

ASX ANNOUNCEMENT

4 February 2026

Majestic North Gold Project – Interim Infill Drilling Update and Capital Raising

Highlights:

- **Interim infill drilling results received from Majestic North Gold Project.**
- **High-grade shallow gold intersected at the southern margin of current resource envelope including¹²³⁴**
 - **MNRC050: 5m @ 7.74 g/t Au from 18m (incl. 1m @ 30.43 g/t).**
 - **MNRC049: 5m @ 2.85 g/t Au from 20m (incl. 3m @ 4.57g/t Au).**
 - **MNRC076: 5m @ 2.85g/t Au from 21m (including 1m @ 4.79 g/t Au).**
 - **MNRC171: 4m @ 1.79 g/t Au from 28m (including 2m @ 3.04 g/t Au).**
- **Updated JORC (2012) Mineral Resource Estimate targeted for March/April 2026.**
- **Orbminco has received firm commitments to raise \$5.0m (before costs) via a two tranche placement at an issue price of 1.6 cents per share.**
- **The proceeds of the Placement will be applied towards additional resource delineation and exploration drilling at Majestic North and furthering its development.**

Orbminco Limited (ASX: OB1) (Company) is pleased to provide an interim update on the ongoing infill drilling program at its 100%-owned Majestic North Gold Project (**Majestic North** or **Project**) in Western Australia. The current program is designed to increase drill density to improve our geological and grade confidence within the current shallow oxide JORC (2012) Mineral Resource footprint ahead of mine planning and mining approval workstreams. These results continue to confirm the Majestic North gold resource. To date, we have received assays for 132 holes for 7,343

¹. All intercepts are reported as downhole interval lengths and represent true width as drilling is perpendicular to mineralisation and calculated using a nominal 0.5g/t cut off.

². No top cuts have been applied

³. Figures can include up to 2m of internal dilution.

⁴. Refer to appendix for the hole details and the JORC 2012 Table 1.

metres of the planned 11,496m which have been successful in intersecting the shallow mineralised horizons.

The Company continues to work closely with its Technical Committee and consultants throughout the program execution, geological interpretation and resource workstreams, to assist in the development of the shallow oxide Majestic Gold Project to be able to get into a position to advance to a series of economic evaluations to assess its viability to mine at the current gold price. Further updates are planned as additional assay results are received.

Drilling Results

Significant intercepts returned from the latest assay results include:

- MNRC043: 3m @ 3.68 g/t Au from 19m, including 1m @ 9.35 g/t Au.
- MNRC049: 5m @ 2.85 g/t Au from 20m, including 3m @ 4.75 g/t Au.
- MNRC050: 5m @ 7.74 g/t Au from 18m, including 1m @ 30.43 g/t Au.
- MNRC076: 2m @ 4.50g/t Au from 21m, including 1m @ 4.79 g/t Au.
- MNRC171: 4m @ 1.79 g/t Au from 28m, including 2m @ 3.04 g/t Au.

Reported intercepts have been calculated using a nominal 0.5 g/t Au lower cut-off, with up to 2m internal dilution. Higher grade internal intervals are reported for reference. No top-cut has been applied and reported as down hole length which is close to true width as the targeted mineralisation is perpendicular to the drilling. Sampling and assay procedures, QA/QC and other material information will be provided in accordance with JORC (2012), including JORC Table 1 disclosure to accompany full results reporting and/or the upcoming resource update.

Interpretation

The reported intercepts for holes MNRC043, MNRC049 and MNRC50 are located at the southern margin of the current shallow supergene resource envelope. These results provide additional confidence in the mineralisation continuity and highlight the potential for extensions of the supergene gold zone along strike to the south.

The 132 holes drilled for 7,343 metres that have been reported and are outlined in the appendix demonstrate consistent mineralisation at the main interpreted enriched historic paleochannel/supergene horizon (between 30

to 35m below surface) along with additional shallower perched channels that occur in the hanging wall of the main zone especially around 20 metres below surface horizon.

Majestic North gold mineralisation is interpreted to comprise a supergene-enriched horizon developed in historic paleochannels above the primary (bedrock) mineralisation. While the current program is focused on infill drilling of these zone to support the upcoming Mineral Resource update, the presence of high-grade intersections at the margin of the supergene envelope is considered relevant in assessing potential for bedrock mineralisation beneath the supergene profile. Follow-up work, including consideration of deeper drilling, will be assessed following completion of the program.

Figure 1: Photographs of the RC chips for holes MNRC043, MNRC049 and MNRC050 showing the assay results for the 1m interval against the logged geology.

Figure 2: Figure showing the VM Drilling Epiroc ROC L8 track mounted RC rig at the Majestic North gold project.

For personal use only

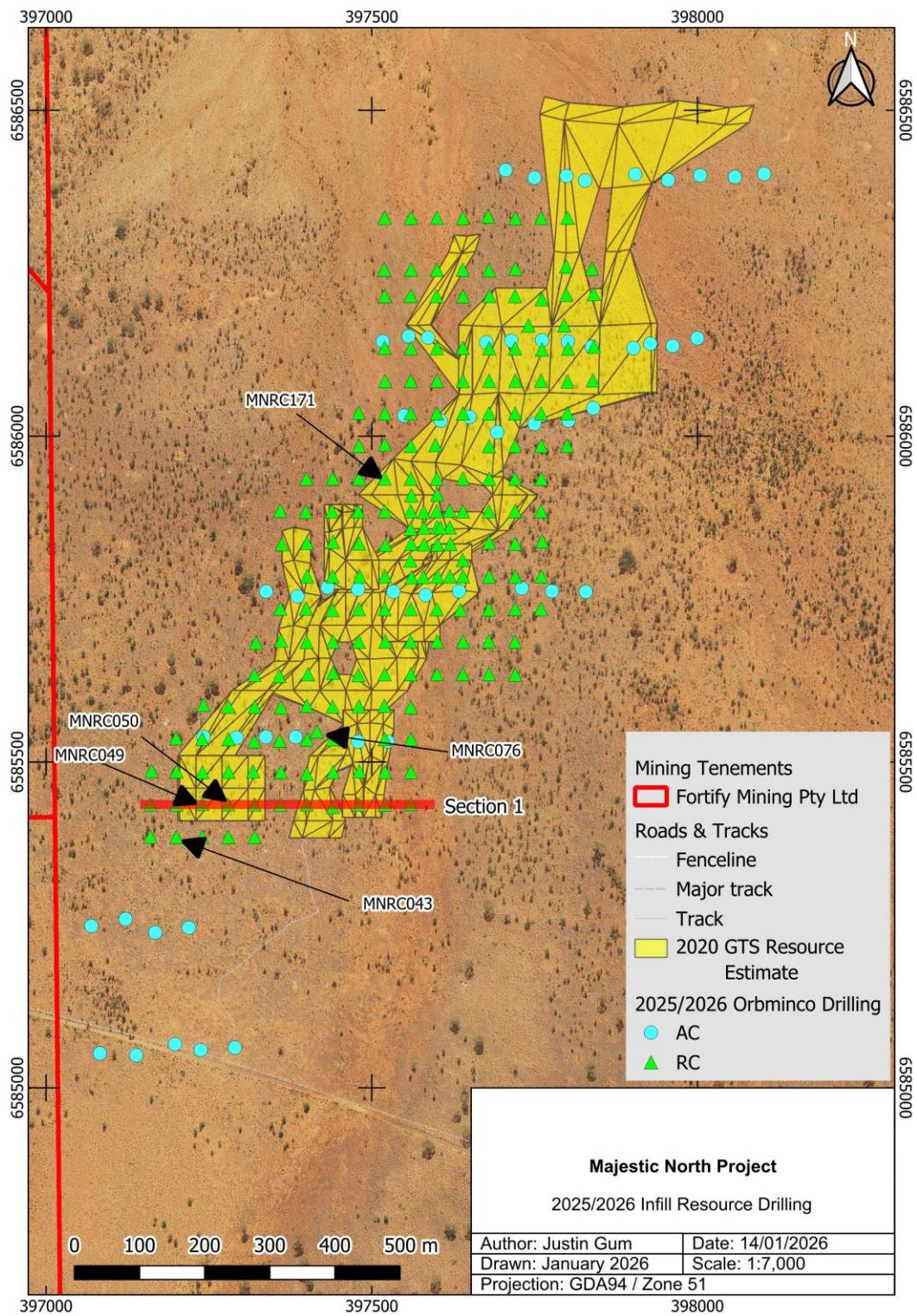


Figure 3: Majestic North – plan view showing drill hole locations of the infill drill program and location of the high-grade intercepts from holes MNRC043, MNRC049, MNRC050, MNRC076 and MNRC171.

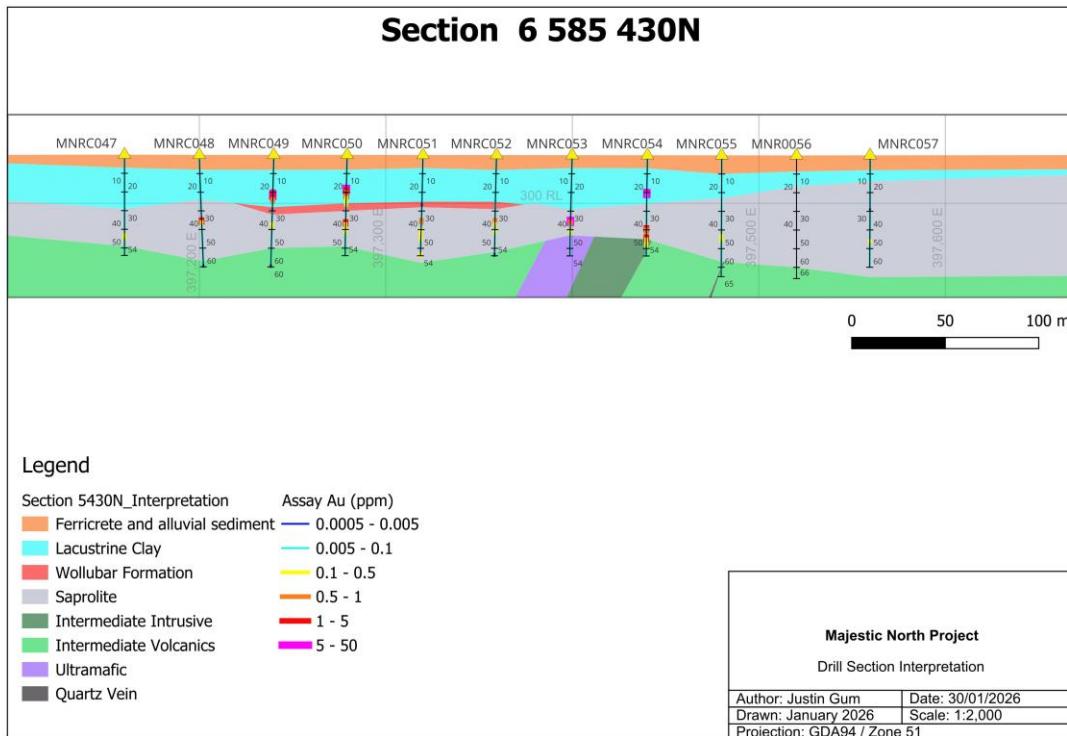


Figure 4: Majestic North – interpreted cross section (Section 1 on plan view) showing holes drilled, significant assays and interpreted geology on Northing 6585430mN.

Previously Reported Mineral Resource Estimate⁵

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original Majestic North Mineral Resource Estimate announcement of the Indicated Resource of 583kt @ 1.35 g/t Au for 25.3koz and Inferred Resource of 182kt @ 2.43 g/t for 14.4koz for a total Indicated and Inferred resource of 765kt @ 1.61g/t for 39.7koz⁵. All material assumptions underpinning the estimate in that announcement continue to apply and have not materially changed.

Program Status and Next Steps

Drilling is continuing and this announcement should be read as an interim update of the infill program. Additional assay results are pending and will be reported as received and validated.

⁵. For the JORC Table 1 table refer to announcement dated 23 May 2025 “Acquisition of advanced Majestic North Gold Project in WA’s Eastern Goldfields”

Orbminco is targeting completion of an updated JORC (2012) Mineral Resource Estimate in late March/early April 2026, incorporating results from the current infill drilling program.

\$5.0m Capital Raising via Two Tranche Placement

Orbminco is also pleased to advise it has received firm commitments to raise **\$5.0m** (before costs) via a placement of **312.5 million new shares (Shares)** at an issue price of **1.6 cents** per share (**Placement**).

Details

The Placement will be conducted across two tranches, as follows:

- 62.5 million Shares will be issued pursuant to the Company's existing placement capacities under ASX Listing Rule 7.1 (43,394,259 ordinary shares) and 7.1a (19,105,741 ordinary shares) to raise \$1.0m (**Tranche 1**), with allotment of the shares expected to occur on 10 February 2026; and
- 250 million Shares will be issued subject to receipt of shareholder approval at a general meeting to raise \$4.0m (**Tranche 2**).

Orbminco Directors Duncan Gordon, Angus Middleton and Richard Willson (or their nominees) have committed to subscribe for a total of \$200,000 worth of Shares in Tranche 2 of the Placement, subject to receipt of shareholder approval.

Use of Funds

The proceeds of the Placement will be applied towards:

- Continuation of resource delineation and exploration drilling at Majestic North;
- Furthering Majestic North's development path including Metallurgical testwork, Environmental studies and Mining studies
- Further cash payment towards deferred purchase price to Fortify vendors
- Purchase of long-lead time plant and equipment (as appropriate)
- Working Capital and Transaction Costs relating to the Placement.

The issue price for the Placement of \$0.016 per share represents:

- an 8.4% discount to the 15-day volume weighted average market price of Orbminco shares up to and including 30 January 2026 (\$0.0174)

- an 11.1% discount to the last traded price of Orbminco shares on 30 January 2026 (\$0.018).

The new Shares issued under the Placement will rank equally with Orbminco's existing shares.

Taylor Collison Ltd acted as the Lead Manager and Sole Bookrunner to the Placement. Taylor Collison will receive a fee of 1% of total proceeds raised and 6% on proceeds procured directly by the Lead Manager. Taylor Collison will also receive 20,000,000 unlisted Options (subject to shareholder approval) (**Broker Options**), each with an exercise price of \$0.04 and expiring three years from issue.

Indicative timetable*

Event	Timing
Announcement of Placement and Return to Trading on ASX	Wednesday, 4 February 2026
Tranche 1 Placement funds due (settlement date)	Monday, 9 February 2026
Allotment of Tranche 1 Shares	Tuesday, 10 February 2026
General Meeting to approve Tranche 2	Mid March 2026
Tranche 2 Placement funds due (settlement date)	Mid-late March 2026
Allotment of Tranche 2 Shares and Advisor Options	Mid-late March 2026

*The above timetable for the Placement is indicative only and all dates are subject to change.

Commentary

Orbminco Chair, Duncan Gordon, commented:

"These interim results support the objectives of the infill program, providing additional confidence in the geology and the continuity of the grade of the mineralisation within the existing resource footprint along with the potential to extend the resource to the south based on these positive results.

The Company, together with its Technical Committee, continues to review results as they are received, ahead of our planned Mineral Resource update in late March/early April 2026.

In addition, we welcome the support of existing and new shareholders via our Capital Raising and look forward to putting those funds to good use in swiftly moving forward with our Majestic North development plans."

This announcement is intended to lift the trading halt of the Company's ordinary shares.

– Ends –

This release has been approved by the Board of Orbminco Limited.

For further information, please contact:

Shareholder & General Enquiries

Orbminco Limited
Duncan Gordon
T: +61 (0)404 006 444
E: duncan.gordon@orbminco.com.au

Media & Investor Enquiries

The Capital Network
Julia Maguire
T: +61 2 7257 7338
E: julia@thecapitalnetwork.com.au

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Ms Emily Henry, Principal Geologist of Exora Consulting. Ms Henry is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Ms Henry consents to the inclusion in this announcement of the matters based on her information in the form and context in which it appears. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FORWARD-LOOKING STATEMENTS

This announcement may contain forward-looking statements. Forward-looking statements are based on the Company's expectations and

assumptions as at the date of this announcement and are subject to risks and uncertainties. Actual results may differ materially from those expressed or implied. The Company does not undertake to update forward-looking statements except where required by law.

For personal use only

APPENDIX

Drill hole details and significant assays for the
Majestic North Gold Project infill drilling
update

For personal use only

Table A.1: Collar locations and hole details for significant assays at a nominal 0.5g/t cut off.

Hole ID	Depth (m)	Easting	Northing	Elevation	Dip	Azimuth
MNRC042	60	397160.1	6585385.6	325.9	-90	0
MNRC043	66	397199.9	6585385.3	325.9	-90	0
MNRC044	60	397240.1	6585385.4	325.9	-90	0
MNRC045	60	397279.8	6585385.1	325.8	-90	0
MNRC046	57	397320	6585384.9	325.9	-90	0
MNRC047	54	397159.9	6585435.1	325.6	-90	0
MNRC048	60	397200	6585434.7	325.7	-90	0
MNRC049	60	397239.9	6585435.8	325.6	-90	0
MNRC050	54	397279.3	6585435.4	325.6	-90	0
MNRC051	54	397319.9	6585435.2	325.5	-90	0
MNRC052	54	397359.4	6585435	325.6	-90	0
MNRC053	54	397399.9	6585435.4	325.5	-90	0
MNRC054	54	397440.3	6585431.5	325.5	-90	0
MNRC055	65	397480.1	6585435	325.4	-90	0
MNRC056	66	397520.2	6585435	325.4	-90	0
MNRC057	60	397559.7	6585435.7	325.3	-90	0
MNRC058	54	397161.9	6585486.4	325.4	-90	0
MNRC059	60	397200.1	6585485.8	325.4	-90	0
MNRC060	54	397240	6585484.7	325.4	-90	0
MNRC061	60	397280.1	6585485.1	325.4	-90	0
MNRC062	60	397317.8	6585485.9	325.4	-90	0
MNRC063	60	397360.5	6585485	325.5	-90	0
MNRC064	54	397400.1	6585481.9	325.3	-90	0
MNRC065	60	397440.5	6585485	325.2	-90	0
MNRC066	60	397480.7	6585486	325.3	-90	0
MNRC067	60	397520.3	6585485	325.4	-90	0
MNRC068	54	397560	6585484.8	325.2	-90	0
MNRC069	60	397199.6	6585536.5	325.3	-90	0
MNRC070	54	397239.7	6585535.6	325.3	-90	0
MNRC071	60	397279.9	6585535.1	325.2	-90	0
MNRC072	54	397319.6	6585531.8	325.1	-90	0
MNRC073	54	397358.6	6585532.9	325.1	-90	0
MNRC074	60	397400.7	6585534.8	325.1	-90	0
MNRC076	60	397415.6	6585547.1	325.1	-90	0
MNRC077	54	397520.1	6585535.2	324.9	-90	0
MNRC078	54	397560.1	6585535.1	325	-90	0
MNRC079	54	397241.6	6585587.8	325	-90	0

For personal use only

Hole ID	Depth (m)	Eastng	Northing	Elevation	Dip	Azimuth
MNRC080	60	397280.2	6585584.9	325	-90	0
MNRC081	54	397320.3	6585584.8	324.9	-90	0
MNRC082	54	397360.6	6585584.1	324.9	-90	0
MNRC084	54	397439.9	6585585.2	324.8	-90	0
MNRC085	54	397480.2	6585585.6	324.9	-90	0
MNRC086	54	397519.3	6585586.4	324.8	-90	0
MNRC087	54	397559.9	6585584.1	324.9	-90	0
MNRC088	54	397319.8	6585633.8	324.7	-90	0
MNRC089	54	397358.1	6585632.1	324.7	-90	0
MNRC090	57	397402	6585634.8	324.7	-90	0
MNRC093	54	397519.8	6585634.7	324.7	-90	0
MNRC094	54	397560	6585634.7	324.6	-90	0
MNRC095	54	397599.9	6585634.8	324.5	-90	0
MNRC096	54	397639.8	6585634.9	324.7	-90	0
MNRC097A	42	397674.8	6585634.9	324.6	-90	0
MNRC098	54	397720	6585634.2	324.6	-90	0
MNRC102	54	397440.5	6585685.2	324.5	-90	0
MNRC103	54	397479.9	6585684.9	324.5	-90	0
MNRC104	72	397520.6	6585685.1	324.5	-90	0
MNRC105	54	397559.5	6585685.1	324.5	-90	0
MNRC106	54	397600.4	6585685.1	324.5	-90	0
MNRC107	60	397640.1	6585685	324.4	-90	0
MNRC108	54	397679.7	6585685.3	324.5	-90	0
MNRC109	54	397719.8	6585684.8	324.3	-90	0
MNRC110	54	397359.6	6585735.3	324.3	-90	0
MNRC111	54	397399.3	6585735.7	324.3	-90	0
MNRC112	54	397439.4	6585733.3	324.3	-90	0
MNRC113	54	397480.1	6585734.9	324.3	-90	0
MNRC114	54	397519.7	6585734.8	324.4	-90	0
MNRC115	54	397559.8	6585734.9	324.3	-90	0
MNRC116	54	397599.7	6585734.9	324.1	-90	0
MNRC117	54	397636	6585733.6	324.3	-90	0
MNRC118	54	397679.9	6585734.3	324.3	-90	0
MNRC119	54	397720.1	6585735.2	324.2	-90	0
MNRC120	54	397759.7	6585734.9	324.1	-90	0
MNRC122	54	397400.7	6585785	324.1	-90	0
MNRC123	54	397439.8	6585785.1	324.2	-90	0
MNRC131	62	397680	6585784.8	324.2	-90	0
MNRC132	60	397720.3	6585784.9	324	-90	0
MNRC133	54	397760.1	6585785.2	323.9	-90	0

For personal use only

Hole ID	Depth (m)	Easting	Northing	Elevation	Dip	Azimuth
MNRC134	54	397559.1	6585809.4	324	-90	0
MNRC135	63	397639.4	6585809.9	324	-90	0
MNRC136	54	397361.9	6585834.2	324.1	-90	0
MNRC138	54	397440.6	6585838	324	-90	0
MNRC139	54	397480.3	6585835.6	324	-90	0
MNRC141	54	397560.4	6585834.9	323.9	-90	0
MNRC142	54	397580.5	6585834.3	323.9	-90	0
MNRC143	60	397600.7	6585833.9	323.8	-90	0
MNRC144	54	397620.7	6585834.6	324	-90	0
MNRC146	60	397680.1	6585836.7	323.9	-90	0
MNRC147	54	397720.1	6585835.1	323.9	-90	0
MNRC148	54	397761.6	6585838.6	323.8	-90	0
MNRC149	54	397559.5	6585857.9	323.7	-90	0
MNRC150	54	397580.2	6585859.8	323.7	-90	0
MNRC151	54	397600.1	6585860.4	323.8	-90	0
MNRC152	54	397619.5	6585859.9	323.9	-90	0
MNRC153	54	397359.5	6585885.7	323.9	-90	0
MNRC154	60	397398.7	6585884	323.7	-90	0
MNRC155	54	397438.7	6585884.8	323.8	-90	0
MNRC156	54	397479.2	6585884.6	323.9	-90	0
MNRC157	54	397519.9	6585884.8	323.7	-90	0
MNRC158	54	397559.7	6585884.9	323.6	-90	0
MNRC159	54	397579.7	6585883.7	323.6	-90	0
MNRC160	54	397599.6	6585885	323.7	-90	0
MNRC161	54	397619.5	6585885.7	323.8	-90	0
MNRC162	60	397639.8	6585884.6	323.8	-90	0
MNRC163	54	397679.9	6585884.8	323.7	-90	0
MNRC164	54	397719.7	6585885	323.7	-90	0
MNRC165	54	397759.7	6585885	323.7	-90	0
MNRC166	54	397560.6	6585909.3	323.6	-90	0
MNRC167	54	397600.3	6585910.5	323.6	-90	0
MNRC168	54	397399.9	6585934.7	323.6	-90	0
MNRC169	54	397440	6585935.1	323.5	-90	0
MNRC170	54	397480.2	6585934.9	323.6	-90	0
MNRC171	54	397519.9	6585935	323.6	-90	0
MNRC172	54	397559.9	6585934.9	323.6	-90	0
MNRC173	54	397599.9	6585934.9	323.5	-90	0
MNRC174	54	397639.9	6585934.9	323.6	-90	0
MNRC175	54	397680.2	6585934.8	323.5	-90	0
MNRC176	54	397720	6585934.9	323.6	-90	0

Hole ID	Depth (m)	Easting	Northing	Elevation	Dip	Azimuth
MNRC177	54	397760.1	6585934.8	323.5	-90	0
MNRC178	54	397480.1	6585985.2	323.4	-90	0
MNRC180	54	397559.7	6585985.2	323.4	-90	0
MNRC183	54	397680	6585984.7	323.5	-90	0
MNRC184	54	397720	6585985	323.4	-90	0
MNRC186	55	397799.7	6585985.5	323.3	-90	0
MNRC190	54	397599.9	6586034.8	323.2	-90	0
MNRC191	54	397640	6586034.8	323.2	-90	0
MNRC192	54	397679.8	6586034.9	323.2	-90	0
MNRC193	54	397719.9	6586034.9	323.2	-90	0
MNRC194	54	397759.8	6586035	323.1	-90	0
MNRC195	54	397800	6586035.1	323.2	-90	0
MNRC202	54	397759.9	6586084.9	323.1	-90	0
MNRC203	60	397800.4	6586083.8	323	-90	0
MNRC204	54	397839.4	6586085.6	323	-90	0

1. Collar co-ordinates reported in MGA94 51
2. All holes are drilled as Reverse Circulation (RC)
3. Holes released have gold assay resulted returned

Table A.2: Significant assays for drilling to date reported at a nominal 0.5g/t cut off.

Hole ID	From (m)	To (m)	Length (m)	Significant Intercept Au (g/t)	gram*meter
MNRC042	36.00	37.00	1.00	0.55	0.55
MNRC043	19.00	22.00	3.00	3.68	11.04
MNRC043	36.00	37.00	1.00	0.82	0.82
MNRC044	35.00	36.00	1.00	0.84	0.84
MNRC046	34.00	35.00	1.00	1.86	1.86
MNRC048	35.00	36.00	1.00	1.56	1.56
MNRC049	20.00	25.00	5.00	2.85	14.25
MNRC050	18.00	23.00	5.00	7.74	38.70
MNRC050	36.00	37.00	1.00	4.27	4.27
MNRC051	35.00	36.00	1.00	0.92	0.92
MNRC052	35.00	36.00	1.00	0.68	0.68
MNRC053	35.00	37.00	2.00	3.13	6.26
MNRC054	20.00	21.00	1.00	9.91	9.91
MNRC054	39.00	45.00	6.00	1.00	6.00
MNRC060	39.00	40.00	1.00	0.58	0.58
MNRC061	22.00	23.00	1.00	6.04	6.04
MNRC061	36.00	38.00	2.00	1.38	2.76
MNRC062	37.00	38.00	1.00	1.86	1.86
MNRC062	44.00	45.00	1.00	0.61	0.61

For personal use only

Hole ID	From (m)	To (m)	Length (m)	Significant Intercept Au (g/t)	gram*meter
MNRC063	35.00	36.00	1.00	0.68	0.68
MNRC063	45.00	46.00	1.00	0.61	0.61
MNRC065	35.00	41.00	6.00	1.04	6.24
MNRC070	20.00	21.00	1.00	0.53	0.53
MNRC071	35.00	36.00	1.00	1.03	1.03
MNRC072	19.00	20.00	1.00	1.21	1.21
MNRC072	36.00	38.00	2.00	0.56	1.12
MNRC073	18.00	19.00	1.00	10.80	10.80
MNRC073	35.00	36.00	1.00	2.62	2.62
MNRC074	18.00	19.00	1.00	4.71	4.71
MNRC076	21.00	23.00	2.00	4.50	9.00
MNRC076	44.00	45.00	1.00	0.56	0.56
MNRC077	22.00	23.00	1.00	0.58	0.58
MNRC080	20.00	22.00	2.00	1.54	3.08
MNRC081	33.00	34.00	1.00	1.38	1.38
MNRC081	21.00	22.00	1.00	0.90	0.90
MNRC082	20.00	21.00	1.00	2.84	2.84
MNRC082	33.00	34.00	1.00	2.22	2.22
MNRC084	33.00	34.00	1.00	2.19	2.19
MNRC085	39.00	40.00	1.00	1.30	1.30
MNRC085	35.00	36.00	1.00	0.65	0.65
MNRC086	22.00	23.00	1.00	1.23	1.23
MNRC086	41.00	42.00	1.00	1.00	1.00
MNRC086	37.00	38.00	1.00	0.89	0.89
MNRC086	44.00	45.00	1.00	0.60	0.60
MNRC088	22.00	23.00	1.00	0.56	0.56
MNRC089	21.00	22.00	1.00	3.50	3.50
MNRC089	33.00	35.00	2.00	1.39	2.78
MNRC090	38.00	39.00	1.00	3.90	3.90
MNRC093	19.00	20.00	1.00	2.84	2.84
MNRC093	34.00	36.00	2.00	0.90	1.80
MNRC093	41.00	42.00	1.00	0.67	0.67
MNRC094	23.00	24.00	1.00	3.45	3.45
MNRC094	29.00	30.00	1.00	0.66	0.66
MNRC094	34.00	35.00	1.00	0.51	0.51
MNRC097A	25.00	26.00	1.00	0.95	0.95
MNRC102	32.00	33.00	1.00	3.29	3.29
MNRC103	32.00	34.00	2.00	1.01	2.02
MNRC105	21.00	22.00	1.00	10.15	10.15
MNRC105	39.00	40.00	1.00	0.66	0.66
MNRC106	22.00	23.00	1.00	3.32	3.32
MNRC108	47.00	48.00	1.00	0.52	0.52
MNRC111	22.00	23.00	1.00	0.66	0.66
MNRC111	27.00	28.00	1.00	0.62	0.62

For personal use only

Hole ID	From (m)	To (m)	Length (m)	Significant Intercept Au (g/t)	gram*meter
MNRC112	33.00	34.00	1.00	0.75	0.75
MNRC112	37.00	38.00	1.00	0.54	0.54
MNRC113	31.00	33.00	2.00	1.36	2.71
MNRC114	32.00	37.00	5.00	0.57	2.85
MNRC115	33.00	37.00	4.00	1.83	7.32
MNRC115	21.00	22.00	1.00	2.20	2.20
MNRC116	21.00	22.00	1.00	1.46	1.46
MNRC116	28.00	29.00	1.00	0.58	0.58
MNRC116	42.00	43.00	1.00	0.50	0.50
MNRC118	44.00	45.00	1.00	0.75	0.75
MNRC119	37.00	38.00	1.00	0.50	0.50
MNRC120	21.00	22.00	1.00	0.50	0.50
MNRC123	21.00	22.00	1.00	1.80	1.80
MNRC123	41.00	42.00	1.00	0.56	0.56
MNRC133	26.00	27.00	1.00	0.68	0.68
MNRC133	21.00	22.00	1.00	0.63	0.63
MNRC134	31.00	32.00	1.00	1.30	1.30
MNRC135	29.00	31.00	2.00	1.25	2.50
MNRC135	21.00	22.00	1.00	1.51	1.51
MNRC135	36.00	37.00	1.00	1.06	1.06
MNRC135	42.00	43.00	1.00	0.57	0.57
MNRC135	58.00	59.00	1.00	0.50	0.50
MNRC139	30.00	32.00	2.00	1.35	2.70
MNRC139	35.00	36.00	1.00	0.71	0.71
MNRC141	31.00	33.00	2.00	1.19	2.38
MNRC141	35.00	36.00	1.00	0.51	0.51
MNRC142	32.00	33.00	1.00	5.60	5.60
MNRC143	39.00	40.00	1.00	1.84	1.84
MNRC143	33.00	34.00	1.00	0.51	0.51
MNRC144	28.00	31.00	3.00	2.90	8.70
MNRC149	29.00	33.00	4.00	0.68	2.70
MNRC150	30.00	32.00	2.00	2.16	4.32
MNRC150	36.00	37.00	1.00	0.52	0.52
MNRC152	29.00	30.00	1.00	1.65	1.65
MNRC152	38.00	39.00	1.00	0.51	0.51
MNRC157	31.00	32.00	1.00	3.70	3.70
MNRC159	30.00	31.00	1.00	6.99	6.99
MNRC161	33.00	34.00	1.00	2.08	2.08
MNRC162	31.00	32.00	1.00	3.20	3.20
MNRC163	33.00	35.00	2.00	1.44	2.88
MNRC165	26.00	27.00	1.00	2.03	2.03
MNRC166	30.00	35.00	5.00	1.10	5.51
MNRC167	31.00	33.00	2.00	0.63	1.26
MNRC171	28.00	32.00	4.00	1.79	7.16

Hole ID	From (m)	To (m)	Length (m)	Significant Intercept Au (g/t)	gram*meter
MNRC171	39.00	40.00	1.00	0.59	0.59
MNRC172	30.00	32.00	2.00	1.74	3.47
MNRC173	30.00	32.00	2.00	2.48	4.96
MNRC174	18.00	19.00	1.00	3.28	3.28
MNRC174	31.00	32.00	1.00	2.56	2.56
MNRC176	27.00	29.00	2.00	1.43	2.86
MNRC178	23.00	24.00	1.00	1.17	1.17
MNRC180	29.00	31.00	2.00	1.19	2.38
MNRC183	34.00	35.00	1.00	0.68	0.68
MNRC184	29.00	30.00	1.00	0.70	0.70
MNRC186	40.00	41.00	1.00	0.58	0.58
MNRC190	32.00	34.00	2.00	0.62	1.24
MNRC191	28.00	34.00	6.00	1.16	6.96
MNRC191	37.00	38.00	1.00	0.61	0.61
MNRC192	34.00	37.00	3.00	0.62	1.86
MNRC192	28.00	29.00	1.00	0.89	0.89
MNRC193	37.00	38.00	1.00	0.51	0.51
MNRC194	22.00	23.00	1.00	1.38	1.38
MNRC202	30.00	32.00	2.00	1.67	3.34
MNRC202	20.00	21.00	1.00	1.19	1.19
MNRC202	31.00	32.00	1.00	0.69	0.69
MNRC203	20.00	21.00	1.00	0.97	0.97
MNRC203	30.00	31.00	1.00	0.95	0.95
MNRC204	47.00	50.00	3.00	1.18	3.54
MNRC204	20.00	21.00	1.00	0.97	0.97
MNRC204	24.00	25.00	1.00	0.61	0.61

1. All intercepts are reported as downhole interval lengths and represent true width as drilling is perpendicular to mineralisation and calculated using a nominal 0.5g/t cut off.
2. No top cuts have been applied
3. Figures can include up to 2m of internal dilution.

APPENDIX

JORC TABLE Section's 1 & 2 for the Majestic North Gold Project infill drilling update

JORC Code, 2012 Edition – Table 1: Majestic North Gold Project resource infill drilling update

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i><i>In cases where ‘industry standard’ work has been done this would be relatively simple (eg ‘reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay’). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i>	<ul style="list-style-type: none">Orbminco Limited has completed an infill Reverse Circulation (RC) drill program at its 100% owned Majestic North Gold project located approximately 65km east-southeast of Kalgoorlie in the Eastern Goldfield region of Western Australia.The significant assays reported are from assays received to date from 132 drill holes for 7,343m of the planned 11,496m of drilling.Sampling was conducted at 4m composite intervals for first 16m, then 1m primary sample for remainder of hole.The bottom of hole sample was submitted for multielement analysisThe 1m samples were collected using a rig mounted cone splitter with a target weight of 2-3kg per sample. <p>Photon Analysis</p> <ul style="list-style-type: none">The samples were prepared at the Intertek Kalgoorlie laboratory for a 500g weight charge for Photon analysis for Au to be conducted at the Perth Intertek laboratory.Intertek analysis methods used for gold was the Photon standard gold analysis 2 cycle PAAU02 method. <p>Multi-element Analysis</p> <ul style="list-style-type: none">The bottom of hole sample was submitted for 4 acid ICPMS multielement analysis for lithological interpretation work.Samples that had multielement analysis were pulverized to 75 microns for ICP MS analysis (end of hole were drilling intersected top of fresh rock).For the multielement assays the Four Acid Digestion Multi-Element Analysis using the 48 Element package utilizing the 4A/MS48

Criteria	JORC Code explanation	Commentary
		<p>method (Inductively Coupled Plasma-Mass Spectrometry).</p> <p>Fire Assays</p>
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> For samples that may not produce enough sample weight for Photon analysis, Fire Assay (FA) method is used, method FA50/OE04, with samples prepared using the LM5 pulverized to produce a 75micron pulp with 85% passing to produce a 50g charge.
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> Drilling was conducted by VM Drilling using Epiroc ROC L8 track mounted RC rig with a second Epiroc ROC L8 rig for a short period. Drilling was conducted using a standard RC drill bit - face sampling hammer with a 133mm hole size using 6m, 4in diameter drill rods. All drilling was completed within the rig capabilities with all measures taken to maximise sample recovery and ensure the representative nature of the samples. Drilling was completed by drill company VM Drilling Pty Ltd. No recovery information was provided, but visual inspection showed that the required 2-3kg weight was achieved for dry holes for the majority of samples. Some holes had wet samples when drilling intersected shallow perched water horizons and or swelling clays.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Geological logging parameters recorded include depth from, depth to, condition, weathering, oxidation, lithology, texture, color, alteration style, alteration intensity, alteration mineralogy, sulphide content and composition, veining, grain size and general comments. All drill chips were logged on 1 m increments, the minimum sample size, with all chip trays photographed. Logging has been completed by different geologists over the drilling campaign working on an 8:6 roster. Total hole was geologically logged.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	<ul style="list-style-type: none"> All RC samples were split with a rig mounted double drop doors over a static Cone Splitter with 10% Split to produce a nominal 2 – 3 kg calico bags with the remainder of the sample interval stored in plastic bags line up in their metre interval adjacent to the drill hole for later observations and sample selection for potential use in metallurgical studies.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> Composition of the first 16m of the drill holes into 4-meter composites were done using a mini shovel, observing 1m samples sizes when compositing. For QAQC, three oxide and one supergene Certified Reference Materials (CRM) with various grades to test low, medium and medium-high grades were used, at frequency of 1:20, were submitted. Note: for this drill campaign, the targeted resource is in weathered material. Blanks were submitted every 1:80. Results from the QAQC program to date showed no material sample failures with only 6 CRMS failing outside the 3SD (2% of total CRMs) and 34 CRMs falling over 2SD (11% of total CRMs). All blanks came back clean i.e. no sample contamination. Lab check samples were completed which show no material systematic bias On completion of the drilling, duplicate sampling will be conducted on selected mineralised zones to further understand the repeatability of the mineralised zones. Sample material is weathered clay material (oxide/supergene) generally fine grained. A sample size of approximately 2 – 3 kg was generally collected and is considered appropriate for Majestic North gold project.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Assays were completed in a certified laboratory (Intertek) in Perth, with sample prep conducted at the Kalgoorlie Intertek laboratory. Sample preparation for the gold assays involves drying, crushing the entire sample (commonly 2–3 kg) to a coarse size, usually nominally <2–3 mm. The sample is presented to the Photon analyzer in standard plastic jars supplied by Intertek to provide 500g charge for the analysis. Intertek method for the Photon analysis was PAAU02. For samples that may not produce enough sample weight for Photon analysis, Fire Assay (FA) method is used, method FA50/OE04, with samples prepared using the LM5 pulverized to produce a 75micron pulp with 85% passing to produce a 50g charge. For the bottom-of-hole multielement assays, the Four Acid Digestion

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<p>Multi-Element Analysis (48 Element package) utilizing Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) was used.</p> <ul style="list-style-type: none"> Verification of significant intersections was completed by an experienced geology consultant who understands and has developed the geological understanding of the Majestic North Gold project. Twinned hole has been planned against hole MNRC050 to test repeatability of the mineralised interval. All the primary data was recorded onto excel spreadsheets in either csv or xlsx format from all sources, Geology, Survey, Down hole survey and Assay lab. Once validation was completed, the data was uploaded into the master MS Access database.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> All completed drill hole collars were surveyed by Real-Time Kinematic (RTK) GNSS (Global Navigation Satellite System) methods for high-precision positioning for vertical (Z) coordinate, and horizontal (X,Y) coordinate position. This method provides centimeter-level accuracy. RTK aerial survey with a Mavic 3E then vegetation removed using Agisoft software to produce a Digital Terrain Model (DTM) surface; horizontal accuracy taken off government bench mark to the west of Majestic North and vertical accuracy taken off government benchmark from the Trans Australia railway line to the south. All survey data is recorded in MGA94 Zone 51, based on the GDA94 datum. Downhole surveys for each hole was down using Reflex Gyro tool.
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> The data spacing for the reported drilling is based on a nominal 40mE x 50mN spacing. These holes are strategically offset from existing drilling to enhance geological understanding of the deposit. Drill spacing is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource to be able to conduct an economic evaluation to develop potential open pit Ore Reserves. 14 holes were drilled at nominal 25mE x 25mN spacing. These holes specifically target high-grade mineralisation within the internal 2020 Mineral Resource Estimate, aiming to further define resource confidence, grade continuity and variability, and refine continuity of

Personal Use Only

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<p>the mineralised thickness.</p> <ul style="list-style-type: none"> Drilling was undertaken at 90° due to a predominant horizontal orientation of the targeted mineralisation/orebody. No bias of sampling is believed to exist through the drilling orientation as the predominant resource orientation, based on current geological interpretation is horizontal.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Samples were taken by the rig site geologist directly to Intertek in Kalgoorlie in green bags with 4-8 samples/bag in batches of 200-300 samples per job submission.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> The QAQC report indicated that the CRM responses are sufficient to derive a reasonable level of confidence that analytical work performed by Intertek has not introduced a significant bias into the database. Third party review of procedures for sample collection, data security and the design of the drilling for this announcement was conducted by Exora Consulting Pty Ltd. Geology logging review was conducted by Metalzoic Geological Consulting.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> The Orbminco Limited tenements containing the Majestic North Gold project are held under Fortify Mining Pty Ltd. These are: M25/0369, P25/2618, P25/2619, P25/2620, P25/2621. The following tenements P25/2789, P25/2790, P25/2791, P25/2792, P25/2798, P25/2799, P25/2800 and E25/635 have been applied for and are pending grant subject to heritage agreement negotiations. Orbminco owns 100% of Fortify Mining Pty Ltd. All tenements are subject to the Government gold royalty rate of 2.5% of the value of gold produced gold with the following tenements

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<p>M25/0369, P25/2618, P25/2619, P25/2620, P25/2621 have an additional 1.0% Net Smelter royalty with Zetek Resources Pty Ltd</p> <ul style="list-style-type: none"> All drilling was conducted on M25/0369. The tenements lie on a pastoral lease with access and mining agreements. The tenements are in good standing and no known impediments exist.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The area has been explored by several explorers since the 1990s. The main work was conducted in 2012 by Crest mining including extensive RC and Air-core drilling and a ground magnetic survey. Geologist Justin Gum, from Metalzoic Geological Consulting, has compiled the exploration data on the leases. around the area and data from the reports has been used in previous interpretation and resource estimation. Alex Brown has compiled the exploration data on the leases around the area and data from the reports has been used in this interpretation. The majority of the project area is covered by alluvium and colluvium associated with an extensive palaeodrainage system, which currently flows north into Lake Yindarlgooda. The northern parts of the project area are covered in part by playa lakes, dunes and aeolian deposits associated with Lake Yindarlgooda. Historical drilling has intersected up to 31 m of transported (Quaternary and Tertiary) cover locally. Government geology maps show the leases covering the northern and northwestern margins of a granitoid with surrounding felsic - intermediate volcanics. However, air-core (AC) drilling in the southeast corner of the tenement package has not intersected granitic rocks, so this lithological boundary lies further south than mapped. The granitoid is part of the Juglah Monzogranite which has intruded into the felsic volcanics at the core/axis of the Bulong Anticline. Both the granitoid and the felsic volcanics of the Bulong Anticline host gold mineralisation. The three most significant mineralised zones are the Western Supergene, Central West and Central zones. Gold was intersected in saprolitic basement and in the regolith. Minor gold intersections have

Criteria	JORC Code explanation	Commentary
		<p>been encountered associated with quartz veining in fresh basement below the current resource.</p>
	<ul style="list-style-type: none"> • Comprehensive drilling coverage across the southern lease has enabled the generation of a well constrained basement geology map. Bottom-of-hole lithology is for the most part Archean intermediate volcanics and volcanics. Strongly porphyritic intermediate intrusives are relatively common and often trend roughly in a north-northwest linear orientation. Intermediate intrusives of fine granular texture are less common and more amorphous in expression. There are minor dolerites and basalts in the center/west. Sulphide mineralisation is rare but some fine cubic pyrite was observed more commonly in the porphyries. All rocks displayed low grade greenschist facies alteration. Schistosity was common but seldom intense. 	
Drill hole Information	<ul style="list-style-type: none"> • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> ○ easting and northing of the drill hole collar ○ elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar ○ dip and azimuth of the hole ○ down hole length and interception depth ○ hole length. 	<ul style="list-style-type: none"> • Refer to the announcement for hole details. • All RC holes in the program were drilled 90°, vertical.
Data aggregation methods	<ul style="list-style-type: none"> • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	<ul style="list-style-type: none"> • No weighting or top cuts have been applied.
	<ul style="list-style-type: none"> • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	<ul style="list-style-type: none"> • Compositing has been completed at the top of the holes. • No aggregation has been applied. • No metal equivalents have been used.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> Drilling was conducted at a 90° orientation. No bias of sampling is believed to exist through the drilling orientation, as the resource is considered horizontal, based on historic estimations.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Refer to Maps, Tables and Diagrams in the document.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Significant exploration results are displayed in the Appendix of the announcement.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> No other relevant exploration data is presented.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Deeper drilling targeting primary gold mineralisation is recommended. The deposit is no longer considered to be a paleochannel only and is now considered to comprise a supergene zone sitting over stacked, primary, gold bearing quartz veins. Further drilling targeting cross cutting structures at depth is recommended. Bulk density data will need to be collected. Metallurgical test work and geotechnical drilling is recommended After completion of the current infill drill campaign, an updated resource model estimate, in accordance with the JORC code (2012)

personally
use only

Criteria	JORC Code explanation	Commentary
		can be completed.