

High-Grade Aurora Gold Lode at Day Dawn Project

Hamelin Gold Limited (ASX:HMG) ("Hamelin" or "the Company") advises a detailed review of historical drilling datasets has resulted in the identification of the high-grade Aurora gold lode at the Day Dawn Project in the Paterson Province of Western Australia.

Key Highlights:

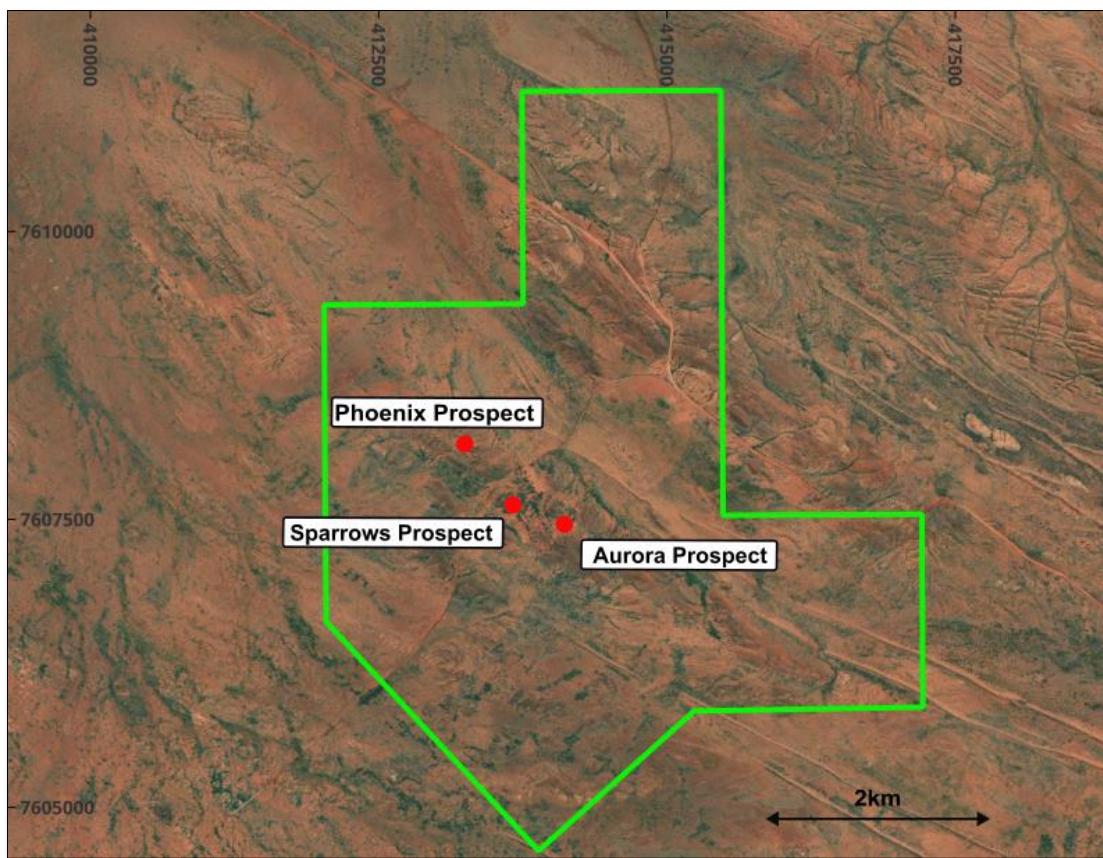
- Compilation and validation of historical drilling defined the high-grade Aurora Lode at Day Dawn Project, located 10km northwest of the giant Telfer gold-copper mine (owned by Greatland Gold, ASX:GGP)
- Multiple historical gold intersections interpreted to lie on a continuous lode position that projects to surface and remains open at depth. Results include:
 - **4 metres at 4.3 g/t from 0 metres** in ETG0109
 - **7 metres at 17.1 g/t Au from 16 metres** in NTR61
 - **3 metres at 51.1 g/t Au from 35 metres** in NTR57 and
 - **2.5 metres at 7.6 g/t Au from 127.1 metres to end of hole** in ETG0053
- Follow up drilling planned to confirm geometry and test for extensions to the high-grade Aurora Lode and test for potential parallel gold lodes

Figure 1: Day Dawn Project – Tenement location on Bing satellite imagery (GDA94 z51)

Managing Director Peter Bewick said: “*The identification of the Aurora Lode underscores the value of disciplined, data-driven reassessment of historical geological data.*

Located in the highly endowed Paterson gold province and proximal to the world-class Telfer mine, Hamelin’s recent work demonstrates the Day Dawn Project hosts multiple high-priority targets. These targets include newly interpreted strike and plunge extensions of the Aurora Lode, adjacent parallel gold-bearing structures, and other similarly oriented structures within the project area.

Drill testing of the Day Dawn prospects will be a key focus for Hamelin in 2026.”


Day Dawn Project

Hamelin’s Day Dawn Gold Project covers an area of ~20 km², only 10 km northwest of the +32 Moz Telfer gold-copper mine in Western Australia’s Paterson Province (see figure 1). The Day Dawn exploration licence is expected to be granted in April 2026.

Exploration in the Day Dawn area dates to the 1980s, with multiple companies identifying high-grade gold across several prospects. Despite the encouraging drill results, definition of consistent, continuous zones of mineralisation approved challenging for previous explorers.

While the Day Dawn tenement was advancing through the application process, the Company undertook a comprehensive review and reinterpretation of all historical drilling data. The inherited drilling database was assembled by a previous operator derived from programs conducted by eight separate companies. Hamelin rebuilt the digital database from original GSWA A-series reports and validated key drilling information across the project.

This validation process highlighted three areas containing high-grade gold mineralisation now named the Aurora, Sparrows and Phoenix prospects (see figure 2).

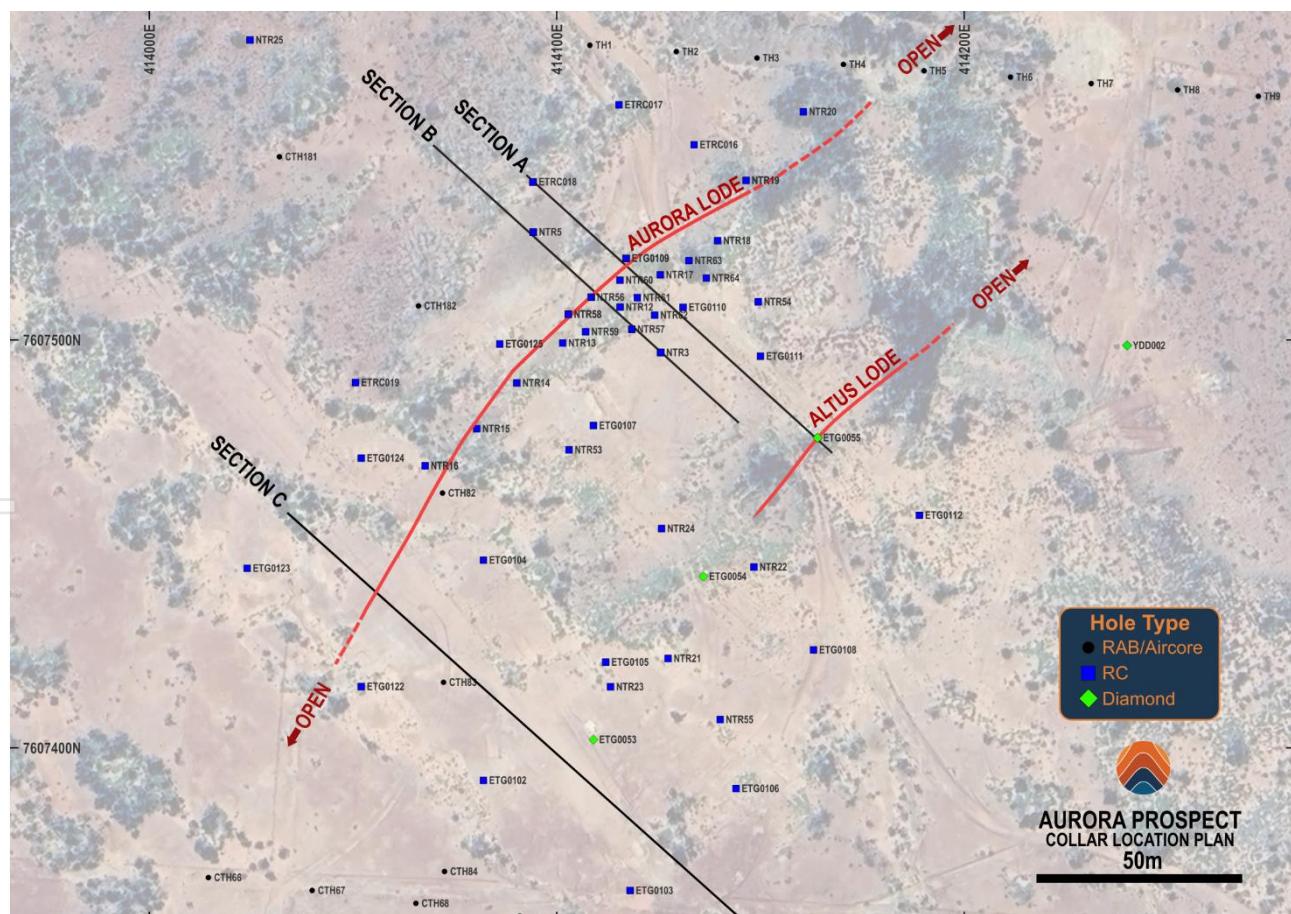
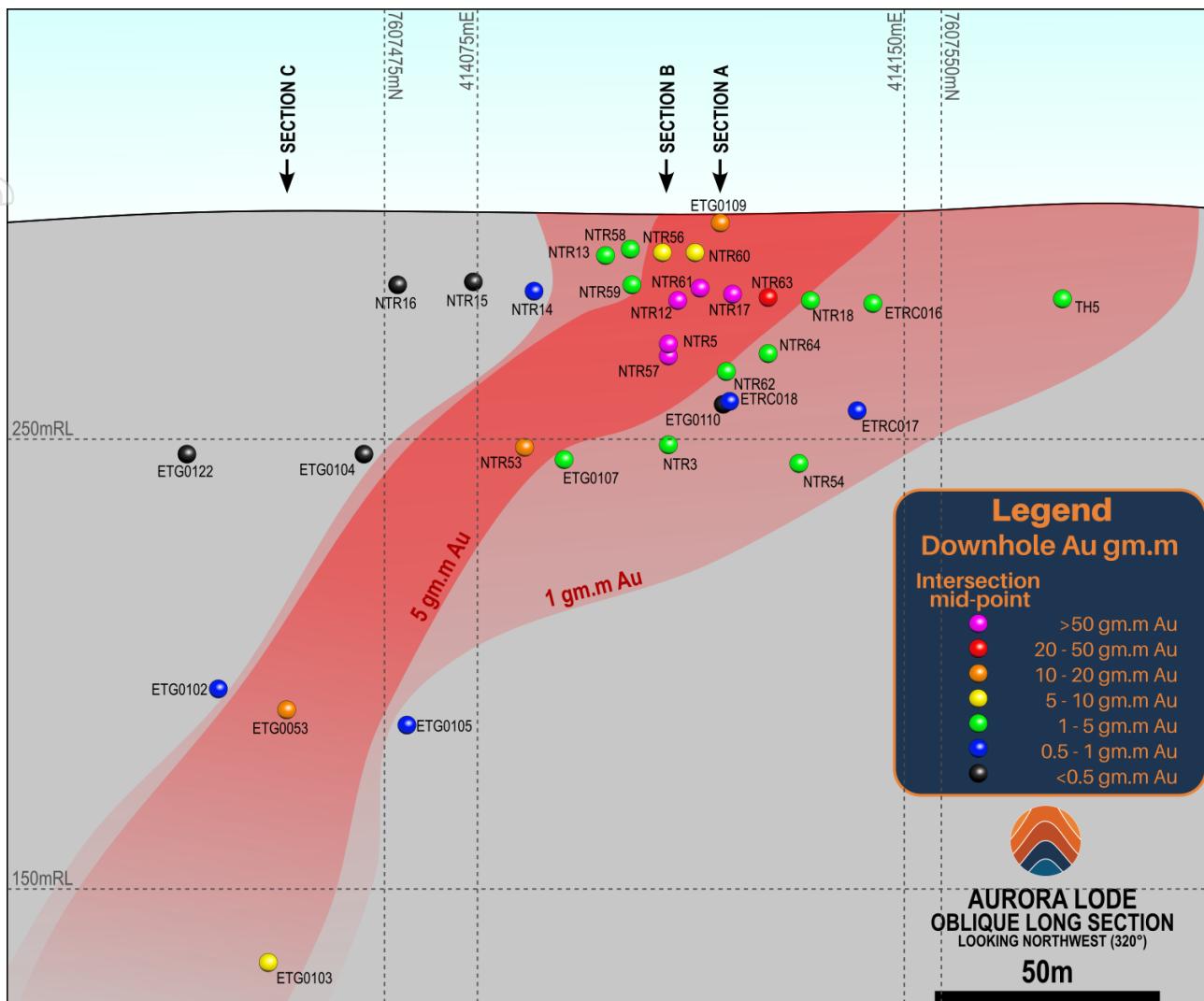


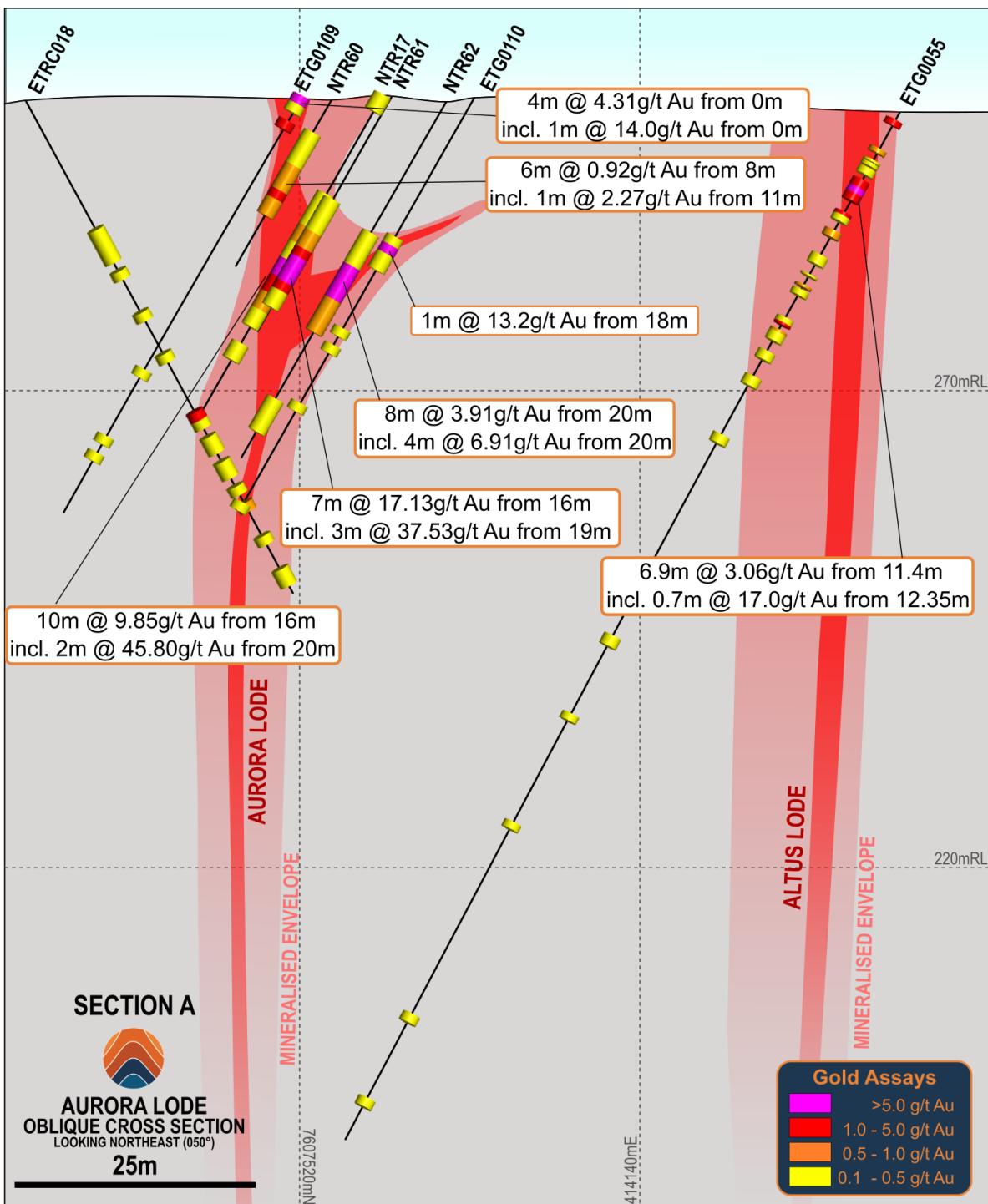
Figure 2: Day Dawn Project – Prospect locations on Bing satellite imagery (GDA94 z51)


Aurora Prospect

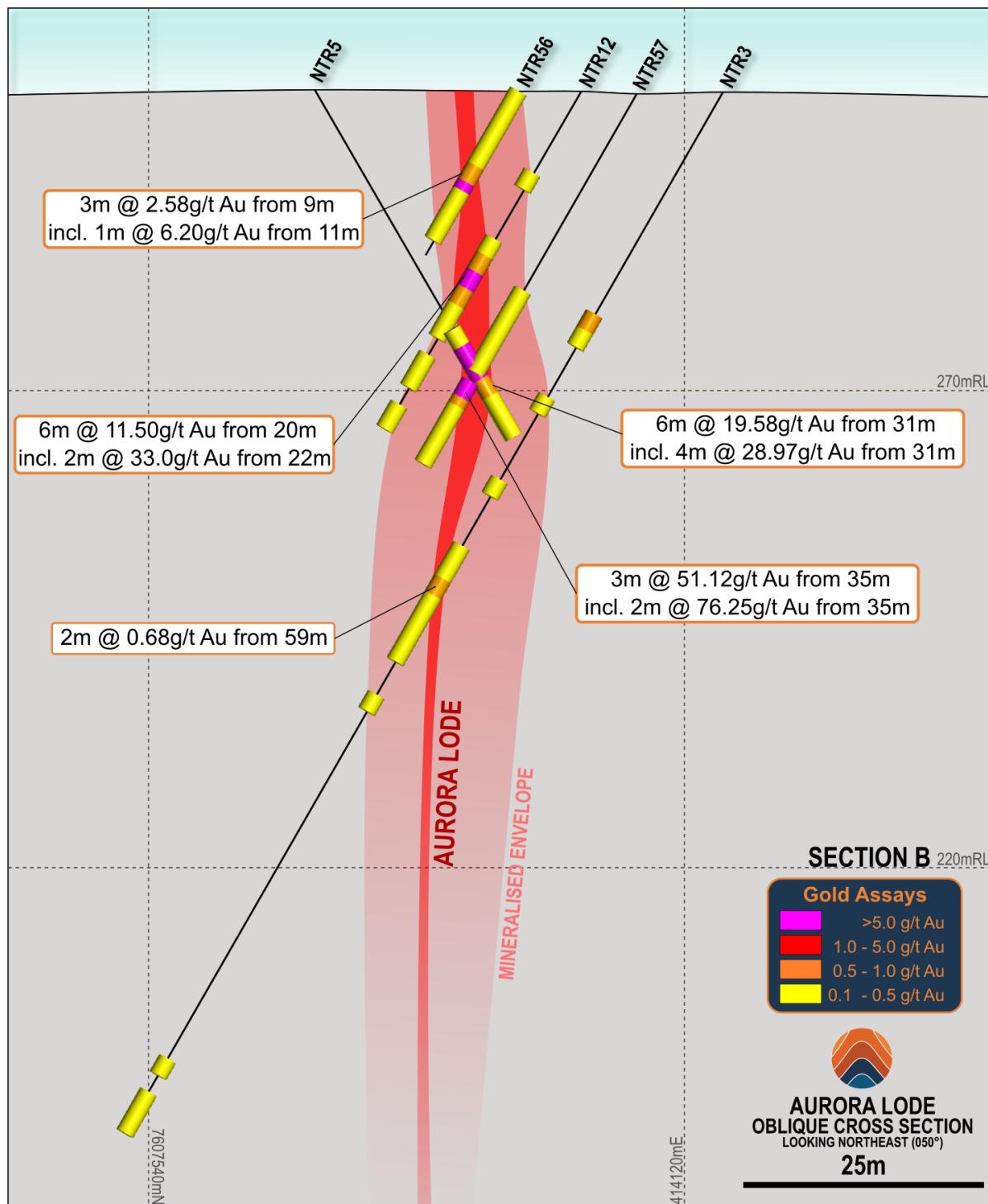
Detailed review and reinterpretation of the drillhole data has identified a coherent zone of high-grade gold mineralisation extending approximately 50 metres along strike and over 200 metres down plunge (see figures 3 and 4). The newly defined Aurora Lode trends in a northeast orientation, starts from surface and contains multiple high-grade gold intersections including:

- **4 metres at 4.31 g/t Au from 0 metres** in ETG0109 including
 - **1 metre at 14.0 g/t Au from 0 metres**
- **7 metres at 17.13 g/t Au from 16 metres** in NTR61 including
 - **3 metres at 37.53 g/t Au from 19 metres**
- **6 metres at 19.58 g/t Au from 31 metres** in NTR5 including
 - **4 metres at 28.97 g/t Au from 31 metres**
- **3 metres at 51.12 g/t Au from 35 metres** in NTR57 including
 - **2 metres at 76.25 g/t Au from 35 metres and**
- **2.5 metres at 7.65 g/t Au from 127.1 metres to end of hole** in ETG0053 including
 - **0.45 metres at 25.40 g/t Au from 129.15 metres to end of hole**

Figure 3: Day Dawn Project – Aurora Lode drill hole status and cross section location plan


Figure 4: Day Dawn Project – Aurora Lode long section looking to the northwest

A series of isolated gold intersections to the northwest and southeast of the Aurora Lode indicate the potential for additional adjacent parallel lodes, including the Altus Lode (see figure 5), that returned:


- **6.9 metres at 3.06 g/t Au from 11.4 metres** in ETG0055, including
 - **0.7 metres at 17.0 g/t Au from 12.4 metres**

The Aurora Lode remains open along strike and at depth with strong gold mineralisation drilled in the westernmost, down plunge section (see figure 7). A program of RC drilling is planned for Aurora with initial holes designed to confirm the grade and interpreted geometry of the gold lodes and to test for extensions to the high-grade gold mineralisation.

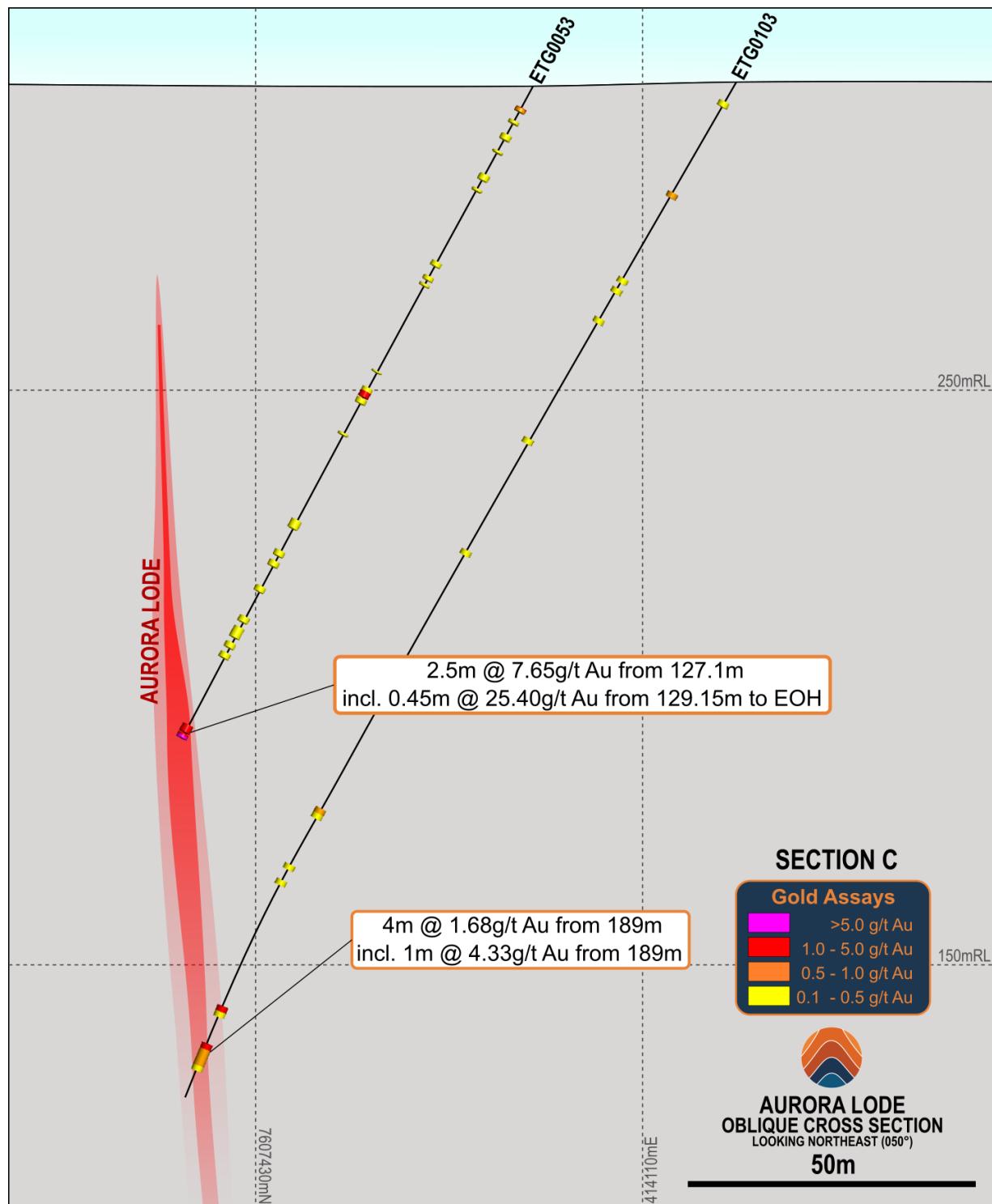

For personal use only

Figure 5: Aurora and Altus Lodes – Cross Section A

Figure 6: Aurora Lode – Cross Section B

Figure 7: Aurora Lode – Cross Section C

Sparrows Prospect

A series of mineralised intercepts located 400 metres to the west of the Aurora prospect has been named the Sparrows prospect (see figure 2). Broad spaced RC drilling intersected high-grade gold mineralisation including:

- **4 metres at 13.39 g/t Au from 178 metres** in ETG0045, including
 - **2 metres at 25.5 g/t Au from 178 metres**

The Sparrows mineralisation is interpreted to strike in a similar orientation to the Aurora Lode with drillhole ETG0045 drilled near parallel to the mineralised trend. The orientation of this hole and the broad, 200 metres line spacing of the surrounding RC drill lines, suggests the mineralisation at Sparrows is open in all directions. A phase of RC drilling is planned for Sparrows in the first drill campaign at Day Dawn testing for extensions to the mineralisation drilled in ETG0045 and for a possible northeast trending lode.

Phoenix Prospect

A ferruginous, gold bearing outcrop located 1 kilometre to the northwest of the Aurora prospect was a focus of several historical drilling campaigns. Near surface, high-grade gold mineralisation was intersected within a narrow corridor extending over 125 metres in strike. Gold mineralisation drilled from this area, now named the Phoenix prospect, includes:

- **4 metres at 29.7 g/t Au from 8 metres** in ETG0151, including
 - **1 metre at 109.0 g/t Au from 9 metres and**
 - **2 metres at 6.93 g/t Au from 6 metres** in NTR32

The orientation of the drilling at Phoenix appears to be parallel to the interpreted strike of the Aurora Lode and considered an ineffective test. New drilling is planned to test for a northeast trending shoot below the historical high-grade gold mineralisation previously intersected at the Phoenix prospect.

Next Steps

The Day Dawn tenement is currently under application with grant of the licence expected as early as April 2026. The signing of a heritage protection agreement with the Determined Native Title holders is likely to be completed in the coming weeks. Drilling programs are planned to commence in May-June 2026 following grant of the Day Dawn tenement.

Hole_ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
BETRC0001	RC	413460	7607706	293	-90	0	75	Sparrows
BETRC0002	RC	413492	7608129	297	-90	0	69	Phoenix
BETRC0003	RC	414224	7607581	300	-90	0	59	Aurora
BTDD0004	DDH	413240	7608158	300	-69.5	141.5	1011.3	Phoenix
BTRCD0002	RCD	412922	7608101	292	-66	86	319	
BTRCD0003	RCD	414187	7607896	293	-66	192	1041.3	Sparrows
CSMH259	RAB	414155	7609561	288	-90	0	25	
CSMH260	RAB	414140	7609546	288	-90	0	25	
CSMH261	RAB	414125	7609532	287	-90	0	25	
CSMH262	RAB	414109	7609517	287	-90	0	25	
CSMH263	RAB	414094	7609502	287	-90	0	25	
CSMH264	RAB	414078	7609487	288	-90	0	25	
CSMH265	RAB	414063	7609472	288	-90	0	25	
CSMH266	RAB	414047	7609457	288	-90	0	25	
CSMH267	RAB	414032	7609443	289	-90	0	25	
CSMH268	RAB	414016	7609428	289	-90	0	25	
CSMH269	RAB	414001	7609413	288	-90	0	25	
CSMH270	RAB	413984	7609398	288	-90	0	25	
CSMH271	RAB	413968	7609383	289	-90	0	25	
CSMH272	RAB	413953	7609368	290	-90	0	25	

Hole_ID	Hole_Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
CSMH273	RAB	413937	7609353	290	-90	0	25	
CSMH274	RAB	413922	7609339	290	-90	0	25	
CSMH275	RAB	413906	7609324	291	-90	0	25	
CTH100	RAB	413803	7607491	297	-60	230	25	Sparrows
CTH101	RAB	413779	7607470	298	-60	230	25	Sparrows
CTH102	RAB	413754	7607450	297	-60	230	20	Sparrows
CTH103	RAB	413729	7607429	298	-60	230	30	Sparrows
CTH104	RAB	413705	7607409	300	-60	230	25	Sparrows
CTH105	RAB	413679	7607388	301	-60	230	25	Sparrows
CTH106	RAB	413654	7607368	300	-60	230	25	Sparrows
CTH107	RAB	414058	7607709	299	-60	230	25	Aurora
CTH108	RAB	414078	7607726	299	-60	230	25	Aurora
CTH109	RAB	414097	7607742	298	-60	230	25	Aurora
CTH110	RAB	414117	7607758	296	-60	230	20	Aurora
CTH111	RAB	414137	7607775	295	-60	230	20	Aurora
CTH112	RAB	414158	7607791	295	-60	230	25	Aurora
CTH113	RAB	414178	7607807	294	-60	230	25	Aurora
CTH114	RAB	414197	7607824	295	-60	230	25	Aurora
CTH115	RAB	414217	7607840	295	-60	230	25	Aurora
CTH116	RAB	414237	7607856	295	-60	230	25	Aurora
CTH117	RAB	414256	7607873	295	-60	230	25	Aurora
CTH118	RAB	414276	7607889	294	-60	230	25	Aurora
CTH119	RAB	414296	7607905	293	-60	230	25	Aurora
CTH146	RAB	412791	7607932	289	-90	0	26	
CTH147	RAB	412777	7607918	289	-90	0	25	
CTH148	RAB	412762	7607905	289	-90	0	25	
CTH149	RAB	412748	7607891	289	-90	0	5	
CTH150	RAB	412746	7607890	288	-90	0	25	
CTH151	RAB	412732	7607878	288	-90	0	25	
CTH152	RAB	412748	7607891	289	-90	0	25	
CTH153	RAB	412704	7607850	287	-90	0	25	
CTH154	RAB	412689	7607837	288	-90	0	25	
CTH155	RAB	412675	7607823	287	-90	0	25	
CTH156	RAB	412659	7607809	287	-90	0	25	
CTH157	RAB	412572	7607728	287	-90	0	25	
CTH158	RAB	412556	7607713	287	-90	0	25	
CTH159	RAB	412542	7607701	287	-90	0	25	
CTH160	RAB	412528	7607687	286	-90	0	25	
CTH161	RAB	412514	7607673	285	-90	0	25	
CTH162	RAB	412499	7607660	285	-90	0	25	
CTH163	RAB	412485	7607646	285	-90	0	25	
CTH164	RAB	412455	7607619	285	-90	0	25	
CTH170	RAB	413658	7607947	297	-60	315	25	Sparrows
CTH171	RAB	413692	7607911	295	-60	315	25	Sparrows
CTH172	RAB	413726	7607874	294	-60	315	25	Sparrows
CTH173	RAB	413760	7607837	294	-60	315	25	Sparrows
CTH174	RAB	413794	7607801	295	-60	315	25	Sparrows
CTH175	RAB	413829	7607764	296	-60	315	25	Sparrows
CTH176	RAB	413863	7607728	299	-60	315	25	Sparrows
CTH177	RAB	413897	7607691	297	-60	315	25	Sparrows
CTH178	RAB	413931	7607655	298	-60	315	25	Aurora
CTH179	RAB	413964	7607618	298	-60	315	25	Aurora
CTH180	RAB	413998	7607582	299	-60	315	25	Aurora
CTH181	RAB	414032	7607545	300	-60	315	25	Aurora
CTH182	RAB	414066	7607508	299	-60	315	25	Aurora
CTH183	RAB	413704	7607553	296	-60	45	25	Sparrows
CTH184	RAB	413690	7607539	296	-60	45	25	Sparrows
CTH185	RAB	413674	7607526	296	-60	45	25	Sparrows
CTH186	RAB	413660	7607512	297	-60	45	25	Sparrows
CTH187	RAB	413645	7607499	298	-60	45	25	Sparrows
CTH188	RAB	413631	7607485	298	-60	45	25	Sparrows
CTH189	RAB	413617	7607471	298	-60	45	25	Sparrows
CTH190	RAB	413601	7607458	296	-60	45	25	Sparrows
CTH191	RAB	413587	7607444	296	-60	45	25	Sparrows
CTH192	RAB	413573	7607431	296	-60	45	25	Sparrows
CTH193	RAB	413558	7607417	299	-60	45	25	Sparrows
CTH194	RAB	413544	7607403	302	-60	45	25	Sparrows
CTH195	RAB	413528	7607390	302	-60	45	25	Sparrows
CTH196	RAB	413514	7607376	302	-60	45	25	Sparrows

Hole_ID	Hole_Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
CTH197	RAB	413500	7607362	301	-60	45	25	Sparrows
CTH198	RAB	413484	7607349	301	-60	45	25	Sparrows
CTH199	RAB	413470	7607335	300	-60	45	25	Sparrows
CTH200	RAB	413382	7607254	296	-90	0	25	
CTH201	RAB	413368	7607240	296	-90	0	25	
CTH202	RAB	413354	7607226	296	-90	0	25	
CTH203	RAB	413338	7607213	296	-90	0	25	
CTH204	RAB	413324	7607199	297	-90	0	25	
CTH205	RAB	413302	7607179	299	-90	0	30	
CTH206	RAB	413287	7607165	300	-90	0	25	
CTH207	RAB	413272	7607151	300	-90	0	25	
CTH208	RAB	413258	7607138	299	-90	0	25	
CTH209	RAB	413244	7607124	298	-90	0	25	
CTH210	RAB	413228	7607111	297	-90	0	25	
CTH211	RAB	413214	7607097	296	-90	0	25	
CTH212	RAB	413199	7607083	295	-90	0	25	
CTH213	RAB	413185	7607070	295	-90	0	25	
CTH214	RAB	413171	7607056	296	-90	0	25	
CTH215	RAB	413155	7607042	296	-90	0	25	
CTH216	RAB	413141	7607029	297	-90	0	27	
CTH217	RAB	413126	7607015	296	-90	0	27	
CTH218	RAB	412327	7608592	287	-90	0	27	
CTH219	RAB	412306	7608571	286	-90	0	25	
CTH220	RAB	412283	7608551	285	-90	0	25	
CTH221	RAB	412261	7608531	286	-90	0	25	
CTH222	RAB	412240	7608510	287	-90	0	28	
CTH223	RAB	412217	7608490	286	-90	0	28	
CTH224	RAB	412196	7608469	284	-90	0	25	
CTH225	RAB	412174	7608449	284	-90	0	25	
CTH226	RAB	412144	7608422	285	-90	0	25	
CTH227	RAB	412114	7608394	288	-90	0	25	
CTH228	RAB	412086	7608367	286	-90	0	25	
CTH229	RAB	412057	7608340	285	-90	0	25	
CTH363	RAB	412875	7609103	289	-90	0	25	
CTH364	RAB	412898	7609123	289	-90	0	25	
CTH365	RAB	412919	7609143	287	-90	0	25	
CTH366	RAB	412943	7609166	284	-90	0	27	
CTH367	RAB	412963	7609184	283	-90	0	25	
CTH368	RAB	412985	7609205	282	-90	0	25	
CTH369	RAB	413008	7609225	279	-90	0	25	
CTH370	RAB	413029	7609246	278	-90	0	25	
CTH371	RAB	413051	7609266	279	-90	0	25	
CTH372	RAB	413072	7609286	282	-90	0	25	
CTH373	RAB	413095	7609307	283	-90	0	25	
CTH374	RAB	413117	7609327	284	-90	0	25	
CTH375	RAB	413139	7609348	284	-90	0	25	
CTH388	RAB	412670	7608898	288	-90	0	25	
CTH389	RAB	412704	7608861	288	-90	0	25	
CTH390	RAB	412738	7608825	289	-90	0	25	
CTH391	RAB	412773	7608788	290	-90	0	25	
CTH392	RAB	412807	7608752	290	-90	0	25	
CTH393	RAB	412841	7608715	290	-90	0	25	
CTH394	RAB	412875	7608678	289	-90	0	25	
CTH395	RAB	412909	7608642	288	-90	0	25	
CTH396	RAB	412943	7608605	288	-90	0	25	
CTH397	RAB	412977	7608569	288	-90	0	25	
CTH398	RAB	413010	7608532	288	-90	0	25	
CTH399	RAB	413044	7608496	289	-90	0	25	
CTH400	RAB	413078	7608459	292	-90	0	25	
CTH401	RAB	413112	7608422	292	-90	0	25	
CTH402	RAB	413147	7608386	292	-90	315	25	Phoenix
CTH403	RAB	413181	7608349	294	-60	315	25	Phoenix
CTH404	RAB	413202	7608327	295	-60	315	20	Phoenix
CTH405	RAB	413564	7608378	291	-60	225	25	Phoenix
CTH406	RAB	413586	7608399	290	-60	225	25	Phoenix
CTH407	RAB	413607	7608419	291	-90	225	25	Phoenix
CTH408	RAB	413630	7608439	292	-90	0	27	
CTH409	RAB	413651	7608460	291	-90	0	25	
CTH410	RAB	413673	7608480	291	-90	0	25	

Hole_ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
CTH411	RAB	413696	7608501	291	-90	0	25	
CTH412	RAB	413717	7608521	292	-90	0	25	
CTH413	RAB	413740	7608542	291	-90	0	25	
CTH414	RAB	413761	7608562	290	-90	0	25	
CTH415	RAB	413783	7608582	290	-90	0	25	
CTH416	RAB	413806	7608603	291	-90	0	25	
CTH417	RAB	413827	7608623	293	-90	0	25	
CTH418	RAB	413870	7608664	293	-90	0	50	
CTH419	RAB	413893	7608685	292	-90	0	15	
CTH420	RAB	413917	7608707	290	-90	0	27	
CTH421	RAB	413937	7608725	288	-90	0	25	
CTH422	RAB	413959	7608746	288	-90	0	25	
CTH423	RAB	413980	7608766	289	-90	0	25	
CTH424	RAB	414003	7608787	290	-90	0	25	
CTH59	RAB	415125	7606937	305	-90	0	25	
CTH60	RAB	415143	7606955	304	-90	0	25	
CTH61	RAB	415163	7606973	304	-90	0	26	
CTH62	RAB	415181	7606991	303	-90	0	25	
CTH63	RAB	415201	7607009	302	-90	0	27	
CTH64	RAB	415219	7607027	302	-90	0	26	
CTH65	RAB	415239	7607046	302	-90	0	28	
CTH66	RAB	414015	7607368	300	-60	270	25	Aurora
CTH67	RAB	414040	7607365	301	-60	270	25	Aurora
CTH68	RAB	414065	7607362	303	-60	270	25	Aurora
CTH69	RAB	414091	7607359	303	-60	270	25	Aurora
CTH70	RAB	414115	7607356	303	-60	270	25	Aurora
CTH71	RAB	414140	7607352	303	-60	270	25	Aurora
CTH72	RAB	414166	7607349	303	-60	270	25	Aurora
CTH73	RAB	414191	7607346	303	-60	270	25	Aurora
CTH74	RAB	414217	7607343	303	-60	270	25	Aurora
CTH75	RAB	414241	7607340	302	-60	270	25	Aurora
CTH76	RAB	414266	7607336	300	-60	270	25	Aurora
CTH77	RAB	414292	7607333	298	-60	270	25	Aurora
CTH78	RAB	414317	7607330	299	-60	270	25	Aurora
CTH79	RAB	414343	7607327	300	-60	270	25	Aurora
CTH80	RAB	414368	7607324	301	-60	270	11	Aurora
CTH81	RAB	414392	7607321	301	-60	270	25	Aurora
CTH82	RAB	414072	7607462	301	-60	0	25	Aurora
CTH83	RAB	414072	7607416	303	-60	0	25	Aurora
CTH84	RAB	414072	7607370	303	-60	0	25	Aurora
CTH85	RAB	414073	7607323	303	-60	0	25	Aurora
CTH86	RAB	414073	7607277	304	-60	0	25	Aurora
CTH87	RAB	414073	7607231	306	-60	0	25	Aurora
CTH88	RAB	414072	7607184	306	-60	0	25	Aurora
CTH89	RAB	414072	7607138	304	-60	0	25	Aurora
CTH90	RAB	414073	7607091	304	-60	0	25	Aurora
CTH91	RAB	414073	7607045	304	-60	0	25	Aurora
CTH92	RAB	414073	7606999	303	-90	0	25	Aurora
CTH93	RAB	414073	7606952	302	-90	0	25	Aurora
CTH94	RAB	414074	7606906	299	-90	0	25	Aurora
CTH95	RAB	414074	7606859	298	-90	0	25	Aurora
CTH96	RC	414035	7606945	298	-90	0	25	Aurora
ET1	RAB	413934	7608461	293	-60	229.4	50	
ET10	RAB	413453	7607369	299	-60	48	50	Sparrows
ET11	RAB	413419	7607337	298	-60	49.4	50	
ET12	RAB	413387	7607305	296	-60	49.4	50	
ET13	RAB	414498	7607151	301	-60	10	41	
ET14	RAB	412868	7608714	290	-60	49.4	50	
ET15	RAB	412835	7608682	290	-60	49.4	50	
ET16	RAB	412935	7608778	291	-60	229.4	50	
ET17	RAB	412901	7608746	291	-60	229.4	50	
ET2	RAB	414000	7608525	293	-60	229.4	50	
ET3	RAB	414067	7608588	289	-60	229.4	50	
ET4	RAB	414700	7607923	298	-60	229.4	40	
ET5	RAB	414668	7607892	299	-60	229.4	40	
ET6	RAB	414734	7607955	297	-60	229.4	55	
ET7	RAB	414768	7607987	296	-60	229.4	50	
ET8	RAB	413376	7608247	298	-80	318	54	Phoenix
ET9	RAB	413487	7607400	300	-60	48	50	Sparrows

Hole_ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
ETG0044	RC	413503	7607379	302	-60	43	208	Sparrows
ETG0045	RCD	413660	7607520	297	-61	43	396	Sparrows
ETG0046	RC	413784	7607669	297	-60	43	200	Sparrows
ETG0047	RC	413614	7607161	299	-61	50	160	Sparrows
ETG0048	RC	413757	7607318	301	-60	44	202	Sparrows
ETG0049	RC	413871	7607459	298	-60	42	202	Aurora
ETG0050	RCD	414176	7607876	294	-60	220	375.6	Aurora
ETG0051	RC	413890	7607158	299	-61	41.6	220	Aurora
ETG0052	RC	414004	7607302	302	-60	44	214	Aurora
ETG0053	DDH	414109	7607402	303	-60	302	130	Aurora
ETG0054	DDH	414136	7607442	301	-60	308	119.7	Aurora
ETG0055	DDH	414164	7607476	301	-60	304	125.99	Aurora
ETG0056	RC	414021	7607008	299	-60	40	154	Aurora
ETG0057	RC	414142	7607132	304	-61	40	214	Aurora
ETG0058	RC	414279	7607322	300	-60.32	223.9	208	Aurora
ETG0059	RC	414443	7607534	298	-60.5	223	196	Aurora
ETG0060	RC	414318	7606741	299	-60.8	42.25	214	
ETG0061	RC	414444	7606896	304	-60.72	45.52	184	
ETG0062	RC	414834	7607370	301	-60.52	222.4	196	
ETG0064	RC	415108	7606451	306	-61	40	208	
ETG0066	RC	415390	7606780	305	-60.3	40.59	196	
ETG0069	RC	414865	7606170	304	-61.2	43.86	208	
ETG0095	AC	413403	7607542	296	-60	40	123	Sparrows
ETG0096	AC	413460	7607602	295	-60	40	104	Sparrows
ETG0099	RC	413686	7607548	296	-60	40	207	Sparrows
ETG0100	RC	413765	7607499	297	-60	40	210	Sparrows
ETG0101	RC	413810	7607563	296	-60	40	207	Sparrows
ETG0102	RC	414082	7607392	303	-60	310	201	Aurora
ETG0103	RC	414118	7607365	303	-60	310	199	Aurora
ETG0104	RC	414082	7607446	301	-60	310	150	Aurora
ETG0105	RC	414112	7607421	303	-60	310	150	Aurora
ETG0106	RC	414144	7607390	303	-60	310	150	Aurora
ETG0107	RC	414109	7607479	298	-60	310	100	Aurora
ETG0108	RC	414163	7607424	303	-60	310	100	Aurora
ETG0109	RC	414117	7607520	300	-60	310	50	Aurora
ETG0110	RC	414131	7607508	300	-60	310	50	Aurora
ETG0111	RC	414150	7607496	301	-60	310	50	Altus
ETG0112	RC	414189	7607457	301	-60	310	50	Aurora
ETG0114	AC	414314	7607720	298	-90	0	96	Aurora
ETG0115	AC	414331	7607624	300	-90	0	84	Aurora
ETG0116	AC	414358	7607656	299	-90	0	108	Aurora
ETG0118	AC	412214	7607680	282	-60	40	115	
ETG0119	AC	412549	7608074	288	-60	40	139	
ETG0120	AC	412574	7607797	285	-60	40	147	
ETG0121	AC	412708	7607950	287	-60	40	106	
ETG0122	RC	414052	7607415	301	-60	310	200	Aurora
ETG0123	RC	414024	7607444	300	-60	310	210	Aurora
ETG0124	RC	414052	7607471	301	-60	310	150	Aurora
ETG0125	RC	414086	7607499	299	-60	310	100	Aurora
ETG0138	AC	414438	7607840	297	-90	0	100	Aurora
ETG0139	AC	414541	7607965	295	-90	0	90	
ETG0140	AC	414630	7608083	295	-90	0	97	
ETG0141	AC	414741	7608204	290	-90	0	62	
ETG0142	AC	414846	7608325	289	-90	0	115	
ETG0143	AC	414949	7608450	292	-90	0	113	
ETG0144	AC	415057	7608579	291	-90	0	90	
ETG0145	AC	414896	7607765	294	-90	0	90	
ETG0146	AC	414999	7607888	295	-90	0	93	
ETG0147	AC	415102	7608016	291	-90	0	84	
ETG0148	AC	415208	7608130	290	-90	0	114	
ETG0149	AC	415301	7608254	292	-90	0	108	
ETG0150	RC	413248	7608199	301	-60	225	138	Phoenix
ETG0151	RC	413318	7608138	301	-60	225	132	Phoenix
ETG0152	RC	413257	7608082	301	-60	40	120	Phoenix
ETG0153	AC	412275	7607446	283	-90	0	100	
ETG0154	AC	412330	7607505	285	-90	0	91	
ETG0155	AC	412385	7607572	285	-90	0	100	
ETG0156	AC	412726	7607662	288	-90	0	100	
ETG0157	AC	412785	7607724	288	-90	0	72	

Hole_ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
ETG0158	AC	412825	7607477	287	-90	0	100	
ETG0159	AC	412874	7607537	290	-90	0	100	
ETG0160	AC	412926	7607597	288	-90	0	91	
ETG0161	AC	413085	7607471	289	-90	0	100	
ETG0162	AC	413136	7607537	294	-90	0	79	
ETG0163	AC	412486	7606443	287	-90	0	85	
ETG0164	AC	412695	7606688	288	-90	0	84	
ETG0165	AC	412897	7606934	289	-90	0	100	
ETG0166	RC	413542	7607082	299	-90	0	80	Sparrows
ETG0167	AC	412978	7605794	289	-90	0	60	
ETG0168	RC	413183	7606035	289	-90	0	60	
ETG0169	RC	413386	7606275	297	-90	0	80	
ETG0170	RC	413596	7606525	298	-90	0	80	
ETG0171	RC	413702	7606641	299	-90	0	80	
ETG0172	RC	413797	7606766	296	-90	0	80	
ETG0173	AC	413887	7606879	299	-90	0	61	Aurora
ETG0174	RC	412430	7607002	285	-90	0	100	
ETG0175	AC	412513	7607112	286	-90	0	100	
ETG0176	AC	412620	7607233	286	-90	0	100	
ETG0177	AC	412721	7607354	287	-90	0	100	
ETG0178	RC	413079	7605909	289	-90	0	73	
ETG0179	RC	413289	7606164	296	-90	0	79	
ETG0180	RC	413455	7605736	293	-90	0	80	
ETG0181	RC	413559	7605855	292	-90	0	80	
ETG0182	AC	414380	7607776	296	-90	0	101	Aurora
ETG0183	AC	414740	7607583	298	-90	0	84	
ETG0187	DDH	413318	7608141	301	-58.8	225.18	18	Phoenix
ETG0188	RC	413302	7608153	301	-60	220	70	Phoenix
ETG0191	RC	413330	7608152	301	-60	220	70	Phoenix
ETG0194	RC	413344	7608139	301	-60	220	40	Phoenix
ETG0195	RC	413357	7608155	301	-60	220	60	Phoenix
ETG0196	RC	413155	7608099	299	-60	220	40	Phoenix
ETG0197	RC	413168	7608121	299	-60	220	60	Phoenix
ETG0199	RC	413183	7608102	299	-60	220	40	Phoenix
ETG0200	RC	413198	7608119	299	-60	220	80	Phoenix
ETRC012	RC	414155	7607605	300	-60	120	50	Aurora
ETRC013	RC	414163	7607624	300	-60	120	50	Aurora
ETRC014	RC	414173	7607643	299	-60	120	50	Aurora
ETRC015	RC	414180	7607657	298	-60	120	50	Aurora
ETRC016	RC	414134	7607548	302	-60	120	30	Aurora
ETRC017	RC	414115	7607558	301	-60	120	60	Aurora
ETRC018	RC	414094	7607539	300	-60	120	60	Aurora
ETRC019	RC	414051	7607490	300	-60	120	40	Aurora
ETRC020	RC	413288	7608131	301	-60	235	55	Phoenix
ETRC025	RC	413257	7608120	300	-60	155	50	Phoenix
ETRC026	RC	413188	7608090	299	-60	155	50	Phoenix
NTR1	RC	414633	7606904	308	-90	0	96	
NTR10	RC	413679	7607392	301	-60	45	108	Sparrows
NTR11	RC	413734	7607784	294	-60	313	90	Sparrows
NTR12	RC	414116	7607508	299	-60	314	41	Aurora
NTR13	RC	414101	7607499	298	-60	316	39	Aurora
NTR14	RC	414090	7607489	298	-60	309	45	Aurora
NTR15	RC	414080	7607478	299	-60	318	39	Aurora
NTR16	RC	414068	7607469	300	-60	313	39	Aurora
NTR17	RC	414125	7607516	300	-60	312	39	Aurora
NTR18	RC	414140	7607524	301	-60	315	39	Aurora
NTR19	RC	414147	7607539	302	-60	315	39	Aurora
NTR2	RC	414016	7607341	301	-60	358	78	Aurora
NTR20	RC	414161	7607556	302	-60	311	39	Aurora
NTR21	RC	414127	7607422	303	-60	316	39	Aurora
NTR22	RC	414148	7607444	302	-60	317	33	Aurora
NTR23	RC	414113	7607415	303	-60	318	33	Aurora
NTR24	RC	414126	7607454	300	-60	323	33	Aurora
NTR25	RC	414025	7607574	300	-60	133	27	Aurora
NTR26	RC	414549	7608083	295	-90	0	33	
NTR27	RC	414111	7607651	297	-60	303	33	Aurora
NTR28	RC	414106	7607682	296	-60	134	33	Aurora
NTR29	RC	414132	7607689	297	-60	322	33	Aurora
NTR3	RC	414126	7607497	299	-60	313	126	Aurora

Hole_ID	Hole_Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
NTR30	RC	414157	7607665	298	-60	322	33	Aurora
NTR31	RC	413271	7608121	301	-60	227	45	Phoenix
NTR32	RC	413218	7608082	300	-60	140	39	Phoenix
NTR33	RC	413040	7607763	296	-60	46	57	Phoenix
NTR34	RC	413206	7607768	294	-90	0	16	Phoenix
NTR35	RC	413236	7607822	293	-90	0	16	Phoenix
NTR36	RC	413187	7607710	293	-60	209	57	Phoenix
NTR37	RC	413432	7607709	293	-60	227	33	Sparrows
NTR38	RC	413405	7607306	296	-90	0	27	
NTR39	RC	414872	7606328	305	-90	0	33	
NTR4	RC	414180	7607589	299	-60	280	90	Aurora
NTR42	RC	412211	7608826	285	-90	0	45	
NTR-42	RAB	412214	7608841	285	-60	84	45	
NTR43	RC	412173	7608827	286	-90	0	39	
NTR-43	RAB	412175	7608839	286	-60	84	39	
NTR44	RC	412130	7608823	287	-90	0	45	
NTR-44	RAB	412133	7608837	288	-60	84	45	
NTR45	RC	412094	7608822	285	-90	0	39	
NTR-45	RAB	412095	7608834	286	-60	84	39	
NTR46	RC	412051	7608820	285	-90	0	39	
NTR-46	RAB	412055	7608832	285	-60	84	39	
NTR5	RC	414094	7607526	299	-60	313	42	Aurora
NTR53	RC	414103	7607473	299	-60	313	81	Aurora
NTR54	RC	414150	7607509	301	-60	318	75	Aurora
NTR55	RC	414140	7607407	303	-60	310	75	Aurora
NTR56	RC	414109	7607511	299	-60	314	20	Aurora
NTR57	RC	414118	7607503	299	-60	314	45	Aurora
NTR58	RC	414103	7607506	298	-60	314	20	Aurora
NTR59	RC	414107	7607502	298	-60	314	35	Aurora
NTR6	RC	414143	7607594	301	-60	278	150	Aurora
NTR60	RC	414116	7607515	299	-60	314	20	Aurora
NTR61	RC	414120	7607510	299	-60	314	28	Aurora
NTR62	RC	414124	7607506	299	-60	314	43	Aurora
NTR63	RC	414132	7607519	300	-60	314	30	Aurora
NTR64	RC	414137	7607515	300	-60	314	40	Aurora
NTR7	RC	414291	7607946	294	-60	251	64	Aurora
NTR8	RC	414059	7607303	303	-55	43	66	Aurora
NTR9	RC	414023	7607076	301	-60	182	90	Aurora
P1OC3H1	RAB	414290	7609796	298	-56	0	24.5	
P1OC4H1	RAB	415269	7608687	297	-50	0	66.5	
TH1	RAB	414108	7607572	301	-60	270	25	Aurora
TH10	RAB	414293	7607558	301	-60	270	25	Aurora
TH11	RAB	413008	7608211	297	-90	0	25	
TH12	RAB	412999	7608193	297	-90	0	25	
TH13	RAB	412989	7608176	296	-90	0	25	
TH14	RAB	412980	7608158	296	-90	0	25	
TH15	RAB	412970	7608140	294	-90	0	25	
TH16	RAB	412960	7608122	294	-90	0	25	
TH17	RAB	412950	7608104	293	-90	0	25	
TH18	RAB	412942	7608086	293	-90	0	25	
TH2	RAB	414129	7607571	302	-60	270	25	Aurora
TH20	RAB	412922	7608051	292	-90	0	25	
TH21	RAB	412912	7608033	291	-90	0	25	
TH23	RAB	412894	7607997	291	-90	0	25	
TH24	RAB	412884	7607979	290	-90	0	25	
TH25	RAB	412875	7607961	290	-90	0	25	
TH26	RAB	412865	7607943	290	-90	0	25	
TH27	RAB	412855	7607925	290	-90	0	25	
TH28	RAB	412847	7607908	290	-90	0	25	
TH29	RAB	412837	7607890	289	-90	0	25	
TH3	RAB	414149	7607569	302	-60	270	25	Aurora
TH30	RAB	412827	7607872	289	-90	0	25	
TH31	RAB	412817	7607854	289	-90	0	25	
TH4	RAB	414170	7607568	301	-60	270	25	Aurora
TH43	RAB	412324	7608083	285	-90	0	25	
TH44	RAB	412310	7608069	284	-90	0	25	
TH45	RAB	412296	7608055	284	-90	0	25	
TH46	RAB	412283	7608040	283	-90	0	25	
TH47	RAB	412269	7608026	284	-90	0	25	

Hole_ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
TH48	RAB	412255	7608012	284	-90	0	25	
TH5	RAB	414190	7607566	301	-60	270	25	Aurora
TH6	RAB	414211	7607564	301	-60	270	25	Aurora
TH7	RAB	414231	7607563	301	-60	270	25	Aurora
TH8	RAB	414252	7607561	301	-60	270	25	Aurora
TH9	RAB	414272	7607560	301	-60	270	25	Aurora
YAC0498	AC	412337	7606759	288	-90	0	6	
YAC0499	AC	412375	7606759	286	-90	0	6	
YAC0500	AC	412353	7606945	288	-90	0	6	
YAC0501	AC	412384	7607152	285	-90	0	6	
YAC0502	AC	412358	7607345	286	-90	0	6	
YAC0503	AC	412366	7607673	283	-90	0	6	
YAC0504	AC	412359	7607921	284	-90	0	6	
YAC0505	AC	412748	7607838	288	-90	0	6	
YAC0506	AC	412716	7607565	287	-90	0	3	
YAC0507	AC	412739	7607146	288	-90	0	5	
YAC0508	AC	412727	7606985	288	-90	0	2	
YAC0509	AC	412722	7606661	288	-90	0	5	
YAC0510	AC	412711	7606245	286	-90	0	6	
YAC0511	AC	412735	7605987	287	-90	0	6	
YAC2014	AC	413549	7609284	282	-90	0	9	
YAC2015	AC	413544	7608946	283	-90	0	6	
YAC2016	AC	413538	7608761	286	-90	0	6	
YAC2017	AC	413598	7608561	287	-90	0	6	
YAC2018	AC	413540	7608350	292	-90	0	6	Phoenix
YAC2019	AC	413647	7608155	293	-90	0	6	Phoenix
YAC2020	AC	413657	7607899	295	-90	0	6	Sparrows
YAC2021	AC	413939	7608178	293	-90	0	6	
YAC2022	AC	413957	7608337	291	-90	0	6	
YAC2023	AC	413919	7608573	292	-90	0	6	
YAC2024	AC	413935	7608756	288	-90	0	6	
YAC2025	AC	413931	7608989	288	-90	0	6	
YAC2026	AC	413943	7609413	288	-90	0	6	
YAC2027	AC	413925	7609571	283	-90	0	6	
YAC2028	AC	414300	7609273	291	-90	0	6	
YAC2029	AC	414509	7608823	295	-90	0	15	
YAC2030	AC	414248	7608692	290	-90	0	6	
YAC2031	AC	414253	7608512	289	-90	0	6	
YAC2032	AC	414333	7608366	291	-90	0	6	
YAC2033	AC	414347	7608164	292	-90	0	9	
YAC2034	AC	414354	7607939	298	-90	0	6	Aurora
YAC2035	AC	414758	7608756	289	-90	0	12	
YAC2036	AC	414766	7608575	292	-90	0	6	
YAC2037	AC	414757	7608358	292	-90	0	6	
YAC2038	AC	414778	7608163	292	-90	0	6	
YAC2039	AC	414786	7607959	295	-90	0	6	
YAC2040	AC	414828	7607771	300	-90	0	6	
YAC2041	AC	414780	7607601	298	-90	0	9	
YAC2042	AC	415117	7607153	304	-90	0	9	
YAC2043	AC	415225	7607390	298	-90	0	9	
YAC2044	AC	415126	7607572	295	-90	0	9	
YAC2045	AC	415148	7607769	295	-90	0	9	
YAC2046	AC	415110	7607959	289	-90	0	6	
YAC2047	AC	415088	7608170	292	-90	0	9	
YAC2048	AC	415095	7608388	292	-90	0	9	
YAC2049	AC	415132	7608579	296	-90	0	6	
YAC2054	AC	415553	7607349	300	-90	0	9	
YAC2055	AC	415546	7607115	300	-90	0	6	
YAC2056	AC	415613	7606946	303	-90	0	9	
YAC2057	AC	415961	7606610	303	-90	0	9	
YAC2058	AC	415946	7606759	297	-90	0	9	
YAC2059	AC	415938	7606961	299	-90	0	9	
YAC2060	AC	415931	7607203	303	-90	0	9	
YAC2061	AC	415926	7607350	301	-90	0	6	
YAC2064	AC	416330	7607174	302	-90	0	6	
YAC2065	AC	416341	7606963	301	-90	0	6	
YAC2066	AC	415558	7606161	308	-90	0	9	
YAC2067	AC	415158	7606142	305	-90	0	6	
YAC2068	AC	415125	7605964	303	-90	0	15	

Hole_ID	Hole Type	Easting	Northing	RL	Dip	Azimuth	EOH(m)	Prospect
YAC2069	AC	414748	7605565	300	-90	0	9	
YAC2070	AC	414767	7605761	301	-90	0	30	
YAC2104	AC	413138	7607167	298	-90	0	6	
YAC2105	AC	413143	7606953	292	-90	0	6	
YAC2106	AC	413137	7606761	292	-90	0	6	
YAC2107	AC	413131	7606561	289	-90	0	12	
YAC2108	AC	413128	7606357	292	-90	0	6	
YAC2109	AC	413137	7606161	291	-90	0	6	
YAC2110	AC	413137	7605961	291	-90	0	6	
YAC2111	AC	413140	7605761	289	-90	0	6	
YAC2112	AC	413134	7605559	288	-90	0	6	
YAC2113	AC	413540	7605165	295	-90	0	18	
YAC2114	AC	413535	7605363	294	-90	0	9	
YAC2115	AC	413541	7605561	291	-90	0	6	
YAC2116	AC	413534	7605761	294	-90	0	6	
YAC2117	AC	413540	7605960	294	-90	0	6	
YAC2118	AC	413539	7606161	296	-90	0	9	
YAC2119	AC	413538	7606361	297	-90	0	6	
YAC2120	AC	413538	7606559	299	-90	0	6	
YAC2121	AC	413940	7606771	297	-90	0	6	
YAC2122	AC	413940	7606558	302	-90	0	6	
YAC2123	AC	413938	7606357	299	-90	0	6	
YAC2124	AC	413935	7606161	299	-90	0	6	
YAC2125	AC	413939	7605961	299	-90	0	12	
YAC2126	AC	413935	7605761	295	-90	0	6	
YAC2127	AC	413935	7605561	296	-90	0	9	
YAC2128	AC	413942	7605362	294	-90	0	6	
YAC2129	AC	413940	7605163	297	-90	0	6	
YAC2130	AC	413937	7604960	293	-90	0	6	
YAC2131	AC	413938	7604762	294	-90	0	9	
YAC2132	AC	414337	7605161	299	-90	0	27	
YAC2133	AC	414342	7605359	297	-90	0	6	
YAC2134	AC	414335	7605563	299	-90	0	6	
YAC2135	AC	414343	7605759	299	-90	0	6	
YAC2136	AC	414363	7605993	301	-90	0	6	
YAC2137	AC	414335	7606157	298	-90	0	6	
YAC2138	AC	414355	7606591	301	-90	0	6	
YAC2139	AC	414340	7606773	300	-90	0	6	
YAC2140	AC	414348	7606951	303	-90	0	6	
YAC2141	AC	414726	7606555	305	-90	0	6	
YAC2142	AC	414733	7606332	303	-90	0	6	
YAC2143	AC	414738	7606090	298	-90	0	2	
YAC2144	AC	414736	7605962	301	-90	0	9	
YAC2145	AC	414338	7606342	300	-90	0	6	
YAC2146	AC	415141	7606327	306	-90	0	3	
YDD002	DD	414240	7607499	301	-60	270	403	Aurora
YRB5078	RAB	413213	7608102	300	-90	0	20	Phoenix
YRB5079	RAB	413213	7608102	300	-90	0	14	Phoenix
YRB5152	RAB	413188	7608061	300	-90	0	102	Phoenix
YRB5153	RAB	413237	7608111	300	-90	0	99	Phoenix
YRB5154	RAB	413288	7608111	300	-90	0	90	Phoenix
YRB5155	RAB	413338	7608061	300	-90	0	96	Phoenix
YRB5156	RAB	413300	7608031	300	-90	0	74	Phoenix
YRB5160	RAB	413588	7607811	295	-60	50	81	Sparrows
YRB5161	RAB	413518	7607741	294	-60	50	90	Sparrows
YRB5162	RAB	413428	7607682	293	-60	50	97	Sparrows
YRB5163	RAB	413656	7607874	295	-60	230	93	Sparrows
YRB5164	RAB	413732	7607938	295	-60	230	93	Sparrows
YRB5165	RAB	413808	7608002	292	-60	230	87	Sparrows
YRC005	RC	414398	7607561	296	-60	224	144	Aurora
YRC006	RC	414252	7607933	294	-60	262	160	Aurora

Table 1: Day Dawn Project - Drillhole collar information (MGA94 Zone51)

Drill Type RAB = Rotary Air Blast, RC = Reverse Circulation, DD = Diamond, RCD = Diamond with RC pre-collar, AC = Aircore
 All holes drilled outside of a defined prospect location have not been allocated a prospect name

Hole_ID	mFrom	mTo	Interval	Au_ppm
BETRC0001	46	48	2	0.54
and	68	70	2	1.08
BTDD0004	59	60	1	10.35
and	710	711	1	2.16
and	789	790	1	0.81
BTRCD0003	73	74	1	0.8
and	183	186	3	0.56
and	243	246	3	8.24
incl.	243	245	2	11.78
and	831	832	1	4.06
CTH119	12	14	2	0.63
CTH172	14	16	2	0.81
CTH189	12	14	2	0.82
CTH190	24	25	1	0.5
CTH66	22	25	3	4.93
incl.	22	24	2	6.77
CTH67	22	24	2	0.54
CTH87	18	20	2	0.67
ETG0044	0	4	4	0.69
and	64	66	2	0.6
and	154	156	2	0.75
and	160	162	2	0.7
and	166	168	2	1.97
ETG0045	96	98	2	1.29
and	178	182	4	13.39
incl.	178	180	2	25.5
ETG0048	152	154	2	0.56
and	158	162	4	1.22
ETG0051	12	14	2	0.81
and	204	210	6	1.2
ETG0052	48	50	2	0.5
and	54	56	2	1.05
and	88	90	2	0.69
and	176	178	2	0.51
and	182	184	2	0.63
ETG0053	5.75	6.5	0.75	1.12
and	61.75	62.8	1.05	1.87
and	127.1	129.6	2.5	7.65
incl.	129.15	129.6*	0.45	25.4
ETG0054	80	81	1	3.2
ETG0055	4.2	4.9	0.7	2.69
and	7.7	8.21	0.51	0.61
and	11.4	18.3	6.9	3.06
incl.	12.35	13.05	0.7	17
and	24.05	24.3	0.25	0.84
and	28.6	29.75	1.15	0.64
ETG0056	110	112	2	0.58
ETG0058	54	56	2	0.63
ETG0059	170	172	2	0.53
ETG0062	16	18	2	0.6
ETG0066	4	6	2	0.53
ETG0101	34	36	2	0.62
and	84	86	2	1.7
ETG0102	122	123	1	0.54
ETG0103	22	23	1	0.95
and	144	145	1	0.61
and	182	183	1	1.37
and	189	193	4	1.68
ETG0105	100	101	1	0.73
and	130	131	1	0.59
and	147	148	1	2
ETG0106	46	48	2	5.35
incl.	46	47	1	6.17
ETG0107	53	55	2	1.44
and	62	68	6	0.64
ETG0108	59	63	4	0.6
and	84	85	1	0.52
ETG0109	0	4	4	4.31
incl.	0	1	1	14

Hole_ID	mFrom	mTo	Interval	Au_ppm
ETG0110	18	19	1	13.2
ETG0112	46	47	1	0.55
ETG0114	32	34	2	0.56
and	44	50	6	0.49
and	60	62	2	0.52
ETG0116	37	38	1	0.57
ETG0122	3	4	1	0.57
and	187	188	1	0.58
ETG0123	32	34	2	0.74
and	70	71	1	2.08
ETG0124	25	26	1	2.73
ETG0125	40	44	4	4.03
incl.	40	41	1	14.6
ETG0151	8	12	4	29.7
incl.	9	10	1	109.0
and	44	46	2	0.71
ETG0166	64	68	4	0.6
ETG0187	5.93	13.42	7.49	9.82
incl.	11.52	12.12	0.6	112.33
and	15.66	16.01	0.35	1.67
ETG0191	4	6	2	0.61
ETG0195	14	16	2	0.97
ETRC012	2	3	1	0.58
and	13	14	1	0.52
ETRC016	23	24	1	1.04
ETRC017	50	51	1	0.77
ETRC018	38	39	1	1.11
and	49	50	1	0.7
ETRC019	9	10	1	2.46
ETRC020	0	2	2	2.14
and	12	15	3	2.22
ETRC025	5	6	1	1.08
and	15	17	2	3.84
incl.	15	16	1	6.49
ETRC026	20	22	2	0.62
NTR11	38	40	2	0.89
NTR12	20	26	6	11.5
incl.	22	24	2	33
NTR13	10	12	2	0.65
NTR14	42	44	2	1.11
NTR17	16	26	10	9.85
incl.	20	22	2	45.8
NTR18	12	14	2	0.7
and	22	24	2	0.55
NTR22	26	28	2	0.97
NTR27	26	28	2	0.7
NTR28	16	18	2	0.63
NTR3	27	29	2	0.99
and	59	61	2	0.68
NTR30	28	30	2	0.62
NTR31	8	12	4	3.5
and	24	26	2	0.85
and	34	36	2	1.83
NTR32	6	8	2	6.93
NTR5	31	37	6	19.58
incl.	31	35	4	28.97
NTR53	58	64	6	3.07
incl.	58	60	2	6.3
NTR54	4	6	2	0.62
NTR55	22	24	2	0.85
and	30	32	2	0.55
and	40	42	2	1.08
NTR56	9	12	3	2.58
incl.	11	12	1	6.2
NTR57	35	38	3	51.12
incl.	35	37	2	76.25
NTR58	8	12	4	0.67
NTR59	16	22	6	0.61
NTR6	48	50	2	0.65

Hole_ID	mFrom	mTo	Interval	Au_ppm
NTR60	8	14	6	0.92
NTR61	16	23	7	17.13
incl.	19	22	3	37.53
NTR62	20	28	8	3.91
incl.	20	24	4	6.91
NTR63	20	24	4	5.32
incl.	20	21	1	18.1
NTR64	35	38	3	0.55
NTR8	58	60	2	1.56
NTR9	48	50	2	0.6
TH28	18	20	2	0.84
TH5	4	6	2	0.84
and	10	12	2	0.58
and	24	25	1	2.12
TH6	2	4	2	0.6
and	14	16	2	1.32
and	20	22	2	1.52
TH7	8	10	2	1.08
YDD002	24	28	4	1.8
incl.	27	28	1	6.39
and	49	50	1	0.57
and	58	59	1	0.76
and	163	164	1	0.52
and	167	174	7	0.45
YRB5079	8	14	6	1.84
YRB5152	20	21	1	0.82
YRB5153	12	16	4	0.58
YRB5154	60	61	1	0.75
YRB5156	70	71	1	0.5
YRC006	76	77	1	0.67
and	98	99	1	0.99

Table 2: Day Dawn Project – Drill hole assay results (>0.5 g/t Au) *hole ending in mineralisation.

This announcement has been authorised by the Board of Directors.

For further information, please contact:

Peter Bewick
Managing Director and CEO
+61 8 9486 9455
contact@hamelingold.com.au

The information in this report that relates to Exploration Results is based on information compiled by Mr. Peter Bewick who is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Bewick holds shares and options in and is a full time employee of Hamelin Gold Ltd and has sufficient experience which is relevant to the style of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bewick consents to the inclusion in the report of the matters based on the information compiled by him, in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant ASX releases and the form and context of the announcement has not materially changed.

About Hamelin Gold

Hamelin Gold Limited (**ASX:HMG**) is an ASX-listed gold exploration company based in Perth, Western Australia. Hamelin has landholdings in the Tanami, Paterson and Yilgarn Gold Provinces of Western Australia (Figure 8). The Tanami province is prospective for high value, large scale gold deposits and hosts Newmont's Tier 1 Tanami Operations in the Northern Territory. Hamelin's Yilgarn and Paterson project portfolio has been built following a district scale project generation exercise targeting covered segments of well mineralised gold terrains where new undercover exploration technologies can be applied.

Figure 8: Hamelin's WA Project location map

The Company has a strong Board and Management team and is well funded. Hamelin's shareholders include highly regarded gold miners Gold Fields Limited (JSE/NYSE:GFI) and Vault Minerals Limited (ASX:VAU).

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<p>Multiple historical drilling campaigns have been completed within the project area between 1983 and 2018 by numerous companies including Duval Mining Ltd (Duval), Maletur Exploration Pty Ltd (Maletur), Cove Mining NL (Cove), MIM Exploration Pty Ltd (MIMEX), Normandy Exploration Ltd (Normandy), Mount Burgess Mining NL (Burgess), Newmont Australia Ltd (Newmont), Barrick Gold of Australia Ltd (Barrick Gold) and Encounter Resources Ltd (Encounter). A total of 564 historical drill holes exist within the project area. Drilling techniques included rotary air blast (RAB), aircore, reverse circulation (RC) and diamond drilling.</p> <p>A historical drilling database was compiled from WAMEX A-reports by Barrick Gold in 2004. Encounter Resources verified collar locations within the database in the field using handheld GPS with estimated accuracy of ± 5m. Where collars could not be located, Encounter converted the coordinates from AMG to MGA from the database. Collar locations in the historical database are considered accurate to approximately ± 5m.</p> <p>The majority of drill holes were sampled in their entire drill length. Sampling intervals for RAB, aircore and RC drilling were commonly 1m intervals. Half core was taken from diamond holes. All samples were typically greater than 1kg. Assay methods were not consistently reported in reports prior to 1990. From 1990 onwards gold analysis was undertaken using fire assay and/or aqua regia digest methods with analysis by atomic absorption spectroscopy (AAS) and/or inductively coupled plasma spectroscopy (ICPMS/ICPES). All companies assayed for gold.</p>
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<p>Early RAB drilling completed prior to 1990 did not consistently record drill rig specifications, bit type or bit diameter in the available reports. RAB and aircore drilling completed during the 1990s utilised a Landcruiser mounted Edson 150 aircore/RAB rig, with hammer and blade bits reported for aircore drilling. Drill bit diameters were not documented. Post-2000 RAB by Normandy utilised a RAB/aircore drill rig. Drill bit size was not documented.</p>

	<p>RC drilling undertaken prior to 2000 utilised various drill contractors; however, drill rig specifications and bit diameters were not documented. Post-2000 RC was undertaken by Normandy (Century Drilling; bit sizes were not recorded) Mount Burgess (Leon Marsh Drilling; no bit sizes were recorded) and Barrick Gold, who utilised Mt Magnet Drilling and McKay Drilling with RC bit diameters 5 1/2 inches for exploration and diamond pre collars. In the mid-to-late 2010s, Encounter Resources utilised Strike Drilling with a bit diameter of 5 3/8 inches for exploration drilling and diamond pre-collars.</p> <p>Diamond drilling was undertaken in early 2000s and late 2010s by Normandy (Century Drilling), Barrick Gold (Moss Lake Drilling) and Encounter Resources (DDH1 Drilling). Core diameters used include PQ3, HQ3, HQ, NQ and NQ2 and holes were oriented where possible.</p>
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> <p>Aircore, RAB and RC drilling programs prior to 2000 had limited information on sample recovery and it is unknown whether a relationship between sample recovery and grade exists.</p> <p>RC and diamond drilling after 2000 by Barrick Gold and Encounter Resources routinely recorded sample recoveries in drill logs. Diamond drilling utilised a triple tube system to maximise core recovery.</p> <p>No detailed analysis has been undertaken to assess the relationship between sample recovery and grade.</p>
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> <p>Historical drilling was logged by geologists from Duval, Maletur, Cove, MIMEX, Normandy, Burgess, Barrick and Encounter to a level of detail appropriate of exploration at the time. Logging for non-core drilling was completed at minimum 1m intervals. Diamond drillholes were logged in greater detail, locally at intervals of less than 1m.</p> <p>Logging practises varied between operators and were primarily qualitative, recording lithology and weathering in all holes. Mineralogy, veining, sulphide and sample recovery were not consistently recorded across all programs. Geotechnical logging was not consistently documented in historical drilling.</p> <p>Diamond drillholes by Barrick Gold and Encounter were oriented where possible and recent Encounter diamond drillholes were photographed.</p> <p>Most drillholes were logged in full.</p>
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <p>Core samples were sawn half cut, typically 0.5-1m intervals or to lithological boundaries.</p> <p>RAB utilised variable 1-2m sample intervals, with sample collection methods not documented in reports prior to 1989. Moisture condition was not consistently recorded in historical programs. Aircore and RAB drilling from the mid-1990s to early-2000s utilised 1m sample intervals with rotary splitters. Some RAB samples were documented as being collected by scooping cuttings from RAB piles.</p>

	<ul style="list-style-type: none"> • <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> • <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> • <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>RC in the late-1980s and early-1990s utilised 1m sample intervals through zones of interest, with surrounding 4m and 2m composites collected. Sample collection methods were not consistently documented. Select high-grade (>1 g/t Au) intercept samples were re-assayed. RC drilling by Normandy in the early 2000s utilised 1m sample intervals, sample collection methods were not documented. RC drilling by Barrick Gold and Encounter in the early-2000s and late-2010s utilised 2m composite sampling. Modern QAQC procedures were implemented including systematic duplicates, blanks and certified reference materials, with recording sample type (e.g. cone split composite), recovery and moisture content.</p> <p>Sample preparation and sub sampling techniques are considered appropriate for the style of mineralisation and stage of exploration. Sample sizes are considered appropriate for indication of gold mineralisation at the discussed prospects.</p>
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> • <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<p>RAB sample preparation was completed by various laboratories including Pilbara Laboratories, Genalysis Laboratories and Minlab Laboratories in the mid-1980s. Assay methods for gold and multi element data were not documented. Samples were analysed for Au, Ag, As, Cu, Zn, Mn and Cr. RAB samples in the mid-1990s were submitted to Genalysis Laboratories, Perth for AAS for Au, As, Cu, Pb, Zn and Co.</p> <p>Aircore samples in the mid-1990s were submitted to Genalysis Laboratories, Perth for an aqua regia digest with an AAS finish for Au and ICPMS/ICPES finish for As, Bi, Ca, Cu, Fe, In, Mn, Mo, Pb, Sn, W and Zn.</p> <p>RC samples in the late-1980s and early-1990s were submitted to Minlabs, Perth, where a low-level fire assay method was utilised for Au analysis and AAS for As, Cu, Pb and Zn.</p> <p>RAB, RC and diamond drilling samples collected by Normandy in the early 2000s were submitted to Amdel Laboratories, Perth and analysed using an aqua regia digest with an AAS finish for Au and ICPES/ICPMS methods for As, Bi, Cu, Zn, Fe, Mn, Ag, Mo, Sb and Sn.</p> <p>RC samples collected by Mount Burgess were submitted to Genalysis Laboratories, Perth for aqua regia and AAS finish for Au, Cu and As. Additional samples analysed at Ultra Trace Laboratories to obtain lower detection limits using aqua regia with an ICPMS finish.</p> <p>RC and diamond samples collected by Barrick Gold were submitted to Genalysis Laboratories, Perth and analysed by fire assay with AAS finish for gold. Select samples were submitted for Ag, As, Bi, Cu, Co, Mo, Ni, Sb, Pb and Zn.</p> <p>RC and diamond samples collected by Encounter Resources were submitted to Bureau Veritas laboratories and analysed by fire assay analysis for Au, Pt and Pd and a four-acid digest ICPES/ICPMS finish for As, Bi, Ca, Cu, Co, Cr, Fe, K, Mn, Ni, Pb, S, Sb, Sn, Te, Ti, W, Zn and Zr.</p> <p>No geophysical or handheld XRF data was documented.</p>

	<p>Laboratory QAQC procedures were not documented in available reports, and the level of analytical accuracy and precision for early datasets cannot be independently verified. The assay methods used are considered appropriate for the stage of exploration.</p>
Verification of sampling and assaying	<ul style="list-style-type: none"> • The verification of significant intersections by either independent or alternative company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data.
Location of data points	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. <p>Available reports prior to 2000 do not describe how drillhole collar locations were collected. Historically, a combination of local grids, AGD84 AMG Zone 51 and GDA94 MGA Zone 51 coordinate systems were used. Barrick compiled all drillholes pre 2000 into a database with geodetic datum AGD84 AMG zone 51. Encounter geolocated recent drillholes and historical collars where possible with a handheld GPS to an accuracy of ± 5m. Where Encounter was unable to locate historical collars, coordinates were converted directly from the Barrick database from AGD84 AMG Zone 51 to GDA94 MGA Zone 51.</p> <p>Downhole surveys were not reported for drillholes prior to Barrick in 2004. Barrick and Encounter utilised single shot and multi shot survey instrumentation.</p> <p>All drillholes within this announcement are in GDA94 MGA zone 51.</p> <p>Collar RLs were derived from a 1-second SRTM digital elevation model, which is considered adequate for this stage of exploration.</p>
Data spacing and distribution	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. <p>Drill spacing across the prospects were highly variable. Early regional RAB drilling was completed along drill lines spaced at approximately 25m, while systematic regional RAB and aircore programs surrounding the main prospects were typically spaced at 200m by 400 m. Early RC drilling targeted individual prospects across the project, with some close-spaced drilling at the Aurora prospect down to approximately 10m spacing. Barrick completed a single hole deep diamond drilling at both the Phoenix and Sparrows prospects. Encounter Resources undertook systematic RC and diamond drilling at the Aurora prospect on an approximate 30m by 40m grid, in addition to regional drill lines with drillholes spaced between 80m and 430m.</p>

		<p>The current drill spacing is not sufficient to establish geological and grade continuity appropriate for Mineral Resource or Ore Reserve estimation.</p> <p>No compositing of drilling assay data has been applied.</p>
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<p>The historical drillholes at the Aurora prospect defined a key mineralised structure interpreted to strike approximately 050°. Most drillholes were oriented to intersect the structure at a high angle, with additional drilling supporting the interpreted strike, dip and potential plunge of the mineralised shoot. Sampling bias is not considered material based on the current geological understanding.</p> <p>Drilling across other project areas remains at an early stage and insufficient data exist to confidently interpret structural orientations.</p>
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<p>The historical reports do not detail measures taken to ensure sample security.</p>
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<p>An internal review of the historical drillhole database compiled by Barrick Gold was undertaken by Hamelin personnel. Discrepancies in drill data were identified and corrected where supported by original source documentation.</p> <p>No external audit of the sampling techniques and data has been completed.</p>

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<p>The Day Dawn project (E45/7078) is an Exploration Licence Application located 10km north of the Telfer Gold Mine the Paterson region of WA. E45/7078 was applied for by Hamelin Resources Pty Ltd, a 100% owned subsidiary of Hamelin Gold Ltd.</p> <p>No historical or environmentally sensitive sites have been identified within the areas of work.</p>
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<p>Regional and prospect-scale RAB, aircore, RC and diamond drilling programs were undertaken from the late 1970s to 2018 by numerous companies including Duval Mining Ltd, Maletur Exploration Pty</p>

Ltd, Cove Mining NL, MIM Exploration Pty Ltd, Normandy Exploration Ltd, Mount Burgess Mining NL, Newmont Australia Ltd, Barrick Gold of Australia Ltd and Encounter Resources Ltd.

Early exploration identified surficial gold anomalism across the project through geological mapping and geochemical programs, with follow-up RAB drilling completed along and perpendicular to a fold axis.

RC drilling completed by Cove in the late 1980s and early 1990s at the Aurora, Sparrows and Phoenix prospects intersected significant gold mineralisation. Subsequent regional and prospect-scale drilling programs further tested these areas.

Following a period of limited activity, regional RAB drilling resumed in the mid-1990s, targeting interpreted structural positions including the fold axial plane and adjacent synclinal areas.

In the early 2000s, systematic RAB grids were completed surrounding the main prospect areas, with RC and diamond drilling targeting extensions to previously intersected mineralisation.

Drilling by Encounter comprised RC and diamond drilling on systematic grids at the Aurora prospect, as well as drilling at the Phoenix and Sparrows prospects. These programs intersected additional significant gold mineralisation and facilitated further refinement of the geological interpretation.

Exploration undertaken by previous operators provides useful geological context but has not been independently verified by Hamelin except where stated.

Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	The Day Dawn Project is located within the Paterson Province of the Yeneena Basin of Western Australia. Mineralisation is hosted in a domal fold structure of Neoproterozoic sedimentary rocks. The project is approx. 10km north of the Telfer Gold Mine.
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent</i> 	Refer to tabulation in the body of this announcement.

<p>Person should clearly explain why this is the case.</p>	
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i>
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i>
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i>
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i>
Other substantive	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not</i>

exploration data	<i>limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> <p>The next phase of work at Day Dawn will include a program of RC drilling at Aurora, with initial holes designed to confirm the grade and interpreted geometry of the lodes and to test for extension to the high-grade mineralisation.</p>