

Rogozna Gold and Base Metals Project, Serbia – Drilling Update

SIGNIFICANT NEW GOLD-COPPER DISCOVERY AT ROGOZNA

New body of mineralisation discovered at Red Creek, just 1km west of the 5.3Moz AuEq Shanac Deposit

Highlights:

- A new body of high-grade gold and base metal mineralisation has been discovered at the Red Creek Prospect, located ~1km west of the 5.3Moz AuEq Shanac Deposit¹.
- Significant intercepts from the discovery hole (ZRSD25233) include:
 - 4.0m @ 4.0g/t AuEq² from 44.0m; and
 - 53.0m @ 2.3g/t AuEq² from 514.4m, including:
 - 35.0m @ 3.1g/t AuEq² from 518.4m, including:
 - 4.4m @ 8.9g/t AuEq² from 522.0m; and
 - 5.8m @ 4.5g/t AuEq² from 536.7m; and
 - 13.3m @ 0.9g/t AuEq² from 658.6m; and
 - 4.0m @ 0.8g/t AuEq² from 723.5m.

Figure 1: Core photograph of semi-massive to massive sphalerite, galena, pyrite and chalcopyrite with carbonate veining from 522.0m to 524.5m down-hole in ZRSD25233 – 2.8g/t Au, 3.7% Cu, 5.3% Pb, 1.5% Zn and 86.6g/t Ag (13.5g/t AuEq²).

¹Refer to “Table 1: Rogozna JORC Inferred Mineral Resource Estimates” at the end of this release for further details regarding the Rogozna Resource.

²For Red Creek: AuEq grade is based on metal prices of gold (US\$2,250/oz), copper (US\$10,000/t), silver (US\$25/oz), lead (US\$2,200) and zinc (US\$3,000/t) and overall metallurgical recoveries of 80% for these metals. These estimates are based on Strickland’s interpretation of potential long term commodity prices and their interpretation of initial metallurgical test work and use the following formula: Au Equivalent (g/t) = Au (g/t) + 1.38 x Cu(%) + 0.011 x Ag (g/t) + 0.304 x Pb(%) + 0.413 x Zn(%). It is the Company’s opinion that all the elements included in the metal equivalents calculations have a reasonable potential to be recovered and sold.

- Mineralisation remains totally open for exploration at Red Creek, with ~1.5km of untested strike potential between Red Creek and the 0.8Moz AuEq Copper Canyon Deposit¹ and ~1km of open space available laterally between Red Creek and the 5.3Moz AuEq Shanac Deposit¹ to the east.
- Assays are pending for several holes from across the Rogozna Project, with further results expected in the coming weeks.
- An updated Mineral Resource Estimate (MRE) for Shanac is due later in the March Quarter.

Introduction

Strickland Metals Limited (ASX: STK) (**Strickland** or the **Company**) is pleased to announce the discovery of a new body of high-grade gold and base metals mineralisation from initial exploration drilling at the Red Creek Prospect, one of several advanced-stage exploration targets located within its 100%-owned ~8.6Moz AuEq Rogozna Project¹ in Serbia (Figure 2).

Strickland's Managing Director, Paul L'Herpiniere, said: *"Our world-class team in Serbia have done it again, with exploration drilling at Red Creek, just 1km from our cornerstone Shanac Deposit, delivering a new high-grade discovery. This is the second discovery since Strickland acquired Rogozna in mid-2024 and like the earlier discovery at Kotlovi, was achieved through excellent geological targeting. This latest discovery comprises both gold-dominant epithermal mineralisation starting from just 44m depth and wider zones of extensive skarn-hosted gold and base metal mineralisation – typical of what we see at other deposits at Rogozna."*

This is an exciting development which reinforces the highly endowed nature of the mineral system at Rogozna. The new mineralisation zone is situated on the same structure as the Copper Canyon Deposit, 1.5km along strike to the south-east, and offers an exciting new focal point for resource growth. Importantly, it opens up an entirely new search space spanning 1km to the east towards Shanac and 1.5km to the south-east towards Copper Canyon. We are planning to accelerate drilling at Red Creek to further define the scale of the mineralisation and advance it towards resource status. Given its strategic location, this new discovery further enhances the significant development optionality we already have at Rogozna."

Exploration Update

Assay results have been received for ZRSD25233, an exploration hole completed recently at the Red Creek Prospect.

The drill-hole was designed to test for gold (+/- base metals) mineralisation at depth beneath coincident geochemical (gold, arsenic, lead, zinc and silver in soils) and geophysical (IP conductivity high and resistivity low) anomalies located ~1km to the west of the 5.3Moz AuEq Shanac Deposit¹ (Figure 3).

Shallow, volcanic-hosted epithermal mineralisation was encountered from a down-hole depth of 44.0m, while extensive skarn-hosted gold and base metals mineralisation was encountered from a down-hole depth of 514.4m (Figures 3 and 4). Significant intercepts from ZRSD25233 include:

- 4.0m @ 3.6g/t Au, 0.4% Pb, 0.2% Zn and 8.5g/t Ag (4.0g/t AuEq²) from 44.0m; and
- 53.0m @ 0.9g/t Au, 0.4% Cu, 0.5% Pb, 0.7% Zn and 8.7g/t Ag (2.3g/t AuEq²) from 514.4m, including:
 - 35.0m @ 1.2g/t Au, 0.6% Cu, 0.7% Pb, 1.0% Zn and 12.6g/t Ag (3.1g/t AuEq²) from 518.4m, including:
 - 15.0m @ 1.2g/t Au, 1.0% Cu, 1.2% Pb, 0.7% Zn and 20.8g/t Ag (4.0g/t AuEq²) from 518.4m; and
 - 16.7m @ 1.2g/t Au, 0.3% Cu, 0.4% Pb, 1.5% Zn and 6.6g/t Ag (2.8g/t AuEq²) from 536.7m; and
- 13.3m @ 0.2g/t Au, 0.3% Cu and 1.4g/t Ag (0.9g/t AuEq²) from 658.6m; and
- 4.0m @ 0.7g/t Au, 0.1% Cu and 0.2g/t Ag (0.8g/t AuEq²) from 723.5m.

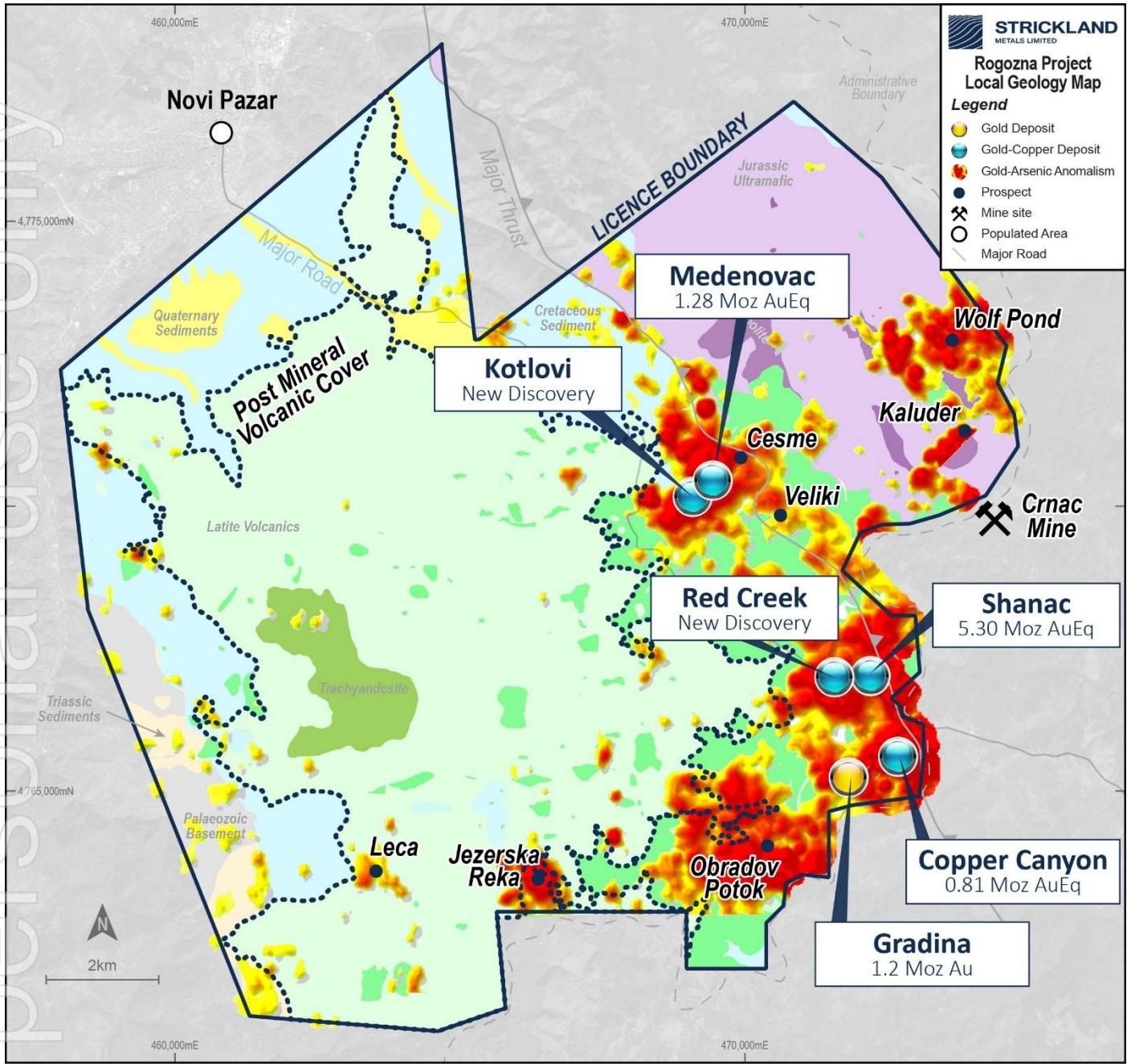


Figure 2: Plan view map of the Rogozna Project, showing geology with deposits, prospects and geochemical anomalous.

Red Creek Prospect Potential

Available datasets, including geophysics, surface geochemistry and drilling data, indicate that the Red Creek discovery opens up a very large search space which has had very limited previous drill testing.

The newly discovered body of mineralisation sits on the same NW-SE trending structure which controls mineralisation at Copper Canyon, located ~1.5km along strike to the south-east (Figure 3).

This strike extent has been tested by only one previous drill-hole, ZRSD25177, drilled earlier in 2025, which encountered modest skarn-hosted mineralisation at depth. Subsequent interpretation of the geology encountered in this hole indicated that the hole was drilled too far to the east and missed the controlling structure.

Between Red Creek and Shanac, there exists ~1km of untested lateral extent (Figure 4), with considerable scope for Red Creek mineralisation to also extend eastwards along the base of the volcanic cover.

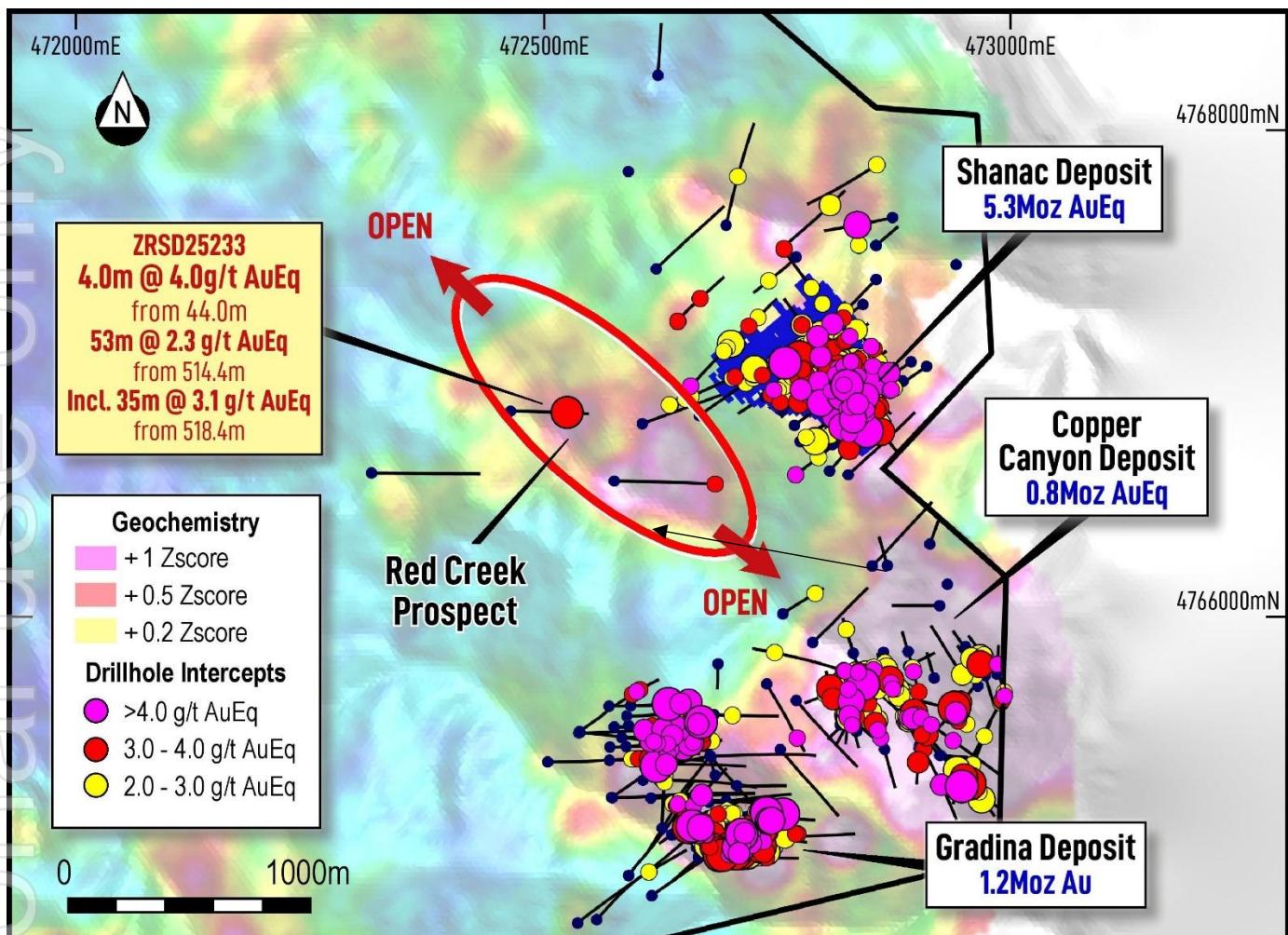


Figure 3: Plan view map of the Red Creek Prospect, showing drill-hole collars and traces, high-grade intercept points, background Au-As in soil geochemistry and IP (resistivity lows) anomalies.

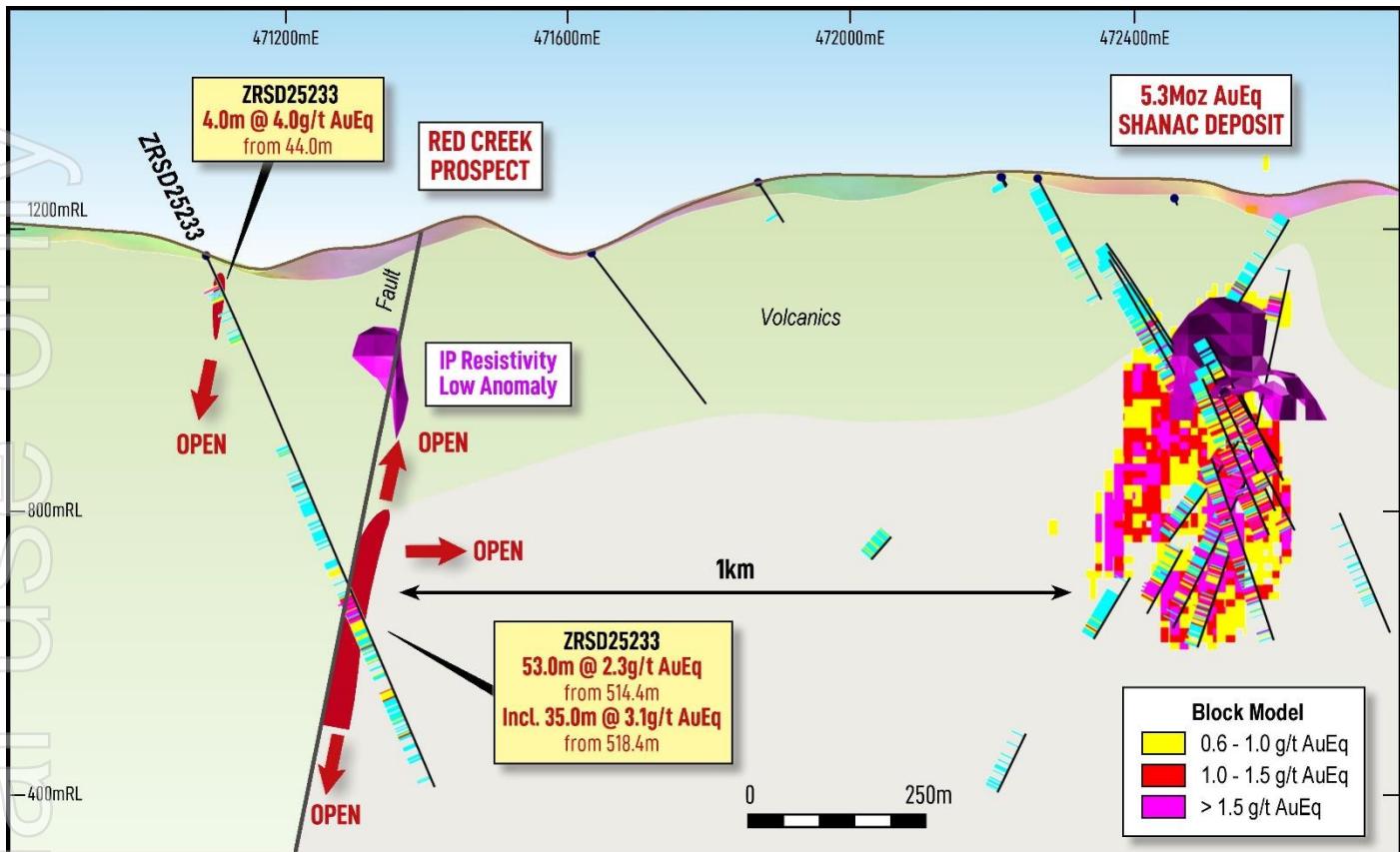


Figure 4: Red Creek to Shanac cross-section view looking north (80m view width), showing drill-hole traces with intercepts, geology and Shanac block model.

Mineralisation Controls and Style

Apart from the outcropping mineralisation at the Copper Canyon Deposit, the shallow volcanic-hosted epithermal mineralisation encountered from 44.0m down-hole depth in ZRS25233 is the shallowest gold-rich mineralisation encountered to date at Rogozna. It is characterised by carbonate veining with associated fine-grained, disseminated pyrite, galena and sphalerite, with the veins hosted by chloritised and silicified andesite. Given its shallow position, this epithermal style of mineralisation is an important discovery in its own right and will form part of ongoing targeting work at Red Creek.

At 464.5m downhole, drilling encountered a ~25m wide fault zone, which juxtaposes volcanic cover against the carbonate sequence, with strongly mineralised skarn commencing at a down-hole depth of 514.4m.

The fault zone is likely a major control on the geometry of the base of volcanic cover and the associated mineralisation zone in this area.

The main mineralisation zone (514.4m to 567.4m down-hole depth) is situated between two quartz diorite dykes and is characterised by extensive skarn-hosted disseminated, semi massive and massive sulphides, including pyrite, chalcopyrite, galena and sphalerite with frequent spatially associated carbonate veins (Figures 5 to 8).

Figure 5: Core photograph of massive chalcopyrite with carbonate vein from the interval of 524.5 to 526.5m – 0.4g/t Au, 1.4% Cu, 0.2% Pb, 0.1% Zn and 15.5g/t Ag (3.3g/t AuEq²).

Figure 6: Core photograph of semi-massive sphalerite with disseminated pyrite, galena, chalcopyrite and carbonate veining from the interval of 538.5 to 540.5m – 0.6g/t Au, 0.3% Cu, 1.1% Pb, 7.9% Zn and 13.6g/t Ag (6.0g/t AuEq²).

Figure 7: Core photograph of carbonate veining with disseminated to semi-massive pyrite, galena, chalcopyrite and sphalerite from the interval of 540.5 to 542.5m – 1.9g/t Au, 0.3% Cu, 1.1% Pb, 0.8% Zn and 17.3g/t Ag (3.6g/t AuEq²).

Figure 8: Core photograph of disseminated pyrite and chalcopyrite with magnetite alteration from the interval of 551.4m to 553.4m – 1.2g/t Au, 0.6% Cu and 4.3g/t Ag (2.3g/t AuEq²).

Next Steps

Last year's drilling campaign was completed in late December 2025, and the team are currently reviewing and interpreting the results of the 2025 Rogozna drilling program and are well advanced in the planning of follow-up drilling for the 2026 field season commencing in March 2026.

Assays are pending for multiple holes from across the Project and further results will be released in the coming weeks as they become available.

This release has been authorised by the Company's Managing Director Mr Paul L'Herpiniere.

— Ends —

For further information, please contact:

Paul L'Herpiniere
Managing Director
Phone: +61 (8) 6317 9875
info@stricklandmetals.com.au
stricklandmetals.com.au

Meredith Schwarz
Investor Relations / Business Development Manager
Phone: +61 (8) 6317 9875
info@stricklandmetals.com.au
stricklandmetals.com.au

Media Inquiries:
Nicholas Read – Read Corporate
Phone: +61 (8) 9388 1474
info@readcorporate.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results for its Rogozna Project is based on information compiled or reviewed by Mr Paul L'Herpiniere who is the Managing Director of Strickland Metals Limited and is a current Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Paul L'Herpiniere has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr L'Herpiniere consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources has been extracted from various Strickland ASX announcements and are available to view on the Company's website at www.stricklandmetals.com.au or through the ASX website at www.asx.com.au (using ticker code "STK"). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward-Looking Statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (Forward-Looking Statements). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements

regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Strickland that any Forward-Looking Statement will be achieved or proved to be correct. Further, Strickland disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

Table 1: Rogozna JORC Inferred Mineral Resource Estimates

Deposit	Tonnes (Mt)	AuEq (g/t)	Au (g/t)	Cu (%)	Ag (g/t)	Pb (%)	Zn (%)	AuEq (Moz)	Au (Moz)	Cu (kt)	Ag (Moz)	Pb (kt)	Zn (kt)
Gradina (December 2025)^A	12	3.0	3.0	-	-	-	-	1.2	1.2	-	-	-	-
Medenovac (February 2025)^B	21	1.9	0.77	0.27	6.3	0.11	1.54	1.28	0.52	57	4.3	23	320
Shanac (March 2025)^B	150	1.1	0.64	0.12	5.8	0.24	0.34	5.30	3.09	180	28.0	360	510
Copper Canyon (October 2021)^C	28	0.9	0.40	0.30	-	-	-	0.81	0.36	84	-	-	-
Total^D	211	1.3	0.76	0.15	4.8	0.18	0.39	8.6	5.2	321	32.3	383	830

Table Notes:

- A. For Gradina (December 2025) estimates include Au equivalent values for consistency with the other Rogozna deposits. The AuEq grade includes only gold grades. Estimates for this deposit reflect a price and metallurgical recovery for gold of \$US2,500/oz and 90% respectively on the basis of Strickland's interpretation of potential long term commodity prices and their interpretation of initial metallurgical test work and gives the following formula: Au Equivalent (g/t) = Au (g/t). It is the Company's opinion that the gold included in the metal equivalents calculations has a reasonable potential to be recovered and sold. A 1.5 g/t Au cut-off has been used for the Gradina Mineral Resource Estimate.
- B. For Medenovac (February 2025) and Shanac (March 2025) AuEq grade is based on metal prices of gold (US\$2,250/oz), copper (US\$10,000/t), silver (US\$25/oz), lead (US\$2,200/t) and zinc (US\$3,000/t) and overall metallurgical recoveries of 80% for these metals. These estimates are based on Strickland's interpretation of potential long term commodity prices and their interpretation of initial metallurgical test work and give the following formula: Au Equivalent (g/t) = Au (g/t) + 1.38 x Cu(%) + 0.011 x Ag (g/t) + 0.304 x Pb(%) + 0.413 x Zn(%). It is the Company's opinion that all the elements included in the metal equivalents calculations have a reasonable potential to be recovered and sold. A 1.0 g/t AuEq cut-off has been used for the Medenovac Mineral Resource Estimate. A 0.60 g/t AuEq cut-off has been used for the Shanac Mineral Resource Estimate.
- C. For Copper Canyon (October 2021) AuEq grade based on metal prices of gold (US\$1,750/oz), copper (US\$10,000/t), and metallurgical recoveries of 80% for both metals. These estimates are based on Strickland's assumed potential commodity prices and recovery results from initial and ongoing metallurgical test work and give the following formula for Copper Canyon: AuEq (g/t) = Au (g/t) + 1.55 x Cu (%). It is the Company's opinion that all the elements included in the metal equivalents calculations have a reasonable potential to be recovered and sold. A 0.4g/t AuEq cut-off has been used for the Copper Canyon Resource Estimate.
- D. Rounding errors are apparent in the summation of total resources.

Please refer to the Company's ASX announcements dated:

- 10 December 2025 titled: "1.2Moz @ 3.0g/t Gold In Maiden Gradian Mineral Resource Estimate" for full details regarding the Gradina Mineral Resource Estimate;
- 27 March 2025 titled: "Shanac Resource Increases to 5.30Moz AuEq, Taking Rogozna to 7.40Moz AuEq" for full details regarding the Shanac Mineral Resource Estimate;
- 19 February 2025 titled: "Rogozna Resource Increases by 23% to 6.69Moz AuEq" for full details regarding the Medenovac Mineral Resource Estimate; and
- 17 April 2024 titled: "Acquisition of the 5.4Moz Au Eq Rogozna Gold Project" for full details regarding the Copper Canyon Mineral Resource Estimate.

Appendix A – Significant Intercepts

Table 2 – Red Creek Significant Intercepts

Hole ID	Collar Coordinates			Depth (m)	Orientation	Downhole Interval (m)			Grade					
	Eastng (m)	Northing (m)	RL (m)			Azi/Dip (degrees)	From	To	Length	Au (g/t)	Cu (%)	Pb (%)	Zn (%)	Ag (g/t)
ZRSD25233	471,094	4,766,845	1,161	809.7	090/-65	44.0	48.0	4.0	3.6	0.0	0.4	0.2	8.5	4.0
including						46.0	48.0	2.0	6.9	0.0	0.3	0.2	7.8	7.2
and						514.4	567.4	53.0	0.9	0.4	0.5	0.7	8.7	2.3
including						518.4	553.4	35.0	1.2	0.6	0.7	1.0	12.6	3.1
including						518.4	533.4	15.0	1.2	1.0	1.2	0.7	20.8	4.0
including						522.0	526.4	4.4	1.7	2.7	3.0	0.9	54.6	8.9
including						522.0	524.5	2.5	2.8	3.7	5.3	1.5	86.6	13.5
and						524.5	526.5	2.0	0.4	1.4	0.2	0.1	15.5	3.3
and						536.7	553.4	16.7	1.2	0.3	0.4	1.5	6.6	2.8
including						536.7	542.5	5.8	1.5	0.3	0.8	3.9	11.7	4.5
including						538.5	540.5	2.0	0.6	0.3	1.1	7.9	13.6	6.0
and						540.5	542.5	2.0	1.9	0.3	1.1	0.8	17.3	3.6
and						551.4	553.4	2.0	1.2	0.6	0.0	0.0	4.3	2.3
and						658.6	671.8	13.3	0.2	0.3	0.0	0.0	1.4	0.9
and						723.5	727.5	4.0	0.7	0.1	0.0	0.0	0.2	0.8
ZRSD25177	471,518	4,766,557	1,118	885.9	090/-60	821.1	826.7	5.6	0.0	0.0	0.7	2.4	5.1	1.8

*For Red Creek AuEq grade is based on metal prices of gold (US\$2,250/oz), copper (US\$10,000/t), silver (US\$25/oz), lead (US\$2,200/t) and zinc (US\$3,000/t) and overall metallurgical recoveries of 80% for these metals. These estimates are based on Strickland's interpretation of potential long term commodity prices and their interpretation of initial metallurgical test work and use the following formula: Au Equivalent (g/t) = Au (g/t) + 1.38 x Cu(%) + 0.011 x Ag (g/t) + 0.304 x Pb(%) + 0.413 x Zn(%). It is the Company's opinion that all the elements included in the metal equivalents calculations have a reasonable potential to be recovered and sold.

Appendix B – JORC Table 1 – Red Creek

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"><i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i><i>In cases where ‘industry standard’ work has been done this would be relatively simple (e.g. ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i>	<p>Zlatna Reka Resources (ZRR)</p> <ul style="list-style-type: none">The Red Creek drilling database comprises data from diamond drilling completed by ZRR including 2 holes for a total of 1,695.6m of drilling.Drilling and sampling utilised appropriate, industry standard methods and was closely supervised by company geologists. Core was halved with a diamond saw to provide assay samples. Drilling utilised triple tube core barrels.Core recovery measurements confirm the representivity of the sampling.Sample lengths range from around 0.1m to rarely greater than 10.0m, with around 90% of the combined drilling having sample lengths of 1.0m to 3.0m. Most sample lengths are 2.0m.ZRR samples were submitted to ALS in Bor, Serbia for sample preparation, with pulverised samples transported to ALS in Rosia Montana, Romania for analysis for gold by fire assay, and ALS Ireland for ICP analysis by four-acid digest for attributes including copper. <p>Previous Explorers (Euromax and Eldorado Gold)</p> <ul style="list-style-type: none">Not Applicable.
Drilling techniques	<ul style="list-style-type: none"><i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i>	<ul style="list-style-type: none">All drilling was by diamond core at PQ, HQ and NQ diameters (122.6, 96.0mm and 75.7mm hole diameter). ZRR utilised triple tube core barrels with core oriented by an “Ace Core Tool” electronic tool.
Drill sample recovery	<ul style="list-style-type: none"><i>Method of recording and assessing core and chip sample recoveries and results assessed.</i><i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i>	<ul style="list-style-type: none">Sample recovery was maximised by use of appropriate drilling techniques including use of triple tube core drilling.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none">Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	<ul style="list-style-type: none">Recovered core lengths average 99% recovery with little variability between drilling phases consistent with the author's experience of high-quality diamond drilling.There is no notable relationship between core recovery and gold and copper grades. Available information demonstrates that sample bias due to preferential loss/gain of fine/coarse material has not occurred.
Logging	<ul style="list-style-type: none">Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.The total length and percentage of the relevant intersections logged.	<ul style="list-style-type: none">Drilling and sampling utilised appropriate, industry standard methods and was closely supervised by company geologists. Core was halved with a diamond saw to provide assay samples. ZRR utilised triple tube core barrels.Core recovery measurements confirm the representivity of the sampling.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none">If core, whether cut or sawn and whether quarter, half or all core taken.If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.For all sample types, the nature, quality and appropriateness of the sample preparation technique.Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.Whether sample sizes are appropriate to the grain size of the material being sampled.	<p>Zlatna Reka Resources (ZRR)</p> <ul style="list-style-type: none">Field-sampling employed appropriate methods and was supervised by company geologists.Core was halved for assaying with a diamond saw with sample lengths ranging from around 0.1m to rarely greater than 10m, with around 90% of the combined drilling having sample lengths of 1 to 3 m, with most samples being 2 m in length.Available information indicates that, at the current stage of project assessment, the sample preparation is appropriate for the mineralisation style.Available information indicates that sample sizes are appropriate to the grain size of the material being sampled.Routine monitoring of laboratory performance included submission of coarse blanks and reference standards for all drilling phases.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none">Sample preparation of ZRR samples comprised oven drying, crushing to 70% passing 2 mm, with 1 Kg rotary split sub-samples pulverised to 85% passing 75 microns. <p>Previous Explorers (Euromax and Eldorado Gold)</p> <ul style="list-style-type: none">Not Applicable.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i><i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i>	<p>Zlatna Reka Resources (ZRR)</p> <ul style="list-style-type: none">ZRR samples were assayed for Au and Base Metals by fire assay and ICP with four acid digest respectively. No analytical measurements from geophysical tools inform the Exploration Results.Monitoring of laboratory performance included submission of coarse blanks and reference standards for all drilling phases. Field duplicate assays provide an indication of the repeatability of field sampling. Analyses of coarse duplicates of crushed samples collected for ZRR's drilling at an average frequency of around 1 duplicate per 20 primary samples support the repeatability and reliability of sample preparation.Acceptable levels of accuracy and precision have been established for attributes included in the Exploration Results. <p>Previous Explorers</p> <ul style="list-style-type: none">Not Applicable.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"><i>The verification of significant intersections by either independent or alternative company personnel.</i><i>The use of twinned holes.</i><i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i><i>Discuss any adjustment to assay data.</i>	<ul style="list-style-type: none">No twinned holes have been drilled at Red Creek.For ZRR drilling, sampling and geological information was entered directly into electronic logging templates which were imported into ZRR's master acQuire database. Assay results were merged directly into the database from digital files provided by ALS.No assay results were adjusted.

Criteria	JORC Code explanation	Commentary
<i>Location of data points</i>	<ul style="list-style-type: none"><i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i><i>Specification of the grid system used.</i><i>Quality and adequacy of topographic control.</i>	<ul style="list-style-type: none">Drill collars were defined World Geodetic System 1984 (WGS84), Sector 34N coordinates derived from differential global positioning system (GPS) surveys using the Gaus-Kruger projection and Hermanskogel datum transformed to WGS84 Universal Transverse Mercator (UTM) coordinates. Holes were generally downhole surveyed by magnetic single shot surveys or gyro tools.Elevations of ZRR holes commonly significantly differ from the DTM.Hole paths and surface topography have been located with sufficient confidence.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"><i>Data spacing for reporting of Exploration Results.</i><i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i><i>Whether sample compositing has been applied.</i>	<ul style="list-style-type: none">Red Creek drilling comprises two holes drilled ~450m apart along strike.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"><i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i><i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	<ul style="list-style-type: none">Red Creek drilling is orientated to the east. Ratios of true mineralisation widths to down-hole widths range from less than half to around 1.The drilling orientations provide un-biased sampling of the mineralisation.
<i>Sample security</i>	<ul style="list-style-type: none"><i>The measures taken to ensure sample security.</i>	<ul style="list-style-type: none">ZRR diamond core was delivered to the core shed by company personnel. Core-cutting and sampling was supervised by company geologists. Samples collected in canvas bags were sealed on wooden pallets by heavy duty plastic wrapping for transportation to the assay laboratory by courier. No third parties were permitted un-supervised access to the samples prior to delivery to the sample preparation laboratory.The general consistency of results between sampling phases provides additional confidence in the general reliability of the data.

Criteria	JORC Code explanation	Commentary
Audits or reviews	<ul style="list-style-type: none"><i>The results of any audits or reviews of sampling techniques and data.</i>	<ul style="list-style-type: none">No audits of sampling techniques and data were conducted.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	<ul style="list-style-type: none">The Rogozna Project is contained within four exploration licenses, Šanac na Rogozni, Zlatni Kamen, Leča and Pajsi Potok with a combined area of approximately 184 km². The exploration licenses are 100% owned by ZRR, a wholly owned Serbian subsidiary of Betoota Holdings (Betoota).The Red Creek Prospect is located within the Sanac na Rogozni exploration license.In Serbia, exploration licenses are granted for an eight year term comprising periods of three years, three years and two years, with renewal documents needing to be submitted to Serbian authorities after each period.In September 2023 the Šanac na Rogozni license was renewed for its second 3-year exploration period, with the potential for further extension of an additional two years.There are no known impediments to obtaining a licence to operate in the area.Pursuant to a royalty agreement between Betoota and Franco Nevada, Franco Nevada will receive a 2% net smelter return (NSR) on gold and 1.5% NSR on all other metals extracted from the Šanac na Rogozni License. ZRR has a royalty agreement with Mineral Grupa d.o.o, whereby Mineral Grupa d.o.o. is entitled to a 0.5% NSR on all metals produced from the Zlatni Kamen License.
Exploration done by other	<ul style="list-style-type: none"><i>Acknowledgment and appraisal of exploration by other parties.</i>	<ul style="list-style-type: none">The Red Creek exploration datasets include data from Phelps Dodge, Euromax and Eldorado Gold.

Criteria	JORC Code explanation	Commentary
<i>parties</i>		<ul style="list-style-type: none">Available information indicates the data from previous explorers are adequately reliable.
<i>Geology</i>	<ul style="list-style-type: none"><i>Deposit type, geological setting and style of mineralisation.</i>	<ul style="list-style-type: none">Rogozna lies within the Serbian Cenozoic igneous province of the Alpine-Himalayan orogenic and metallogenic system which geographically overlaps the Serbo-Macedonian Magmatic and Metallogenic Belt. The Project is situated at the western branch of the Vardar Zone West Belt at the border of two major tectonic units, the Drina- Ivanjica thrust sheet and the Vardar Zone West Belt separated by a large fault zone in NW- SE direction, which is considered to play a significant role in controlling the Oligocene - Miocene magmatism and the mineralisation in the area.Basement rocks comprise serpentinites, directly overlain by a Cretaceous succession of marls, limestones and sandy-clays, which are in turn overlain by andesitic pyroclastics related to an earlier stage of Cenozoic volcanism. All of these units are affected by later Cenozoic magmatism represented by quartz-latitic to trachytic dykes and stocks, which intrude all older units and give rise to the formation of extensive skarn alteration at the contact between the limestones and intrusions. The skarns are exposed in the southern part of the project, including Copper Canyon where there has been block uplifting and subsequent erosion of the andesitic pyroclastics.Rogozna mineralisation, including Red Creek, represents a large scale magmatic hydrothermal system which hosts a skarn based Au-Cu +/- Zn, Ag and Pb mineralised system. Most of the mineralisation is associated with retrograde skarn development in spatial association with quartz diorite dykes. Distal, higher-grade skarn hosted mineralisation occurs at Gradina, Gradina North, and Copper Canyon South projects, and at Shanac there is also lower tenor mineralisation that is developed in the overlying andesitic volcanic rocks. Cu generally occurs as chalcopyrite in association with pyrrhotite and pyrite, and less commonly with sphalerite and galena.
<i>Drill hole Information</i>	<ul style="list-style-type: none"><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i>	<ul style="list-style-type: none">Appropriate information is included in the body of this report (see Appendix A).

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none">○ <i>easting and northing of the drill hole collar</i>○ <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i>○ <i>dip and azimuth of the hole</i>○ <i>down hole length and interception depth</i>○ <i>hole length.</i> <ul style="list-style-type: none">● <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i>	
Data aggregation methods	<ul style="list-style-type: none">● <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i>● <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i>● <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i>	<ul style="list-style-type: none">● Significant drill hole results are reported on a length weighted basis, at cutoff grades of >0.5g/t AuEq. Higher-grade intercepts are reported at cutoff grades of >1.5g/t AuEq. No upper cuts were applied.● In reporting of Exploration Results for Red Creek, Au equivalent grades are based on metal prices of Au (\$US2,250/oz), Cu (\$US10,000/t), Ag (\$US25/oz), Pb (\$US2,200/t), Zn (\$US3,000/t), and metallurgical recoveries of 80% for all metals. These estimates are based on ZRR's assumed potential commodity prices and recovery results from initial and ongoing metallurgical test work and give the following formula: AuEq (g/t) =Au (g/t) + 1.38 x Cu(%) + 0.011 x Ag (g/t) +0.304 x Pb(%) + 0.413 x Zn(%).● In the Company's opinion all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold. These estimates are based on current commodity prices and the Company's interpretation of initial metallurgical testwork results.
Relationship between mineralisation widths and intercept	<ul style="list-style-type: none">● <i>These relationships are particularly important in the reporting of Exploration Results.</i>● <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i>	<ul style="list-style-type: none">● Red Creek drilling is orientated to the east, with ratios of true mineralisation widths to down-hole widths ranging from less than half to around 1.

Criteria	JORC Code explanation	Commentary
lengths	<ul style="list-style-type: none"><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i>	
Diagrams	<ul style="list-style-type: none"><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i>	<ul style="list-style-type: none">Appropriate diagrams are included in the report.
Balanced reporting	<ul style="list-style-type: none"><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i>	<ul style="list-style-type: none">Appropriate information is included in the body of the report.
Other substantive exploration data	<ul style="list-style-type: none"><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	<ul style="list-style-type: none">Preliminary metallurgical test work completed for all deposits from 2020 to 2022 included test work aimed at analysis of bulk samples, grade variability analysis, comminution characterisation, Cu and Zn concentrate analysis, gravity gold recovery and bulk sulphide floatation defined projects.This work suggested amenability to conventional processing with flotation recoveries for the relevant metals generally in the range of 78 to 86% for the currently defined deposits. Immersion density measurements were performed on core samples from all modern Rogozna drill phases at an average of around one sample per 6 m.Geological, mapping, soil and rock chip sampling, and geophysical surveys by previous workers including magnetic and gravity surveys aid ZRR's planning of exploratory drilling.Geochemical survey data shows strong gold and pathfinder element anomalism at Red Creek. Anomalous gold values are >20ppb Au, anomalous arsenic values are >100ppm, anomalous lead is >1000ppm and anomalous zinc is > 500ppm. After levelling the geochemical data using mapped lithology and using ZScore analysis, a ZScore of >1 for the multielement data indicates strong anomalism, >0.5 is moderate anomalism and >0.2 is slightly anomalous.The Red Creek geochemical survey involved soil samples taken on roughly

Criteria	JORC Code explanation	Commentary
		100m-spaced, NW-orientated lines, with individual samples collected along 50m intervals on each line. Soils samples were collected from the “B” horizon, at roughly 30cm depth. The samples were sieved to -1mm size fraction and assayed by fire assay for gold and ICP with four acid digest for all other elements.
Further work	<ul style="list-style-type: none"><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i>	<ul style="list-style-type: none">Planned future work at Red Creek includes further diamond drilling, with extensional drilling designed to demonstrate the scale and continuity of mineralisation and support an initial Mineral Resource Estimate (MRE).