

ASX Announcement

5 February 2026

Maiden Diamond Drilling Demonstrates Extensive Gold-Copper Mineralisation at the Pilot Project

Highlights

- **Drill testing confirms proof of concept**, demonstrating that the Pilot Project hosts a potential large-scale gold mineralisation system, with multiple stockwork zones intersected in maiden drilling.
- **Hole RRPT0001** (699.4m) successfully intersected the primary porphyry stockwork target from 338m, including:
 - **42m @ 0.2 g/t Au from 338m** within stockwork, with narrower intervals of higher-grade gold as predicted
- An **additional elevated copper target zone** (Western Target Zone) was identified between 60-121m, west of the primary porphyry target, with:
 - Veins up to 0.3m wide within 1-5m alteration zones, returning up to **0.1% Cu** at 115.1m for 0.9m, **1.1 g/t Au** at 102.3m for 0.2m, and **2.5 g/t Ag** at 102.3m for 0.2m.
- **Step out hole RRPT0002**, drilled 220m south of RRPT0001, confirms the porphyry target extends at least 200m south, with assays pending. Visual logging indicates:
 - Previously unrecorded **historic underground workings** at 46.5m.
 - **Alteration and veining** from 69-129m, marking a second intersection of the additional Western Target Zone to the south.
 - A thin primary porphyry intersected between 280-295.9m, with assays pending to define stockwork target.
 - **Stronger alteration and veining** was observed in the second hole, with assays pending.
- Both holes contain **persistent disseminated pyrite to end-of-hole**, indicating a broad pyrite halo consistent with the shallow levels of major NSW Au-Cu porphyry systems.
- Approval has now been received to extend the maximum drilling depth at Pilot to 1,200m, which will allow the Company greater discretion to selectively drill deeper to assist in understanding how the mineralised system behaves at depth.
- The Company is currently completing a series of additional holes as part of a fan-style drilling program designed to define the distribution of mineralisation ahead of finalising plans for deeper drilling. The Company remains well funded, with a cash balance of \$7.7M as at 31 December 2025.

Right Resources Limited (ASX: RRE) (**Right Resources** or the **Company**) is pleased to provide an update on maiden drilling at the Pilot Project (**Pilot**), including completion of RRPT0001 and encouraging visual geological observations from RRPT0002.

Right Resources Managing Director, Graham Howard, commented: *“These first drill results at Pilot are highly encouraging for a system that has never been drill-tested and represent a genuine greenfields discovery of a large-scale mineralised system. The initial two holes show strong geological similarities to the shallow, early-stage drilling at major porphyry systems such as Cadia Ridgeway and Boda, with a side-by-side comparison included later in this announcement.*

RRPT0001 intersected a broad gold stockwork zone associated with a thin porphyry unit just 240m below surface, as well as a newly identified copper-vein target west of our primary porphyry stockwork target. We now have two stockwork vein targets – exceeding our proof-of-concept expectations we had for our maiden drilling.

RRPT0002, drilled 220m to the south, visually confirms a broad zone of intense alteration and veining within the new Western Target Zone, and again intersected the stockwork surrounding the primary porphyry target (from 389m down hole to 395.9m down hole). The mobile MT program appears to have successfully detected both the sulphide-rich western target and the porphyry target – an excellent outcome, with anomalies extending from surface to more than 1,000m depth.

Together, these results suggest we are positioned within the shallow expression of a much larger system at depth – effectively the ‘smoke’ rising from a potentially significant mineralised engine below. The Company’s confidence in the need for deeper drilling has increased, and approval has now been secured to drill to 1,200m. Planning is underway to target deeper mineralisation where – consistent with comparable NSW porphyry systems – copper and gold grades may increase. Further results will be incorporated as the deeper drilling program will be finalised.”

Breakthrough Greenfields Drilling Results at Pilot Project

RRPT0001 – Successful First Test of the Porphyry System

RRPT0001 (699.4m) was designed to establish an east-west geological cross-section and to test interpretations derived from surface mapping, ground magnetics and structural modelling. As the first hole ever completed at the Pilot Project, it has confirmed the presence of multiple mineralisation zones and, importantly, demonstrate strong similarities with the shallow expression of major porphyry gold-copper systems in NSW.

Key Geological Outcomes

- Drilling confirms a >700m wide pyrite-rich halo (visual pyrite grade up to 1%), with multiple gold ± copper vein zones from surface to 380m.
- Intersection of sulphide zones supports the recent mobile magnetotellurics passive electromagnetic survey results that show geophysical anomalies from surface to below 1km depth.
- 0-21m: Intercepted historic underground workings (1860s-1870s) targeting quartz veins in meta-sandstone. These workings were not previously known to exist.
- 60–121m: Newly defined 61m corridor of narrow (<0.3m) quartz–sulphide (pyrite + chalcopyrite) veins with sericite–silica–chlorite alteration, with assay results returning variable grades of gold (up to 1.1 g/t Au at 102.3m for 0.2m), copper (up to 0.1% Cu at 115.1m for 0.9m) and silver (up to 2.5 g/t Ag at 102.3m for 0.2m). This zone aligns with a magnetic reversal and represents a strong new structural target.
- 338–380m: Target porphyry and surrounding stockwork intersected, including a predicted thin porphyry intrusive (340–347m), returning 42m @ 0.2 g/t Au from 338m, with vein grades up to 5 g/t Au over 0.2m.
- Additional stockwork zones at an observed frequency of 1 vein every one to two meters at 584.5–591.5m were barren, likely indicating distal positions relative to deeper mineralisation.
- Continuous moderate–strong alteration and disseminated pyrite to end-of-hole highlights the potential for a larger, deeper gold–copper system beneath current drilling.

For personal use only

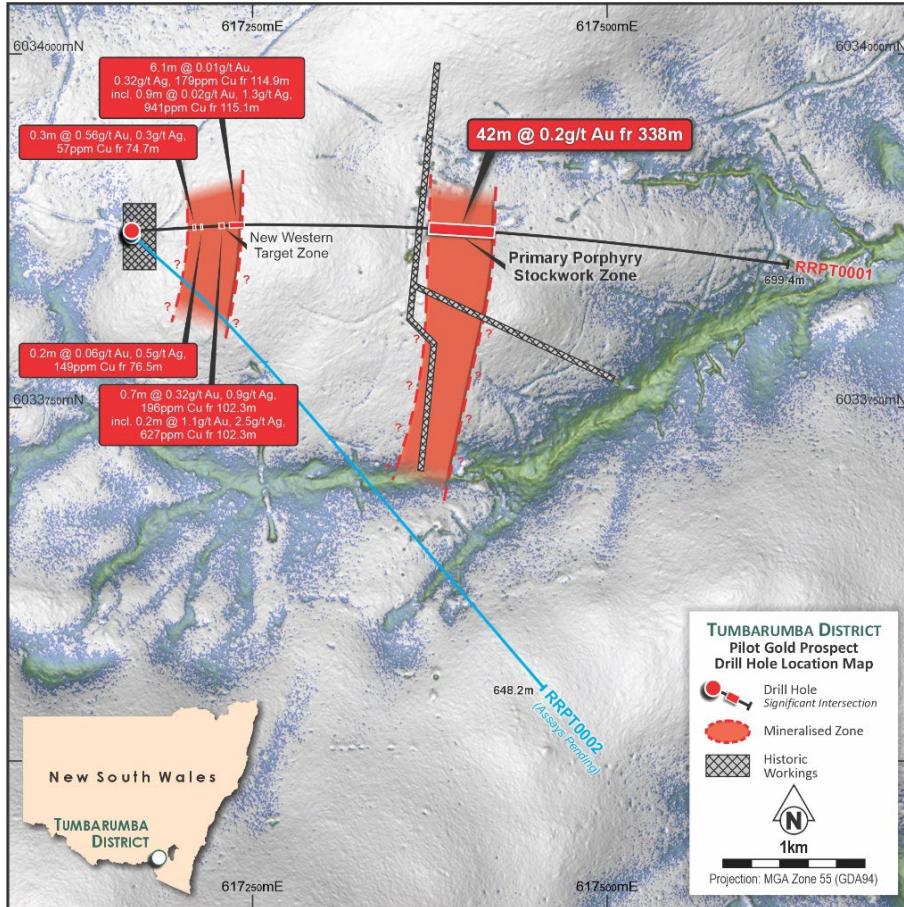


Figure 1: Pilot Project plan image illustrating location of RRPT0001 and RRPT0002 with reported assay results and pending assays.

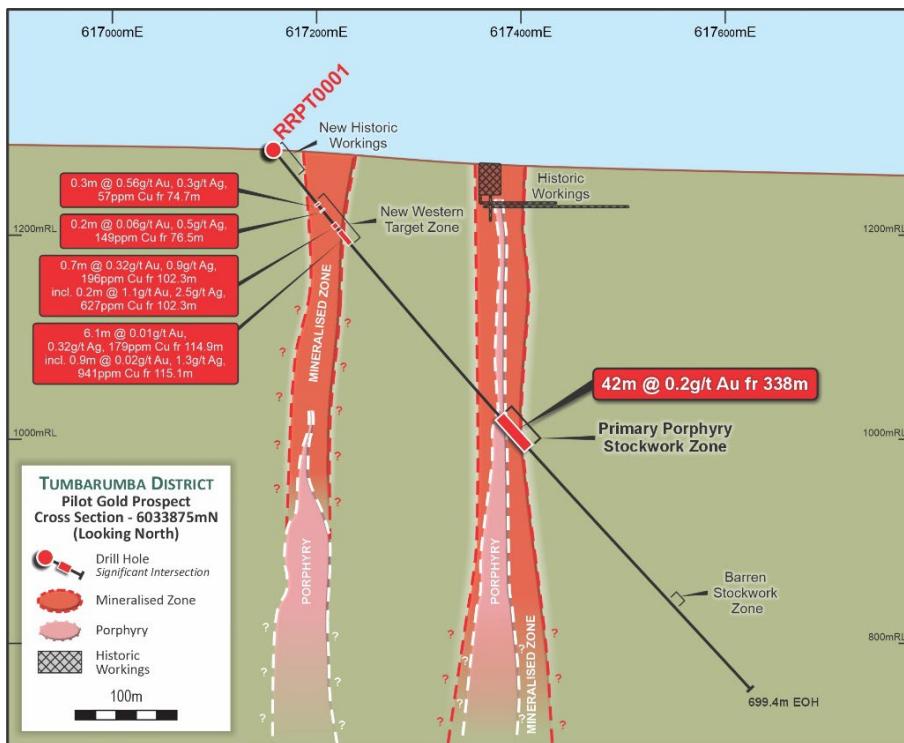


Figure 2: Pilot Project cross section illustrating the results from hole RRPT0001.

RRPT0002 – Step-Out Hole Confirms System Scale

RRPT0002, positioned 220m south of RRPT0001, is a major step-out hole designed to test system continuity and target the porphyry at ~280m depth. The hole was completed to 648.2m, with assay results pending.

Key Observations

- Drilling confirms a >648m wide elevated pyrite halo, with multiple veining intervals from the collar, which may represent gold +/- copper mineralisation as reported in RRPT0001.
- Historic underground workings intersected to ~45m, indicating intense mining activity during the 19th-century Maragle Gold Rush.
- Intersection of the Western Target Zone encountered in RRPT0001, with:
 - 60–130m: Alteration, with zones of strong silica and sulphide veining;
 - Increased vein density and stronger alteration than RRPT0001.
- 289m–295.9m: Thin primary porphyry intersected. The Company is waiting on assay results to define extent of stockwork gold zone.
- Combined with RRPT0001, drilling confirms >200m strike continuity of both mineralised target vein zones, supporting the interpretation of a laterally extensive system sub-parallel to a potential gold-dominant porphyry-related stockwork.
- The Company is still processing drill core from 300m down hole to end of hole and will release further results as they become available.

Figure 3: Photos of core from RRPT0002 showing multiple silica-carbonate-sulphide (chalcopyrite + pyrite) veins 69.9-73.5m, noting the oxidation of sulphides.

Figure 4: Photos of core from RRPT0002 showing multiple silica-sulphide (chalcopyrite + pyrite) veins 104.6-107.9m, noting the oxidation of sulphides.

Note: The Company has not received assay results from hole RRPT0002 at Pilot. Assay results are expected in Q1 2026. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Contextual Comparison: Cadia-Style Greenfields Discovery Pathway

To contextualise the geological significance of drill hole RRPT0001, the Company has compared early Pilot Project results with two major alkalic Cu–Au systems in the Macquarie Arc: **Boda** and **Cadia Ridgeway**. These comparisons, which focus on grade, alteration mineralogy, vectoring indicators and structural setting, indicate that RRPT0001 intersects several features commonly observed on the margins of large alkalic porphyry systems.

While early-stage vectoring in porphyry systems is inherently challenging, the Company notes several factual geological parallels between the Pilot Project's initial drill results and those recorded during the early discovery phases of Boda and Cadia Ridgeway.

Given the complexity of these systems, the Company has also engaged with Centre for Ore Deposit and Earth Sciences (CODES) at the University of Tasmania (UTAS) to assist in refining the geological interpretation of the Pilot Project. Their specialist input is expected to further clarify the characteristics and potential scale of the mineralised system.

Table 1: Technical Comparison — Boda, Cadia Ridgeway and the Pilot Project

Vector	Boda	Cadia Ridgeway	Pilot Project
Host Geology	<ul style="list-style-type: none"> Molong Volcanic Belt – Macquarie Arc, structurally related to Gilmore Fault Zone corridor ¹ 	<ul style="list-style-type: none"> Molong Volcanic Belt – Macquarie Arc, structurally related to north west arc transverse trending zone corridor ² 	<ul style="list-style-type: none"> Recently discovered, adjacent to the Macquarie Arc, structurally related to Gilmore Fault Zone and proximal to northwest arc transverse trending Henry Fault corridor
Age Dating	<ul style="list-style-type: none"> 436-443 Ma ¹ 	<ul style="list-style-type: none"> 435-445 Ma ³ 	<ul style="list-style-type: none"> <i>Unconfirmed, with age dating still in progress with CODES-UTAS</i>
Mineralisation Style	<ul style="list-style-type: none"> Au-Cu alkalic porphyry system¹ with broad, disseminated to stockwork mineralisation ² 	<ul style="list-style-type: none"> Au-Cu porphyry system with a high-grade core developed at depth ² 	<ul style="list-style-type: none"> Potential for large scale Au-Cu system with Au-dominant and Cu-bearing stockwork zones Mobile MT geophysics defines targets below 1km depth
Stockwork Styles	<ul style="list-style-type: none"> Quartz–sulphide stockworks ¹ 	<ul style="list-style-type: none"> Quartz–sulphide stockworks; (silica, pyrite + chalcopyrite) sheeted veins and B and C veins ⁴ 	<ul style="list-style-type: none"> Quartz–sulphide veins (silica, pyrite ± chalcopyrite) sheeted veins, B veins.
Pre-Discovery Drilling (Key Early Hole)	<ul style="list-style-type: none"> KSRC018: 311m @ 0.28 g/t Au from 19m ¹ Zone of potassic alteration near end of hole returning 24m @ 0.53 g/t Au, 0.17% Cu from 283m ¹ 	<ul style="list-style-type: none"> NC317: 102 m @ 0.13 g/t Au, 0.40% Cu from 610m, weak Au but clear Cu anomalism ² 	<ul style="list-style-type: none"> RRPT0001: 42m @ 0.2 g/t Au from 338m, porphyry intrusive & Au-bearing veins RRPT0002 completed <i>awaiting on assays</i>
What Early Drilling Indicated	<ul style="list-style-type: none"> Demonstrated lateral and vertical metal and alteration zonation of a significant Au-Cu porphyry system ¹ 	<ul style="list-style-type: none"> Chalcopyrite-bearing, sheeted vein style mineralisation with zone of increasingly anomalous Cu mineralisation + pathfinders ² 	<ul style="list-style-type: none"> Pyrite halo with broad gold stockwork veining + porphyry finger returns significant intercept at target porphyry zone New western + Cu Au veins system Geophysics and drill holes indicate deeper target >1km depth
Discovery Hole that Followed	<ul style="list-style-type: none"> KSDD003: 507m @ 0.48 g/t Au, 0.20% Cu from 211m ¹ 	<ul style="list-style-type: none"> NC498: 145m from 598m @ 4.3 g/t Au and 1.20% Cu; and 84m from 821m @ 7.4 g/t Au, 1.27% Cu ² 	<ul style="list-style-type: none"> <i>Planned deeper drilling to test for potential grade escalation at depth</i>

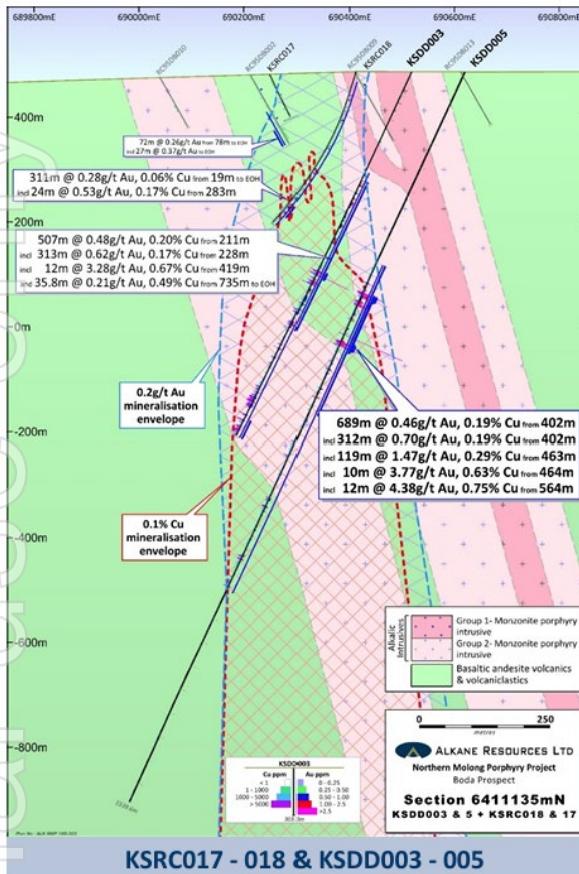


Figure 5: The Boda discovery drill sequence from the early holes to the discovery hole KSRC018 ¹

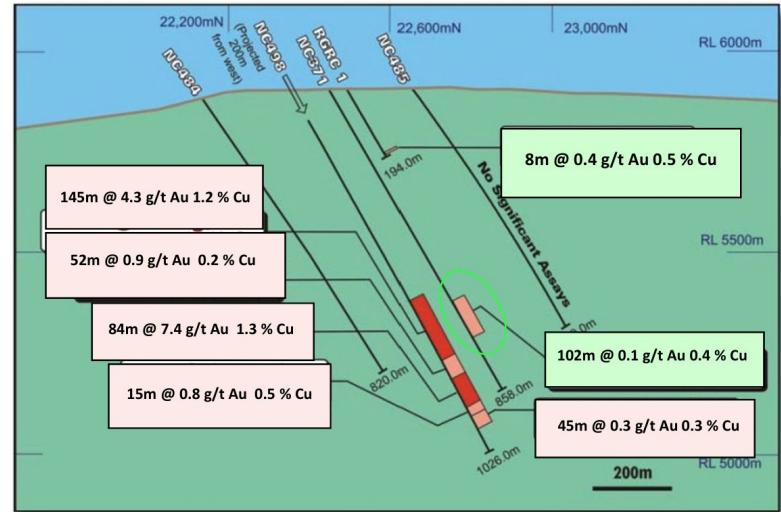


Figure 6: The Cadia-Ridgeway discovery drill sequence from the early holes RGRC1 and NC371 to the discovery hole NC498 (Wood, 2012b) ²

Note: These comparisons are geological in nature only and do not imply that Pilot will achieve similar economic outcomes.

Next Steps

- Assay results for RRPT0002 are expected in Q1 2026, after which the Company will provide a further market update once results have been received and assessed.
- The Company is completing a series of additional holes as part of a fan-style drilling program along strike to define the distribution of mineralisation. Planning for the deeper drilling program is progressing in parallel and will commence once data from the initial shallow holes has been received, reviewed, and incorporated into the geological model.
- The Company will also undertake a down hole geophysics program in Q1 2026 to assess the potential mineralised targets.

Regional Exploration

The Company continues to progress exploration across its broader NSW portfolio, including active programs at the Storm Project and within the New England Region. These regional assets form an important part of the Company's long-term discovery pipeline, although the Pilot Project remains the Company's flagship asset and primary exploration focus.

Storm Project

In October 2025, the Company completed an ultra-detailed ground magnetic survey across the northern part of the Storm Project (including the Squall Prospect) using 10m line spacing. This survey aims to determine whether ground magnetics can delineate the contacts of a potential porphyry unit centred on the Squall Prospect. Results are pending.

New England Tenements

Desktop studies are ongoing to refine target definition across the Company's two exploration licences in the New England Region. Results are pending.

As committed, the Company will continue advancing its broader exploration programs and will assess project prioritisation as results develop. The Board looks forward to progressing these regional initiatives in parallel, demonstrating the underlying value of the Company's significant tenement position.

For further information please refer to the following ASX announcements:

- Major Expansion of Gold Mineralisation at Pilot Project - 27 November 2025
- Pilot Project Drilling Update - 11 December 2025
- Quarterly Activities Report - 30 January 2026

ENDS

This announcement has been approved for release by the Board of Right Resources Limited.

Further Information

Graham Howard

Managing Director

E: info@rightresources.com.au

Jessamyn Lyons

Company Secretary

E: jessamyn.lyons@rightresources.com.au

Media

Stephanie Richardson

Sodali & Co

E: stephanie.richardson@sodali.com

Follow Us

About Right Resources

Right Resources Limited is a New South Wales-based mineral exploration company focused on advancing a portfolio of gold and copper assets across 2,089 km² of tenements in the Tumbarumba and New England regions, both located within historically significant goldfields.

The Company's portfolio boasts eight 100% owned exploration licences in New South Wales (NSW), which are considered by the Company as highly prospective for copper and gold. The primary focus of exploration will be on the six licenses held in the Tumbarumba Region, which lies within the Lachlan Fold Belt and adjacent to a prolific mineral province near the Gilmore Fault Zone (GFZ), with over 90km of tenement strike length along this key structural feature associated with gold mineralisation. The host geology in the project areas includes near-surface high grade gold epithermal, porphyry, and stockwork systems.

The Company's flagship asset is the Pilot Project, a prospective high-grade gold target in the Tumbarumba Region. The area includes significant historic hard rock and alluvial workings that are largely undocumented in the NSW mineral occurrence database and is completely untested by modern drilling.

Forward Statements

This announcement may contain forward-looking statements or information, including forecasts, projections, opinions and conclusions. These statements are not guarantees of future performance or statements of fact. Actual events and results may differ materially due to a variety of risks, uncertainties and other factors, including, among other things, funding requirements, metal prices, exploration and development risks, operational challenges, competition, production risks, regulatory restrictions, including environmental regulation and liability, potential title disputes and various business, economic, political and social uncertainties and contingencies. Although Right Resources believes there is a reasonable basis for any forward-looking statements, such statements involve significant risks and uncertainties.

References

¹ https://smedg.org.au/wp-content/uploads/2022/05/Alkane-Resources-Boda-MW-Presentation_202205_Dave.pdf, pages 17, 19-21

² <https://smedg.org.au/discovery-of-the-cadia-ridgeway-gold-copper-porphyry-deposit-john-holliday-colinmcmillanian-tedder/>

³ <https://www.tandfonline.com/doi/pdf/10.1071/ASEG2001ab082>

⁴ Cooke, D.R., Hollings, P., Walshe, J.L. & Simmons, S.F. (2002). "U-Pb and Re-Os Geochronologic Evidence for Two Alkalic Porphyry Ore-Forming Events in the Cadia District, New South Wales, Australia."

Competent Person Statements

Emily Henry

The information in this announcement that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Ms Emily Henry, who is a Principal Geologist at Exora Consulting Pty Ltd. Ms Henry is a Competent Person who is a Member of the Australian Institute of Geology (AIG).

Ms Henry has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC, 2012).

Ms Henry consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Previously Reported Exploration Results

The Company confirms that it is unaware of any new information or data that materially affects the information included in the previous market announcements referred to in this release. To the extent disclosed above, the Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. All previously released market announcements referred to within this announcement can be found on the Company's website at rightresources.com.au.

Appendix 1 - JORC Table 1, Sections 1 - 2

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Two Diamond Drill holes (DD) (hole ID: RRPT0001 and RRPT0002) have been completed by Right Resources Limited ("Right Resources", "RR", or "the Company") at the Pilot Project Area in EL9449. Diamond drilling was undertaken to obtain high-quality core samples suitable for geological and geotechnical logging. Core was logged by a qualified geologist, with intervals marked and cut for half-core sampling to maintain representativity. Sample intervals typically ranged from 0.2 m to 1.0 m, adjusted based on lithology and veining. Certain intervals sampled a minimum of 0.15 m. Core was orientated, meter marked, and core loss recorded. Magnetic susceptibility readings were taken across all intervals using calibrated instruments, verified against certified standards. These techniques are considered appropriate for testing mineralisation controls.
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is orientated and if so, by what method, etc). 	<ul style="list-style-type: none"> RRPT0001 - DD drilling was undertaken with HQ (96mm outer diameter) to 50.4mdh and then NQ2 with a 75.7mm drill bit (outer diameter). RRPT0002 - DD drilling was undertaken with HQ (96mm outer diameter) to 479.3mdh and then NQ2 with a 75.7mm drill bit (outer diameter). Chrome barrel was used to limit hole deviation All core, was inspected by a company geologist, has been orientated. A company representative has either checked driller orientation marks or undertaken full length orientation mark up to validate orientation markings, suitable for structural modelling.
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> Core loss was recorded after each run and core block inserted. Meter marking was undertaken from the start of the whole which provides validation against the core block interval depths. A final rod count after the hole is drill provides a validation check on total meters drilled. Laboratory measured weight of each sample
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically 	<ul style="list-style-type: none"> Geological logs have been completed using a multi pass system capturing

Criteria	JORC Code explanation	Commentary
	<p>logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <ul style="list-style-type: none"> Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>lithology, alteration, mineralogy, veining, structure and geotechnical RQD.</p> <ul style="list-style-type: none"> Logging is completed at a level suitable to support future resource estimation. Core is photographed both as wet and dry. RRPT0001 - the total hole has been logged. RRPT0002 – partial logging has been completed at the time of this announcement
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Intervals selected for sampling is half cut using a diamond saw. To minimise bias in sample selection, the orientation line on the core is positioned slightly off-center in the core trays. This ensures that the core is consistently cut in the same position while preserving the orientation mark. The half opposite the orientation line is selected for sampling. A cut line is placed to differentiate the orientation line as an indication for cutting. No field duplicates have been taken
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Samples were submitted to Bureau Veritas (BV) in SA for 50g Fire Assay FA001, FS001, and multi-element ICP analysis capturing 54 elements (MA102). Internal laboratory QAQC protocols include routine insertion of blanks, duplicates, and certified reference material (CRMs). Company QAQC procedures: <ul style="list-style-type: none"> CRMs inserted at a frequency of 1 in 20 samples (5%), covering both gold (Au) and multi-element suites. Blanks inserted at a frequency of 1 in 20 samples (5%) to monitor contamination. No field duplicates were collected across the two holes, however laboratory pulp duplicates are routinely analysed. Instrument calibration: <ul style="list-style-type: none"> Magnetic susceptibility readings were taken using a calibrated instrument with periodic checks against known standards. Accuracy and precision QAQC results will be reviewed upon receipt of

Criteria	JORC Code explanation	Commentary
		<p>assays (assays pending at time of announcement for RRPT0002), any failures will trigger re-assay protocols. Any failed standard above 3 standards deviation triggered a re-assay of the sample batch;</p> <ul style="list-style-type: none"> ○ No external laboratory checks have been completed at this stage of the program, these will be considered for future programs.
Verification of sampling and assaying	<ul style="list-style-type: none"> • The verification of significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> • No twinned holes have been completed. • Drill logs have been recorded in electronic format. • All data is uploaded, validated and stored in the Company's Micromine Geobank Database.
Location of data points	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> • Location of drill holes were set out by an independent surveyor from Rivland Surveyors. • Down hole survey was completed during drilling using a Giro Single Shot at 30m increments. • RRPT0001 - Final down hole survey was completed using Giro Single Shot. • RRPT0002 – Final hole survey was completed using Giro Single Shot. • Final collar pick up was completed on 29th January 2026 by Rivland Surveyors. • All location data are recorded in MGA 94 ZONE 55. • Elevations referenced to AHD
Data spacing and distribution	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. 	<ul style="list-style-type: none"> • RRPT0002 was drilled 40 degrees to the south of RRPT0001 with a drill spacing at target depth of 230m. • The current spacing is insufficient to establish a degree of geological and grade continuity appropriate for a Mineral Resource estimation. • No sample compositing has been completed.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> • Drilling direction is considered to be an effective orientation to test the steep mineralisation trending north-south. Drill holes are orientated west to east, which is approximately perpendicular to the historic mineralisation trend (north-south) as recorded in historic mining records. RRPT0002 is drilled north-west to south-east and trends at a lower angle (45 degrees) to the north-south strike of mineralisation base on historic mining records

Criteria	JORC Code explanation	Commentary
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Limited knowledge on key mineralised structures exists to determine if drill orientations introduce a sampling bias. After cutting and bagging, each sample was placed in a tamper-evident, labelled plastic bag with a unique sample ID. Samples were grouped into polywoven bags, sealed with cable ties, and documented on a sample dispatch sheet. The dispatch sheet includes: <ul style="list-style-type: none"> Hole ID, interval, sample ID, and number of bags. Signature of the geologist preparing the samples. Samples were stored in a secure, locked facility on site until transport. Transport procedure: <ul style="list-style-type: none"> A Right Resources representative delivered sealed sample bags to the nominated third-party courier depot. Courier provided a consignment note, which was cross-checked against the dispatch sheet. Laboratory confirmation: <ul style="list-style-type: none"> Bureau Veritas confirmed receipt of samples via electronic chain-of-custody acknowledgment, listing all sample IDs. All chain-of-custody records (dispatch sheets, consignment notes, and lab receipts) are retained in the company's QAQC files.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> No audits or reviews have been completed on the sampling techniques and data.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> The tenement, EL9449, covering the Pilot Project Area is 100% owned by Right Resources Pty Ltd in New South Wales, Australia. The Pilot Project Area lies wholly in the Maragle State Forest operated by NSW forestry. Historical hard rock mining has occurred within the Pilot Project Area at the Historic Pilot Reef Mine Historical alluvial mining has been extensively mined in the creeks

Criteria	JORC Code explanation	Commentary
		neighbouring Historic Pilot Reef Mine within the Pilot Project Area.
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> The tenement is in good standing, and the Company is not aware of any impediments to ongoing exploration or future development. Historic mining work occurred between 1855 and 1954 across the Tumbarumba Gold Fields. The historic Pilot Reef Mine was worked in the 1880's. The Company has obtained hardcopy reports and maps in relation to this information as part of its historical review in preparation for their current work program. The historic data comprises mine production records from the NSW Mine Registrar Several companies have undertaken periodic and localised exploration across parts of EL9449 between 1969 and 2022, primarily targeting tin and gold mineralisation. Historical work included geological mapping, stream sediment sampling, limited geochemical surveys, and trenching. Key exploration activities include: <ul style="list-style-type: none"> A.O.G. Minerals Pty Ltd held historic tenure EL200, which partially overlaps EL9449; however, a review of historical reports indicates no exploration was conducted within the EL9449 boundary. Southern Cross Exploration N.L. (JV with Hallmark Minerals N.L.) conducted exploration on the historic licence EL669, which overlaps EL9449. Two exploration stages were completed. The first exploration program consisted of geological mapping, an incomplete geochemical survey and panning for tin and gold on a limited scale. No analysis of pathfinder elements was carried out, but it was reported on the limited analysis for silver, that silver content is proportional to gold. The second exploration program consisted of costeans dug to test the alluvial flats along Back Creek between the tributaries of Pennyweight and Mc Geochs, totalling 21 costeans over a length of 2.6km (N-S). Gold values were negligible while grades of tin were very low to be economically exploited. Cluff Minerals (Australia) Pty Ltd explored on the historic licence EL1618, which lies within EL9449, undertaking reconnaissance mapping, gamma spectrometry, and stream sediment sampling in the headwaters of Back, Pound, McGeochs, Free Damper, Pinchgut, Maragle, Reedy and Pennyweight Creeks, and alluvial flats near the junction of the Tooma River and Pound Creek. Tin was found to be widely distributed, but

Criteria	JORC Code explanation	Commentary
		<p>concentrations were deemed subeconomic. They determined tin seems widely distributed within granitoids and probable in stringer mineralisation in roof pendants and contacts.</p> <ul style="list-style-type: none"> • Southern Cross Exploration N.L. (JV with Gulf Resources N.L.) held tenures overlapping EL9449 (historic licence EL1750), but no exploration appears to have been conducted within the EL9449 boundary. • Bullseye Gold Pty Ltd held the historic licence EL9056, partly covering EL9449, but conducted no fieldwork before relinquishing the licence in 2022.
Geology	<ul style="list-style-type: none"> • Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> • Test the nature of the potential style of mineralisation is quartz stockwork within granite and porphyritic rhyolite (based on petrology analysis completed by the Company). • The historic mineralised corridor strikes 006 degrees and dips -82 degrees towards the west. • It has been interpreted that internal north-east (40 degrees) trending high-grade mineralisation may occur within the mineralisation corridor following surface field observations of historic stope orientations along the N-S mineralised corridor • The broader mineralisation system is interpreted to be an Au porphyry system, with the Historic Pilot Reef Mine reflecting the fractured carapace and veining above the main mineralised system.
Drill hole Information	<ul style="list-style-type: none"> • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> • The drill location was marked up using a contract surveyor, Rivland Surveyors, with the final hole position to be picked up by the same company at the completion of the program. • All drill information is included in Appendix 2 Table 2.
Data aggregation methods	<ul style="list-style-type: none"> • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the 	<ul style="list-style-type: none"> • Assay results for RRPT0002 pending at time of announcement. <p>For RRPT0001, the following cut-off grades were applied when reporting significant intercepts:</p> <ul style="list-style-type: none"> • 0.1g/t Au,

Criteria	JORC Code explanation	Commentary
	<p>procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</p> <ul style="list-style-type: none"> The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> 0.1g/t Ag 60ppm Cu <p>No high grade cuts were applied</p> <p>All intercepts are reported as downhole widths, as true widths are not yet known</p> <p>Significant intercepts were generated using a nominal cut-off based on Au (g/t) with internal dilution permitted as follows:</p> <p>338m – 380m interval includes internal dilution of up to a maximum width of 7m of material below cut-off</p> <p>No metal equivalents were reported</p>
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> RRPT0001 drilled perpendicular and RRPT0002 drilled at ~45 degrees to the interpreted strike of mineralisation at approximately 006 degrees. Mineralisation is interpreted to dip steeply west at approximately 80-90 degrees No downhole grade intervals for RRPT0002 have been reported as assay results pending at time of announcement. Downhole lengths have been report for RRPT0001, true width not known
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Plans and diagrams are included in the announcement. The data has been presented using appropriate scales Geological and mineralisation interpretations are based on current knowledge and will change with further exploration.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> No high grade cuts have been applied Down hole widths reported, true widths are unknown All relevant assay results for RRPT0001 are included in Table 3 No selective or misleading exclusion of data has occurred
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> No other material data has been collected
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Additional drilling is planned to further test the mineralisation along strike and down dip.

Appendix 2 - Diamond Drillhole Collar Locations

Table 2: Diamond Drillhole Collar Locations

Hole ID	Easting (m)	Northing (m)	RL (m)	Zone	Grid	From (m)	To (m)	Comment
RRPT0001	617161.05	6033874.96	1281.2	MGA94	55	0	699.4	
RRPT0002	617164.14	6033872.06	1281.2	MGA94	55	0	648.2	

Table 3: Significant Intercepts

Hole ID	From (m)	To (m)	Interval Length (m)	Au (g/t)	Ag (g/t)	Cu (ppm)
RRPT0001	74.7	75	0.3	0.56	0.3	57
RRPT0001	76.5	76.7	0.2	0.06	0.5	149
RRPT0001	102.3	103	0.7	0.32	0.9	196
<i>includes</i>	102.3	102.5	0.2	1.1	2.5	627
RRPT0001	114.9	121	6.1	0.01	0.32	179
<i>includes</i>	115.1	116	0.9	0.02	1.3	941
RRPT0001	338	380	42	0.20	0.05	57
<i>includes</i>	338	339	1	1.1	0.05	15
	351.5	351.7	0.2	5.0	0.05	13
	369.9	370.3	0.4	1.84	0.2	133
	379	380	1	1.46	0.05	31

Notes:

cut-off grade of 0.1g/t Au, 0.1g/t Ag and 60ppm Cu

no high grade cuts applied

down hole widths reported

internal dilution included up to 7m based on Au (g/t),