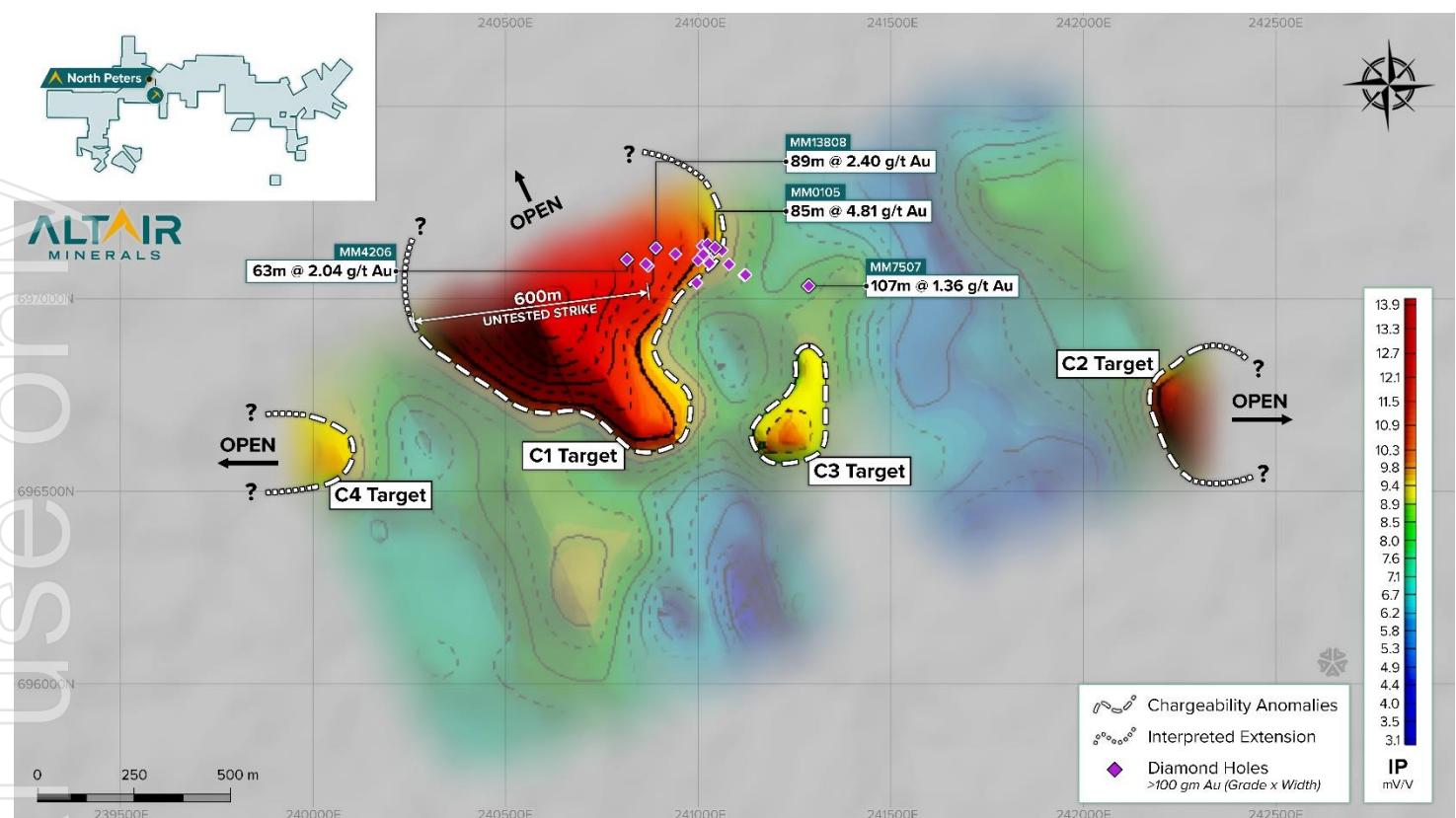
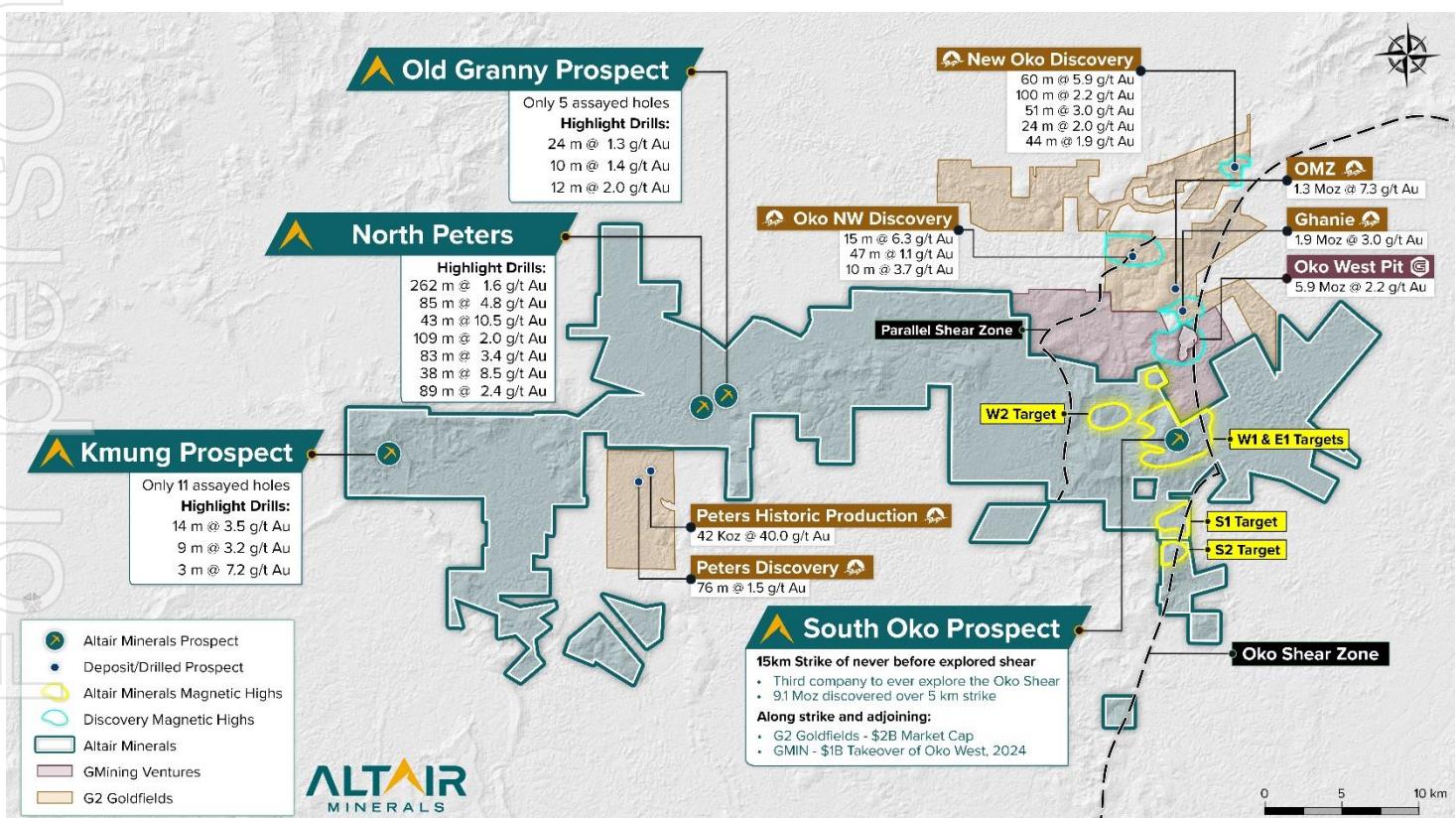


ASX MARKET ANNOUNCEMENT


Thursday 5 February 2026

ASX : ALR


North Peters Geophysics Identifies Major Untested Targets

600m strike and open, untested chargeability high adjacent to Hole MM4206: 63m @ 2.25g/t Au

- IP Survey at North Peters (“NP”) identifies **the largest and most prominent chargeability high anomaly which remains completely untested**, with adjacent drilling on the periphery of the anomaly returning exceptional intercepts including:^{13,19,20}
 - MM4106: **109m @ 2.04g/t Au** from 47m
 - MM4206: **63m @ 2.25g/t Au** from 55m
 - MM3906: **14m @ 6.13g/t Au** from 49m
 - MM13808: **89m @ 2.40g/t Au** from 45m
 - MMT003: **43m @ 10.56g/t Au** from surface
- IP/Resistivity geophysical surveys conducted by TRX Consulting at NP has highlighted major untested targets:
 - **C1 Target: Chargeability high of ~900m strike extent**
 - Only ~300m strike has been drill tested.
 - **To date, 82% of the intercepts which returned >100gm Au (width x grade) were collared on the limited drill tested area of this chargeability high.**
 - C1 remains open to the boundary limits of survey area.
 - **C2 and C3 Targets:**^{13,19}
 - Two other chargeability highs present.
 - C2 is a prominent high that is completely untested on the southeastern border of survey and remains open to the boundary limits of survey area.
 - C3 is a more subtle chargeability high, which has had four historic holes collared within it, including intercepts of **30m @ 1.20g/t Au, 38m @ 1.07g/t Au, 23m @ 1.80g/t Au.**^{13,19}
 - **R1 Target: Resistive corridor of ~2.7km length**^{13,19}
 - Only ~600m has been drill tested
 - The northwest and southeast extremities of the drill tested area at this target returned exceptional intercepts of **89m @ 2.40g/t Au** and **107m @ 1.36g/t Au**, respectively.
 - R1 remains open to the boundary limits of the survey area, extending towards Old Granny Target – limited drilling includes **24m @ 1.28g/t Au** just 150m northeast from the survey limit of R1.
- Targets were defined using a 65m depth slice of the IP/Resistivity data, which coincides with the average depths of high-grade mineralisation system as it is currently defined, as seen in the depth of intercepts above
- The **untested chargeability highs present potential to approximately double the high-grade mineralisation system** at NP, while the untested resistivity corridor extends over four times the size of the current high-grade strike length.

Figure 1: Plan view of North Peters IP Chargeability Survey at 65m depth slice, with targets, overlaid with historic diamond holes which have returned >100gsm Au (Grade x Width of mineralised gold intercepts in each hole). Coordinates in WGS84, UTM Zone 21N. ^{13,19,20}

Figure 2: Plan view of the Greater Oko Project and four key target areas defined to date – South Oko (SOKO), North Peters (NP), Old Granny (OG) and Kmung (KM) with Altair's project size in comparison to its two predecessors G2 Goldfields (\$2.2 Billion Market Cap) and GMining Ventures (\$1 Billion takeover of Oko West from Reunion Gold). For clarity, both G2 and GMIN resources are located outside of Altair's Greater Oko Project. ^{1,2,3,4,9,10,11,12,13,14,19,20}

Altair Minerals Limited (ASX: ALR) ('Altair or 'the Company') is pleased to report the processing of historic IP & resistivity geophysics surveys conducted by TRX Consulting in 2010 across North Peters ("NP"). These results display robust, untested anomalies that continue to underpin exceptional growth potential at NP.

Most notably, the **largest and strongest chargeability anomaly (C1 Target) remains completely untested and open to the north**. Importantly, the best intercepts to date at NP – characterised by thick, high-grade mineralisation – have been drilled on the periphery of the C1 Target, in the opposite direction of the chargeability high, further reinforcing the prospectivity of the core anomaly.

The geophysics also delineates a resistivity corridor ~2.7km in strike extent (**R1 Target**), of which only ~600m has been drill tested to date. The R1 Target comprises a broad resistive corridor running parallel to silicified cores, represented by resistive highs. **This corridor coincides with the highest-grade intercepts at North Peters and appears to funnel directly towards the C1 chargeability high.**

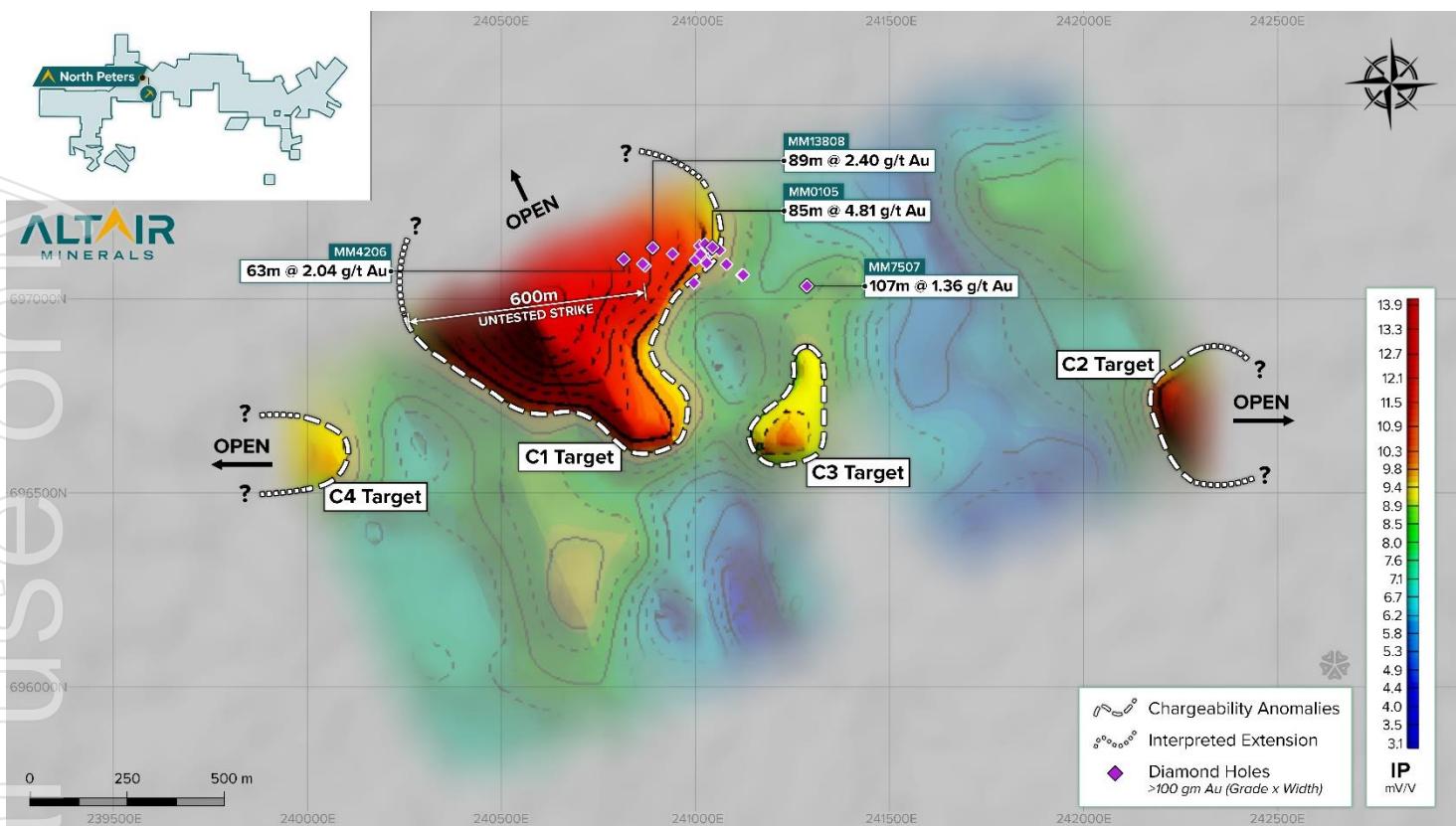
A second, weaker chargeability target (**C3 Target**) has only been partially tested on its margins by four drill holes, returning encouraging intercepts, including 30m @ 1.20g/t Au, 38m @ 1.07g/t Au, 23m @ 1.80g/t Au. The core of the C3 Target remains completely untested.^{13,19}

North Peters Geophysics – Chargeability

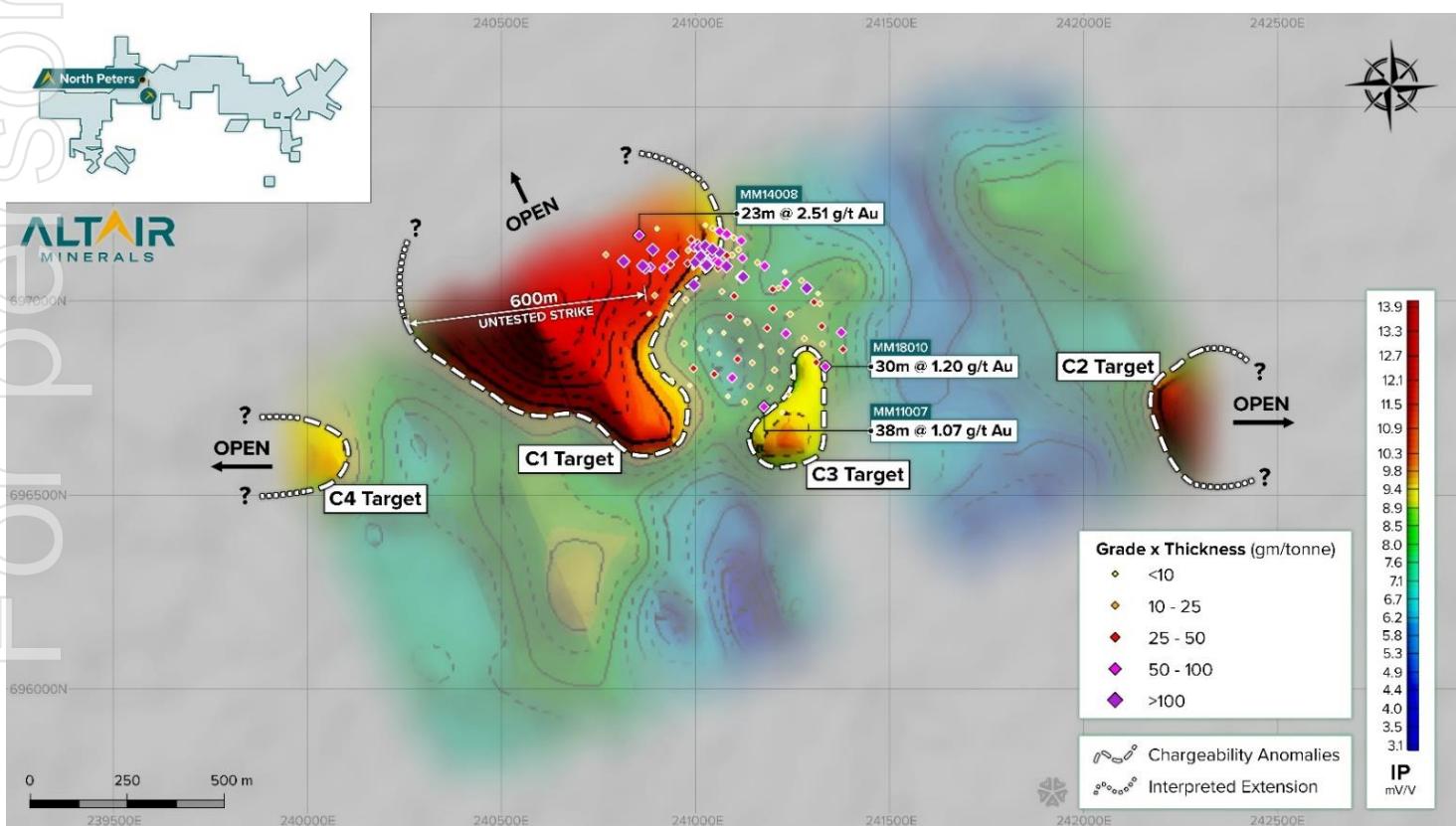
The chargeability is a measure of the polarisation effect generally produced by disseminated sulphides, favourable for gold emplacement.

The historic drilling at North Peters shows a clear association between gold mineralisation and disseminated sulphides, providing strong vectoring criteria for follow-up targeting to expand the mineralisation footprint and further highlighting the substantial untapped potential at North Peters.

The primary target defined from the IP chargeability survey is the **C1 Target**, representing the most prominent anomaly, occurring between 13 to 119 meters depth and remaining open to the North. Approximately ~600 metres of strike extent of the C1 Target remains completely undrilled and untested, with previous holes collared on the extreme eastern periphery of the anomaly intercepting:^{13,19,20}


- MM4106: **109m @ 2.04g/t Au** from 47m
- MM4206: **63m @ 2.25g/t Au** from 55m
- MM0105: **85m @ 4.81g/t Au** from 24m
- MM3906: **14m @ 6.13g/t Au** from 49m
- MM13808: **89m @ 2.40g/t Au** from 45m
- MM4006: **103m @ 1.02g/t Au** from 32m
- MM3606: **112m @ 1.07g/t Au** from 20m
- MM5106: **94m @ 1.12g/t Au** from surface
- MM1806: **80m @ 1.20g/t Au** from 123m
- MMT003: **43m @ 10.56g/t Au** from surface

Importantly, as shown in Figure 3 below, the overwhelming majority of standout intercepts at North Peters occur on the periphery of the C1 Target, drilled in the opposite direction to the chargeability high. Notably, 82% of all intercepts which have returned >100 gram-metres Au (width x grade) was collared along the eastern margin of this chargeability anomaly, while the majority of the strike remains completely untested.


Hole #4206 represents the closest drillhole to the peak of the chargeability high of the C1 Target, collared ~250m to the northeast, and returned exceptional intercept of 63m @ 2.25g/t Au from 55m.²⁰

The depth slices at 39m and 65m shows minimal variation in chargeability highs and align closely with the depths at which the majority of high-grade mineralisation at North Peters has been intersected to date. This further underscores the strong prospectivity of the largely untested C1 Target, with the most extensive gold mineralisation encountered so far at North Peters – associated with disseminated sulphides – occurring on the periphery of the anomaly.

Figure 3: Plan view of North Peters IP Chargeability Survey at 65m depth slice, with targets, overlaid with previously reported diamond holes which have returned >100gm Au (Grade x Width of mineralised gold intercepts in each hole). Coordinates in WGS84, UTM Zone 21N.^{13,19,20}

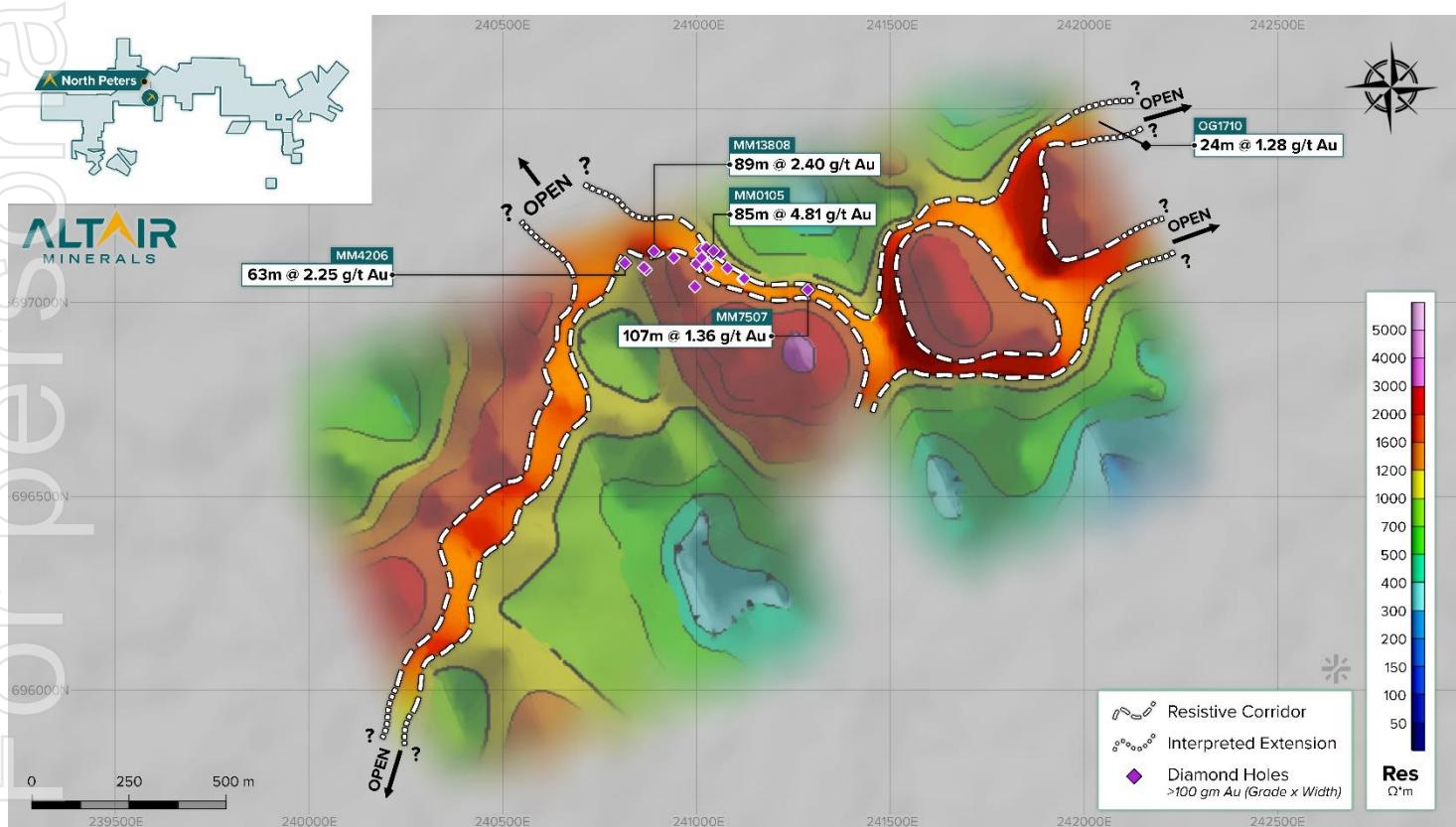
Figure 4: Plan view of North Peters IP Chargeability Survey at 65m depth slice, with targets, overlaid with all previously reported diamond holes. Coordinates in WGS84, UTM Zone 21N.^{13,19,20}

The **C3 Target** represents a more subtle chargeability anomaly at the 65m depth-slice. As seen in Figure 4 above, only four drill holes have been collared on the periphery of the C3 Target, returning multiple thick, high-grade gold mineralisation, including intercepts of **19m @ 1.62g/t Au** (Hole#11007) and **30m @ 1.20g/t Au** (Hole#18010). All of these holes were orientated away from the core of the anomaly at a 286° Azimuth (west-northwest), clearly highlighting that the central portion of the C3 Target remains untested and highly prospective.^{13,19}

Furthermore, as illustrated in Figure 5 below, at the IP surveys maximum depth of 146m, the C3 Target develops into a pronounced bullseye chargeability anomaly that remains completely untested. This deeper chargeability represents the strongest peak response across the entire survey area and outlines a compelling deeper target. Importantly, **this deep C3 Target anomaly aligns with deeper mineralisation encountered in Hole #18010**, which was drilled on the peripheral of the C3 target and returned **23m @ 1.80g/t Au from 274m depth**.¹³

The **C2 and C4 Targets** comprise additional prominent chargeability anomalies identified at the margins of the survey area and, and similar to the C1 Target, also remains open. Both targets are completely untested, with no nearby historic drilling, and collectively define a combined strike length of approximately 550m.

Figure 5: Chargeability stacked maps across North Peters within multiple depth slices from 13m to 146m. Note: the chargeability colour scale on this image is different to that shown in the plan views, with anomalous readings occurring >10mV/V. Coordinates in WGS84, UTM Zone 21N.


North Peters Geophysics – Resistivity

The resistivity anomalies typically delineate the zones of silicification as a result of hydrothermal activity; whereby gold mineralisation tend to host itself on the margins of silicified cores. Resistive highs may also reflect alteration effects or the presence of magmatic/granitic intrusions.

Gold mineralisation generally occurs along the margins of these silicified cores, which aligns strongly with structural resistivity model shown in Figure 6 below. The resistive corridor (**R1 Target**) shown in Figure 6 coincides with the highest-grade and thickest mineralisation intersected at North Peters to date and is spatially associated with the silicified resistive highs.

Importantly, this resistive corridor extends over approximately 2.7km of strike, of which only ~600m has been drill tested to date, highlighting significant potential to expand the mineralised footprint through follow-up exploration programs along the corridor. The R1 Target extends immediately northwest from the high-grade mineralised zone toward the coincident untested chargeability high, remaining open and adjacent to Hole#4206 which intercepted **63m @ 2.25g/t Au** from 55m and Hole#13808 which intercepted **89m @ 2.40g/t Au** from 45m.²⁰

Furthermore, as illustrated in Figure 6, the resistive corridor continues a further ~1.4km northeast from North Peters towards the Old Granny (“OG”) Target. At OG, exploration remains limited, with only five fully assayed holes completed to date. **Hole OG1710, collared closest to the northeastern open boundary of the R1 target and survey area, drilled in the direction of the resistive corridor, returned 24m @ 1.28g/t Au from 7m, confirming that mineralisation remains favourable and potentially structurally controlled within this resistive corridor even ~1.4km along strike** from the standout intercepts at North Peters.¹⁹

Figure 6: Plan view of North Peters Resistivity Survey with key resistivity corridor, overlaid with previously reported diamond holes which have returned >100gm Au (Grade x Width of mineralised gold intercepts in each hole). Coordinates in WGS84, UTM Zone 21N.^{13,19,20}

Altair Minerals Limited CEO, Faheem Ahmed, commented:

"The geophysics results at North Peters have identified several prominent untested targets that are compelling for follow-up drill testing and once again highlight the strong regional potential to significantly expand the high-grade mineralisation footprint.

Most notably, the main chargeability high remains completely untested, despite some of the best intercepts at North Peters occurring on the periphery of this anomaly, including 109m @ 2.04g/t Au, 85m @ 4.81g/t Au, 63m @ 2.25g/t Au, 89m @ 2.40g/t Au.

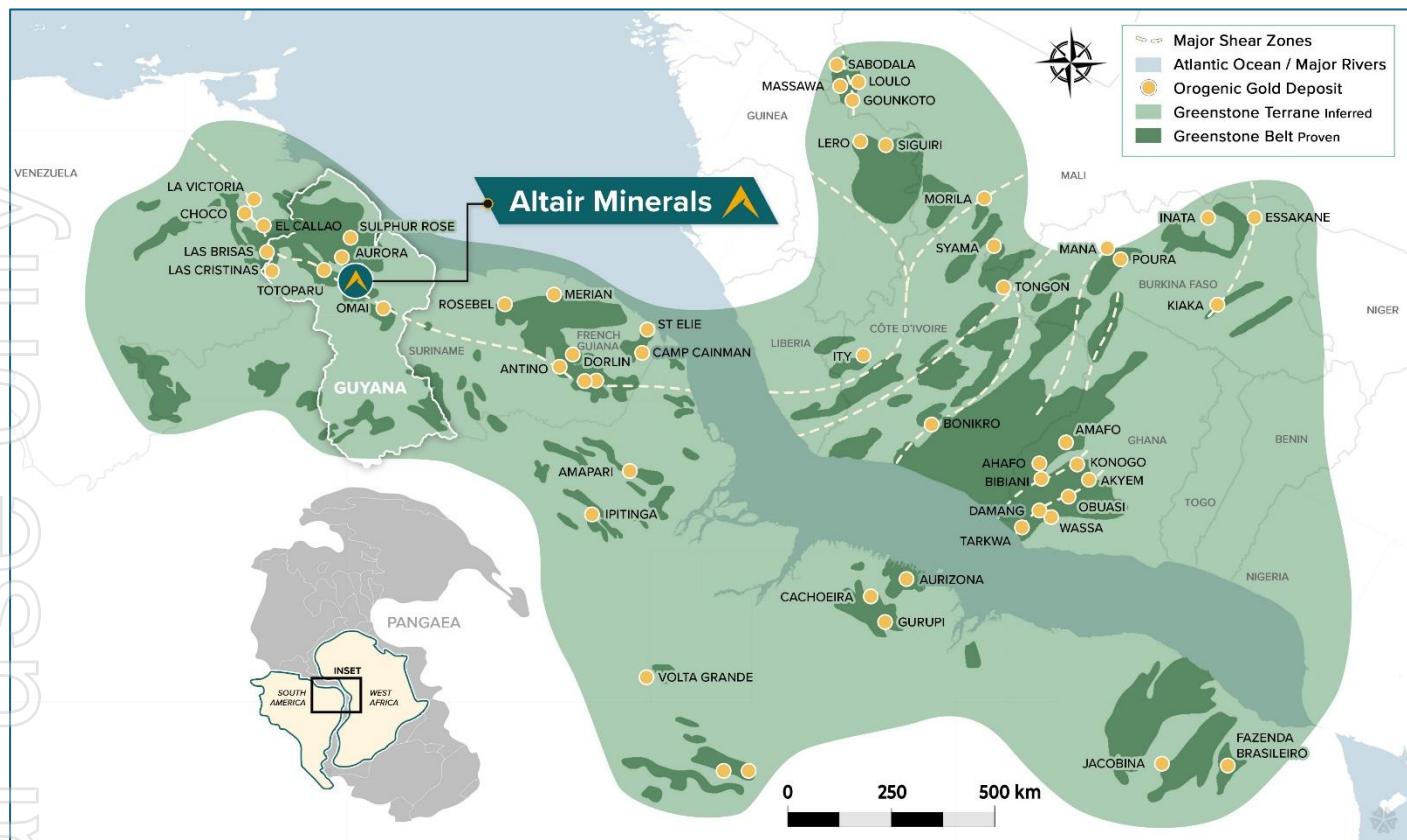
Importantly, these intercepts were drilled in the opposite direction of the chargeability anomaly, away from the core of the system. Furthermore, the high-grade mineralisation adjacent to the chargeability high is associated with disseminated sulphides, making this untested chargeability core an immediate compelling drill target.

The strongest intercepts at North Peters also sit within a coinciding resistivity corridor developed along the margins of a resistivity high interpreted to represent a silicified core. This resistive corridor extends over approximately 2.7km of strike, of which only ~600m has been drill tested to date, highlighting significant upside potential. Impressively, the resistivity corridor extends approximately 1.4km towards the Old Granny Target, where the closest and only hole drilled in the direction intercepted 24m @ 1.28g/t Au, confirming favourable mineralisation over a ~1.4km strike, within a potential structurally controlled resistive corridor.

The geophysics data at North Peters represents an important step in defining the substantial growth potential that remains untapped across the district and outlines multiple high-priority targets that directly extend from the currently defined high-grade gold footprint. The Company remains on track to commence drilling at North Peters in Q1 2026, and in parallel, intends to undertake follow-up geochemical ground programs across these new geophysical targets to refine priority areas for extensional and scout drilling.

I would like to thank both our existing and new shareholders for their ongoing support and look forward to providing further material updates in the near future "

Guyana


Guyana has rapidly emerged as a premier gold jurisdiction, drawing increasing attention from major players in the gold exploration space. As the last truly pro-mining and politically stable country within the Guiana Shield, it hosts an extension to West African geology, consisting of the same Birimian Greenstone that has underpinned world-class gold discoveries across West Africa — including in Ghana, Ivory Coast, and Burkina Faso. However, unlike its African counterparts, Guyana remains significantly underexplored.

The 590km² contiguous landholding itself within Greater Oko not only represents an irreplicable landholding but is also positioned within one of the most prominent and emerging greenstone belts globally, and 1.5km away from a 5.9Moz discovery, which is expected to go into production over the next 18 months. Recent exploration success by groups such as G2 Goldfields (\$2.3B Market Capitalisation) and Reunion Gold (GMIN took over for \$1Billion in 2024) has already validated the region's untapped potential, establishing multiple Tier-1 discoveries made from grassroots exploration campaigns.^{1,2,4}

Current public companies actively drilling across the Guiana Shield include:

- **G2 Goldfields:** \$2.2Billion Market Capitalization⁴
- **Reunion Gold:** \$1Billion Takeover by GMining Ventures in 2024²
- **Greenheart Gold:** \$143M Market Capitalization¹⁶
- **Founders Metals:** \$547M Market Capitalization¹⁷
- **OMAI Gold Mines:** \$1.3B Market Capitalization¹⁸

Figure 7: Map of the West African Birimian Shield and extension to Guiana Shield with location of major deposits and projects.

For and on behalf of the board:

Faheem Ahmed – CEO

This announcement has been approved for release by the Board of ALR.

About Altair Minerals

Altair Minerals Limited is listed on the Australian Securities Exchange (ASX) with the primary focus of investing in the resource sector through direct tenement acquisition, joint ventures, farm in arrangements and new project generation. The Company has projects located in South Australia, Western Australia and Queensland with a key focus on its Olympic Domain tenements located in South Australia. The shares of the company trade on the Australian Securities Exchange under the ticker symbol ALR.

Streamline Statement

Altair confirms that it is not aware of any new information or data which affects the exploration results and information which has been previously disclosed and cross-referenced and included within this announcement.

Competent Persons Statement

The geophysics results referenced in this release has been prepared with information compiled by Mr Robert Wason BSc (Hons) Geology, MSc (Mining Geology), a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Wason is an employee of Mining Insights. Mr Wason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Wason consents to the inclusion of these exploration results based upon the information in the form and context in which it appears.

Proximity Statement

This announcement contains references to exploration results derived by other parties either nearby or proximate to The Greater Oko Project and includes references to topographical or geological similarities to that of the ALR Project. It is important to note that such discoveries or geological similarities do not in any way guarantee that the Company will have any success or similar successes in delineating a JORC compliant Mineral Resource on the Greater Oko Project, if at all.

Forward Looking Statement

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

References

1. *Feasibility Study NI 43-101 Technical Report Oko West Project, Prepared for GMining Ventures, GMining Services Inc., 06th June 2025*
2. <https://www.miningweekly.com/article/g-mining-buys-reunions-guyana-project-2024-04-23>
3. *G2 Goldfields (TSX: GTWO) announcement dated 18th December 2025*
4. *TSE: GTWO, Market Capitalization based on diluted 279,781,035 Shares on Issue (SOI) and Share Price of CAD \$7.58 as of date 30th January 2026 and CAD to AUD conversion rate of 1.06.*
5. *ALR Announcement dated 26th August 2025, "South Oko Geochemistry Confirms Oko West Look-Alike Target"*
6. *Reunion Gold Corp. announcement dated 12th August 2021*
7. *ALR Announcement dated 03rd September 2025, "Ex-Reunion Gold Team Joins & New Targets Defined"*
8. *ALR Announcement dated 22nd September 2025, "Largest Geochemical Program on Oko Shear Zone Commences"*
9. *G2 Goldfields (TSX: GTWO) announcement dated 15th July 2025*
10. *G2 Goldfields (TSX: GTWO) announcement dated 13th May 2025*
11. *G2 Goldfields (TSX: GTWO) announcement dated 9th June 2025*
12. *G2 Goldfields (TSX: GTWO) announcement dated 8th September 2025*
13. *ALR Announcement dated 05th August 2025, "Acquisition of Transformational Gold Project"*
14. *G2 Goldfields (TSX: GTWO) announcement dated 20th November 2019*
15. *Reunion Gold: Investment Case, Valpal, 20th February 2024*
16. *TSX-V: GHRT, Market Capitalization based on 154M SOI and closing price of CAD\$0.88 on 30th January 2026 and CAD to AUD conversion rate of 1.06.*
17. *TSX-V: FDR, Market Capitalization based on 115M SOI and closing price of CAD\$4.50 on 30th January 2026 and CAD to AUD conversion rate of 1.06.*
18. *TSX-V: OMG, Market Capitalization based on 671M SOI and closing price of CAD\$1.88 on 30th January 2026 and CAD to AUD conversion rate of 1.06.*
19. *ALR Announcement dated 15th January 2026, "North Peters Uncovers Hits of 85m @ 4.81g/t Au"*
20. *ALR Announcement dated 08th January 2026, "North Peters High-Grade Intercepts of 89m @ 2.40g/t Au"*

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> In 2010, a Geophysical Survey was carried out by T.R.X. Consulting C.A. (TRX) at the North Peters prospect area, Guyana. The survey consisted of the acquisition of IP/Resistivity data, designed to contribute to define the geological and mineralisation conditions of the survey area. A stacked topography and ISO depth maps were generated in order to provide synthetic spatial and depth view of survey results. Survey was performed using an Iris ELREC 6, a six dipole multi window (20 IP windows) Time Domain Receiver designed for Induced Polarization DC electrical exploration surveys and a GDD TXII transmitter with a power of approximately 4 kw at 4000 V and 10 A maximum. The transmitter was powered with a 5kw, easily transportable power generator system that warranted the injection of a range of 2000-5000ma.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> No drilling results are reported in this release.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> No drilling results are reported in this release.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> No drilling results are reported in this release.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> No drilling or sampling results are reported in this release.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> At least twenty samples were analyzed for each 2 seconds window and at least 20 stacks were allowed for each measurement in order to enhance the signal to noise ratio. Good repeatability of the data was reported. When an anomalous standard deviation or M (chargeability) value was observed in the field, the measurement was repeated until confidence on the correctness of the measurement was obtained. Care was taken to run the survey in the same direction in each line and in repeating the same acquisition procedure in order to assure consistency of measurements between lines. As mentioned in historical data reports, data quality check was performed in the field to assure reliable data. Acquisition was done on rough topographic morphology. Additional potential electrodes and specific acquisition techniques were used to improve signal to noise ratio and the quality of the signal. Certain areas, though, presented a challenge in the acquisition due to flooded soil condition and surface geology.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> No drilling results are reported in this release.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> 	<ul style="list-style-type: none"> Location for all sampling data is based on WGS84, Zone 21 North UTM datum. The quality and adequacy of the topographic controls are appropriate for this level of exploration work.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> <i>Quality and adequacy of topographic control.</i> 	
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> The Induced Polarization/Resistivity field survey was carried out along 19 lines for a total of 13.4 km. The lines were spaced approximately 100 m and are oriented NS.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> No comment can be made of if any bias has been introduced due to spacing and grid orientation of stations.
<i>Sample security</i>	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> No samples reported.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> No external audits or reviews are incorporated into this report.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> Altair has the right to earn up to 70% of the Greater Oko Project, subject to conditions precedent. There are no other material issues affecting the tenements. All tenements are currently in good standing and have been legally validated by local lawyer specialising in the field.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Historic exploration including surface geochemistry and drilling has been previously announced on 5th August 2025, 26th August 2025, 8th January 2026 and 15th January 2026.
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The project area is underlain by Precambrian rocks of the Barama-Mazaruni Group with the bedrock belonging to the Cuyuni Formation. The Cuyuni Formation, sedimentary and volcanic rocks, were compressed and metamorphosed during the Akawaian Episode and Trans-Amazonian Orogeny to form part of a greenstone belt. Previous exploration has demonstrated the presence of an NNE-SSW trending weathered, saprolitized shear zone with high-grade gold mineralization.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> No metal equivalent values are reported for the Greater Oka Project.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> True widths are not known. The true extent and geometry of the mineralisation is not known yet.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Appropriate maps and sections are included in the main body of this announcement.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Reporting is considered to be balanced. All relevant and material exploration data for the target areas has been reported or referenced.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> All relevant and meaningful exploration data received and validated by Altair has been included in this release.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Detailed geochemistry should be carried out to determine trends of known mineralised zones and to delineate high grade trends within the identified mineralised zones. Further drilling is recommended to test step-out and depth extensions to the currently known mineralisation, and to infill some areas of the known body to increase the confidence in support of a resource estimate. Any further exploration activity will depend on assessment of current results.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> Altair has the right to earn up to 70% of the Greater Oko Project, subject to conditions precedent. There are no other material issues affecting the tenements. All tenements are currently in good standing and have been legally validated by local lawyer specialising in the field.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Historic exploration including surface geochemistry and drilling has been previously announced on 5th August 2025, 26th August 2025, 8th January 2026 and 15th January 2026.
<i>Geology</i>	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The project area is underlain by Precambrian rocks of the Barama-Mazaruni Group with the bedrock belonging to the Cuyuni Formation. The Cuyuni Formation, sedimentary and volcanic rocks, were compressed and metamorphosed during the Akawaian Episode and Trans-Amazonian Orogeny to form part of a greenstone belt. Previous exploration has demonstrated the presence of an NNE-SSW trending weathered, saprolitized shear zone with high-grade gold mineralization.
<i>Data aggregation methods</i>	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> No metal equivalent values are reported for the Greater Oka Project.
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> True widths are not known. The true extent and geometry of the mineralisation is not known yet.
<i>Diagrams</i>	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar</i> 	<ul style="list-style-type: none"> Appropriate maps and sections are included in the main body of this announcement.

Criteria	JORC Code explanation	Commentary
	<p><i>locations and appropriate sectional views.</i></p>	
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> Reporting is considered to be balanced.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i> 	<ul style="list-style-type: none"> All relevant and meaningful exploration data received and validated by Altair has been included in this release.
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Detailed geochemistry should be carried out to determine trends of known mineralised zones and to delineate high grade trends within the identified mineralised zones.