

EMERGING BROAD-SCALE ANOMALOUS GOLD TREND IDENTIFIED ALONG THE MIRIAM SHEAR ZONE

Ore Resources Ltd (ASX: OR3) (Ore or the **Company**) is pleased to announce new results from surface geochemical soil sampling conducted at its 100%-owned Miriam Project (**Miriam**), part of the Company's Coolgardie Gold Projects portfolio located in the W.A. Goldfields region of Western Australia.

HIGHLIGHTS

- Regional geochemical soil sampling at Miriam has **identified a broad 2km long +20ppb gold-in-soils anomaly** along the Miriam Shear Zone (**Miriam Shear**), coincident with the Forrest, Forrest South, Forrest North and Burbanks Monarch prospects.
- **Seven (7) +50ppb refined gold anomalies have been defined** within the broader anomalous corridor.
- Several high-order anomalies, which measure up to 850m in length, are spatially coincident with cross-cutting faults within the Miriam Shear, defining discrete, high-priority targets for future drill testing.
- Results support Forrest North and Burbanks Monarch as high-priority targets for further testing.
- A further 250 samples targeting off shear targets, including the Goroke prospect, were collected over January 2026, with results expected in early March 2026.
- Close-spaced ground gravity surveying over the Forrest, Burbanks Monarch and Goroke prospects is now complete, with results expected to be returned in the coming weeks.
- Collation of surface geochemistry, gravity surveying and magnetic geophysics to generate priority regional drill targets for first-pass aircore (**AC**) drilling, targeted to commence in late March 2026.
- Expansive Phase 4 drilling programme at Miriam underway, with an initial 3,000 - 5,000m of Reverse Circulation (**RC**) drilling targeting further oxide and fresh rock extensions at Forrest.
- Ore is well funded and strongly positioned to advance all planned exploration programmes at its Coolgardie and Randalls Gold Projects in 2026, with a robust cash balance of A\$10.7 million and zero debt (as at 31 December 2025).

Ore Resources' Managing Director and CEO, Nick Rathjen, commented:

"Surface geochemistry with integrated geophysical data has once again proved to be a highly effective tool in defining new gold exploration potential across our Coolgardie Projects tenure, and has further deepened our understanding of the highly prospective Miriam Shear. These new soil sampling results have identified seven refined +50ppb gold anomalies within a broad 2km long anomalous trend, running alongside the Miriam Shear. This trend is strongly coincident with several existing regional prospects at Miriam, including Forrest North and Burbanks Monarch, which are now marked as high-priority targets for upcoming drill testing."

"Our broader regional exploration activities at Miriam continue to advance in parallel with the recently commenced Phase 4 RC drilling at the Forrest prospect. Close-spaced ground gravity surveying over the Forrest, Burbanks Monarch and Goroke prospects has been completed, with results on track for processing and release

later this month. Upon receipt, the combination of magnetic geophysical, surface geochemistry and gravity surveying results will inform further updates to our modelling at Miriam. Planning is underway to test these high-priority regional targets via first-pass AC drilling in late March 2026.

"Extensive drill testing of key Miriam regional prospects is planned as part of the broader Phase 4 programme, which comprises approximately 30,000m of RC, AC and diamond drilling across the Coolgardie Gold Projects over the remainder of 2026."

Geochemical soil sampling context

Following completion of heritage surveys covering the northern tenements at Miriam in November 2025, Ore conducted a geochemical soil sampling programme covering a section of the Miriam Shear extending from Forrest to Burbanks Monarch.

The soil sampling process involves the use of Ultrafine+™, an Ultra Fine Fraction (**UFF**) process developed by CSIRO which tests <2 micron clay particles within soils for gold and gold pathfinder elements. The process is considered a more accurate analysis of soil, which removes coarse particles not considered to be representative of the regolith. This method was successfully applied by the Company during previous soil sampling activities at Miriam in June 2025, which involved the collection of approximately 300 samples.¹

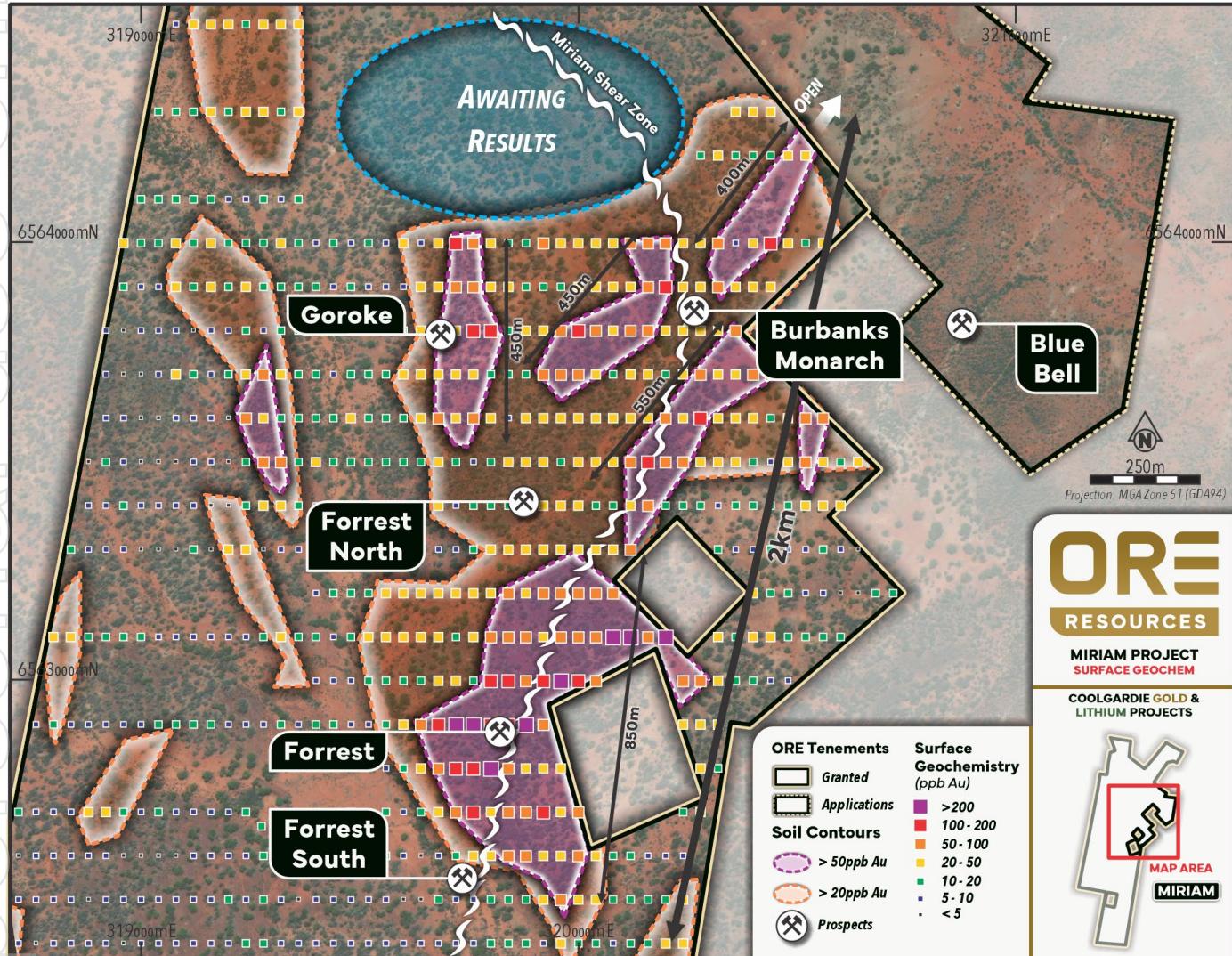
Surface geochemistry remains a core component of the Company's exploration strategy at Miriam and across the broader Goldfields tenure, providing reliable near-surface geochemical targeting in areas with thin transported cover.

The November 2025 soil sampling programme was specifically designed to build on the June 2025 grid and further enhance confidence in the emerging geochemical trends at Miriam. This programme infilled the previous grid to 40-metre station spacing and 100-metre line spacing.

A total of more than 350 UFF soil samples were collected across the Miriam Shear Zone during the November 2025 programme, concentrating on the highly prospective Forrest South – Burbanks Monarch corridor. All results from this program have now been received and are outlined below.

Notably, results from the existing Miriam geochemical datasets indicate that gold concentrations of <10 ppb Au reflect a consistent background level in surface soils and sediments, while values >20 ppb Au (more than twice the background level) are considered anomalous.

2km striking anomalous gold trend identified along the Miriam Shear


The November 2025 soil sampling programme has **successfully defined seven (7) targets** where **continuous +50ppb Au results are apparent** and coincident with the previously identified prospects at Forrest South, Forrest North and Burbanks Monarch.

These targets **sit within a broad 2km long +20ppb gold-in-soils anomaly along the broader Miriam Shear**.

Several high-order anomalies, which measure up to 850m in length, are also coincident with apparent breaks or faults within the Miriam Shear Zone and may represent key structures for economic gold deposition.

¹ Refer to OR3 ASX release dated 25 June 2025, "Soil Sampling Results Identify 1.75km Gold Anomaly at Miriam"

Figure 1: Forrest South – Burbanks Monarch trend highlighting seven +50ppb Au targets

Additional geochemical sampling has subsequently been completed on targets located off or adjacent to the Miriam Shear, including the Goroke prospect. An additional 250 samples were collected in January 2026 to advance early-stage work, including on this emerging target. The results from this sampling are expected to be received in early March 2026.

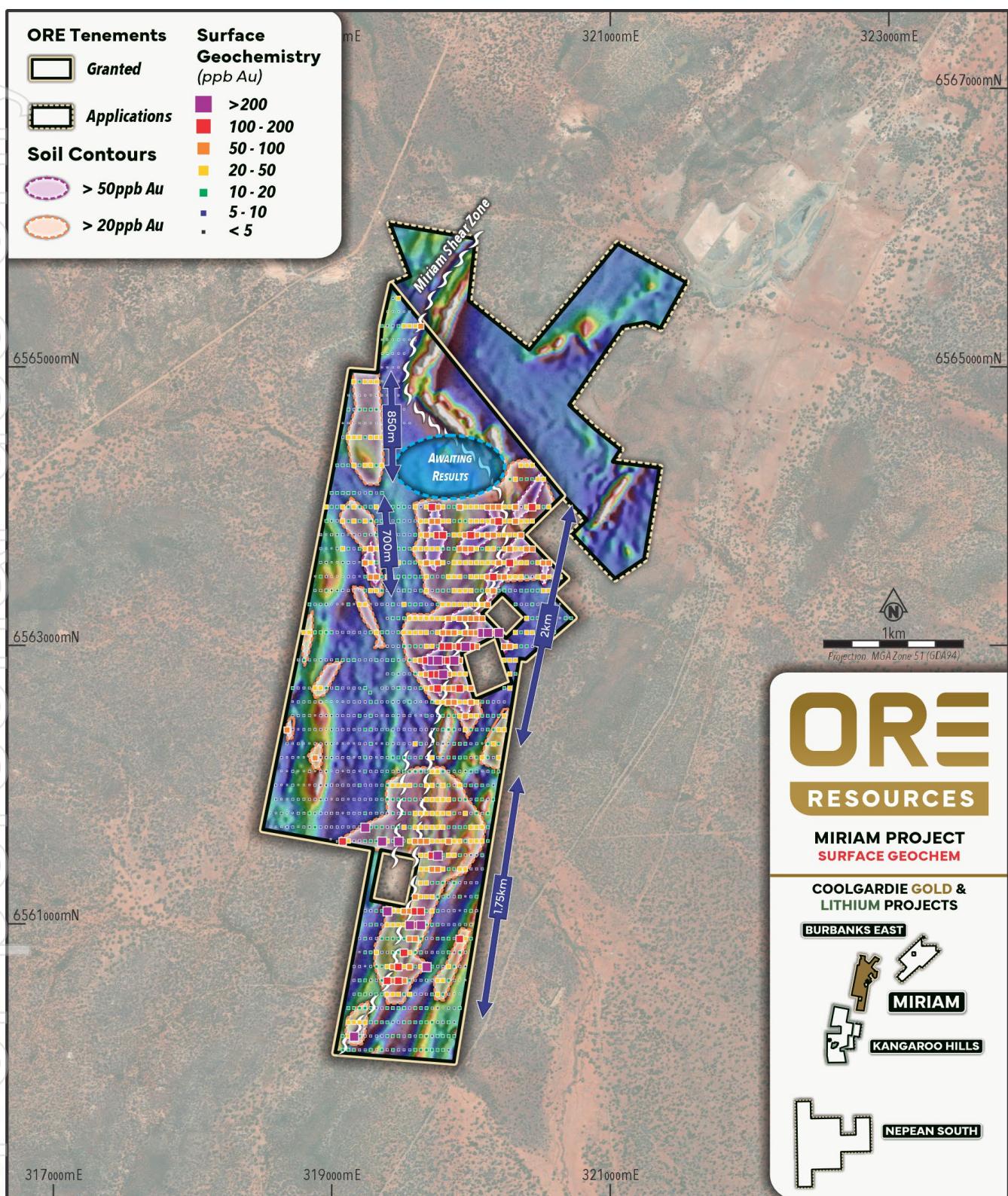


Figure 2: Broad Miriam scale map with geochemical anomalies overlying magnetic geophysics

Next steps

Regional exploration work programmes continue to advance at Miriam, targeting new and underexplored regional prospects adjacent to and surrounding the growing gold system at Forrest.

With heritage clearances now in place across the northern portion of Miriam, the Company is advancing the development of initial exploration datasets, which will incorporate the results of magnetic geophysics, geochemical soil sampling and ground gravity surveying, now advancing to completion. These datasets are set to feed into more detailed geological modelling with the aim of advancing key regional prospects, including Forrest North and Burbanks Monarch, to drill-ready status.

Following the completion of these target generative activities, Ore intends to commence AC drilling of priority gold targets at these regional prospects from late March 2026.

Ore's planned regional exploration drilling forms part of the expansive 30,000m Phase 4 drilling programme being undertaken at the Coolgardie Gold Projects over 2026. This Phase 4 drilling recently commenced at Miriam with an initial 3,000 - 5,000m of RC drilling currently targeting further oxide and fresh rock extensions at Forrest.

Figure 3: Miriam prospect map with drill hole results of prospects

This announcement has been authorised for release by the Board of Directors of the Company.

For further information, visit <http://www.oreresources.com.au/> or contact:

Nicholas Rathjen
CEO & Managing Director
E: nrathjen@oreresources.com.au

Robin Cox
Technical Director
E: rcox@oreresources.com.au

<https://oreresources.com.au/link/yVQQjP>

Competent Persons Statement

The information in this announcement that relates to exploration results is based on and fairly represents information compiled by Mr Robin Cox BSc (E.Geo), a Competent Person, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Cox is the Company's Chief Geologist and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

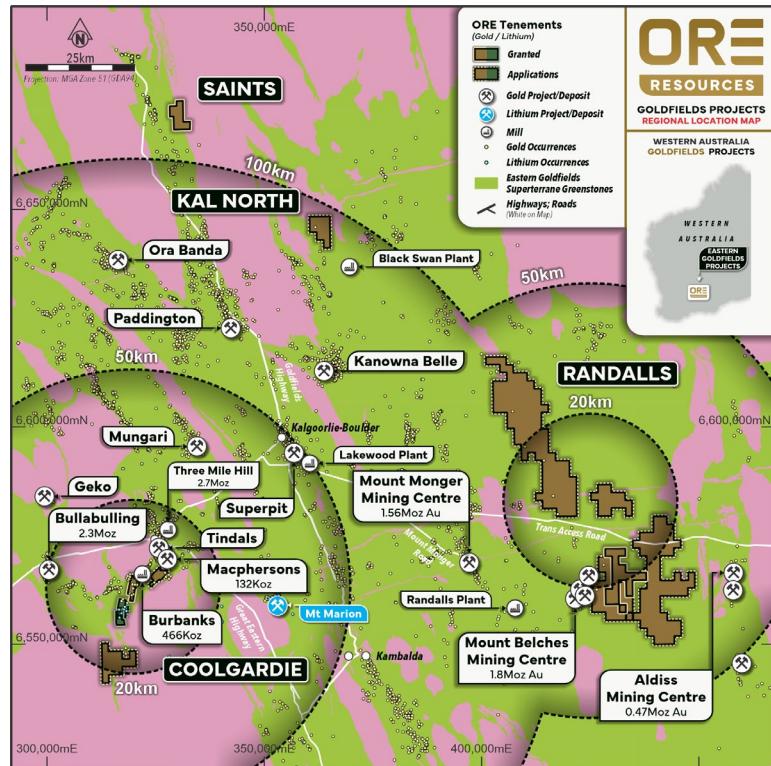
This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Ore Resource Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential", "should," and similar expressions are forward-looking statements. Although Ore Resources Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

Previously Reported Results

The information in this announcement that relates to Exploration Results is extracted from the ASX announcements (Original Announcements), as referenced, which are available at www.oreresources.com.au. Ore confirms that it is not aware of any new information or data that materially affects the information included in the Original Announcements and, that all material assumptions and technical parameters underpinning the estimates in the Original Announcements continue to apply and have not materially changed. Ore confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original announcement.

About Ore Resources Ltd (ASX:OR3)

THE BUSINESS: Gold and lithium exploration and development


Ore Resources (ASX: OR3) is an exploration and development company focused on rapidly advancing its 100% owned Coolgardie and Randalls Gold and Lithium Projects in the Eastern Goldfields of Western Australia.

THE LOCATION: Infrastructure-rich project setting

The Eastern W.A. Goldfields is an outstanding location in which to explore for, build, and operate gold and lithium mines. It is a long-established mining province with all the accompanying benefits, including all-year land access, skilled labour, mining services and infrastructure.

The Projects are positioned within 50km of the mining hub of Kalgoorlie (via sealed and access roads), approximately 370km to the port of Esperance and approximately 550km to Perth via road and rail. We are proximal to multiple gold and lithium mining and processing operations and development projects of substantial scale.

This available range of potential commercialisation options, including standalone development, positions us well to monetise current and future success.

THE TEAM: Proven value generators

Our carefully assembled team has an extensive track record of exploration success, project stewardship, development expertise and operating excellence that has repeatedly resulted in the delivery of substantial shareholder value: Nick Rathjen (MD), Robin Cox (Technical Director), Nev Power (Chairman), Rob Waugh (NED).

THE CAPACITY: Balance sheet strength and runway

We are a business and team that is resolutely focussed on the stewardship of our shareholders' capital and the astute application of this capital for maximal return. We are well-funded to undertake our extensive planned exploration and evaluation work programs throughout 2026 and beyond.

JORC Code, 2012 Edition, Table 1

Section 1: Sampling Techniques and Data

CRITERIA	EXPLANATION	COMMENTARY
<i>Sampling techniques</i>	<ul style="list-style-type: none"> Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Soil Sampling collects a 300g sample of fine soil from below 300mm subsurface.
<i>Drilling techniques</i>	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> No drilling reported
<i>Drill sample recovery</i>	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> No drilling reported
<i>Logging</i>	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	<ul style="list-style-type: none"> No drilling reported

	<ul style="list-style-type: none"> • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> • If core, whether cut or sawn and whether quarter, half or all core taken. • If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. • For all sample types, the nature, quality and appropriateness of the sample preparation technique • Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> • No sub sampling of soil samples. • Soil was sieved using a 2mm nylon mesh • Soil sampling is considered a sufficient first pass geochemical assessment of the ground where appropriate regolith exists. • Geochemical anomalies are relative to the surrounding geochemistry • Sampling grids are designed to cover large area's in order to allow identification of anomalous zones • 200g samples are appropriate
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	<ul style="list-style-type: none"> • OR3 soil samples were prepared by LabWest using UltraFine+™. This collected a 2um ultrafine soil and was assayed via ICPMS. • Previously reported Corazon soil samples were all assayed for multi element geochemistry utilising a 4 Acid digest with ICPMS finish (ME-MS61)
Verification of sampling and assaying	<ul style="list-style-type: none"> • The verification of significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> • No independent verification has been conducted • Field data is imported to the OR3 geochemistry database. • Duplicate samples are inserted at 1:25 • No adjustments are made to assay data
Location of data points	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> • Soil samples were located utilising a hand held GPS with a accuracy +/-5m and via local gridding • Geospatial grid information is represented in UTM MGA 94 Zone 51

Data spacing and distribution	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. 	<ul style="list-style-type: none"> • Soil sampling was conducted on 40m sample spacing and 100 and 200m line spacing. • This data spacing is appropriate for identifying continuous and non-continuous geochemical anomalies
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> • Soil sampling has been conducted on E-W grid lines. Geological units in the region have a dominantly N-S to NE-SW strike. As such the E-W drilling provides relative oblique intercepts
Sample security	<ul style="list-style-type: none"> • The measures taken to ensure sample security. 	<ul style="list-style-type: none"> • Soil sampling conducted by OR3 was collected by OR3 geologists, secured at locked premises and transported directly to a 3rd party laboratory. • Results reported include historic sampling and OR3 has relied upon public domain data reported by previous project holders. • FBM has not located historic data relating to sample security
Audits or reviews	<ul style="list-style-type: none"> • The results of any audits or reviews of sampling techniques and data. 	No independent audit or review has been undertaken.

Section 2: Reporting of Exploration Results

CRITERIA	EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	<ul style="list-style-type: none"> • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<p>The Miriam Project consists of 5 prospecting leases.</p> <ul style="list-style-type: none"> • Granted leases are P15/6136, P15/6137, P15/6138 and P15/6139. P15/6135 remains in application • Leases P15/6136-6139 are held by Coolgardie Nickel Pty Ltd, now an 100% subsidiary of Future Battery Minerals Ltd. P15/6135 is held by Limelight Industries Pty Ltd until time of grant • The tenements are located in the Kangaroo Hills Timber Reserve, an approved Conservation Management Plan provides conditional access to the tenure. • The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	<p>The Historic data represented in this announcement was culminated from the exploration work conducted the following parties.</p> <ul style="list-style-type: none"> • Mt Kersey Mining conducted Reverse Circulation drilling in 1996 consisting

		<p>of 9 holes. Samples were assayed via Fire Assay for gold and aqua regia digest for other elements at AAL Kalgoorlie</p> <ul style="list-style-type: none"> • Crest Mining conducted Reverse Circulation drilling in 1996 and 1997 consisting of 38 holes. Samples were assayed via PM203 at ALS laboratories • Barminco conducted Reverse Circulation drilling in 1997 consisting of 6 holes. Samples were assayed via Fire Assay FA1 at Amdel laboratories. • Spinifex Resources conducted 3 diamond core holes targeting the Miriam Nickel prospect in 2000. Samples containing gold were assayed via fire assay at Analabs • Berkeley Resources conducted 3 diamond core and 1 RC hole targeting the Miriam Nickel prospect in 2004. Samples containing gold were assayed via fire assay at Analabs. • Sipa Resources conducted Air Core (73 holes), RAB (63 holes) and RC (8 holes) drilling and collected 127 soil samples between 2005 and 2007. Samples were assayed by Ultratrace laboratories utilising methods, ICP101, ICP102, ICP302 and fire assay FA002 and FA003
Geology	<p>Deposit type, geological setting and style of mineralisation.</p>	<ul style="list-style-type: none"> • The tenements are prospective for lode and structurally hosted gold mineralisation hosted within Archean aged greenstone lithologies. The project is also prospective for Lithium, Caesium, Tantalum (LCT) enriched pegmatites which intrudes older Archean aged greenstone lithologies.
Drill hole Information	<ul style="list-style-type: none"> • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the 	<ul style="list-style-type: none"> • No drilling reported

	Competent Person should clearly explain why this is the case.	
Data aggregation methods	<ul style="list-style-type: none"> • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. • Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> • Soil Anomalies have been grouped into following bins, <5ppb, 5-10ppb, 10-20ppb, 20-50ppb, 50-100ppb, 100-200ppb and >200ppb
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> • These relationships are particularly important in the reporting of Exploration Results. • If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> • No drilling reported
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant diagrams have been included within the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	<ul style="list-style-type: none"> • Assay data has been represented for all samples collected in the project area.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	<ul style="list-style-type: none"> • Airborne magnetic survey flown in 1996 by UTS Geophysics for Gold Mines of Coolgardie on 30m spaced east-west lines at ground clearance of 22m. Survey used magnetic base station for magnetic diurnal removal, GPS for location control and tie lines for magnetic levelling. • Geophysical data from Bouchers airborne magnetic and radiometric survey flown in 2000 by TAG for Spinifex Nickel Pty Ltd on 40m spaced east-west lines at a ground clearance of 35m. Survey used magnetic base station for magnetic diurnal removal, GPS for location control and tie lines for magnetic levelling, calibrated spectrometer and standard windows for

		<p>radioelement ground concentrations.</p> <ul style="list-style-type: none"> Lithostructural interpretation of geophysical data by Southern Geoscience Consultants is qualitative in nature and based primarily on magnetic and radiometric survey data with input from various other supporting datasets including geological mapping and soil sampling. The interpretation has been performed at a scale of 1:10 000 Geophysical targets are qualitative in nature and are generated based on the following criteria: interpretation of structural disruption from magnetic survey data, muted local magnetic field strength from magnetic survey data, mapped pegmatite outcrop from geological mapping, soil anomalism from soil sampling, potassium anomalism from radiometric survey data
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> OR3 plans to conduct further target generative exploration including geophysical review and surface sampling. OR3 will schedule further drill testing of the Miriam project which is scheduled in 2026. Refer to figures/diagrams in the main body of text.

For personal use only

Appendix 1 – Soil Assay Results

**Table 1 – Soil Assay Results
(UTM MGA 94 Zone 51)**

Sample ID	Sample Type	Northing	Easting	RL	Au (ppb)
25FS001	SOIL	6562800	319400	350	8.9
25FS002	SOIL	6562800	319440	350	7.4
25FS003	SOIL	6562800	319480	350	6.5
25FS004	SOIL	6562800	319520	350	7.5
25FS005	SOIL	6562800	319560	350	7.9
25FS006	SOIL	6562800	319600	350	18.7
25FS007	SOIL	6562800	319640	350	27.1
25FS008	SOIL	6562800	319680	350	86.7
25FS009	SOIL	6562800	319720	350	107.7
25FS010	SOIL	6562800	319760	350	126.8
25FS011	SOIL	6562800	319800	350	278.4
25FS012	SOIL	6562800	319840	350	92.2
25FS013	SOIL	6562800	319880	350	30.8
25FS014	SOIL	6562800	319920	350	34
25FS015	SOIL	6562800	319960	350	37.3
25FS016	SOIL	6562800	320280	350	36.5
25FS017	SOIL	6562800	320320	350	10.3
25FS018	SOIL	6563000	319400	350	7.1
25FS019	SOIL	6563000	319440	350	8.6
25FS020	SOIL	6563000	319480	350	6.1
25FS021	SOIL	6563000	319520	350	11.5
25FS022	SOIL	6563000	319560	350	17.3
25FS023	SOIL	6563000	319600	350	16.5
25FS024	SOIL	6563000	319640	350	15.5
25FS025	SOIL	6563000	319680	350	37
25FS026	SOIL	6563000	319720	350	30.2
25FS027	SOIL	6563000	319760	350	16.8
25FS028	SOIL	6563000	319800	350	179.6
25FS029	SOIL	6563000	319840	350	109
25FS030	SOIL	6563000	319880	350	94.1
25FS031	SOIL	6563000	319920	350	196.5
25FS032	SOIL	6563000	319960	350	246.3
25FS033	SOIL	6563000	320000	350	128.6
25FS034	SOIL	6563000	320040	350	93.2
25FS035	SOIL	6563000	320240	350	56.2
25FS036	SOIL	6563000	320280	350	53.2

25FS037	SOIL	6563000	320320	350	29.4
25FS038	SOIL	6563000	320360	350	13.5
25FS039	SOIL	6563000	320400	350	10
25FS040	SOIL	6563000	320440	350	9.8
25FS041	SOIL	6563000	320480	350	5.8
25FS042	SOIL	6563200	319400	350	8.9
25FS043	SOIL	6563200	319440	350	13.4
25FS044	SOIL	6563200	319480	350	18.8
25FS045	SOIL	6563200	319520	350	14.6
25FS046	SOIL	6563200	319560	350	32.2
25FS047	SOIL	6563200	319600	350	34.1
25FS048	SOIL	6563200	319640	350	27.4
25FS049	SOIL	6563200	319680	350	34.5
25FS050	SOIL	6563200	319720	350	49.2
25FS051	SOIL	6563200	319760	350	37.4
25FS052	SOIL	6563200	319800	350	23.6
25FS053	SOIL	6563200	319840	350	70.5
25FS054	SOIL	6563200	319880	350	41.9
25FS055	SOIL	6563200	319920	350	56.8
25FS056	SOIL	6563200	319960	350	83.3
25FS057	SOIL	6563200	320000	350	60.2
25FS058	SOIL	6563200	320040	350	92.3
25FS059	SOIL	6563200	320080	350	66.5
25FS060	SOIL	6563200	320400	350	33.2
25FS061	SOIL	6563200	320440	350	13.1
25FS062	SOIL	6563200	320480	350	11.9
25FS063	SOIL	6563200	320520	350	5.3
25FS064	SOIL	6563200	320560	350	6.3
25FS066	SOIL	6563200	320640	350	4.5
25FS067	SOIL	6563200	320680	350	11.8
25FS068	SOIL	6563200	320720	350	17.8
25FS069	SOIL	6563300	319400	350	9.5
25FS070	SOIL	6563300	319440	350	14.4
25FS071	SOIL	6563300	319480	350	7.4
25FS072	SOIL	6563300	319520	350	29.4
25FS073	SOIL	6563300	319560	350	13.9
25FS074	SOIL	6563300	319600	350	10
25FS075	SOIL	6563300	319640	350	13
25FS076	SOIL	6563300	319680	350	7.1
25FS077	SOIL	6563300	319720	350	6.4
25FS078	SOIL	6563300	319760	350	11.8
25FS079	SOIL	6563300	319800	350	23.7
25FS080	SOIL	6563300	319840	350	28.4

25FS081	SOIL	6563300	319880	350	29.2
25FS082	SOIL	6563300	319920	350	35.3
25FS083	SOIL	6563300	319960	350	32.1
25FS084	SOIL	6563300	320000	350	30.7
25FS085	SOIL	6563300	320040	350	31.8
25FS086	SOIL	6563300	320080	350	33.5
25FS087	SOIL	6563300	320120	350	61.6
25FS088	SOIL	6563300	320320	350	16
25FS089	SOIL	6563300	320360	350	9.7
25FS090	SOIL	6563300	320400	350	9
25FS091	SOIL	6563300	320440	350	16.6
25FS092	SOIL	6563300	320480	350	9
25FS093	SOIL	6563300	320520	350	9.6
25FS094	SOIL	6563300	320560	350	14.7
25FS095	SOIL	6563300	320600	350	5.8
25FS096	SOIL	6563300	320640	350	4.5
25FS097	SOIL	6563400	318880	350	6.3
25FS098	SOIL	6563400	318920	350	5.3
25FS099	SOIL	6563400	318960	350	12
25FS100	SOIL	6563400	319000	350	7.7
25FS101	SOIL	6563400	319040	350	6.6
25FS102	SOIL	6563400	319080	350	8.3
25FS103	SOIL	6563400	319120	350	7.4
25FS104	SOIL	6563400	319160	350	3.5
25FS105	SOIL	6563400	319200	350	4.9
25FS106	SOIL	6563400	319240	350	14.6
25FS107	SOIL	6563400	319280	350	22.3
25FS108	SOIL	6563400	319320	350	32.3
25FS109	SOIL	6563400	319360	350	18.6
25FS110	SOIL	6563400	319400	350	9.4
25FS111	SOIL	6563400	319440	350	8.9
25FS112	SOIL	6563400	319480	350	9.8
25FS113	SOIL	6563400	319520	350	19.4
25FS114	SOIL	6563400	319560	350	13.5
25FS115	SOIL	6563400	319600	350	8.7
25FS116	SOIL	6563400	319640	350	13.1
25FS117	SOIL	6563400	319680	350	46.2
25FS118	SOIL	6563400	319720	350	7.3
25FS119	SOIL	6563400	319760	350	19.4
25FS120	SOIL	6563400	319800	350	10.8
25FS121	SOIL	6563400	319840	350	16.2
25FS122	SOIL	6563400	319880	350	26.7
25FS123	SOIL	6563400	319920	350	24.7

25FS124	SOIL	6563400	319960	350	28.7
25FS125	SOIL	6563400	320000	350	27.4
25FS126	SOIL	6563400	320040	350	17.1
25FS127	SOIL	6563400	320080	350	13.7
25FS128	SOIL	6563400	320120	350	24
25FS129	SOIL	6563400	320160	350	95
25FS130	SOIL	6563400	320200	350	16.7
25FS131	SOIL	6563400	320240	350	17.9
25FS132	SOIL	6563400	320280	350	16.9
25FS133	SOIL	6563400	320320	350	9.1
25FS134	SOIL	6563400	320360	350	12.5
25FS135	SOIL	6563400	320400	350	11.4
25FS136	SOIL	6563400	320440	350	16.2
25FS137	SOIL	6563400	320480	350	14.5
25FS138	SOIL	6563400	320520	350	28.5
25FS139	SOIL	6563400	320560	350	27.9
25FS140	SOIL	6563400	320600	350	30.6
25FS141	SOIL	6563500	319400	350	33.3
25FS142	SOIL	6563500	319440	350	13.1
25FS143	SOIL	6563500	319480	350	16.6
25FS144	SOIL	6563500	319520	350	14.2
25FS145	SOIL	6563500	319560	350	10.5
25FS146	SOIL	6563500	319600	350	13.8
25FS147	SOIL	6563500	319640	350	17.7
25FS148	SOIL	6563500	319680	350	30.9
25FS149	SOIL	6563500	319720	350	10.8
25FS150	SOIL	6563500	319760	350	9.2
25FS151	SOIL	6563500	319800	350	10.1
25FS152	SOIL	6563500	319840	350	28.3
25FS153	SOIL	6563500	319880	350	38.6
25FS154	SOIL	6563500	319920	350	24.2
25FS155	SOIL	6563500	319960	350	16.7
25FS156	SOIL	6563500	320000	350	23.6
25FS157	SOIL	6563500	320040	350	27.2
25FS158	SOIL	6563500	320080	350	38.2
25FS159	SOIL	6563500	320120	350	81.5
25FS160	SOIL	6563500	320160	350	153.4
25FS161	SOIL	6563500	320200	350	75.2
25FS162	SOIL	6563500	320240	350	83
25FS163	SOIL	6563500	320280	350	34.4
25FS164	SOIL	6563500	320320	350	28.9
25FS165	SOIL	6563500	320360	350	37
25FS166	SOIL	6563500	320400	350	16.3

25FS167	SOIL	6563500	320440	350	8.1
25FS168	SOIL	6563500	320480	350	27.7
25FS169	SOIL	6563500	320520	350	53.6
25FS170	SOIL	6563500	320560	350	47.3
25FS171	SOIL	6563500	320600	350	18.2
25FS172	SOIL	6563500	320640	350	47.1
25FS174	SOIL	6563600	318920	350	7.8
25FS175	SOIL	6563600	318960	350	6.9
25FS176	SOIL	6563600	319000	350	3.6
25FS177	SOIL	6563600	319040	350	4.4
25FS178	SOIL	6563600	319080	350	6.1
25FS179	SOIL	6563600	319120	350	9.6
25FS180	SOIL	6563600	319160	350	5.6
25FS181	SOIL	6563600	319200	350	4.1
25FS182	SOIL	6563600	319240	350	57.3
25FS183	SOIL	6563600	319280	350	28.6
25FS184	SOIL	6563600	319320	350	14.6
25FS185	SOIL	6563600	319360	350	10.5
25FS186	SOIL	6563600	319400	350	13.7
25FS187	SOIL	6563600	319440	350	14.7
25FS188	SOIL	6563600	319480	350	33.4
25FS189	SOIL	6563600	319520	350	14.8
25FS190	SOIL	6563600	319560	350	15.8
25FS191	SOIL	6563600	319600	350	17
25FS192	SOIL	6563600	319640	350	29.1
25FS193	SOIL	6563600	319680	350	57.7
25FS194	SOIL	6563600	319720	350	31.1
25FS195	SOIL	6563600	319760	350	58.4
25FS196	SOIL	6563600	319800	350	23.3
25FS197	SOIL	6563600	319840	350	6.1
25FS198	SOIL	6563600	319880	350	32.5
25FS199	SOIL	6563600	319920	350	40.3
25FS200	SOIL	6563600	319960	350	42.1
25FS201	SOIL	6563600	320000	350	34.6
25FS202	SOIL	6563600	320040	350	21.3
25FS203	SOIL	6563600	320080	350	23.9
25FS204	SOIL	6563600	320120	350	35.7
25FS205	SOIL	6563600	320160	350	35.9
25FS206	SOIL	6563600	320200	350	55.6
25FS207	SOIL	6563600	320240	350	41.7
25FS208	SOIL	6563600	320280	350	111.9
25FS209	SOIL	6563600	320320	350	42.9
25FS210	SOIL	6563600	320360	350	21.9

25FS211	SOIL	6563600	320400	350	20
25FS212	SOIL	6563600	320440	350	16.3
25FS213	SOIL	6563600	320480	350	42.4
25FS214	SOIL	6563600	320520	350	69.1
25FS215	SOIL	6563600	320560	350	68.9
25FS224	SOIL	6563700	319400	350	13.5
25FS225	SOIL	6563700	319440	350	8.7
25FS226	SOIL	6563700	319480	350	17.6
25FS227	SOIL	6563700	319520	350	18
25FS228	SOIL	6563700	319560	350	15.3
25FS229	SOIL	6563700	319600	350	32.2
25FS230	SOIL	6563700	319640	350	30.4
25FS231	SOIL	6563700	319680	350	29.9
25FS232	SOIL	6563700	319720	350	28.6
25FS233	SOIL	6563700	319760	350	44.9
25FS234	SOIL	6563700	319800	350	18.1
25FS235	SOIL	6563700	319840	350	12.8
25FS236	SOIL	6563700	319880	350	14.9
25FS237	SOIL	6563700	319920	350	54
25FS238	SOIL	6563700	319960	350	59
25FS239	SOIL	6563700	320000	350	54.5
25FS240	SOIL	6563700	320040	350	22.9
25FS241	SOIL	6563700	320080	350	16
25FS242	SOIL	6563700	320120	350	27.6
25FS243	SOIL	6563700	320160	350	23.5
25FS244	SOIL	6563700	320200	350	16.6
25FS245	SOIL	6563700	320240	350	21.2
25FS246	SOIL	6563700	320280	350	96.6
25FS247	SOIL	6563700	320320	350	34.2
25FS248	SOIL	6563700	320360	350	48.9
25FS249	SOIL	6563700	320400	350	58.9
25FS250	SOIL	6563700	320440	350	59.5
25FS262	SOIL	6563800	318920	350	6.2
25FS263	SOIL	6563800	318960	350	4
25FS264	SOIL	6563800	319000	350	8.6
25FS265	SOIL	6563800	319040	350	8.3
25FS266	SOIL	6563800	319080	350	6.5
25FS267	SOIL	6563800	319120	350	4.4
25FS268	SOIL	6563800	319160	350	5.3
25FS269	SOIL	6563800	319200	350	8.4
25FS270	SOIL	6563800	319240	350	17.1
25FS271	SOIL	6563800	319280	350	8.9
25FS272	SOIL	6563800	319320	350	11.4

25FS273	SOIL	6563800	319360	350	16.8
25FS274	SOIL	6563800	319400	350	11.6
25FS275	SOIL	6563800	319440	350	9.1
25FS276	SOIL	6563800	319480	350	5.1
25FS277	SOIL	6563800	319520	350	9.2
25FS278	SOIL	6563800	319560	350	6.6
25FS279	SOIL	6563800	319600	350	14.1
25FS280	SOIL	6563800	319640	350	31.1
25FS281	SOIL	6563800	319680	350	61.5
25FS282	SOIL	6563800	319720	350	36.6
25FS283	SOIL	6563800	319760	350	147.6
25FS284	SOIL	6563800	319800	350	105.5
25FS285	SOIL	6563800	319840	350	13.6
25FS286	SOIL	6563800	319880	350	25.9
25FS287	SOIL	6563800	319920	350	38
25FS288	SOIL	6563800	319960	350	63.5
25FS289	SOIL	6563800	320000	350	137.7
25FS290	SOIL	6563800	320040	350	71.6
25FS291	SOIL	6563800	320080	350	39.3
25FS292	SOIL	6563800	320120	350	50.7
25FS293	SOIL	6563800	320160	350	60.1
25FS294	SOIL	6563800	320200	350	47.2
25FS295	SOIL	6563800	320240	350	35.9
25FS296	SOIL	6563800	320280	350	23.3
25FS297	SOIL	6563800	320320	350	47.3
25FS298	SOIL	6563800	320360	350	84.5
25FS312	SOIL	6563900	319400	350	15
25FS313	SOIL	6563900	319440	350	9.9
25FS314	SOIL	6563900	319480	350	13
25FS315	SOIL	6563900	319520	350	8.1
25FS316	SOIL	6563900	319560	350	9.2
25FS317	SOIL	6563900	319600	350	7.5
25FS318	SOIL	6563900	319640	350	20.3
25FS319	SOIL	6563900	319680	350	40.3
25FS320	SOIL	6563900	319720	350	99.1
25FS321	SOIL	6563900	319760	350	77.1
25FS322	SOIL	6563900	319800	350	41.5
25FS323	SOIL	6563900	319840	350	25.8
25FS324	SOIL	6563900	319880	350	10.9
25FS325	SOIL	6563900	319920	350	10.9
25FS326	SOIL	6563900	319960	350	10.2
25FS327	SOIL	6563900	320000	350	42.6
25FS328	SOIL	6563900	320040	350	22.5

25FS329	SOIL	6563900	320080	350	27.2
25FS330	SOIL	6563900	320120	350	33.8
25FS331	SOIL	6563900	320160	350	93
25FS332	SOIL	6563900	320200	350	145.3
25FS333	SOIL	6563900	320240	350	40.5
25FS334	SOIL	6563900	320280	350	25.1
25FS335	SOIL	6563900	320320	350	71.2
25FS336	SOIL	6563900	320360	350	33.6
25FS337	SOIL	6563900	320400	350	21.4
25FS338	SOIL	6563900	320440	350	20.7
25FS351	SOIL	6564000	318960	350	21.6
25FS352	SOIL	6564000	319000	350	12.9
25FS353	SOIL	6564000	319040	350	14.8
25FS354	SOIL	6564000	319080	350	20.2
25FS355	SOIL	6564000	319120	350	12.7
25FS356	SOIL	6564000	319160	350	23.1
25FS357	SOIL	6564000	319200	350	15
25FS358	SOIL	6564000	319240	350	14.1
25FS359	SOIL	6564000	319280	350	16.6
25FS360	SOIL	6564000	319320	350	20.9
25FS361	SOIL	6564000	319360	350	19.7
25FS362	SOIL	6564000	319400	350	7.3
25FS363	SOIL	6564000	319440	350	10.3
25FS364	SOIL	6564000	319480	350	6.6
25FS365	SOIL	6564000	319520	350	12
25FS366	SOIL	6564000	319560	350	8.2
25FS367	SOIL	6564000	319600	350	24.2
25FS368	SOIL	6564000	319640	350	9.8
25FS369	SOIL	6564000	319680	350	31.2
25FS370	SOIL	6564000	319720	350	156.4
25FS371	SOIL	6564000	319760	350	96.1
25FS372	SOIL	6564000	319800	350	20
25FS373	SOIL	6564000	319840	350	16
25FS374	SOIL	6564000	319880	350	16.4
25FS375	SOIL	6564000	319920	350	83.1
25FS376	SOIL	6564000	319960	350	32.2
25FS377	SOIL	6564000	320000	350	33.6
25FS378	SOIL	6564000	320040	350	21.6
25FS379	SOIL	6564000	320080	350	37.6
25FS380	SOIL	6564000	320120	350	67.8
25FS381	SOIL	6564000	320160	350	65.1
25FS382	SOIL	6564000	320200	350	63
25FS383	SOIL	6564000	320240	350	21.1

For personal use only

25FS384	SOIL	6564000	320280	350	42.4
25FS385	SOIL	6564000	320320	350	50.7
25FS386	SOIL	6564000	320360	350	8.8
25FS387	SOIL	6564000	320400	350	23.5
25FS388	SOIL	6564000	320440	350	186
25FS389	SOIL	6564000	320480	350	22.2
25FS390	SOIL	6564000	320520	350	17.6
25FS391	SOIL	6564000	320560	350	22.5
25FS477	SOIL	6564200	320280	350	11.5
25FS478	SOIL	6564200	320320	350	26.5
25FS479	SOIL	6564200	320360	350	14.2
25FS480	SOIL	6564200	320400	350	12.8
25FS481	SOIL	6564200	320440	350	19.8
25FS482	SOIL	6564200	320480	350	21.9
25FS483	SOIL	6564200	320520	350	22.6
25FS515	SOIL	6564300	320360	350	36.3
25FS516	SOIL	6564300	320400	350	23.4
25FS517	SOIL	6564300	320440	350	21