **20m @ 1.02% Cu, 0.37g/t Au** from 274m. The **entire hole** – inclusive of zones of unmineralised waste – returned **300m @ 0.42% Cu, 0.16g/t Au to EOH** (Figure 3).

Figure 3. Nanadie Project cross-section 6994480N showing Phase 1 drillholes NANRC001 to NANRC003, relative to the 2022 MRE block model and historical drilling.

NANRC002 delivered **17m @ 0.60% Cu, 0.19g/t Au** from 105m, **8m @ 0.75% Cu, 0.18g/t Au** from 238m, **14m @ 0.58% Cu, 0.20g/t Au** from 252m, and **22m @ 0.42% Cu, 0.12g/t Au** from 272m. NANRC003 was drilled to the east of the MRE and demonstrates that mineralisation also extends into flanking rocks (Figure 3).


Importantly, the mineralisation in the lower parts of NANRC001, NANRC002, NANRC004, and NANRC005 **extends well beyond the current MRE block model** and demonstrates that the system is completely open at depth and has excellent potential to build the MRE in this area (Figure 4).

These initial assays, and the geological observations in the remaining Phase 1 drillholes combine to strongly support continued MRE expansion drilling at Nanadie.

The Company looks forward to reporting assay results for the remaining Phase 1 drillholes over the coming weeks. A Phase 2 RC program is now in design to leverage off this work, with drilling to commence as soon as possible.

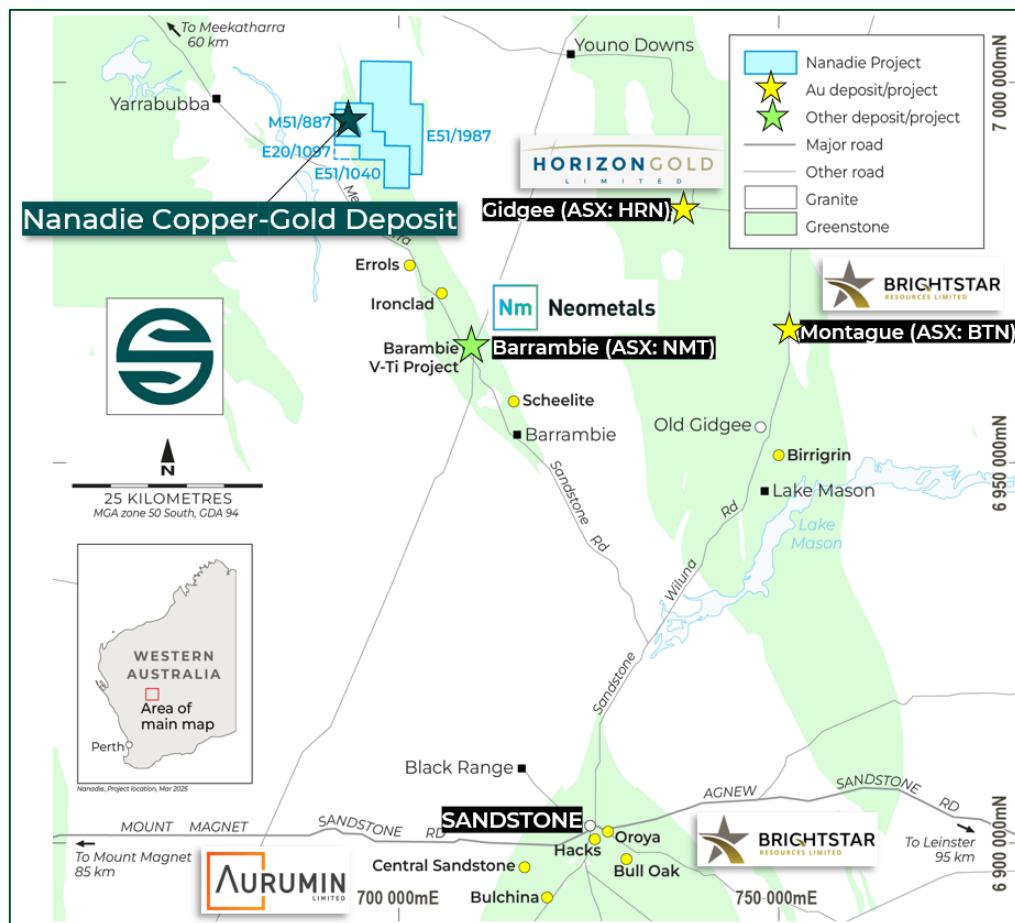
All drilling details are provided in **Table 1** and **Appendix 1**, and all >0.1% Cu mineralised intervals listed in **Table 2**.

Figure 4. Nanadie Project oblique view of all historical drilling showing downhole copper values¹, relative to new EOH intercepts in NANRC001 and NANRC004 (yellow text).

About the Nanadie Copper Gold Deposit

Nanadie is situated within a granted Mining Lease approximately 100km northwest of Sandstone (**Figure 5**) and is supported by an existing Inferred MRE of **40.4 million tonnes at 0.4% copper and 0.1g/t gold**, containing **162,000 tonnes of copper** and **130,000 ounces of gold¹**. The deposit represents a substantial base of strategic metals with strong future demand outlooks.

Historical drilling below a shallow soil and sand cover and weathering profile has defined a wide, near-surface accumulation of disseminated and remobilised sulphide veinlet style chalcopyrite (+/- pyrrhotite and pyrite) mineralisation over 150m wide and 900m long. Approximately 90% of the MRE is fresh rock mineralisation below 40m depth. Significant zones of >1% Cu occur where chalcopyrite vein density increases, and increased sulphide veining is typically accompanied by raised gold values. No deleterious sulphide species are present.


Previous drilling at the deposit rarely extended beyond the host mafic intrusive package, with much of the drilling starting and ending within mineralised host rocks. Geological logging of Solstice's Phase 1 drilling has built a geological picture consistent with that outlined by historical drilling, comprising a widely mineralised steeply dipping host mafic intrusive (gabbro and dolerite) package flanked by amphibolite (that is also mineralised in places), and younger granitoid rocks to the west.

The geology observed is strongly supportive of continued exploration and MRE expansion drilling of the broader Nanadie system which remains open to strike, laterally, and down dip, as well as testing compelling step-out geological and IP targets.

Table 1: Nanadie Well 2012 JORC Mineral Resource Estimate¹.

Resource Category	Material Type	Volume	Tonnes	Cu Grade (%)	Cu Metal (t)	Au Grade (g/t)	Au Metal (oz)	Ag Grade (g/t)	Ag Metal (oz)
Inferred	Oxide	1,300,000	3,500,000	0.44	16,000	0.12	13,000	0.70	74,000
	Transitional	200,000	600,000	0.45	3,000	0.12	2,000	1.50	31,000
	Fresh	11,700,000	36,300,000	0.39	143,000	0.10	115,000	1.10	1,259,000
Total		13,200,000	40,400,000	0.4	162,000	0.10	130,000	1.00	1,364,000

Note: Differences in sum totals of tonnages and grades may occur due to rounding cut-off at 0.25% Cu, reported grades and tonnages for all metals are estimated top-cut grades and tonnages.

Figure 5: Location of the Nanadie Copper-Gold Project tenements NW of Sandstone WA.

Table 1. Phase 1 RC Drillhole details and significant intercepts.

Hole ID	Prospect	Drill Type	Easting	Northing	RL	Dip	Azim	Depth	Significant Intercepts	From
NANRC001	Nanadie	RC	692997	6994478	475	-60	90	300	36m @ 0.52% Cu, 0.17 g/t Au	75
								<i>and</i>	15m @ 0.46% Cu, 0.13 g/t Au	121
								<i>and</i>	14m @ 0.42% Cu, 0.12 g/t Au	178
								<i>and</i>	97m @ 0.73% Cu, 0.30 g/t Au EOH	203
NANRC002	Nanadie	RC	692895	6994480	475	-60	90	306	17m @ 0.60% Cu, 0.19 g/t Au	105
								<i>and</i>	14m @ 0.58% Cu, 0.20 g/t Au	252
								<i>and</i>	22m @ 0.42% Cu, 0.12 g/t Au	272
NANRC003	Nanadie	RC	693116	6994483	475	-60	90	192	>0.1% Cu anomalous	
NANRC004	Nanadie	RC	692999	6994397	475	-60	90	318	10m @ 0.63% Cu, 0.25 g/t Au	80
								<i>and</i>	11m @ 0.48% Cu, 0.16 g/t Au	104
								<i>and</i>	16m @ 0.76% Cu, 0.26 g/t Au	140
								<i>and</i>	43m @ 0.44% Cu, 0.16 g/t Au	166
								<i>and</i>	62m @ 1.55% Cu, 0.66 g/t Au EOH	256
								<i>incl.</i>	22m @ 2.78% Cu and 1.25 g/t Au	261
NANRC005	Nanadie	RC	692900	6994400	475	-60	90	324	27m @ 0.48% Cu, 0.16 g/t Au	119
								<i>and</i>	11m @ 1.23% Cu, 0.26 g/t Au	235
								<i>and</i>	36m @ 0.58% Cu, 0.17 g/t Au	262
								<i>and</i>	15m @ 0.86% Cu, 0.17 g/t Au	304
NANRC006	Nanadie	RC	693099	6994398	475	-60	90	258	more assays pending	
NANRC007	Nanadie	RC	693073	6994314	475	-60	90	252	assays pending	
NANRC008	Nanadie	RC	692898	6994321	475	-60	90	306	assays pending	
NANRC009	Nanadie	RC	693003	6994155	475	-60	90	343	assays pending	
NANRC010	Recce	RC	692402	6997144	475	-60	240	120	assays pending	
NANRC011	Recce	RC	692469	6997183	475	-60	240	120	assays pending	
NANRC012	Recce	RC	692541	6997218	475	-60	240	126	assays pending	
NANRC013	Recce	RC	692609	6997255	475	-60	240	126	assays pending	
NANRC014	Nanadie	RC	692919	6994637	475	-60	90	324	assays pending	
NANRC015	Nanadie	RC	693109	6994635	475	-60	90	222	assays pending	
NANRC016	Nanadie	RC	692906	6994722	475	-60	90	186	assays pending	
NANRC017	Nanadie	RC	692873	6994800	475	-60	90	288	assays pending	
NANRC018	Nanadie	RC	692827	6994878	475	-60	90	306	assays pending	
NANRC019	Nanadie	RC	692828	6994959	475	-60	90	281	assays pending	
NANRC020	Nanadie	RC	692834	6994963	475	-60	90	270	assays pending	
NANRC021	Nanadie	RC	692930	6995121	475	-60	90	204	assays pending	
NANRC022	Nanadie	RC	692827	6995120	475	-60	90	234	assays pending	
NANRC023	Nanadie	RC	692851	6995194	475	-60	90	204	assays pending	
NANRC024	Nanadie	RC	692755	6994959	475	-60	90	306	assays pending	
NANRC025	Nanadie	RC	693200	6994403	475	-60	90	222	assays pending	
NANRC026	Nanadie	RC	692985	6994335	475	-60	90	285	assays pending	
NANRC027	Nanadie	RC	693127	6994155	475	-60	90	99	assays pending	

Intercepts in Table 1 are reported at a minimum 10m interval at >0.4% Cu, on the basis of a 0.2% Cu and 0.1g/t Au lower cut-off and allowing for a maximum 5m internal dilution.

References

1. Refer to ASX: SLS 5 February 2025 'Solstice Secures Strategic Copper Exposure'.

All exploration releases are available on the Company's website at:

<https://solsticeminerals.com.au/investor-centre/asx-announcements>.

This announcement has been authorised for release by the Board.

For further information please contact:
Nick Castleden - CEO & Managing Director
T: +61 (8) 9200 1838

Media inquiries:
Nicholas Read - Read Corporate
T: +61 (8) 9388 1474

Photo 1. Drill chips NANRC004 high-grade copper-gold zone.

Table 2. All samples >0.10% Cu in NANRC001 to NANRC006 (partial hole).

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC001	1	2	1	0.12	0.03	0.14
NANRC001	2	3	1	0.21	0.08	0.17
NANRC001	3	4	1	0.17	0.05	0.17
NANRC001	4	5	1	0.11	0.07	0.16
NANRC001	10	11	1	0.14	0.08	0.37
NANRC001	11	12	1	0.14	0.11	0.26
NANRC001	14	15	1	0.11	0.02	0.30
NANRC001	16	17	1	0.14	0.12	0.36
NANRC001	17	18	1	0.21	0.02	0.42
NANRC001	18	19	1	0.33	0.13	0.91
NANRC001	19	20	1	0.16	0.02	0.46
NANRC001	22	23	1	0.11	0.02	1.66
NANRC001	28	29	1	0.30	0.11	0.89
NANRC001	29	30	1	0.49	0.35	1.53
NANRC001	30	31	1	0.47	0.55	1.23
NANRC001	34	35	1	0.19	0.05	0.31
NANRC001	35	36	1	0.20	0.05	0.40
NANRC001	36	37	1	0.31	0.02	0.71
NANRC001	37	38	1	0.16	0.03	0.92
NANRC001	39	40	1	0.89	0.41	5.28
NANRC001	40	41	1	0.28	0.15	1.70
NANRC001	41	42	1	4.14	1.72	21.33
NANRC001	42	43	1	0.27	0.07	1.27
NANRC001	55	56	1	0.24	0.05	1.38
NANRC001	57	58	1	0.31	0.06	1.11
NANRC001	58	59	1	1.01	0.25	2.74
NANRC001	59	60	1	0.34	0.10	0.97
NANRC001	60	61	1	0.84	0.25	2.77
NANRC001	61	62	1	0.22	0.10	0.56
NANRC001	75	76	1	0.24	0.04	0.58
NANRC001	76	77	1	0.22	0.10	0.56
NANRC001	77	78	1	0.15	0.05	0.36
NANRC001	78	79	1	0.63	0.17	1.96
NANRC001	79	80	1	0.40	0.11	1.31
NANRC001	80	81	1	0.25	0.06	0.85
NANRC001	85	86	1	0.36	0.19	0.69
NANRC001	89	90	1	0.80	0.19	1.62
NANRC001	90	91	1	0.67	0.12	1.30
NANRC001	91	92	1	0.34	0.11	0.71
NANRC001	92	93	1	0.27	0.09	0.55
NANRC001	93	94	1	0.44	0.15	0.87
NANRC001	94	95	1	0.43	0.27	0.87
NANRC001	95	96	1	0.76	0.25	1.31
NANRC001	96	97	1	1.06	0.23	2.02
NANRC001	97	98	1	1.88	0.91	3.12
NANRC001	98	99	1	1.21	0.31	1.97
NANRC001	99	100	1	0.52	0.11	0.86
NANRC001	100	101	1	1.11	0.32	1.94
NANRC001	101	102	1	1.53	0.39	2.56
NANRC001	102	103	1	0.53	0.12	0.91
NANRC001	103	104	1	2.04	0.38	3.35
NANRC001	104	105	1	0.77	0.25	1.28
NANRC001	105	106	1	0.69	0.24	1.09
NANRC001	106	107	1	0.62	0.18	0.95
NANRC001	110	111	1	0.45	0.17	0.79
NANRC001	121	122	1	0.31	0.11	0.72
NANRC001	125	126	1	0.46	0.08	0.84
NANRC001	126	127	1	0.34	0.07	0.59
NANRC001	127	128	1	2.37	0.48	4.19
NANRC001	128	129	1	0.35	0.07	0.63
NANRC001	131	132	1	0.27	0.09	0.48
NANRC001	132	133	1	0.52	0.10	0.87
NANRC001	133	134	1	0.16	0.02	0.28
NANRC001	134	135	1	1.55	0.39	3.38
NANRC001	135	136	1	0.32	0.07	0.57
NANRC001	141	142	1	0.14	0.06	0.24
NANRC001	142	143	1	0.19	0.06	0.31
NANRC001	143	144	1	0.38	0.10	0.69
NANRC001	144	145	1	0.26	0.09	0.48
NANRC001	145	146	1	0.22	0.07	0.41
NANRC001	146	147	1	0.20	0.07	0.39
NANRC001	147	148	1	0.27	0.10	0.50
NANRC001	148	149	1	0.20	0.06	0.36
NANRC001	149	150	1	0.16	0.05	0.37
NANRC001	150	151	1	0.13	0.06	0.27

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC001	151	152	1	0.38	0.13	0.66
NANRC001	152	153	1	0.78	0.16	1.46
NANRC001	153	154	1	0.35	0.09	0.66
NANRC001	154	155	1	0.42	0.14	0.82
NANRC001	155	156	1	0.51	0.15	0.92
NANRC001	160	161	1	0.11	0.03	0.18
NANRC001	161	162	1	0.11	0.03	0.19
NANRC001	162	163	1	0.19	0.05	0.36
NANRC001	163	164	1	0.24	0.06	0.46
NANRC001	164	165	1	0.58	0.13	1.15
NANRC001	165	166	1	0.42	0.11	0.74
NANRC001	166	167	1	0.26	0.08	0.49
NANRC001	167	168	1	0.24	0.09	0.45
NANRC001	168	169	1	0.35	0.14	0.71
NANRC001	169	170	1	0.29	0.11	0.54
NANRC001	170	171	1	0.42	0.23	0.74
NANRC001	171	172	1	0.26	0.08	0.42
NANRC001	172	173	1	0.23	0.08	0.39
NANRC001	173	174	1	0.26	0.09	0.45
NANRC001	174	175	1	0.25	0.09	0.46
NANRC001	175	176	1	0.30	0.09	0.55
NANRC001	176	177	1	0.21	0.07	0.38
NANRC001	177	178	1	0.16	0.06	0.28
NANRC001	178	179	1	0.52	0.10	0.96
NANRC001	179	180	1	0.67	0.13	1.22
NANRC001	180	181	1	0.24	0.06	0.43
NANRC001	181	182	1	0.26	0.06	0.51
NANRC001	182	183	1	0.27	0.09	0.45
NANRC001	183	184	1	0.29	0.11	0.47
NANRC001	184	185	1	0.60	0.15	1.07
NANRC001	185	186	1	0.54	0.15	0.97
NANRC001	186	187	1	0.35	0.11	0.56
NANRC001	187	188	1	0.22	0.09	0.36
NANRC001	188	189	1	0.32	0.13	0.55
NANRC001	189	190	1	0.23	0.08	0.40
NANRC001	190	191	1	0.76	0.17	1.44
NANRC001	191	192	1	0.62	0.21	1.11
NANRC001	192	193	1	0.18	0.07	0.35
NANRC001	203	204	1	0.21	0.02	0.59
NANRC001	204	205	1	0.45	0.04	1.28
NANRC001	205	206	1	0.46	0.08	1.18
NANRC001	206	207	1	0.36	0.09	1.16
NANRC001	207	208	1	0.45	0.15	1.29
NANRC001	208	209	1	0.31	0.14	0.71
NANRC001	209	210	1	0.39	0.12	0.72
NANRC001	210	211	1	0.34	0.18	0.66
NANRC001	211	212	1	0.66	0.14	1.26
NANRC001	212	213	1	1.09	0.08	2.09
NANRC001	213	214	1	0.50	0.13	0.83
NANRC001	214	215	1	0.35	0.13	0.64
NANRC001	215	216	1	0.80	0.18	1.51
NANRC001	216	217	1	0.56	0.16	1.00
NANRC001	217	218	1	0.84	0.11	1.45
NANRC001	218	219	1	0.31	0.11	0.55
NANRC001	219	220	1	0.31	0.12	0.59
NANRC001	220	221	1	0.65	0.22	1.18
NANRC001	221	222	1	0.61	0.21	1.21
NANRC001	222	223	1	1.60	0.34	3.04
NANRC001	223	224	1	0.39	0.14	0.75
NANRC001	224	225	1	0.38	0.13	0.75
NANRC001	225	226	1	0.35	0.15	0.78
NANRC001	226	227	1	0.31	0.12	0.78
NANRC001	227	228	1	1.17	1.15	2.90
NANRC001	228	229	1	0.40	0.15	1.21
NANRC001	229	230	1	0.45	0.21	1.41
NANRC001	230	231	1	0.33	0.12	1.08
NANRC001	231	232	1	0.33	0.15	1.58
NANRC001	232	233	1	0.50	0.13	1.91
NANRC001	233	234	1	0.76	0.27	2.60
NANRC001	234	235	1	0.57	0.29	2.36
NANRC001	235	236	1	0.24	0.05	0.81
NANRC001	236	237	1	0.17	0.06	0.55
NANRC001	237	238	1	1.10	0.52	3.30
NANRC001	238	239	1	1.51	0.65	5.04
NANRC001	239	240	1	0.95	0.39	3.12

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC001	240	241	1	0.63	0.33	1.71
NANRC001	241	242	1	0.97	0.35	2.35
NANRC001	242	243	1	0.97	0.39	2.62
NANRC001	243	244	1	0.52	0.14	1.60
NANRC001	244	245	1	0.53	0.09	1.31
NANRC001	245	246	1	1.92	0.37	4.59
NANRC001	246	247	1	0.68	0.31	2.17
NANRC001	247	248	1	0.54	0.24	1.70
NANRC001	248	249	1	1.48	0.38	4.97
NANRC001	249	250	1	0.81	0.21	2.98
NANRC001	250	251	1	1.49	0.53	5.54
NANRC001	251	252	1	0.54	0.17	2.31
NANRC001	252	253	1	0.67	0.23	2.97
NANRC001	253	254	1	1.01	0.28	3.11
NANRC001	254	255	1	0.24	0.09	1.32
NANRC001	255	256	1	0.85	0.22	2.79
NANRC001	256	257	1	0.45	0.16	1.90
NANRC001	257	258	1	0.72	0.30	2.37
NANRC001	258	259	1	0.64	0.24	1.93
NANRC001	259	260	1	0.79	0.33	2.58
NANRC001	260	261	1	2.81	0.74	8.17
NANRC001	261	262	1	1.91	5.73	5.66
NANRC001	262	263	1	0.81	0.55	2.33
NANRC001	263	264	1	0.35	0.13	0.92
NANRC001	264	265	1	0.19	0.07	0.55
NANRC001	265	266	1	0.30	0.22	0.90
NANRC001	267	268	1	0.15	0.06	0.31
NANRC001	268	269	1	0.91	0.27	1.88
NANRC001	269	270	1	0.89	0.31	1.72
NANRC001	270	271	1	0.47	0.15	0.90
NANRC001	271	272	1	0.87	0.34	1.49
NANRC001	272	273	1	0.81	0.29	1.54
NANRC001	273	274	1	0.92	0.38	1.70
NANRC001	274	275	1	0.93	0.37	1.65
NANRC001	275	276	1	1.10	0.34	1.96
NANRC001	276	277	1	1.08	0.27	1.94
NANRC001	277	278	1	1.03	0.36	1.79
NANRC001	278	279	1	1.67	0.57	2.87
NANRC001	279	280	1	1.09	0.51	2.00
NANRC001	280	281	1	1.03	0.29	1.99
NANRC001	281	282	1	0.94	0.26	1.74
NANRC001	282	283	1	1.49	0.43	2.87
NANRC001	283	284	1	0.48	0.12	0.92
NANRC001	284	285	1	1.23	0.75	2.51
NANRC001	285	286	1	2.19	1.25	4.24
NANRC001	286	287	1	0.64	0.16	1.19
NANRC001	287	288	1	0.55	0.14	0.98
NANRC001	288	289	1	0.27	0.06	0.49
NANRC001	289	290	1	0.61	0.22	1.13
NANRC001	290	291	1	1.03	0.35	1.93
NANRC001	291	292	1	0.99	0.36	1.83
NANRC001	292	293	1	1.04	0.33	2.08
NANRC001	293	294	1	0.30	0.06	0.58
NANRC001	294	295	1	0.19	0.04	0.42
NANRC001	295	300	1	1.61	0.19	3.09
NANRC002	8	12	4	0.15	0.03	0.19
NANRC002	51	52	1	0.26	0.05	0.85
NANRC002	52	53	1	0.12	0.03	0.42
NANRC002	54	55	1	0.18	0.04	0.62
NANRC002	55	56	1	0.24	0.08	0.57
NANRC002	56	57	1	0.18	0.03	0.59
NANRC002	57	58	1	0.25	0.06	0.73
NANRC002	70	71	1	0.16	0.06	0.59
NANRC002	71	72	1	0.11	0.04	0.49
NANRC002	76	77	1	0.33	0.06	1.81
NANRC002	77	78	1	0.44	0.09	2.10
NANRC002	78	79	1	0.16	0.03	0.89
NANRC002	79	80	1	0.19	0.06	1.05
NANRC002	81	82	1	0.11	0.04	0.50
NANRC002	82	83	1	0.27	0.08	1.08
NANRC002	83	84	1	0.26	0.12	1.06
NANRC002	105	106	1	2.28	0.78	13.91
NANRC002	106	107	1	2.21	1.10	10.81
NANRC002	107	108	1	0.42	0.09	1.70
NANRC002	108	109	1	0.44	0.06	2.16
NANRC002	109	110	1	1.23	0.18	5.48
NANRC002	110	111	1	0.18	0.02	0.68
NANRC002	111	112	1	0.15	0.04	0.63

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC002	112	113	1	0.32	0.07	1.33
NANRC002	113	114	1	0.17	0.04	0.94
NANRC002	114	115	1	0.26	0.06	1.15
NANRC002	115	116	1	0.15	0.03	0.77
NANRC002	116	117	1	0.59	0.15	1.91
NANRC002	117	118	1	0.62	0.20	1.88
NANRC002	118	119	1	0.33	0.08	0.95
NANRC002	119	120	1	0.14	0.05	0.34
NANRC002	120	121	1	0.23	0.10	0.47
NANRC002	121	122	1	0.43	0.13	1.27
NANRC002	137	138	1	0.20	0.05	0.86
NANRC002	138	139	1	0.18	0.05	0.60
NANRC002	139	140	1	0.27	0.06	0.91
NANRC002	140	141	1	0.20	0.05	0.82
NANRC002	142	143	1	0.16	0.04	0.96
NANRC002	151	152	1	0.32	0.10	1.38
NANRC002	152	153	1	0.30	0.09	1.12
NANRC002	153	154	1	0.21	0.07	0.78
NANRC002	154	155	1	0.32	0.09	1.41
NANRC002	155	156	1	0.44	0.14	1.68
NANRC002	156	157	1	0.38	0.10	1.80
NANRC002	157	158	1	0.34	0.10	1.85
NANRC002	158	159	1	0.18	0.04	1.23
NANRC002	159	160	1	0.20	0.06	1.44
NANRC002	160	161	1	0.14	0.05	0.90
NANRC002	161	162	1	0.13	0.04	0.90
NANRC002	162	163	1	0.25	0.12	1.74
NANRC002	163	164	1	0.44	0.08	3.74
NANRC002	165	166	1	0.21	0.08	1.33
NANRC002	166	167	1	0.18	0.04	1.04
NANRC002	167	168	1	0.18	0.09	1.40
NANRC002	168	169	1	0.18	0.04	1.18
NANRC002	180	181	1	0.25	0.05	1.27
NANRC002	194	195	1	0.17	0.03	0.60
NANRC002	204	205	1	0.26	0.08	1.57
NANRC002	205	206	1	0.32	0.11	0.86
NANRC002	206	207	1	0.30	0.09	1.12
NANRC002	232	233	1	0.16	0.06	0.28
NANRC002	235	236	1	0.13	0.03	0.35
NANRC002	236	237	1	0.12	0.02	0.42
NANRC002	238	239	1	0.47	0.15	0.93
NANRC002	239	240	1	0.94	0.25	1.66
NANRC002	240	241	1	0.14	0.03	0.27
NANRC002	241	242	1	0.42	0.10	0.63
NANRC002	242	243	1	0.64	0.16	1.02
NANRC002	243	244	1	0.52	0.25	0.84
NANRC002	244	245	1	1.14	0.21	1.81
NANRC002	245	246	1	1.76	0.26	2.88
NANRC002	252	253	1	1.72	0.35	2.60
NANRC002	253	254	1	1.22	0.16	1.71
NANRC002	254	255	1	0.60	0.23	0.88
NANRC002	255	256	1	0.69	0.20	0.99
NANRC002	256	257	1	0.53	0.56	0.95
NANRC002	257	258	1	0.33	0.14	0.46
NANRC002	258	259	1	0.30	0.06	0.43
NANRC002	259	260	1	0.54	0.18	0.82
NANRC002	260	261	1	0.59	0.16	0.85
NANRC002	261	262	1	0.40	0.08	2.45
NANRC002	262	263	1	0.47	0.39	0.68
NANRC002	263	264	1	0.18	0.07	0.23
NANRC002	264	265	1	0.34	0.09	0.50
NANRC002	265	266	1	0.24	0.07	0.33
NANRC002	267	268	1	0.17	0.06	0.26
NANRC002	272	273	1	0.26	0.03	0.48
NANRC002	273	274	1	0.67	0.13	1.07
NANRC002	274	275	1	0.53	0.13	0.84
NANRC002	275	276	1	0.40	0.11	0.64
NANRC002	276	277	1	0.34	0.10	0.54
NANRC002	277	278	1	0.37	0.09	0.59
NANRC002	278	279	1	0.35	0.09	0.55
NANRC002	279	280	1	0.28	0.09	0.49
NANRC002	280	281	1	0.17	0.05	0.26
NANRC002	284	285	1	0.28	0.09	0.45
NANRC002	285	286	1	0.46	0.12	0.77
NANRC002	286	287	1	0.59	0.16	1.02
NANRC002	287	288	1	0.16	0.04	0.26
NANRC002	288	289	1	0.70	0.14	1.19
NANRC002	289	290	1	1.37	0.13	2.14

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC002	290	291	1	0.42	0.15	0.70
NANRC002	291	292	1	0.76	0.60	1.53
NANRC002	292	293	1	0.66	0.17	1.20
NANRC002	293	294	1	0.32	0.08	0.56
NANRC002	294	295	1	0.10	0.02	0.21
NANRC002	299	300	1	1.20	0.51	5.02
NANRC002	300	301	1	0.43	0.14	1.63
NANRC002	301	302	1	0.24	0.10	0.88
NANRC003	14	15	1	0.20	0.06	0.25
NANRC003	15	16	1	0.35	0.15	0.57
NANRC003	17	18	1	0.27	0.11	0.34
NANRC003	18	19	1	0.39	0.17	0.45
NANRC003	19	20	1	0.41	0.21	0.67
NANRC003	20	21	1	0.42	0.17	0.67
NANRC003	21	22	1	0.20	0.12	0.39
NANRC003	22	23	1	0.12	0.07	0.24
NANRC003	33	34	1	0.17	0.15	0.15
NANRC003	43	44	1	0.15	0.08	0.32
NANRC003	44	45	1	0.95	0.28	2.07
NANRC003	54	55	1	0.45	0.18	0.76
NANRC003	55	56	1	0.14	0.03	0.25
NANRC003	56	57	1	0.22	0.06	0.43
NANRC003	57	58	1	0.21	0.07	0.35
NANRC003	62	63	1	0.24	0.09	0.37
NANRC003	63	64	1	0.18	0.05	0.36
NANRC003	64	65	1	0.12	0.04	0.21
NANRC003	75	76	1	0.11	0.03	0.23
NANRC003	76	77	1	0.13	0.03	0.25
NANRC003	77	78	1	0.42	0.10	0.73
NANRC003	78	79	1	0.39	0.10	0.75
NANRC003	79	80	1	0.18	0.03	0.35
NANRC003	80	81	1	0.12	0.02	0.26
NANRC003	81	82	1	0.13	0.03	0.25
NANRC003	82	83	1	0.20	0.05	0.42
NANRC003	83	84	1	0.23	0.05	0.47
NANRC003	88	89	1	0.20	0.04	0.46
NANRC003	89	90	1	0.15	0.02	0.31
NANRC003	108	109	1	0.12	0.03	0.21
NANRC003	109	110	1	0.21	0.04	0.35
NANRC003	110	111	1	0.22	0.11	0.45
NANRC003	111	112	1	0.26	0.06	0.57
NANRC003	112	113	1	0.56	0.11	1.29
NANRC003	113	114	1	0.12	0.02	0.26
NANRC003	115	116	1	0.57	0.06	1.51
NANRC003	116	117	1	0.19	0.03	0.49
NANRC003	120	121	1	0.15	0.04	0.38
NANRC003	121	122	1	0.12	0.03	0.29
NANRC003	122	123	1	0.55	0.30	1.21
NANRC003	123	124	1	0.38	0.08	0.93
NANRC003	124	125	1	0.10	0.03	0.49
NANRC003	125	126	1	0.22	0.11	0.71
NANRC003	127	128	1	0.26	0.05	0.79
NANRC003	128	129	1	0.26	0.05	1.29
NANRC003	129	130	1	0.14	0.02	0.41
NANRC003	130	131	1	0.66	0.12	1.28
NANRC003	131	132	1	0.15	0.02	0.34
NANRC003	136	137	1	0.41	0.06	3.93
NANRC003	137	138	1	0.29	0.05	3.55
NANRC003	138	139	1	0.10	0.02	2.48
NANRC003	147	148	1	0.13	0.07	2.61
NANRC003	148	149	1	0.10	0.04	2.05
NANRC003	149	150	1	0.14	0.05	2.14
NANRC003	157	158	1	0.14	0.01	0.99
NANRC003	160	161	1	0.13	0.02	0.80
NANRC003	161	162	1	0.19	0.03	0.90
NANRC003	162	163	1	0.11	0.02	0.43
NANRC003	163	164	1	0.18	0.03	0.48
NANRC003	170	171	1	0.19	0.07	0.39
NANRC003	171	172	1	0.20	0.06	0.42
NANRC003	172	173	1	0.15	0.04	0.29
NANRC003	173	174	1	0.13	0.04	0.31
NANRC003	181	182	1	0.16	0.07	0.53
NANRC004	2	3	1	0.54	0.10	0.40
NANRC004	3	4	1	1.72	0.53	0.25
NANRC004	4	5	1	4.01	1.41	0.27
NANRC004	5	6	1	1.42	0.76	0.65
NANRC004	6	7	1	0.54	0.10	0.58
NANRC004	21	22	1	0.10	0.04	0.19

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC004	24	25	1	0.41	0.21	0.27
NANRC004	25	26	1	0.30	0.11	0.49
NANRC004	26	27	1	0.58	0.18	0.99
NANRC004	30	31	1	0.15	0.11	0.10
NANRC004	31	32	1	0.82	0.29	2.11
NANRC004	32	33	1	0.51	0.13	1.75
NANRC004	35	36	1	0.11	0.03	0.34
NANRC004	36	37	1	0.21	0.08	0.50
NANRC004	37	38	1	0.12	0.05	0.28
NANRC004	38	39	1	0.17	0.05	0.35
NANRC004	39	40	1	0.16	0.04	0.38
NANRC004	46	47	1	0.15	0.05	0.31
NANRC004	48	49	1	0.16	0.07	0.35
NANRC004	49	50	1	0.10	0.03	0.23
NANRC004	52	53	1	0.34	0.13	0.88
NANRC004	53	54	1	0.28	0.19	0.97
NANRC004	70	71	1	0.74	0.17	2.55
NANRC004	71	72	1	0.56	0.18	1.85
NANRC004	79	80	1	0.20	0.06	0.57
NANRC004	80	81	1	0.48	0.13	1.18
NANRC004	81	82	1	0.25	0.08	0.48
NANRC004	82	83	1	0.27	0.10	0.52
NANRC004	83	84	1	2.10	1.15	6.33
NANRC004	84	85	1	0.57	0.15	1.83
NANRC004	85	86	1	0.71	0.12	2.32
NANRC004	86	87	1	0.43	0.11	1.14
NANRC004	87	88	1	0.38	0.10	1.32
NANRC004	88	89	1	0.37	0.09	1.03
NANRC004	89	90	1	0.70	0.41	2.29
NANRC004	104	105	1	0.85	0.22	2.82
NANRC004	105	106	1	0.29	0.09	0.94
NANRC004	106	107	1	1.38	0.39	4.75
NANRC004	107	108	1	0.34	0.11	0.74
NANRC004	108	109	1	0.13	0.04	0.36
NANRC004	110	111	1	0.23	0.09	0.67
NANRC004	111	112	1	0.31	0.12	0.84
NANRC004	112	113	1	0.75	0.25	2.02
NANRC004	113	114	1	0.40	0.13	0.93
NANRC004	114	115	1	0.63	0.19	1.50
NANRC004	139	140	1	0.13	0.04	0.23
NANRC004	140	141	1	0.28	0.35	0.56
NANRC004	141	142	1	0.25	0.10	0.45
NANRC004	142	143	1	0.47	0.12	0.81
NANRC004	143	144	1	0.73	0.31	1.41
NANRC004	144	145	1	0.82	0.31	1.91
NANRC004	145	146	1	1.36	0.52	2.70
NANRC004	146	147	1	0.85	0.17	1.59
NANRC004	147	148	1	1.55	0.52	2.86
NANRC004	148	149	1	1.14	0.37	2.06
NANRC004	149	150	1	0.67	0.27	1.22
NANRC004	150	151	1	0.92	0.25	1.61
NANRC004	151	152	1	0.20	0.07	0.35
NANRC004	152	153	1	0.39	0.18	0.68
NANRC004	153	154	1	0.59	0.14	1.08
NANRC004	154	155	1	1.01	0.23	1.95
NANRC004	155	156	1	0.93	0.23	1.77
NANRC004	156	157	1	0.16	0.05	0.29
NANRC004	166	167	1	0.93	0.26	1.52
NANRC004	167	168	1	0.52	0.19	0.91
NANRC004	168	169	1	0.20	0.07	0.35
NANRC004	172	173	1	0.28	0.11	0.46
NANRC004	173	174	1	0.20	0.10	0.37
NANRC004	174	175	1	0.32	0.11	0.50
NANRC004	175	176	1	1.63	0.29	2.88
NANRC004	176	177	1	0.36	0.12	0.66
NANRC004	177	178	1	0.40	0.14	0.69
NANRC004	178	179	1	1.81	1.09	3.19
NANRC004	179	180	1	0.80	0.19	1.36
NANRC004	180	181	1	0.28	0.09	0.44
NANRC004	181	182	1	0.19	0.05	0.30
NANRC004	182	183	1	0.31	0.16	0.61
NANRC004	183	184	1	0.40	0.09	0.74
NANRC004	184	185	1	0.69	0.19	1.23
NANRC004	185	186	1	0.25	0.08	0.41
NANRC004	186	187	1	0.26	0.09	0.43
NANRC004	187	188	1	0.39	0.12	0.78
NANRC004	188	189	1	0.21	0.07	0.43
NANRC004	189	190	1	0.25	0.09	0.41

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC004	190	191	1	0.38	0.12	0.60
NANRC004	191	192	1	0.37	0.13	0.75
NANRC004	193	194	1	0.26	0.15	0.52
NANRC004	194	195	1	0.16	0.10	0.28
NANRC004	195	196	1	0.13	0.05	0.20
NANRC004	196	197	1	0.22	0.10	0.37
NANRC004	197	198	1	0.12	0.06	0.21
NANRC004	198	199	1	0.24	0.08	0.50
NANRC004	199	200	1	0.10	0.06	0.20
NANRC004	200	201	1	0.53	0.16	1.07
NANRC004	201	202	1	0.61	0.23	0.95
NANRC004	202	203	1	0.20	0.06	0.30
NANRC004	203	204	1	0.23	0.09	0.40
NANRC004	204	205	1	0.35	0.13	0.53
NANRC004	205	206	1	0.80	0.21	1.41
NANRC004	206	207	1	0.68	0.20	0.99
NANRC004	207	208	1	0.54	0.28	0.81
NANRC004	208	209	1	1.97	0.78	3.32
NANRC004	209	210	1	0.17	0.06	0.28
NANRC004	215	216	1	1.48	0.45	3.56
NANRC004	216	217	1	0.60	0.24	1.45
NANRC004	217	218	1	0.19	0.05	0.58
NANRC004	219	220	1	0.11	0.02	0.49
NANRC004	222	223	1	0.28	0.11	0.68
NANRC004	223	224	1	0.21	0.12	0.55
NANRC004	224	225	1	0.21	0.05	0.56
NANRC004	225	226	1	0.48	0.03	1.15
NANRC004	226	227	1	0.13	0.01	0.33
NANRC004	228	229	1	0.44	0.18	1.14
NANRC004	230	231	1	0.38	0.08	0.82
NANRC004	231	232	1	0.11	0.02	0.23
NANRC004	232	233	1	0.26	0.06	0.58
NANRC004	243	244	1	0.10	0.03	0.22
NANRC004	246	247	1	0.11	0.03	0.31
NANRC004	255	256	1	0.19	0.04	0.39
NANRC004	256	257	1	0.56	0.16	0.99
NANRC004	257	258	1	0.14	0.07	0.25
NANRC004	260	261	1	0.26	0.02	0.43
NANRC004	261	262	1	2.79	0.46	3.68
NANRC004	262	263	1	3.96	2.43	5.24
NANRC004	263	264	1	4.69	1.25	6.70
NANRC004	264	265	1	1.15	0.23	1.63
NANRC004	265	266	1	1.07	0.19	1.50
NANRC004	266	267	1	0.27	0.08	0.34
NANRC004	267	268	1	3.09	0.51	3.98
NANRC004	268	269	1	2.76	0.37	3.54
NANRC004	269	270	1	2.39	0.34	2.95
NANRC004	270	271	1	5.82	0.81	7.26
NANRC004	271	272	1	4.22	4.45	5.55
NANRC004	272	273	1	2.93	2.99	3.66
NANRC004	273	274	1	2.64	0.63	3.28
NANRC004	274	275	1	2.88	0.94	3.74
NANRC004	275	276	1	1.00	0.19	1.29
NANRC004	276	277	1	2.41	0.34	3.15
NANRC004	277	278	1	3.61	2.04	4.51
NANRC004	278	279	1	8.11	4.50	10.71
NANRC004	279	280	1	1.23	3.68	1.62
NANRC004	280	281	1	1.57	0.34	2.01
NANRC004	281	282	1	1.38	0.54	1.76
NANRC004	282	283	1	1.15	0.26	1.57
NANRC004	283	284	1	0.82	0.27	1.11
NANRC004	284	285	1	0.64	0.20	0.81
NANRC004	285	286	1	0.81	0.22	1.06
NANRC004	286	287	1	0.81	0.20	1.08
NANRC004	287	288	1	1.32	0.28	1.95
NANRC004	288	289	1	3.10	0.53	4.05
NANRC004	289	290	1	0.58	0.19	0.73
NANRC004	290	291	1	0.68	0.15	0.86
NANRC004	291	292	1	0.66	0.16	0.84
NANRC004	292	293	1	0.58	0.18	0.78
NANRC004	293	294	1	0.36	0.07	0.45
NANRC004	294	295	1	0.33	0.04	0.39
NANRC004	295	296	1	0.15	0.02	0.18
NANRC004	297	298	1	1.71	0.20	2.34
NANRC004	298	299	1	1.47	1.49	2.11
NANRC004	299	300	1	0.97	0.84	1.39
NANRC004	300	301	1	1.76	0.18	2.33
NANRC004	301	302	1	1.93	0.35	2.56

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC004	302	303	1	0.92	0.40	1.30
NANRC004	303	304	1	1.18	0.68	1.63
NANRC004	304	305	1	0.93	0.33	1.31
NANRC004	305	306	1	1.22	0.21	1.70
NANRC004	306	307	1	1.82	0.49	2.52
NANRC004	307	308	1	1.17	0.53	1.60
NANRC004	308	309	1	1.12	0.29	1.52
NANRC004	309	310	1	0.77	0.22	1.05
NANRC004	310	311	1	0.72	0.22	1.01
NANRC004	311	312	1	0.90	0.17	1.24
NANRC004	312	313	1	1.02	0.32	1.41
NANRC004	313	314	1	1.21	0.66	1.72
NANRC004	314	315	1	0.99	0.31	1.37
NANRC004	315	316	1	0.59	0.15	0.78
NANRC004	316	317	1	0.50	0.19	0.72
NANRC004	317	318	1	0.44	0.18	0.62
NANRC005	18	19	1	0.10	0.06	0.17
NANRC005	19	20	1	0.12	0.06	0.23
NANRC005	49	50	1	0.21	0.05	0.61
NANRC005	50	51	1	0.10	0.03	0.31
NANRC005	66	67	1	0.40	0.14	1.18
NANRC005	67	68	1	0.42	0.12	1.22
NANRC005	68	69	1	0.26	0.09	0.79
NANRC005	72	73	1	0.16	0.03	0.39
NANRC005	76	77	1	0.17	0.05	0.44
NANRC005	77	78	1	0.15	0.03	0.40
NANRC005	80	81	1	0.14	0.04	0.41
NANRC005	94	95	1	0.10	0.01	0.40
NANRC005	95	96	1	0.17	0.01	1.36
NANRC005	118	119	1	0.12	0.01	0.46
NANRC005	119	120	1	0.20	X	0.76
NANRC005	121	122	1	0.10	0.01	0.39
NANRC005	124	125	1	0.74	0.32	3.02
NANRC005	129	130	1	0.40	0.11	1.30
NANRC005	130	131	1	0.38	0.12	1.17
NANRC005	131	132	1	0.39	0.12	1.21
NANRC005	132	133	1	2.12	0.45	6.90
NANRC005	133	134	1	1.11	0.19	3.83
NANRC005	134	135	1	0.53	0.15	1.31
NANRC005	135	136	1	0.13	0.03	0.29
NANRC005	136	137	1	0.21	0.05	0.45
NANRC005	137	138	1	0.18	0.17	0.38
NANRC005	138	139	1	0.31	0.08	1.16
NANRC005	139	140	1	0.11	0.02	0.37
NANRC005	140	141	1	0.50	0.08	1.74
NANRC005	141	142	1	1.48	0.32	5.14
NANRC005	142	143	1	0.95	0.24	3.25
NANRC005	143	144	1	1.03	0.14	3.36
NANRC005	144	145	1	1.03	0.72	3.40
NANRC005	145	146	1	0.76	0.20	2.56
NANRC005	154	155	1	0.69	0.16	2.22
NANRC005	159	160	1	0.31	0.17	0.76
NANRC005	160	161	1	0.45	0.15	1.16
NANRC005	161	162	1	0.54	0.15	1.37
NANRC005	162	163	1	1.08	0.35	3.02
NANRC005	165	166	1	0.20	0.08	0.82
NANRC005	166	167	1	0.13	0.03	0.74
NANRC005	167	168	1	0.20	0.06	0.90
NANRC005	168	169	1	0.30	0.15	1.21
NANRC005	169	170	1	0.45	0.10	2.05
NANRC005	198	199	1	0.12	0.03	0.88
NANRC005	208	209	1	0.18	0.06	0.59
NANRC005	213	214	1	0.34	0.08	1.42
NANRC005	214	215	1	0.26	0.05	1.08
NANRC005	215	216	1	0.17	0.06	1.00
NANRC005	218	219	1	0.16	0.07	0.27
NANRC005	219	220	1	0.35	0.09	0.95
NANRC005	220	221	1	0.67	0.19	1.45
NANRC005	221	222	1	0.13	0.04	0.24
NANRC005	222	223	1	0.18	0.05	0.35
NANRC005	223	224	1	0.12	0.05	0.23
NANRC005	227	228	1	0.37	0.10	1.05
NANRC005	228	229	1	0.14	0.03	0.42
NANRC005	235	236	1	0.36	0.07	0.80
NANRC005	236	237	1	0.39	0.08	0.82
NANRC005	237	238	1	0.47	0.10	0.98
NANRC005	238	239	1	0.26	0.07	0.52
NANRC005	239	240	1	0.32	0.08	0.64

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC005	240	241	1	3.65	1.35	7.87
NANRC005	241	242	1	1.07	0.41	2.37
NANRC005	242	243	1	0.74	0.15	1.58
NANRC005	243	244	1	5.62	0.44	12.25
NANRC005	244	245	1	0.33	0.04	0.74
NANRC005	245	246	1	0.32	0.06	0.67
NANRC005	259	260	1	0.11	0.05	0.13
NANRC005	262	263	1	1.02	0.12	1.29
NANRC005	263	264	1	1.02	0.23	1.33
NANRC005	264	265	1	0.84	0.26	1.12
NANRC005	265	266	1	1.12	0.86	1.47
NANRC005	266	267	1	0.39	0.12	0.54
NANRC005	267	268	1	0.49	0.12	0.65
NANRC005	268	269	1	0.83	0.14	1.14
NANRC005	269	270	1	0.27	0.08	0.39
NANRC005	270	271	1	0.36	0.08	0.54
NANRC005	271	272	1	0.53	0.16	0.79
NANRC005	272	273	1	0.72	0.44	0.93
NANRC005	273	274	1	1.40	1.01	2.17
NANRC005	274	275	1	1.30	0.25	1.95
NANRC005	275	276	1	0.64	0.16	0.90
NANRC005	276	277	1	0.69	0.25	0.92
NANRC005	277	278	1	0.33	0.10	0.44
NANRC005	280	281	1	0.21	0.07	0.28
NANRC005	281	282	1	0.30	0.08	0.49
NANRC005	283	284	1	1.98	0.13	3.16
NANRC005	284	285	1	1.05	0.24	1.57
NANRC005	285	286	1	1.26	0.33	1.81
NANRC005	286	287	1	0.66	0.12	0.94
NANRC005	287	288	1	0.34	0.07	0.47
NANRC005	288	289	1	0.37	0.08	0.57
NANRC005	289	290	1	0.38	0.10	0.62
NANRC005	290	291	1	0.14	0.08	0.27
NANRC005	294	295	1	0.36	0.10	0.63
NANRC005	295	296	1	0.53	0.14	0.88
NANRC005	296	297	1	0.56	0.13	1.10
NANRC005	297	298	1	0.40	0.10	0.60
NANRC005	300	301	1	0.19	0.04	0.29
NANRC005	304	305	1	0.40	0.11	0.57
NANRC005	305	306	1	0.56	0.17	0.93
NANRC005	306	307	1	0.16	0.05	0.26
NANRC005	307	308	1	0.25	0.09	0.44
NANRC005	308	309	1	0.29	0.12	0.50
NANRC005	309	310	1	0.41	0.11	0.87
NANRC005	310	311	1	0.31	0.07	0.47
NANRC005	311	312	1	0.46	0.09	0.78
NANRC005	312	313	1	5.20	0.85	9.87
NANRC005	313	314	1	1.53	0.23	2.88
NANRC005	314	315	1	1.19	0.18	2.07
NANRC005	315	316	1	0.56	0.13	1.02
NANRC005	316	317	1	0.60	0.12	1.02
NANRC005	317	318	1	0.77	0.18	1.35
NANRC005	318	319	1	0.21	0.04	0.35
NANRC006	29	30	1	0.24	0.06	0.36

HOLEID	FROM (m)	TO (m)	INTERVAL (m)	Cu (%)	Au (g/t)	Ag (g/t)
NANRC006	30	31	1	0.50	0.13	0.26
NANRC006	31	32	1	0.21	0.06	0.26
NANRC006	32	33	1	1.57	0.34	1.44
NANRC006	41	42	1	0.61	0.19	1.30
NANRC006	42	43	1	0.77	0.31	1.67
NANRC006	43	44	1	0.38	0.14	0.81
NANRC006	44	45	1	0.38	0.17	0.82
NANRC006	48	49	1	0.29	0.10	1.52
NANRC006	49	50	1	0.15	0.05	0.33
NANRC006	50	51	1	0.13	0.04	0.40
NANRC006	55	56	1	0.12	0.04	0.22
NANRC006	56	57	1	0.31	0.11	0.59
NANRC006	57	58	1	0.20	0.06	0.45
NANRC006	65	66	1	0.15	0.05	0.29
NANRC006	66	67	1	0.16	0.06	0.40
NANRC006	68	69	1	1.01	0.29	1.98
NANRC006	69	70	1	0.45	0.13	0.88
NANRC006	70	71	1	0.21	0.08	0.40
NANRC006	71	72	1	0.23	0.09	0.37
NANRC006	72	73	1	0.35	0.13	0.63
NANRC006	73	74	1	0.33	0.21	0.65
NANRC006	117	118	1	0.27	0.21	2.54
NANRC006	121	122	1	0.29	0.05	1.31
NANRC006	122	123	1	0.17	0.03	0.85
NANRC006	129	130	1	0.22	0.07	0.47
NANRC006	137	138	1	0.40	0.13	0.70
NANRC006	138	139	1	0.54	0.18	1.00
NANRC006	139	140	1	0.11	0.04	0.21
NANRC006	141	142	1	0.40	0.12	0.66
NANRC006	144	145	1	0.12	0.03	0.22
NANRC006	146	147	1	0.32	0.07	0.66
NANRC006	149	150	1	0.40	0.14	0.68
NANRC006	150	151	1	0.14	0.03	0.21
NANRC006	151	152	1	0.19	0.06	0.32
NANRC006	152	153	1	0.20	0.06	0.29
NANRC006	153	154	1	0.10	0.02	0.17
NANRC006	164	165	1	0.14	0.04	0.22
NANRC006	167	168	1	0.11	0.02	0.20
NANRC006	168	169	1	0.16	0.04	0.39
NANRC006	169	170	1	0.12	0.03	0.22
NANRC006	173	174	1	0.30	0.10	0.53
NANRC006	174	175	1	0.13	0.04	0.26
NANRC006	176	177	1	0.12	0.03	0.19
NANRC006	178	179	1	0.13	0.02	0.17
NANRC006	179	180	1	0.22	0.05	0.31
NANRC006	181	182	1	0.41	0.09	0.71
NANRC006	188	189	1	2.28	0.51	4.89
NANRC006	189	190	1	0.41	0.11	0.82
NANRC006	190	191	1	0.50	0.14	1.04
NANRC006	191	192	1	1.02	0.43	2.25
NANRC006	192	193	1	0.47	0.11	1.09
NANRC006	193	194	1	0.15	0.10	0.32
NANRC006	194	195	1	0.70	0.20	1.52
NANRC006	Cont.			TBA		

Forward-Looking Statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (**Forward-Looking Statements**). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward-Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as

are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Solstice that any Forward-Looking Statement will be achieved or proved to be correct. Further, Solstice disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

Compliance Statement - New Results

The information in this release that relates to new Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr Nick Castleden, a competent person who is a Member of the Australian Institute of Geoscientists. Mr Castleden is an employee of Solstice Minerals Limited. Mr Castleden has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Castleden consents to the inclusion in this release of the new Exploration Results in the form and context in which they appear.

Compliance Statement - Previously Reported Results

The information in this announcement that relates to previously reported Exploration Results and Estimates of Mineral Resources is extracted from the ASX announcements as noted in the 'References' and referenced in the text (**Original Announcement**). The Company confirms that it is not aware of any new information or data that materially affects the information included in the Original Announcement and, in the case of Estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the Original Announcement continue to apply and have not materially changed. Solstice confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the Original Announcement.

Appendix 1: Nanadie RC Drilling – Table 1 (JORC Code, 2012)

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i>	For reverse circulation (RC) drilling, every 1m sample was cone split into clean pre-numbered calico bags from the rig-mounted cyclone/splitter and remaining sample ground-dumped mostly in rows of 30. Each 5m composite sample was collected from the relevant individual 1m sample piles with a spear and placed into a clean hand-written calico sample bag. For composite samples, proportional amounts of material were collected from each sample pile to create the composite. All sampling was undertaken by Solstice staff.
	<i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i>	A QAQC sample is inserted at a rate of 1 in 25 primary samples (Certified Reference Material or Blank QAQC sample), also field Duplicates were inserted at a rate of 1 in 25 Primary samples. Appropriate certified reference materials (CRM) were supplied by OREAS Pty Ltd and Blank material was commercially purchased clean builder's sand. Analysis of QAQC samples inserted by the Company is undertaken to monitor sample representivity and independent laboratory conditions. The CRMs used by the Company are grade and matrix matched as close as possible to interpreted geology. The laboratory (Intertek) also performed its own internal checks including insertion of pulp duplicate, standard, and repeat samples as required. Duplicate samples for RC drilling were collected at the drill site and inserted into the sample stream at a frequency of 1 in 25 Primary samples. The Duplicates were

Criteria	JORC Code explanation	Commentary
	<p><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information</i></p>	<p>sampled directly at the drill rig along with the Primary samples, with the Duplicate samples split via cone splitter.</p> <p>For RC drilling 1m samples were collected in a clean pre-numbered calico bag via a rig-mounted cyclone/splitter with the bulk sample collected into a plastic bucket and laid out on a cleared area of ground in rows of 30 samples. Each 1m split sample is approximately 2-3kg and representative of the metre drilled. All samples are weighed as-received by the laboratory.</p> <p>Each 5m composite sample is collected from each 1m sample pile over the relevant interval using a spear and proportional amounts placed into a hand-written calico sample bag to make up an approximate 2-3kg sample.</p>
Drilling techniques	<i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i>	The RC drilling was undertaken by an independent contractor, Raglan Drilling, using a custom-built Schramm Rotadrill (T685W), truck mounted drill rig. The drill string comprised 6m rods with a standard 5.5inch face sampling RC bit. Each hole was drilled to or near its planned depth. Each drillhole was supervised by a Solstice geologist.
Drill sample recovery	<i>Method of recording and assessing core and chip sample recoveries and results assessed.</i>	The RC sample recoveries for each metre were visually assessed by the geologist on site and estimated to be within industry acceptable standards. Moisture content (wet, dry, moist) was recorded in drill logs.
	<i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i>	Ground water was encountered in every hole but samples are predominantly dry. The RC drill rig utilised an onboard 350psi compressor and 1150cfm air pack, and a separate auxiliary 350psi/1150cfm booster air pack and compressor which typically provided dry and representative samples with good recovery.
	<i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i>	No relationship appears to exist between recovery and grade and no bias is noted between assay grades and sample mass.
Logging	<i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i>	Geological logging was undertaken by a Solstice geologist during drilling and is considered appropriately detailed for this phase of exploration. Geotechnical logging has not been undertaken at this stage.
	<i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i>	Logging of RC drill samples included lithology, alteration, sulphide mineralisation and structural fabric, and is considered qualitative in nature. Transported cover and regolith types were also defined. The logging is considered appropriate for this phase of exploration.
	<i>The total length and percentage of the relevant intersections logged.</i>	The RC drillhole samples are logged 100% from surface to the end of hole (EOH) in detail with chip samples collected for every metre in chip trays for archive and future reference. Geological events such as bottom of transported cover, base of complete oxidation, water table, and top of fresh rock are also recorded. The logging is considered appropriate to this phase of exploration.

Criteria	JORC Code explanation	Commentary
<i>Sub-sampling techniques and sample preparation</i>	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>	No core drilling was completed.
	<i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i>	The composite RC drill samples were spear sampled from piles laid out on the ground at the drill site. The majority of samples were collected dry, with very few collected wet or moist. One metre resamples are from samples collected directly from the rig-mounted cyclone/splitter and laid out with the relevant ground dumped sample. The one metre samples are collected in pre-numbered clean calico bags.
	<i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i>	For RC drilling, one metre resamples are from samples collected directly from the rig-mounted cyclone/splitter and laid out with the relevant ground dumped sample. The samples were sent to independent laboratory, Intertek, where samples were oven dried at 100C, crushed and pulverised to 85% of total sample passing 75µm, using the SP03 or SP05 methods. The nature and quality of the sample preparation are considered appropriate.
		5m composite samples were collected from unmineralised granite where identified by the geologist. Each sample was collected with a spear. These are standard industry practices for this phase of exploration.
	<i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i>	On site, field Duplicate samples are taken at a rate of 1 in 25 Primary samples based on the Company's QAQC procedures, which requires either a CRM, Blank or Duplicate be inserted in the sample stream at least every 25th Primary sample. The CRMs used by the Company are sourced from Geostats Pty Ltd and Oreast™ and are of copper and gold grade and matrix that matched as close as possible to the interpreted geology. At the laboratory stage, internal QAQC pulp duplicates are taken at a rate of 1 in 28 by Intertek. Appropriate CRM material and Control Blanks are also inserted and assessed by Intertek for internal laboratory QAQC. The QAQC Intertek inserted sample data are evaluated by Solstice's independent database manager, Core Geoscience Pty Ltd.
	<i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i>	Field Duplicate samples were collected during RC drilling and inserted into the sample batches to check and ensure representivity of sample methods. Pulp repeats and element repeats for all sample types are undertaken by Intertek at the laboratory. The QAQC field inserted sample data are evaluated by Solstice's independent database manager, Core Geoscience Pty Ltd.
<i>Quality of assay data and laboratory tests</i>	<i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i>	Sample mass for RC drilling of nominally 1.5-3kg for each sample is considered appropriate for the rock type and style of mineralisation.
	<i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i>	Laboratory assaying for all drill sample types is undertaken by Intertek, an ISO 9001 certified laboratory. All samples were subjected to a Fire Assay on a 50g charge with an ICP-OES finish with 5ppb detection limit for gold. Additionally, copper and silver were assayed using a Four Acid digest on a 25g charge with an ICP-MS/OES finish as appropriate.
	<i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i>	No geophysical tools were used in the field in determining any element analysis.
	<i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of</i>	During drilling, field Duplicates are taken on site for samples using the same method as the Primary sample (i.e. spear/cyclone) from piles laid out on the ground or from the cyclone directly as appropriate. At the laboratory Intertek also performed internal checks including insertion of pulp duplicates, CRMs, control blanks and repeats as required.

Criteria	JORC Code explanation	Commentary
	<i>accuracy (ie lack of bias) and precision have been established.</i>	Internal screen checks are also performed to ensure the mass percent passing 75µm is consistently high. The Competent Person is satisfied acceptable levels of accuracy and precision have been established.
<i>Verification of sampling and assaying</i>	<i>The verification of significant intersections by either independent or alternative company personnel.</i>	Significant intersections being reported have been checked by experienced, senior Solstice geologists.
	<i>The use of twinned holes.</i>	No twinning of holes was undertaken.
	<i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i>	The primary lithological data for RC drilling is collected by a Company geologist in the field recording it directly into a database logging sheet on a Toughbook laptop. Data is entered into pre-defined MS Excel based log sheets following the Company's documented internal geological protocols and procedures manual. Validation measures for the field data are built into the MS Excel based log sheets. Sample logs are recorded on paper sheets in the field. Sample data is entered into the database from the sample sheets and provided to the database manager for alignment of assay data. Field data is backed-up each day with logs stored in the Company database hosted on a server. Field data is first verified by senior Company geologists and then sent electronically to Solstice's independent data management company, Core Geoscience Pty Ltd, for incorporation into a Master Database. Core Geoscience conducts several phases of field log data validation to ensure consistency and completeness. The subsequent validated and compiled dataset is exported into appropriate formats (MS Access and Micromine™) for use by Company geologists. Laboratory data is provided electronically to the Company and Core Geoscience Pty Ltd and is validated and imported by Core Geoscience into the Master Database. Data is supplied by Intertek as ASCII text file spreadsheets and PDF certificates signed by the relevant laboratory manager.
	<i>Discuss any adjustment to assay data.</i>	No adjustments have been made to any laboratory assay results.
<i>Location of data points</i>	<i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i>	The initial location of RC drill collars is recorded using a handheld Garmin GPS-Map unit with an accuracy of +/-3m, using MGA94 Zone 50 South. This method is considered appropriate for this phase of exploration drilling. Downhole surveys were conducted by trained Raglan Drilling personnel immediately after the completion of every RC hole using a REFLEX Sprint, North Seeking survey tool referenced to True North. No Mineral Resources Estimate work has been undertaken.
	<i>Specification of the grid system used.</i>	All drill hole data is recorded in GDA94, zone 50.
	<i>Quality and adequacy of topographic control.</i>	Past explorer Cyprus commissioned a topographic survey in February 2021 completed by Arvista Surveys. A Digital Terrain Model (DTM) was constructed using the data from the aerial survey as well as from existing drillhole surveys and adjusted where low accuracy hand-held GPS pickups created obvious anomalies in the low relief areas of the project.
<i>Data spacing and distribution</i>	<i>Data spacing for reporting of Exploration Results.</i>	Drillhole spacing nominally at 20-30m x 20-30m is considered by the Competent Person to be appropriate for the magmatic layered intrusive copper mineralisation being targeted at Nanadie Well.
	<i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s), and classifications applied.</i>	Past explorer Intermin considered the data spacing 40 to 50m x 20 to 30m to be sufficient to define mineralisation to a 2004 JORC Code Compliant Inferred Resource confidence level in 2013. Cyprus completed infill and extensional drilling to close the drill spacing to a nominal 25m x 25m pattern. This new closer spacing is considered to be more than sufficient to define a 2012 JORC Inferred Mineral Resource Estimate for Nanadie. No updates are being made to the Mineral Resource Estimate at this time.

Criteria	JORC Code explanation	Commentary
	<i>Whether sample compositing has been applied.</i>	Where required, a 5m composite sample was collected from each 1m sample pile over the relevant interval using a spear and proportional amounts placed into a hand-written calico sample bag.
Orientation of data in relation to geological structure	<i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i>	Initial RAB drilling by Newcrest (1996), Dominion (1999) and Intermin (2003) was drilled on 060-240° bearing drill lines but the bulk of the subsequent drilling was drilled on east-west drill lines. The drill angle is considered adequate to test the Nanadie Well mineralisation. A number of scissor holes have also been drilled. The strike of the Nanadie Well mineralisation is north to north-northwest and the Cyprium 2020-2021 drilling pattern was designed to achieve unbiased sampling along the strike of the deposit. The horizontal to low angle nature of the oxide/supergene mineralisation was not biased by the use of vertical RC drillholes. The first two holes from the 2020-2021 diamond drill program were drilled at -60 and -80° dip angles to the west with the third hole drilled at -65° to the east and the fourth hole -63° to the east and the fifth hole drilled at -60° to the east. The regional schists and gneisses dip steeply (75°) to the east-northeast but the foliation within the layered intrusives is steep (60-80°) to the west-southwest. Further, secondary sulphide veinlets are observed in drill core dipping at 50 to 60° to the northeast. Further, structural analysis is required to determine a more optimum drill angle. The Competent Person is satisfied the orientation of sampling achieved unbiased sampling of structures.
	<i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	The current understanding of the Nanadie Well Cu-Au Deposit suggests that current drill orientation has not introduced any preferential sampling bias. The primary disseminated mineralisation appears to have been remobilised into the regional fabric and now dips to the west-southwest. Remobilised secondary sulphide veins are observed in the drill core dipping to the northeast. Cross-cutting hydraulically brecciated potentially silver-rich fault structures dip to the north-northeast. Further work is required to determine the optimum drill angle and it is likely that several drill directions may be required to adequately test all the potential mineralised structural orientations at the Nanadie Well Project.
Sample security	<i>The measures taken to ensure sample security.</i>	Chain of sample custody is maintained by Solstice personnel. Samples were collected in calico bags which were then secured in numbered polyweave bags at the drill site. These polyweave bags were inserted into Bulka bags and then transported by Solstice staff directly to the Toll IPEC in Meekatharra for subsequent transportation to Intertek in Perth. These facilities have lockable yards to maintain security prior to sample processing. Sample submission documents listing the batch number, sample number and order number accompany the samples at each stage and are emailed directly to the laboratory managers. Samples are checked by Intertek to confirm receipt of all samples. If a discrepancy is noted, this is reported by the laboratory to Solstice.
Audits or reviews	<i>The results of any audits or reviews of sampling techniques and data.</i>	Internal reviews by experienced senior geologists of sampling techniques and data confirm that sampling has been conducted to industry standards.

Section 2 Reporting of Exploration Results

Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical</i>	Licences E51/1040 and M51/887 are granted and currently held by Cyprium Metals pending regulatory transfer to Solstice as 100% owner. Licence E51/1987 was granted 100% to Cyprium on 10/3/2021 and is also awaiting transfer.

Criteria	JORC Code explanation	Commentary
	<p><i>sites, wilderness or national park and environmental settings.</i></p>	<p>In addition to statutory State Government Royalties, additional royalties are payable to a syndicate comprising of W.S Hitch, K.W Wolzak, P.W Askins, and Tyson Resources PL of:</p> <ul style="list-style-type: none"> • 0.735% of the revenue received from the sale of copper metal or copper in concentrate from the tenement, • 0.49% of the revenue received from the sale of any other metal, mineral or ore from the tenement.
	<p><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i></p>	<p>The licences are in good standing and there are no known impediments to renewal of the licence or to obtaining any licence to operate.</p>
<p><i>Exploration done by other parties</i></p>	<p><i>Acknowledgment and appraisal of exploration by other parties.</i></p>	<p>The area has seen extensive historical drilling, including a total of 184 historical RAB RC and/or diamond drillholes in the vicinity of the Nanadie MRE. In summary: Between 1976-1977 BHP Ltd. completed surface mapping, rock chip and soil sampling, 72 shallow 0.5 to 38m deep RAB drillholes targeting Cu, Ni & Zn and geophysical surveys. Between 1987-1993 Dominion Mining Ltd completed a total of 126 shallow RAB holes were drilled to the base of the cover and 9 shallow RC holes adjacent to historic workings to the north and south of the current MRE area. Between 1995-1996 Newcrest Mining Ltd. completed a total of 63 vertical RAB holes on 1km spaced lines with holes 300m apart on each drill line. A single fence of holes from this programme was drilled across the current Nanadie Inferred Resource that included the 23m deep discovery hole ER317-13 with 14m @ 1.2% Cu from 9m down hole. In 1999 Dominion Mining Ltd. drilled 3 fences of RAB holes across the known Nanadie deposit with holes 100m apart on section for a total of 14 drillholes. Their best results were 1m @ 0.7% Cu from holes 99NWAR009 from 8m and 99NWAR011 from 23m. In 2003, Intermin drilled 14 RAB holes that followed up the previously reported Newcrest and Dominion drill intercepts In 2004-2013 Intermin. drilled 95 RC holes 63 of which directly targeted the current Nanadie Well Inferred Resource area, the other 32 holes targeted areas outside the known MRE. During this period, they drilled 89 RAB holes of which 75 were outside the MRE area. In 2004, Intermin engaged Southern Geoscience to complete an Induced Polarisation survey at Nanadie Well. Seven lines were read on 200m section spacings north from 6994800mN. In 2006, Intermin engaged DF-EX Exploration Kalgoorlie to complete a ground magnetic survey using a GSM-19 Overhauser v7.0 total field magnetometer. In 2008, Intermin engaged GPX airborne to fly an airborne helicopter EM survey over the Nanadie Well E51/1040 for 99-line km survey using a bird mounted Geometrics G 822A Caesium vapor optically pumped magnetometer continuously sampling at 1200Hz, sensitive to 0.001nT. In 2012, Intermin commissioned Newexco to complete down hole EM surveys on 4 drill holes and a surface moving loop EM survey using an EMIT - SMARTem24 geophysical receiver. Results from 63 RC and 25 RAB (14 drilled by Intermin, 11 drilled by Newcrest and Dominion) holes were used by Intermin in the estimation of the 2004 JORC Code Compliant Inferred Resource of 36.07Mt @ 0.42% Cu & 0.064 g/t Au (Intermin, 2013). Mithril Ltd 2013-2019. Ground geophysical surveys. 35 RC drillholes into various targets outside Nanadie Resource</p>

Criteria	JORC Code explanation	Commentary
		<p>area including the discovery of the Stark Prospect. Mithril also drilled 5 diamond drillholes but only one hole was drilled into Nanadie Resource area in 2017.</p> <p>Horizon Minerals Ltd drilled 14 RC holes into the Nanadie Resource area in 2019.</p> <p>Between 2020-2024 Cyprium completed 84 RC holes and 7 DD holes over the Nanadie Project licences which culminated in the definition of a JORC 2012 compliant Inferred Mineral Resource Estimate of 40.4Mt @ 0.4% Cu, 0.1g/t AU and 1.0g/t Ag at a cut-off grade of 0.25% copper.</p>
<i>Geology</i>	<p><i>Deposit type, geological setting and style of mineralisation.</i></p>	<p>The project lies within the Yilgarn Craton and is proximal to the eastern flank of the Murchison Domain within the broader Youanmi terrane.</p> <p>The Nanadie Copper-Gold deposit is hosted within the Barrambie Igneous Complex (BIC) which in turn, is part of the broader Meeline suite. The BIC is interpreted to be Mesoarchaen age, circa 2810Ma, and is intruded by Neoarchaen granites and granodiorites (Ivanic et al., 2010). The BIC is a 20km long elongate mafic intrusive sill that parallels a NE-SW trending shear that marks the eastern margin of the Murchison Domain (Ivanic et al., 2010). The igneous suite is described as east facing and dipping at 75° to the east-northeast (Ivanic et al., 2010). The Nanadie Well layered intrusive is within the BIC and composed of upper greenschist facies metamorphosed gabbro, leucogabbro, anorthosites and pyroxenites.</p> <p>Surrounding rocks at Nanadie consist of amphibolites, sheared chlorite-quartz-muscovite schists and gneisses and granite/granodiorite intrusive bodies that flank both sides of the Nanadie Well layered intrusive as well as forming irregular granitic dykes and pegmatites that crosscut the earlier mafic intrusives. There is a thin cover generally 0.5 to 6m of Quaternary aeolian sands, soil and calcrite.</p> <p>The primary copper mineralisation (chalcopyrite) at Nanadie Well is associated with pyrite, pyrrhotite and rare pentlandite and minor precious metals including gold and lesser platinum and palladium. The primary disseminated sulphides and precious metals were later remobilised into the regional west-dipping shear foliation, most likely during regional folding and associated regional metamorphism.</p> <p>Flat lying to low angle oxide/supergene Cu/Au mineralisation occurs at the top of the current and paleo water table levels. The oxidised zone is marked mainly by iron-stained joint surfaces and some secondary Cu mineralisation dominantly malachite with lesser azurite.</p>
<i>Drill hole Information</i>	<p><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i></p> <ul style="list-style-type: none"> • <i>easting and northing of the drill hole collar</i> • <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> • <i>dip and azimuth of the hole</i> • <i>down hole length and interception depth</i> 	See Table 1 in body text.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> • <i>hole length.</i> <p><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i></p>	<p>Not applicable, all information is included. The Competent Person is satisfied that drillhole information has been adequately considered, and material information has been appropriately described.</p>
<i>Data aggregation methods</i>	<p><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i></p>	<p>Assay grades are length-weighted. The lower cut-off grade for copper assays is 0.2% and 0.1g/t for gold. No upper cut-off grade is applied.</p>
	<p><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i></p>	<p>Aggregate intercepts reported are length-weighted. Intercepts and reported on the basis of minimum 10m interval at 0.4% copper and 5m maximum internal dilution.</p>
	<p><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i></p>	<p>Metal equivalent values are not currently being reported.</p>
<i>Relationship between mineralisation widths and intercept lengths</i>	<p><i>These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i></p>	<p>Significant intercepts reported are downhole lengths only.</p>
<i>Diagrams</i>	<p><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i></p>	<p>Figures in the main body of this release illustrate the Nanadie deposit mineralisation in both sectional, plan and isometric views and also indicate the variable drillhole angles and azimuths.</p>
<i>Balanced reporting</i>	<p><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i></p>	<p>All currently known significant drill assay data has been reported.</p>
<i>Other substantive exploration data</i>	<p><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i></p>	<p>Other geological and geophysical work relating to Nanadie Well Project has been reported by previous operators. See ASX releases from Intermin Resources Limited (IRC), Mithril Ltd (MTH) and Horizon Minerals (HRZ). Other historical data can be located on the DEMIRS WAMEX report system. Cyprus completed an airborne magnetic and radiometric survey over the Nanadie Well E51/1040 licence in 2020. Thompson Aviation used a Cessna 210 aircraft flying at a 50m flight height to complete 3176km, 50m east-west line spaced survey. The survey used a Geometrics G822A magnetometer and a Radiation Solutions RSS00 Gamma Ray spectrometer. Downhole EM surveys were conducted on the 2020/21 diamond drill holes at Nanadie Well and Stark in February-</p>

Criteria	JORC Code explanation	Commentary
		<p>March 2021. The EM survey was conducted with continuous sensing tool for electromagnetic conductance anomalies with an Atlantis slim line tri-axial fluxgate magnetometer. All geophysical methods utilised have been standard practice for the generation and acquisition of geophysical data in the resources industry. Other modifying factors such as the metallurgical characteristics, potential environmental factors, hydrological conditions and geotechnical factors have not been investigated at Nanadie Well Project at this point in time. These would be considered as part of future resource updates.</p>
Further work	<i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i>	<p>Further extension RC drilling programmes will be planned. The broader Nanadie geological model will be used to identify mineralisation trends and identify areas along strike and down dip that can be targeted for drilling. Further, diamond drilling may be planned to aid structural interpretations and to allow more detailed mineralisation domain demarcation. This drill core will also provide additional core for bulk density characterisation. Metallurgical testing is planned utilising the half core samples from the five Cyprium core holes previously drilled and archived in Perth. Further studies may be required depending on the outcomes of the initial sighter metallurgical test work.</p>