

Acquisition of “Thompson Falls” High-Grade Antimony Project Adjacent to America’s only Antimony Smelter

HIGHLIGHTS:

- Red Mountain has acquired the “Thompson Falls Antimony Project” adjacent to United States Antimony Corporation’s operations (NYSE: UAMY, Market Cap A\$2.2b), which has the only Antimony smelter in the United States, and is crucial to the US Critical Minerals supply chain
- Red Mountain has immediately identified standout prospectivity at the project, locating three historical underground mines and a pit within the project area. Initial assays from the Thompson Falls Antimony Project have returned superb high-grade results including:
 - 36.5% Sb and 0.48g/t Au
 - 21.0% Sb and 0.65g/t Au
 - 13.7% Sb and 0.14g/t Au
- The Project is located on the Montana-Idaho border, within the same host stratigraphy and near UAMY’s Stibnite Hill Mine, the second largest known stibnite vein deposit in the US, where high grade antimony mineralisation has been previously mined, and restarted by UAMY in late 2025 in response to the severe supply shortage in the United States
- The Project is also highly prospective for Silver as it lies at the eastern end of Idaho’s Coeur d’Alene mineral district, which has accounted for ~18% of the USA’s total accumulated silver production, of over 1.25 billion ounces of silver between 1884 and 2020, along with 7.8Mt Lead, 3.0Mt Zinc, 1.1Moz Gold, 191kt Copper and 160kt Antimony
- Thompson Falls Antimony Project further strengthens Red Mountain’s Utah, Idaho and NSW Critical Minerals portfolio, creating a unique Western asset base positioned to benefit from unprecedented US and Australian government support as both nations seek to secure supply
- The US Government this week launched a \$12 billion strategic minerals stockpile initiative, aimed at securing Critical Mineral supply chains. Red Mountain’s Thompson Falls Antimony Project, located 4.2km from UAMY’s operations, is well positioned in Antimony and Silver - both federally designated Critical Minerals aligned with US supply chain priorities
- Red Mountain continues to accelerate its Critical Minerals exploration and development at the Armidale project in NSW, Australia and additional technical work is rapidly progressing at the Company’s Utah and Idaho projects

Red Mountain Mining Limited (ASX: RMX, US OTCQB: RMXFF, or "the Company"), a Critical Minerals exploration and development company with an established portfolio in Tier-1 Mining Districts in the United States and Australia, is pleased to announce the Company's newly-acquired Thompson Falls Antimony Project, (Figure 1), located 4.2km from United States Antimony Corporation's operations (NYSE: UAMY; Market Cap A\$2.2 billion) with the only operating Antimony smelter in the US – the Thompson Falls Smelter in Montana and the Stibnite Hill Mine. Red Mountain's initial batch of assay results have returned outstanding grades of up to 36.5% Antimony and 0.65g/t Gold at the Thompson Falls Antimony Project.

The project sits on the border of Montana and Idaho and situated within the same host stratigraphy as UAMY's Stibnite Hill Mine, the second largest known stibnite vein deposit in the US, where high grade antimony mineralisation has been previously mined, with UAMY restarting operations in late 2025 in response to rapidly increasing US demand. Red Mountain has commenced field-work which includes geological mapping, sampling potential mineralisation structures and exploration across alteration zones and potential outcrop - with results expected to be received this quarter.

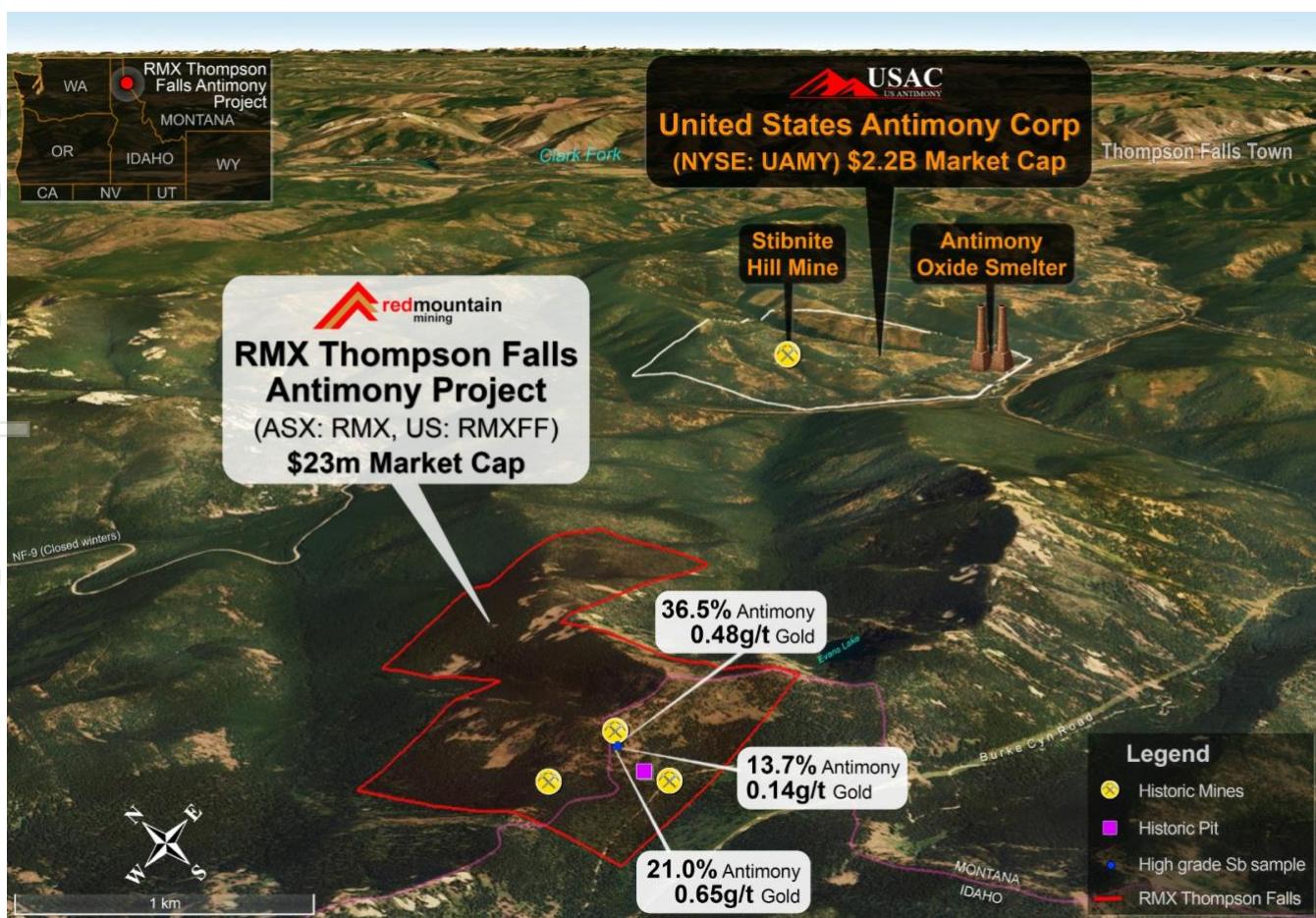


Figure 1: Thompson Falls Antimony Project & High-Grade Antimony and Gold Samples, next to NYSE: UAMY's Thompson Falls Smelter and Stibnite Hill Mine

High-grade Antimony up to 36.5% Discovered and Several Historic Mines Identified

Red Mountain has discovered high-grade Antimony and highly anomalous gold as part of its first-pass program (Figure 5 and Table) at the Eastern Star underground mine returned high antimony results, up to **36.5% Sb**, and elevated gold, up to **0.65g/t Au**. These samples also consistently contain elevated arsenic. Red Mountain's US field team successfully located three historical underground mines and one pit within the Company's Thompson Falls Antimony Project area (Figure3; Figure 4).

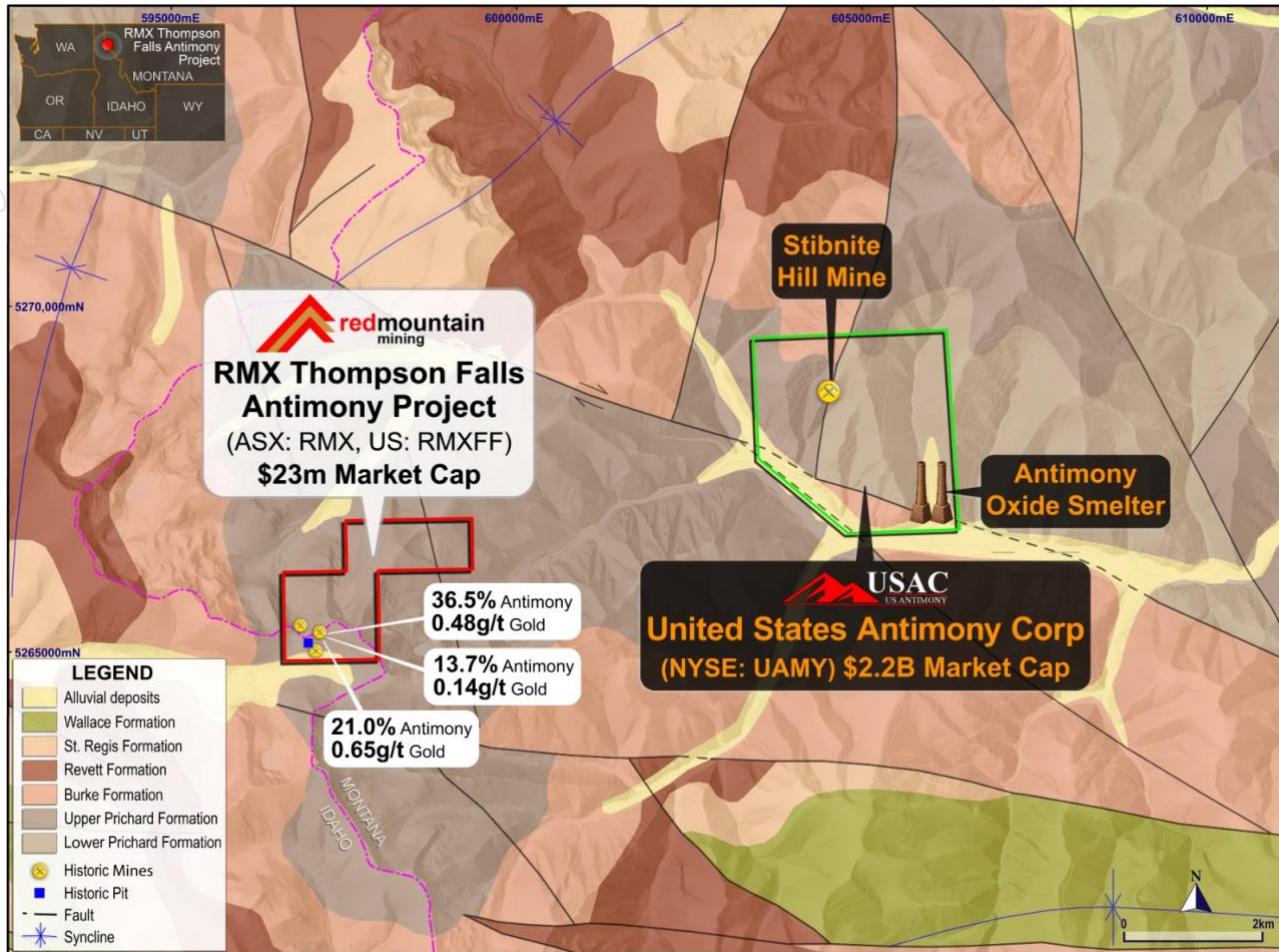
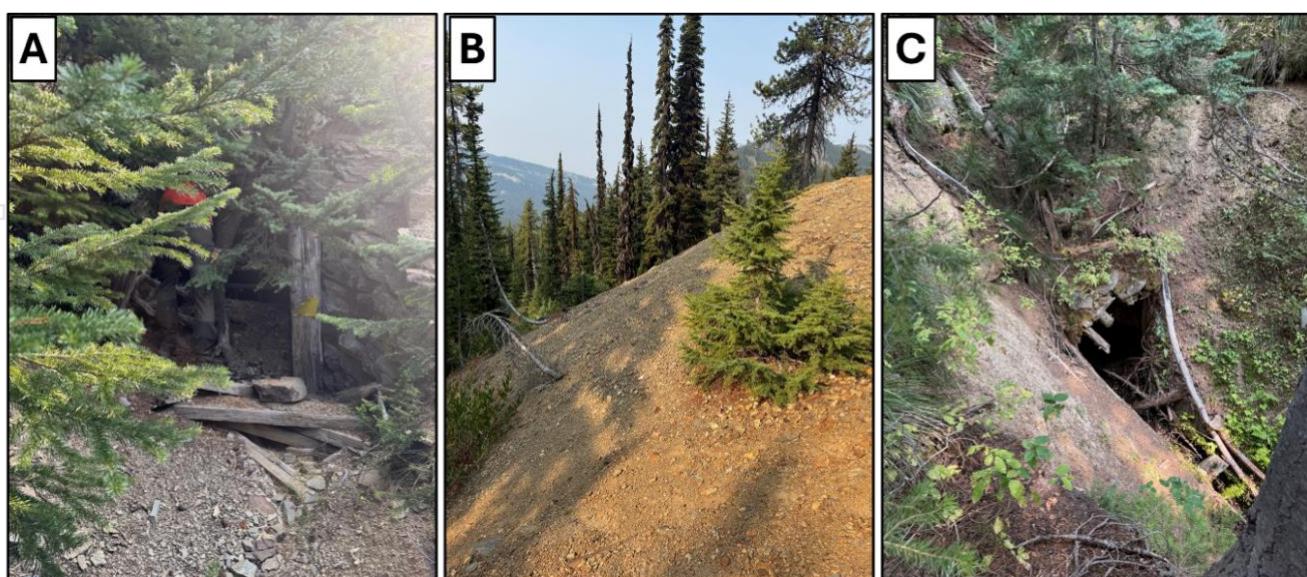


Figure 2: 36.5% Antimony and 0.48% Gold Samples, Massive Stibnite veining in iron oxide altered argillite sampled at the Thompson Falls Antimony Project. Sample 732259.


Most of the samples collected by Red Mountain from the Eastern Star mine closely resemble the quartz-stibnite veins mined at UAMY's Stibnite Hill deposit (discussed below), 6km east of Red Mountain's Thompson Falls Project area, although these veins are not recorded as producing gold.

However, the wide variety of listed metals for the three mines within the project area and the presence of siderite in some material on the Eastern Star dump (Table A) suggests that the Thompson Falls Project has potential to also host the silver-rich polymetallic vein mineralisation that is typical of the rich Coeur d'Alene mineral district that lies immediate west of Red Mountain's claims.

The three underground workings are listed in the Idaho Geological Survey and Montana Bureau of Mines and Geology historical mines databases, with their produced metals listed as silver-lead (Eastern Star), antimony, and antimony-silver-copper-zinc-lead, as shown on Figure3.

Figure 3: USGS geology of Red Mountain's Thompson Falls Antimony Project and UAMY's Thompson Falls Smelter and Stibnite Hill Antimony Mine. Red Mountain's observed locations of three historical underground workings and an open pit verified by initial exploration are also shown. The commodities listed for each of the workings are from Idaho Geological Survey¹ and Montana Bureau of Mines and Geology² historical mine databases.

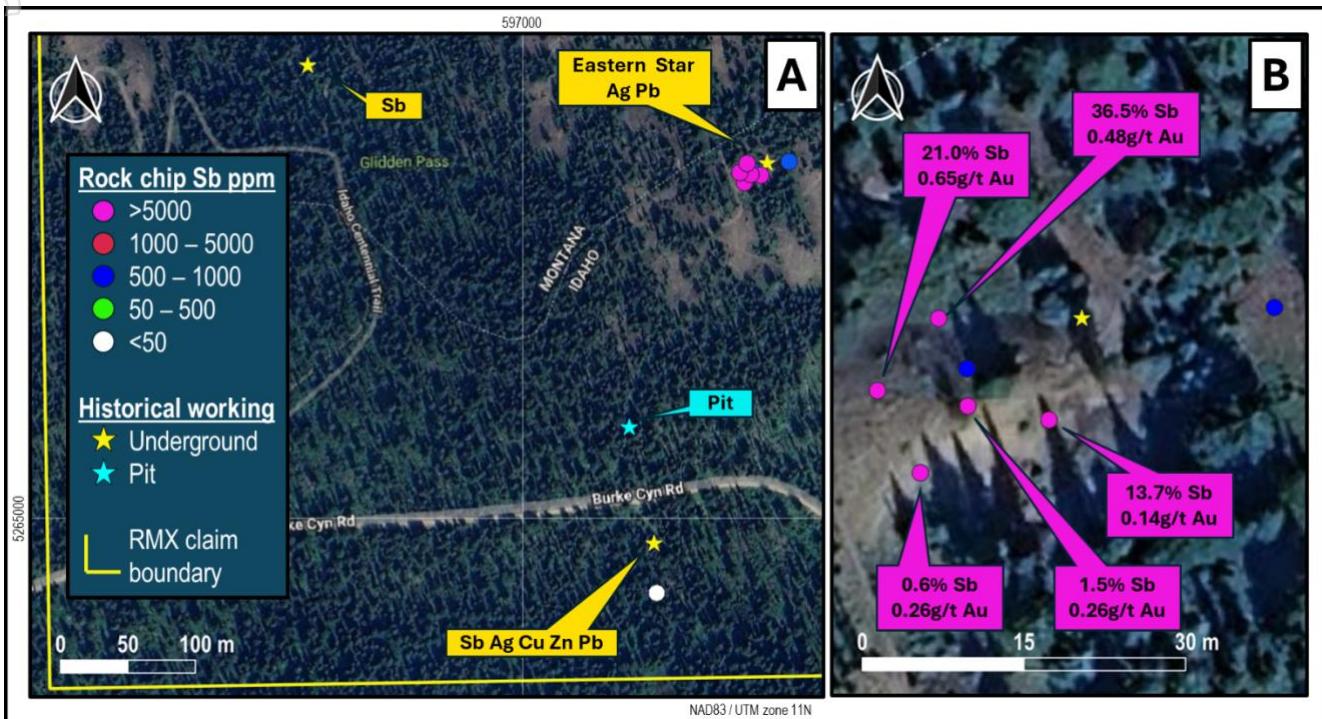


Figure 4: Historical mines located within Red Mountain's Thompson Falls Antimony Project area, (A) Entrance to Eastern Star Ag-Pb mine. (B) Waste dump at Eastern Star. (C) Entrance to the unnamed Sb-Ag-Cu-Zn-Pb workings.

¹<https://www.idahogeology.org/product/DD-1>

²<https://mbmg.mtech.edu/mbmgcat/public/FileDirector.asp?fn=3807&>

During initial reconnaissance, seven samples were collected from the Eastern Star Ag-Pb mine by Red Mountain's field crew and one sample was collected from south of the unnamed occurrence with recorded production of Sb-Ag-Cu-Zn-Pb (Figure 5; Table 5).

Figure 5: (A) Google Earth image of the southwest corner of Red Mountain's Thompson Falls Project Area showing the location of historical workings and antimony rock chip sample results from late 2025 reconnaissance sampling. (B) Detail over the Eastern Star area, showing analytical results for Sb and Au for samples containing over 0.5% (5000ppm) Sb and 0.1ppm Au.

The acquisition of claims was completed directly with both the Idaho Bureau of Land Management and Montana Bureau of Land Management offices, utilising existing internal cash from late 2025 funding initiatives. The total costs for securing the project were \$158,000. As the project sits on the border of Idaho and Montana, Red Mountain coordinated across two separate BLM offices, which included the period of the US federal government shutdown in late 2025, with formal processing and confirmation of claims finalised following the complete resumption of federal operations in early 2026.

Project located in a prime position in a globally significant mineralised belt

Red Mountain's Thompson Falls Antimony Project lies at the eastern end of Idaho's Coeur d'Alene mineral district, which is one of the globe's largest silver provinces, accounting for ~18% of total accumulated US production, and has also produced significant quantities of lead, zinc, gold, copper and antimony. Recorded metal production for the Coeur d'Alene mineral district between 1884 and

2020³ totals **1,257Moz Ag, 7.8Mt Pb, 3.0Mt Zn, 1.1Moz Au and 191kt Cu**. Production figures for antimony are not readily available and the metal was historically treated a waste product by many producers. Taylor and Hoffstra (2005)⁴ estimate that **161kt Sb** was produced from the Sunshine Mine, which was also one of the world's richest and largest silver mines throughout the 20th Century before closing in early 2001. Only a small portion of Sunshine's antimony production is recorded by the Idaho Geology Survey, who detail production of **5.5kt Sb**^{5,6} between 1982 and 2000. Taylor and Hoffstra (2005)⁴ also note production of an unspecified quantity of antimony from the Bunker Hill - Last Chance and Crescent mines.

As described in Reid (Ed., 1961)⁷, polymetallic orogenic vein mineralisation in the Coeur d'Alene mineral district is hosted in Middle Proterzoic (~1,400Ma) low grade metasedimentary rocks of the Belt Supergroup, with most mineralisation hosted in the St. Regis Formation, Upper Revett Formation, Lower Burke Formation and Prichard Formation. Mineralisation occurs as fault-controlled siderite-quartz-sulfide veins, with sulfide mineralogy principally comprising silver-rich tetrahedrite $[(Cu,Fe,Zn,Ag)_{12}Sb_4S_{13}]$, galena $[PbS]$, sphalerite $[(Zn,Fe)S]$ and chalcopyrite $[CuFeS_2]$. The mineral veins in the district consist principally of siderite (tan-colored iron carbonate) with quartz and sulfide minerals, principally tetrahedrite (a silver-rich, copper-antimony sulfide), galena (lead sulfide), sphalerite (zinc sulfide), and chalcopyrite (copper-iron sulfide). Veins can range in thickness from a few centimetres to several meters in thickness and can be laterally and vertically extensive, extending along strike over more than a kilometre and extending to depths of up to 1.5km. They typically show little evidence of vertical zonation, but can show lateral changes in sulfide mineralogy.

Orogenic polymetallic vein-hosted mineralisation is known to extend from the Coeur d'Alene mining district into western Montana. Red Mountain's Thompson Falls Antimony Project encompasses the Upper Prichard Formation, which hosts mineralisation within the Coeur d'Alene mineral district and is also the host for mineralisation at US Antimony's nearby Stibnite Hill antimony mine (Figure).

³Idaho Geological Survey Geonote G-47, 2022. <https://www.idahogeology.org/product/G-47>

⁴USGS Data Report 1198. <https://pubs.usgs.gov/publication/dr1198/full>

⁵Idaho Geological Survey Geonote G-20, 1992. <https://www.idahogeology.org/product/G-20>

⁶Idaho Geological Survey Geonote G-42, 2002. <https://www.idahogeology.org/product/G-42>

⁷Idaho Geological Survey Bulletin B-16, 1961. <https://www.idahogeology.org/product/B-16>

United States Antimony Corporation recommences mining at Stibnite Hill

The Stibnite Hill Mine is approximately 6km east of the Red Mountain's Thompson Falls Antimony Project, located close to US Antimony's smelter (Figure). As discussed by Crowley (1963)⁸ antimony mineralisation at Stibnite Hill was first discovered in 1884. For most of the mine's history, production has been small-scale, from numerous individual claims. Mineralisation occurs in flat-lying (dipping ~25° northwest) dominantly stratigraphy-parallel, quartz-sulfide veins, which range in thickness from ~1cm to 1.5m and can be traced for up to 1km along strike. Sulfide content varies along strike. Stibnite [Sb₂S₃] is the dominant sulfide, comprising 5% to 40% of the vein. Other sulfides occur as trace to minor phases and include up to 8% sphalerite [(Zn,Fe)S], up to 5% arsenopyrite [FeAsS], up to 3% pyrite [FeS₂] and less than 1% chalcopyrite [CuFeS₂].

Following a short period of production shortly after discovery, the Stibnite Hill Mine was idle until 1940, when World War II provided impetus for production. Small-scale antimony mining continued sporadically until 1968, when the mine was acquired by the US Antimony Corporation. UAMY mined Stibnite Hill using underground mining methods from 1968 until 1983, when a decision was made to cease operations "for economic reasons"⁹. There is very little published information regarding the grade and production of Stibnite Hill, although Bratney (1977)¹⁰, notes that in 1975, UAMY produced 450,533 pounds (204t) of antimony from 19,085 tons (17.3kt) of ore, which equates to a recoverable grade of 1.18% Sb. Total historical production from the mine is estimated by Taylor and Hoffstra (2005)¹¹ to comprise 15.4 kt of Sb.

In October 2025⁹ UAMY advised the market that the company had recommenced mining at Stibnite Hill using a surface mining "cut and cover" method that removes first overburden and then vein stibnite in panels, with each excavated panel covered by the overburden excavated from the next adjacent panel. Although no resource figure was quoted, UAMY noted that significantly more antimony was present at Stibnite Hill than anticipated, highlighting the effectiveness of modern mining techniques to extract significant value from material first mined by small-scale historical operations.

⁸Montana Bureau of Mines and Geology Bulletin 34, 1963. https://www.mbgm.mtech.edu/mbmgcat/public/ListCitation.asp?pub_id=10034&#qsc.tab=0

⁹UAMY Press Release 30/10/2025. https://www.usantimony.com/_files/ugd/3b68bf_61640102c6c14f28a47f8f3252ea8703.pdf

¹⁰Bratney, 1977. "Mineralogical and elemental trends in the Stibnite Hill Mine Sanders County Montana". Graduate Student Theses, Dissertations, & Professional Papers. 8123. <https://scholarworks.umt.edu/etd/8123>

¹¹USGS Data Report 1198. <https://pubs.usgs.gov/publication/dr1198/full>

In late November¹² the company advised that approximately 800 tons of visually identified antimony ore (with assay and metallurgical results yet to be received) had been trucked over a 45 day period.

Next steps for the Thompson Falls Antimony Project

Red Mountain is expecting additional assay results from sampling completed at Thompson Falls, to be received this quarter. The Company plans to undertake further reconnaissance exploration and sampling over the project area to locate any additional undocumented historical mine workings and potential mineralised exposures. The Red Mountain US team also plans to further inspect and access and sample the underground mines already located, to better understand the nature of mineralisation present at these prospects, prior to assessing and finalising plans for drill targets.

Red Mountain well placed to continue leveraging Critical Metal opportunities and accelerating exploration and development plans

Both the Australian and US Governments have explicitly identified antimony as a critical strategic metal, with significant constraints on supply and uncertainty around supply chain security. These constraints, which have included China limiting supply of the metal to western countries, have driven strong interest in exploration and development projects for antimony, with US Antimony Corporation moving rapidly to increase the company's smelter and processing capacity and seeking to secure new ore supply to meet an anticipated surge in domestic US demand.

With strong investor support in both Australia and the US, Red Mountain is well positioned to leverage what is an unprecedented critical shortage of Western supply and US Government interest in key strategic commodities. In addition to the Thompson Falls Antimony Project, located immediately adjacent to the USA's only operating antimony smelter, Red Mountain also holds three additional high quality antimony projects in the USA - the Utah Antimony Project in southern Utah, and the Yellow Pine and Silver Dollar Projects in central Idaho – as well as the Company's Armidale Antimony-Gold Project in NSW, Australia, where initial drilling of the high-grade Oaky Creek antimony target is expected during the first half of 2026.

Authorised for and on behalf of the Board,

¹²UAMY Press Release 24/11/2025. https://www.usantimony.com/_files/ugd/3b68bf_93867295ef9d4e918fb504de8c75310f.pdf

Mauro Piccini

Company Secretary

About Red Mountain Mining

Red Mountain Mining Ltd (ASX: **RMX**, US CODE: **RMXFF**) is a Critical Minerals and Gold exploration and development company focussed on accelerating its United States and Australia based assets, located in Tier-1 Mining Districts.

Red Mountain is fast-tracking its Critical Minerals projects in the US and Australia, and the Board and Management is determined to rapidly define a portfolio of advanced projects to assist the United States and Western countries with a reliable, high-quality source of commodity supply, including from the Company's **Armidale Antimony-Gold Project** located in NSW, Australia, which has delivered High-Grade Antimony samples to date (up to 39.3% Sb) and its **US Critical Minerals Portfolio**, comprising the **Utah Antimony Project** in the Antimony Mining District of Utah, adjacent to Antimony Canyon Project (owned by ASX: AT4); the **Thompson Falls Antimony Project** with initial grades of up to 36.5% Antimony, the **Yellow Pine Antimony Project**, with historic Antimony workings, less than 2km from Perpetua's Stibnite Project (NASDAQ: PPTA) in Idaho and the **Silver Dollar Antimony Project** (Historic Antimony Mine), reporting up to 17.7% Sb.

Competent Person Statement

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of contract geologist Mark Mitchell. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above-mentioned announcement.

JOIN THE RED MOUNTAIN MINING INVESTOR HUB

Visit <https://investorhub.redmountainmining.com.au> for access to the Investor Hub

Sample	UTM83 Zone 11N		Sample description	Sb ppm	Au ppm	Ag ppm	Pb ppm	Zn ppm	Cu ppm	As ppm
	mE	mN								
732254	597164	5265249	Float from dump: Brecciated Fe-oxide stained quartz vein with fine sulfide veinlets.	6360	0.26	<1	95	90	36	320
732255	597169	5265259	Float from dump: Fe-oxide stained argillite.	820	0.04	<1	10	60	21	760
732256	597176	5265254	Float from dump: quartz-stibnite vein within Fe-oxide stained argillite.	137000	0.14	<1	336	40	124	340
732257	597169	5265256	Float from dump: Fe-oxide stained argillite with irregular stibnite veinlets.	15000	0.26	<1	211	50	61	220
732258	597160	5265257	Float from dump: Siderite-stibnite-quartz breccia with some argillite clasts.	210000	0.65	<1	491	30	122	1170
732259	597166	5265264	Float from dump: Fe-oxide stained argillite with massive stibnite veining.	365000	0.48	<1	576	150	162	1490
732260	597197	5265265	Outcrop: Fe-oxide stained argillite with minor quartz veining.	760	<0.01	<1	32	60	26	<50
732270	597099	5264945	Float: Fe-oxide stained argillite with minor quartz veining.	-50	<0.01	1	542	440	38	<50

Table A: Metal assay results for rock chip samples shown in Figure . Mineralised results (>1% Sb; >0.5ppm Au) are highlighted in orange, elevated results (0.5-1.0% Sb; 0.1-0.5ppm Au; >1ppm Ag; >500ppm Pb, Zn, Cu or As) are highlighted green.

JORC Code, 2012 Edition - Table 1

1.1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Grab samples were collected from piles associated with the historical mines. The sampling was biased towards those samples with visible mineralisation or alteration that may contain mineralisation. These grab samples are not considered representative of the mineralisation but were part of due diligence exercise to see if mineralisation exists and what metals were present. Each sample consisted of approximately 1-2kg of rock, all samples were analysed at ALS.in Twin Falls (USA) by multiple methods, Sb by AA08 potassium chlorate/HCL digest AAS finish, Au by AA25, lead flux fire assay and AAS, trace elements by 4 acid digest and ICP-AES finish (ME-ICP61a) The historical production and assays referenced in this report are not JORC compliant and details on the mining/sampling techniques are unknown.
Drilling techniques	<ul style="list-style-type: none"> Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, 	<ul style="list-style-type: none"> No drilling reported

Criteria	JORC Code explanation	Commentary
	etc).	
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> No drilling reported.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> No drilling reported. Rock sampling is not used for resource estimation in this announcement.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Rock chip sampling was biased towards known mineralisation sites and visible mineralisation. These results will not be used for resource modelling. The historical results reported referenced in this release are not JORC compliant.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis 	<ul style="list-style-type: none"> The historical assay methods are not documented. The RMX grab samples were assayed using a total digest No sample duplicates were done, and only the lab used standards. ALS is an accredited

Criteria	JORC Code explanation	Commentary
	<p>including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <ul style="list-style-type: none"> • Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	laboratory
Verification of sampling and assaying	<ul style="list-style-type: none"> • The verification of significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> • No drill holes reported.
Location of data points	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> • The sampling results are based on claim location data and are probably limited in accuracy. • No mineral resource estimation is presented in this release. • A Garmin GPSmap 67 was used with an average accuracy of 5m, elevation was not recorded.
Data spacing and distribution	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. 	<ul style="list-style-type: none"> • Rock sample spacing was biased towards the known mining pit areas where antimony was recovered. • The reporting of the results in this release is to indicate that mineralisation exists in the area, but no resource is presented in this release. • No analytical compositing has been reported.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> • Rock samples biased to known exploited mineralisation areas and not oriented being taken from mine waste dumps. • No drilling conducted.

Criteria	JORC Code explanation	Commentary
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> It is not reported what sample security was observed.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> No audit or reviews of sampling techniques and data was reported.

1.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> The licence area 702.44 acres consist of 36 mining claims, TED1-5, WIK1-14 & TF1-17 and straddle Idaho (Shoshone County) and Montanna (Sanders County) The claims are wholly owned by RMX. The claims were staked and no known impediments are recorded.
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> No reported exploration or mine production in the RMX claims areas for the located mine workings.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting, and style of mineralisation. 	<ul style="list-style-type: none"> Red Mountain's Thompson Falls Antimony Project lies at the eastern end of Idaho's Coeur d'Alene mineral district, known for polymetallic orogenic vein style mineralisation hosted in Middle Proterozoic (~1,400Ma) low grade metasedimentary rocks of the Belt Supergroup. Most of the mineralisation is in the St. Regis Formation, Upper Revett Formation, Lower Burke Formation and Prichard Formation. Mineralisation occurs as fault-controlled siderite-quartz-sulphide veins, with sulphide mineralogy principally comprising silver-rich tetrahedrite, galena, sphalerite, and chalcopyrite. Veins can range in thickness from a few centimetres to several meters in thickness and can be laterally and vertically extensive, extending along strike over more than a kilometre and extending to depths of up to

Criteria	JORC Code explanation	Commentary
		1.5km. They typically show little evidence of vertical zonation but can show lateral changes in sulphide mineralogy.
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> No drilling conducted
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> No aggregated methods are reported
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	<ul style="list-style-type: none"> No relationship is made between mineralisation width and intercept lengths

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Appropriate location diagrams are presented in the text. These diagrams are indicative only as no assumptions of grade, extent or depth are made.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Only pertinent results are given as due to the relevance of the announcement.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> There is no other substantive exploration data provided or withheld as this announcement deals with this early phase exploration target.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Additional rock chip assay results are pending from a recent sampling program, these results may influence further work. Ground access is subject to improving weather conditions. Additional reconnaissance exploration and sampling is planned over the project area including targeting any additional undocumented historical mine workings and/or mineralised exposures. The plan includes to further inspect and, where safe, access and sample the underground workings already located, to better understand the nature of mineralisation present at these prospects. Diagrams of the sampling positions have been provided in the text.