

6 FEBRUARY 2026

CORPORATE RELEASE

Project Update: Lake Hope and Salmon Gums

Advancing a Standalone Potash and Hydrochloric Acid Opportunity in Western Australia

- A new standalone development pathway has been identified to produce sulphate of potash (SOP) and hydrochloric acid (HCl) as primary products from lake clays, operating separately from and complementing the Lake Hope High Purity Alumina (HPA) process.
- Metallurgical test work has demonstrated high recoveries of sulphate (>94%) from salt calcination of lake clays, along with strong chlorine extraction (>98%), which can be captured to produce potash and hydrochloric acid, respectively.
- The process does not rely on evaporation ponds, sidestepping major technical issues that impacted earlier Australian SOP projects.
- Australia currently imports all of its SOP requirements, and hydrochloric acid is highly sought after across the Eastern Goldfields of WA.
- Several lakes near Salmon Gums, close to markets for both potash (Wheatbelt) and hydrochloric acid (Goldfields), have been identified and staked as potential early feedstock sources for any future production facility. The tenements will be called the Salmon Gums project and will be part of the 80:20 incorporated joint venture with Playa One Limited.
- A Scoping Study, including potash resource definition from previous drilling, is ongoing to evaluate the technical and commercial viability of this potash and acid opportunity alongside the existing Lake Hope HPA Project.

Impact Minerals Limited (ASX: IPT) is pleased to provide an update on metallurgical test work that further supports the development of a potential second project at the Lake Hope High Purity Alumina Project (HPA), which is focused on producing sulphate of potash (SOP) fertiliser and hydrochloric acid (HCl) as primary products.

Impact holds an 80% stake in the Lake Hope project through its shareholding in Playa One Pty Ltd, and projects involving the new process will also be covered by the same incorporated joint venture (ASX Release July 28th 2025).

Impact Minerals Limited Interactive Investor Hub
Engage with us directly by asking questions, watching video summaries, and seeing what other shareholders have to say about this and past announcements at our Investor Hub <https://investors.impactminerals.com.au/welcome>

ABN 52 119 062 261
+61 8 6454 6666
info@impactminerals.com.au
www.impactminerals.com.au

Impact Minerals Managing Director, Dr Mike Jones said:

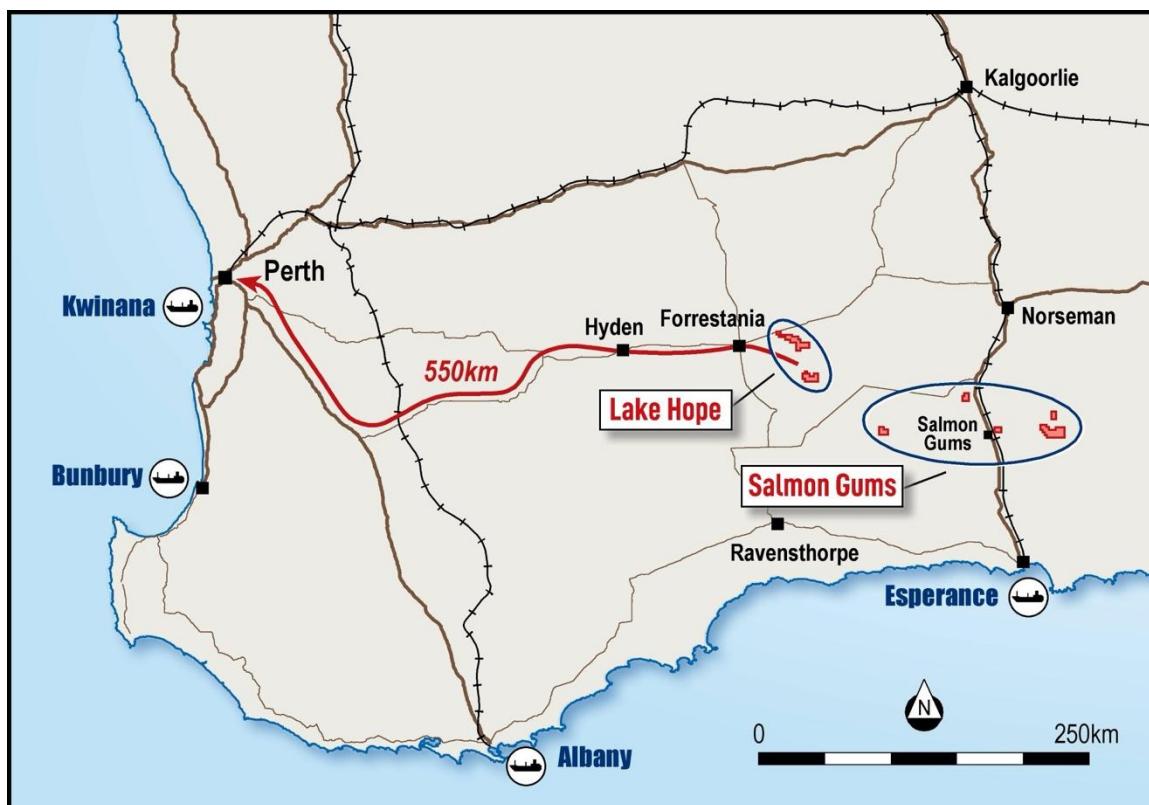
We have found an additional way to create significant economic value from Western Australia's fascinating lake systems. While our main focus remains on HPA development, we now see a potential route to produce sulphate of potash and hydrochloric acid as primary products through a relatively straightforward processing method. Although still in the early stages, the breakthrough results, particularly for acid production, indicate this approach could be a practical alternative to traditional potash methods and help fill a noticeable supply gap for both fertiliser and industrial acid in Western Australia.

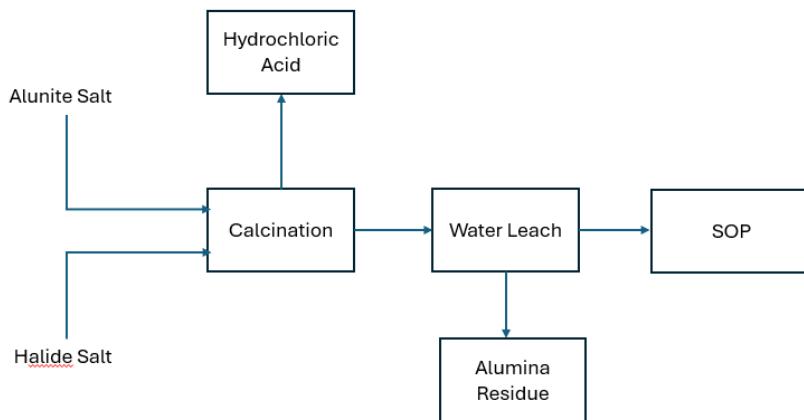
We have secured all the available lakes containing the right minerals in an area around Salmon Gums, a strategic location for a facility to supply potash to the farming regions of Western Australia and potentially a key source of hydrochloric acid for the mining industry, including clay-hosted rare earth element developers in the area.

The Salmon Gums project is part of our 80:20 joint venture with Playa One Pty Ltd, and we appreciate Roland Gotthard of Playa One for his ongoing contribution and his role in identifying this new process.

We look forward to advancing this work through further testing, conducting a Scoping Study to better define its potential, and seeking partnerships with chemical, industrial, and rare earth clay developers to develop markets for SOP and HCl.

As previously announced, Impact has identified an opportunity to extract surplus lake clays beyond the requirements of the Lake Hope HPA Project, using alternative processing methods to produce SOP and HCl (ASX Release January 9th 2026). Recent test work has yielded promising results, supporting further evaluation of this opportunity as a standalone development option.




Figure 1. Location of the Lake Hope and Salmon Gums projects.

Following the recognition of the new process, other lakes in the region around the town of Salmon Gums were identified as suitable feedstock for the potash/acid flowsheet, and which are closer to potential markets in the Wheatbelt and the Goldfields of Western Australia. These lakes could serve as early sources of feedstock alongside Lake Hope itself for a mining and processing operation located nearer to those markets. These are now covered by tenements owned by the joint venture, which will collectively be referred to as the **Salmon Gums project** (Figure 1).

Salt Calcination

The process being investigated involves salt calcination of the lake clays, where the clay is mixed with commercially available chloride salts and heated, resulting in:

- dissolution of potassium and sulphate from the lake clays into solution for recovery as SOP;
- release of chlorine gas, which can be captured and notionally recovered as 32% HCl hydrochloric acid; and
- production of an aluminium-rich solid residue (Figure 2).

Figure 2. Basic block flow diagram of halide salt calcination

While salt calcination is a well-known industrial technique, for example, the Mannheim process, Impact's bench-scale work with lake clays has achieved results that greatly surpass historical benchmarks, including the potential for hydrochloric acid production. This warrants further investigation.

Economic Rationale and Strategic Context

Preliminary internal analysis indicates that the salt calcination pathway could substantially boost the value of the Salmon Gums and Lake Hope projects by further monetising the lake clays through the production of potash and hydrochloric acid.

The calcination route being studied produces a PLS brine rich in sulphate and potassium, with low chloride content and limited sodium and magnesium. This could allow a straightforward crystallisation process to create high-quality SOP.

Sulphate of Potash (SOP)

SOP is a premium fertiliser product, valued for its high sulphur content and low chloride levels compared to Muriate of potash (MOP, KCl), and it is particularly important for chloride-sensitive crops. Australia currently imports all of its SOP requirements. Excess chlorine in fertilisers can reduce vegetable crop yields, so farmers often need to use sulphur-rich fertilisers. Currently, this is achieved by blending MOP with ammonium sulphate and other sulphate fertilisers.

SOP is currently not produced in Australia and is not widely imported due to high costs. Market enquiries by Impact indicate that prices of imported SOP in Western Australia generally range from A\$800 to A\$1,200 per tonne, reflecting limited local supply and consistent demand.

Unlike earlier Australian SOP projects that relied on large evaporation ponds and encountered weather and harvesting problems, the calcination-based method:

- is unaffected by climate and evaporation cycles;
- produces a potassium–sulphate-dominant solution, rather than complex mixed brine; and
- thus, this may enable a simpler and more compact crystallisation design.

These characteristics suggest a potential for a more robust and controllable SOP production pathway, subject to further testing and economic assessment. Furthermore, the ongoing work on potash crystallisation as a by-product of the Lake Hope HPA process, funded by the CRC-P research program federal government grant, is also relevant to the new flowsheet process (ASX Release January 9th 2026).

Hydrochloric Acid (HCl)

Hydrochloric acid is an essential industrial reagent in Western Australia, used in gold processing, chemical manufacturing, and emerging clay-hosted rare-earth projects. Local supply remains constrained, and market inquiries suggest that delivered prices generally range from A\$650 to over A\$1,000 per tonne, depending on the location.

Test work has demonstrated that chlorine present in lake clays and from added chloride salts can be effectively released during calcination and collected as hydrochloric acid. The ability to produce HCl locally from solid inputs offers a potential opportunity to supplement limited domestic supply and serve industrial users in regional Western Australia, depending on logistics and scale.

Strategic Direction

Importantly, the new potash/acid opportunity could be developed either as a standalone operation or alongside the Lake Hope HPA Project, potentially benefiting from shared infrastructure and regional synergies. All economic outcomes remain subject to further metallurgical optimisation and Scoping Study evaluation. A Scoping Study is underway to provide initial estimates of capital and operating costs, confirm product specifications, and assess development scale and phasing options.

Next Steps

Impact plans to progress the opportunity through:

- further metallurgical test work to optimise potash, sulphate and acid recovery;
- refinement of SOP purification and crystallisation parameters;
- additional testing of chlorine capture and conversion to hydrochloric acid;
- preparation of a Scoping Study to assess development scale, capital and operating costs; and
- engagement with fertiliser, chemical and industrial groups regarding potential markets and partnerships.

Results from the next phase of test work are expected in Q2 2026.

COMPLIANCE STATEMENT

This report contains new Exploration Results.

Dr Michael G Jones

Managing Director

Competent Persons Statement

Review of exploration results contained in this report is based on information compiled by Mr Roland Gotthard, a Member of the Australasian Institute of Mining and Metallurgy, a consultant to Impact Minerals Limited. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr Gotthard has consented to the inclusion in the report of the matters based on his information in the form and context in which it appears.

About the Metallurgical Testwork

Sample Information

The metallurgical samples mentioned in this announcement were collected from three lakes: Lake Hope (East Lake), a lake within exploration tenement E63/2318 (Bane Lake), and a lake on exploration tenement E63/2532 (Buff Lake). Approximately 10kg of sample was taken, sealed in a PVC bucket, and delivered to ALS Metallurgy, Balcatta, by the Competent Person.

Sample	Al	Ca	Cl	Fe	K	Mg	Na	S	Si	Tenement	Lake	MGA_E	MGA_N
ID	%	%	%	%	%	%	%	%	%				
LHEB008	13.6	0.03	3.32	1.81	5.79	0.38	2.35	10.5	7.41	E63/2086	East Lake	242,937	6,409,939
LC016	12.8	0.03	3.44	2.26	4.98	0.38	3.09	10.8	8.6	E63/2532	Buff	423,362	6,352,750
LC020	13.2	0.06	4.03	1.59	4.41	0.41	3.59	9.11	10.8	E63/2318	Bane	356,556	6,373,547

Metallurgy Results

Salt was added to the lake clay at dosages ranging from 15.5% to 45%, and the mixture was calcined for 1 hour at temperatures between 450°C and 750°C. The calcined residue was then washed with water to produce an aluminous residue and a leach solution (PLS). Solid residues were analysed using XRF emission methods, while fluids were analysed using ICP-OES and ICP-MS at ALS Metallurgy, Balcatta.

Extractions of metals and salts from the lake clays ranged from 21.33-94.75% K₂O, 73.41%-94.74% SO₃, >98% Cl, 3-12.84% Al₂O₃, 0.1-26% Fe₂O₃, and 59.28-93.47% MgO, varying depending on temperature and salt dose (Table 1). Chlorine extraction was >99%, due to degassing of chlorine from natural salts in the lake clays and the reagent salt.

The highest metal and chlorine extractions took place at higher temperatures and lower salt dosages. The best test result was sample HY20884, which achieved extraction rates of 94.75% for potassium and 94.74% for sulphur (as sulphate) with a low salt dosage of 200kg.

Table 1 Extractions of major elements from salt calcination tests

% Extraction (Residue vs Feed)													
Test	Feed	Al	Ca	Cl	Fe	K	Mg	Na	S	Si	Dose		
		%	%	%	%	%	%	%	%	%	g/kg		
HY17986	LHEB008	4.93	79.86	99.90	4.53	95.41	96.82	99.49	90.39	5.41	450		
HY17987	LHEB008	0.12	79.02	99.9	0.08	95.78	88.47	98.27	71.01	0.63	450		
HY20882	LC016	0.19	45.39	97.42	0.19	73.63	59.28	80.22	21.33	0.26	200		
HY20883	LC016	1.95	48.47	98.67	0.18	81.42	73.60	92.54	32.76	0.19	200		
HY20884	LC016	9.90	45.31	98.00	26.82	94.75	93.47	95.86	94.74	1.01	200		
HY20937	LC020	7.25	56.53	98.84	1.55	92.47	64.02	87.37	73.64	0.46	155		
HY20938	LC020	7.33	69.46	99.22	2.03	94.25	64.70	97.37	76.02	0.41	227		
HY20939	LC020	12.84	78.69	99.63	6.33	94.49	62.58	98.40	73.41	11.22	281		

Acid Generation

A key aspect of salt calcination's potential is its ability to mix two solid salts, calcine them, and produce SOP along with a chlorine-rich off-gas, which can be captured to make HCl acid. This process is similar to the Mannheim Process, except that the source of sulphur is from lake clays.

Chlorine extraction, measured against the total chlorine within the lake clay and reagent (salt), ranged from 13% to 85% depending on temperature and dosage (Table 2). Chlorine production, essentially recoverable as 32% HCl, ranged from approximately 52L per tonne of feed to about 340L per tonne of feed. The tests described in Table 2 were conducted in open air, and chlorine was not captured in an HCl scrubber.

Table 2 Chlorine degassing from natural lake clay feedstocks

Sample	Test	Chlorine Added (kg/t)			Chlorine Produced (kg/t)			Dose	Temp
		Clay	Reagent	Total	Extraction	Degassed	HCl 32%		
LHEB008	HY17986	33.2	211.5	245	43%	105.22	328.8	450kg/t	600
LHEB008	HY17987	33.7	211.5	245	41%	100.53	314.2	450kg/t	600
LC016	HY20882	34.4	95.06	129	13%	22.01	68.8	200kg/t	450
LC016	HY20883	34.4	95.06	129	23%	42.72	133.5	200kg/t	500
LC016	HY20884	34.4	95.06	129	85%	110.04	343.9	200kg/t	750
LC020	HY20937	40.3	73.67	114	54%	61.54	192.3	155kg/t	550
LC020	HY20938	40.3	107.89	148	43%	63.72	199.1	227kg/t	550
LC020	HY20939	40.3	133.56	174	41%	71.28	222.8	281kg/t	550

To demonstrate the ability to produce hydrochloric acid, a test was carried out using a quartz tube furnace flushed with air, with the resulting chlorine gas collected in a gas trap. The solution was then measured for pH, confirming HCl production. Most of the chlorine off-gas in this test appears to have condensed before reaching the collector (Figure 2). This test is sufficient to show that HCl can be condensed, but not to quantify how much. The production of HCl in this experiment is considered adequate to demonstrate the process for Meeting Reasonable Prospects of Eventual Economic Extraction (RPEEE).

Further test work is scheduled to refine the parameters to maximise chlorine extraction.

Figure 3. Reactor tube with condensed HCl

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>Description of 'industry standard' work</i> 	<ul style="list-style-type: none"> Grab samples of 10-20kg were obtained from lake surfaces. Samples are considered representative of the lake salts. Mineralisation is visually identifiable by experienced personnel and is observed to be relatively homogenous, and identical to the bulk grab sample as collected
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Not applicable for a sighter metallurgical sample
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> The sample is considered representative of the lake it is sampled from, and suitable for early stage sighter test work.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> Sample is considered representative of the mineralization form and physical properties
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> <i>Samples were dried in the laboratory and homogenized using standard practices</i> <i>Sample preparation is considered appropriate for the metallurgical investigations reported herein</i> <i>Metallurgical test work is conducted by an experienced metallurgical supervisor</i> <i>Sample sizes are appropriate for clay sized particles but grade is not considered necessarily representative of the whole deposit</i>

JORC Code, 2012 Edition – Table 1

Section 1 Continued

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Metallurgical assays were conducted under the supervision of ALS Metallurgy, Balcatta, Western Australia Internal laboratory checks were within acceptable variability This level of QAQC is commensurate with the early-stage nature of investigations
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> Data and interpretations were checked by alternate company personnel
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> Handheld GPS to 3m accuracy Datum is MGA 2020 Zone 51 South Topographic control on RL is adequate for exploration results RL will not affect the position of the results (lake bed is nearly perfectly flat)
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> Not applicable No Mineral Resource has been estimated
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> One bulk sample for proof of concept test work is not considered sufficient to demonstrate grade continuity Knowledge of >20 known lake salt deposits indicates limited thickness and grade variability is likely to exist A full variability sampling and metallurgical program will be needed to full quantify mineralogical and metallurgical variability
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Samples were delivered to the laboratory by company personnel
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> N/A

Section 2 Reporting of Exploration Results

Criteria listed in the preceding section also apply to this section

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> <i>E63/2086 Lake Hope</i> <i>E63/2318 Exclamation Lake</i> <i>E63/2319 Hope South</i> <i>E63/2370</i> <i>E74/779</i> <i>E63/2504 Sassel Lake</i> <i>E70/6755 Narembeen</i> <i>All titles held 100% by Playa One Pty Ltd (Impact 80% beneficial interest)</i> <i>Native Title Agreements are in place with Native Title parties</i> <i>No known impediment to exploitation is known</i> <i>No national parks, nature reserves or other licenses interact tenure</i>
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> <i>No recorded drilling or sampling of the lake sediments is known to exist</i>
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> <i>Lacustrine evaporite salts hosted within flat-lying salt lake deposits</i>
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> <i>No drilling is reported in this announcement</i> <i>Sample information provided in body of report</i>
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> <i>Not applicable to metallurgical information</i>

JORC Code, 2012 Edition – Table 1

Section 2 Continued

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Not applicable to metallurgical results
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> A map showing tenement locations has been included
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> All assay data is reported in the Appendix Some commercially sensitive methods are omitted or not described to protect intellectual rights
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> No other meaningful exploration information is excluded
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Scoping Study Further metallurgical testing Process engineering design Drilling Resource Estimation