

LONDON-VICTORIA CONTINUES TO DELIVER

Final Phase 2 assays further confirm strong resource growth potential, with the mineralised system remaining open at depth, down plunge and along strike. With momentum building, Phase 3 drilling is now underway to accelerate resource expansion.

Standout intercepts include **28m @ 1.53g/t Au** (ALRC019) and **21m @ 1.40g/t Au** (ALRC021). Highlights from the final 7 holes include:

- **28m @ 1.53g/t Au from 137m** (0.5g/t Au cut-off) (**ALRC019**) including
11m @ 2.62g/t Au from 141m (2.0g/t Au cut-off)
- **21m @ 1.40g/t Au from 162m** (0.5g/t Au cut-off) (**ALRC021**) including
5m @ 2.33g/t Au from 163m; and
6m @ 2.17g/t Au from 172m (1.0g/t Au cut-off)
- **15m @ 1.29g/t Au from 174m** (0.5g/t Au cut-off) (**ALRC026**) including
5m @ 1.47g/t Au from 175m; and
1m @ 6.53g/t Au from 185m (1.0g/t Au cut-off)
- **20m @ 1.26g/t Au from 102m** (0.5g/t Au cut-off) (**ALRC023**) including
14m @ 1.62g/t Au from 108m (1.0g/t Au cut-off)
- The program successfully validated the model and controls on the gold mineralisation; following up ALRC014 (**48m @ 0.82g/t Au from 133m, including a higher-grade interval of 25m @ 1.2g/t Au from 144m**).¹
- Expanded Phase 3 Drilling program of an initial 6,000 metres commenced.

Adavale Resources Managing Director, Mr. David Ward, commented:

“Phase 2 drilling delivered strong continuity of gold mineralisation beneath the pit and, critically, validated the Company’s structural geology model. The program tested just ~150m of strike with holes spaced at approximately 25m — representing only 10% of the 1.5km open pit length. These results provide strong confidence to expand the Phase 3 drilling program, targeting the substantial known strike of mineralisation immediately below the existing pit floor.”

Adavale Resources Executive Chairman and CEO, Mr. Allan Ritchie, commented:

“Phase 2 drilling has demonstrated the scale of London-Victoria, giving us the confidence to accelerate resource growth with an expanded Phase 3 program now underway. Combined with the overwhelming support from our investors in the recent \$5.15 million placement, the Company is exceptionally well positioned to grow the resource base and further advance our Brownfields near-term production opportunity at our London-Victoria Gold Mine.”

¹ Refer to ASX announcement, “Wide Gold Intercepts Confirm Open Mineralisation”, 24 September 2025

Directors & Officers

ALLAN RITCHIE
Executive Chairman & CEO

DAVID WARD
Managing Director

NIC MATICH
Non-Executive Director

LEONARD MATH
CFO & Company Secretary

 Adavaleresources

 Adavale_AXSADD

 Investor@adavaleresources.com

 +61 2 9127 9852

www.adavaleresources.com

Adavale Resources Limited
Level 2, 49 Oxford Close
West Leederville, WA, 6007

Adavale Resources Limited (ASX:ADD) ("Adavale" or the "Company"), an Australian junior explorer focused on gold and copper in the Lachlan Fold Belt of New South Wales, is pleased to announce the results from the final 7 holes (1,476m) of the recently completed Phase 2 drilling program at The London-Victoria Gold Mine.

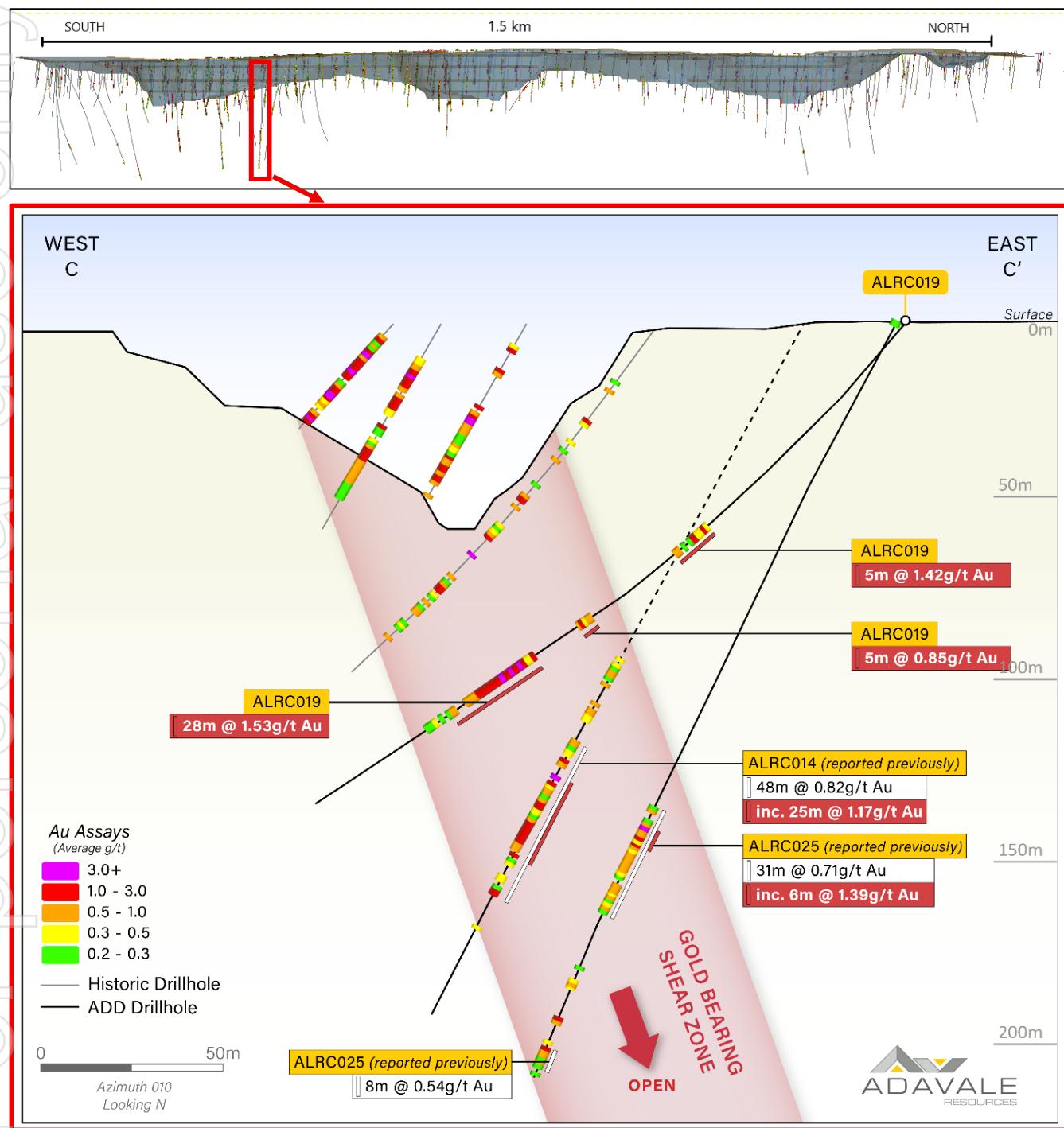


Figure 1: Section C-C' Displaying position of ALRC019 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

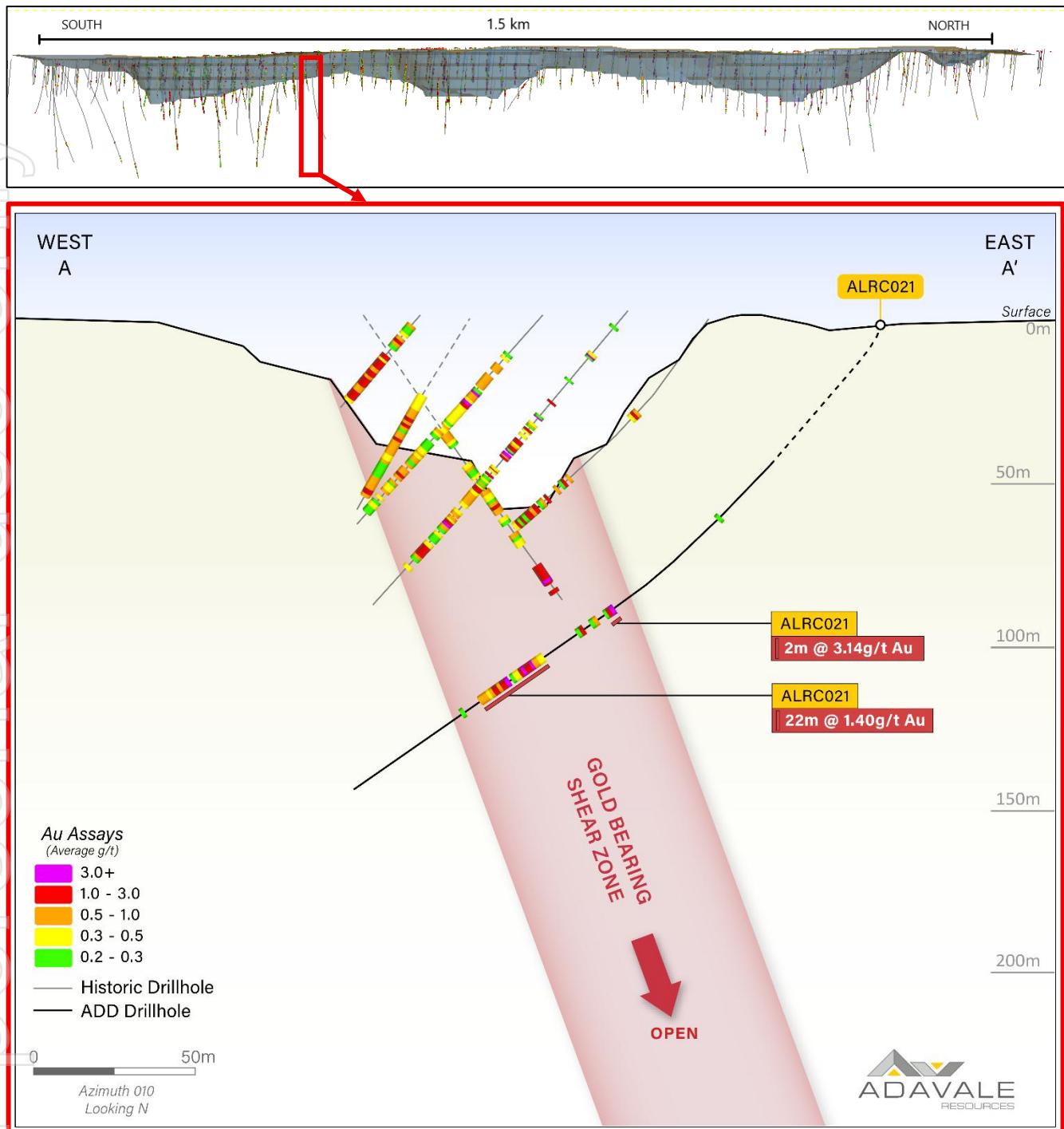


Figure 2: Section A-A' Displaying position of ALRC021 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

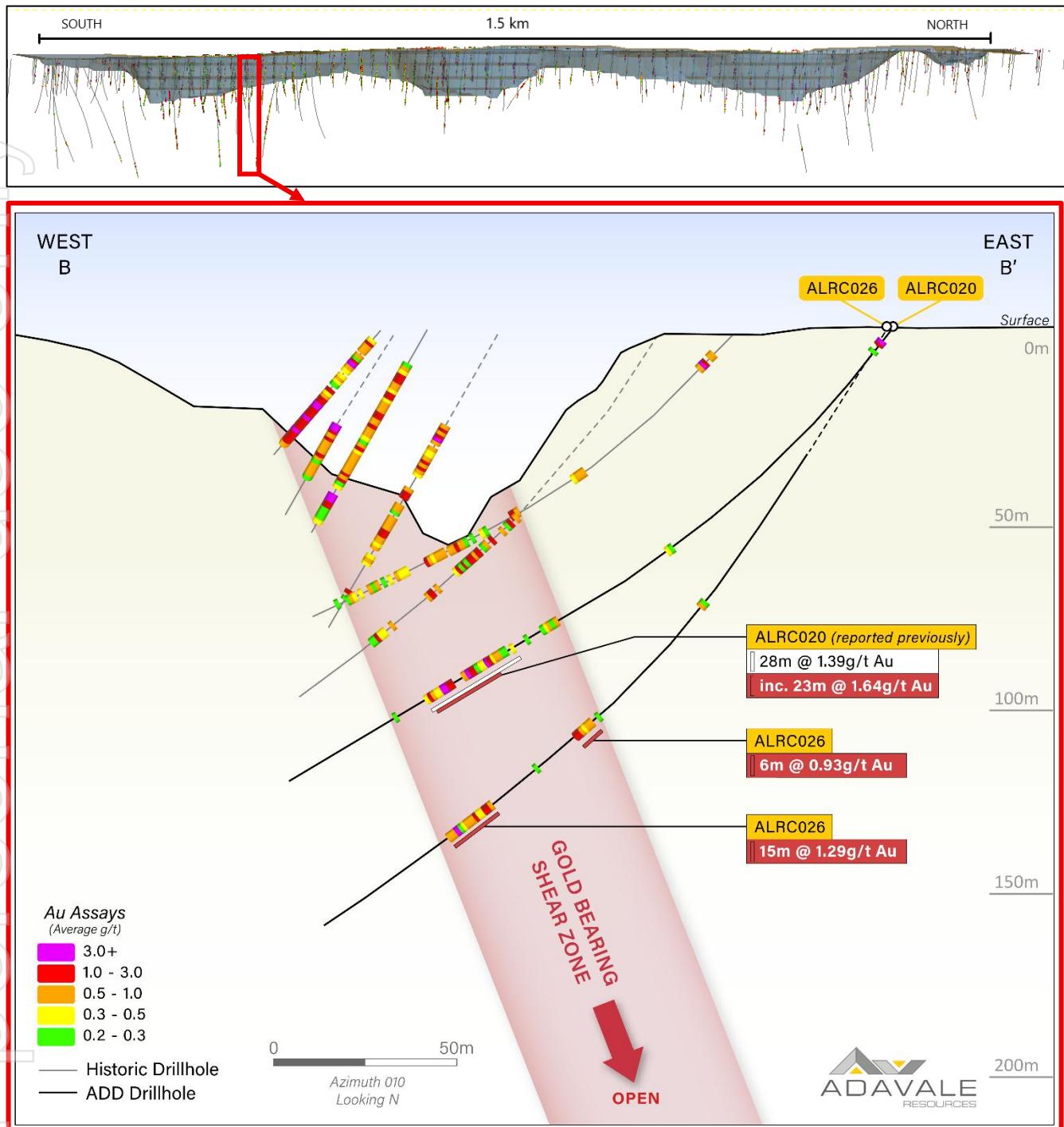


Figure 3: Section B-B' Displaying position of ALRC026 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

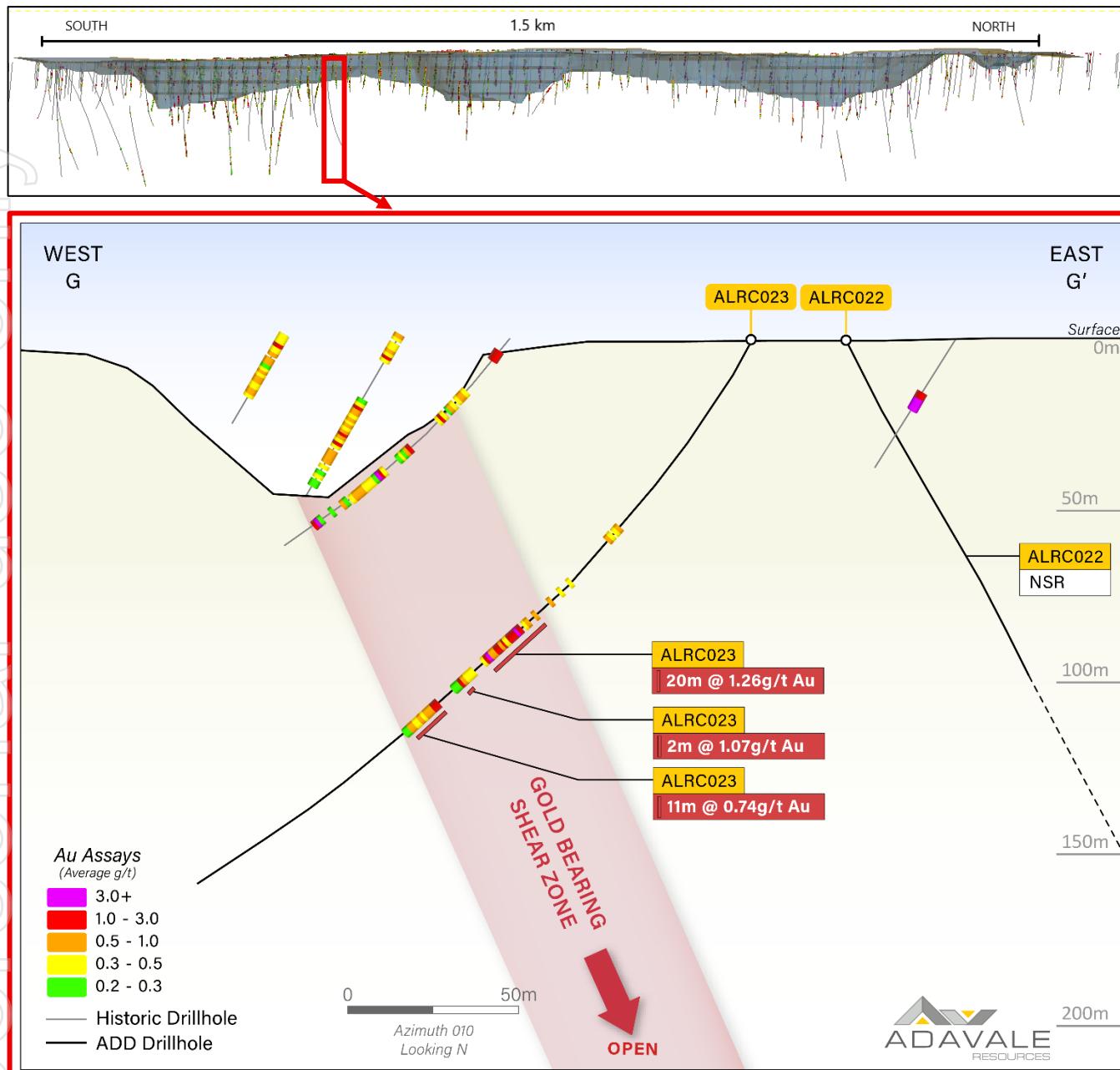


Figure 4: Section G-G' Displaying position of ALRC023 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

**Results have been received for the remaining 7 of 12 holes, ALRC017, ALRC019, ALRC021
ALRC022, ALRC023, ALRC024 and ALRC026**

ALRC019 intercepted the mineralised zone 40m vertically below the pit floor, the 2.0g/t cutoff intercept (11m @ 2.62g/t Au) is equally the highest-grade hole drilled by Adavale to date (ALRC018 returning (14m @ 2.62g/t Au) at The London-Victoria Gold Mine and is 40m vertically above the ALRC014 intercept (25m @ 1.2g/t Au) from the Phase 1 Drilling program.

ALRC019 is almost entirely outside of the existing MRE, the existing MRE in that area is 0.65-0.75g/t Au hence the higher-grade result will represent a significant increase to the MRE for that part of the deposit.

- **28m @ 1.53g/t Au from 137m** (0.5g/t Au cut-off) including
 - 11m @ 2.62g/t Au from 141m (2.0g/t Au cut-off)

ALRC021 is the southernmost hole drilled in Phase 2 program and has intercepted the mineralised zone 40m vertically below the pit floor. As with ALRC019, ALRC021 just clipped the bottom and is partially outside of the MRE, so will result in a substantial increase to an updated MRE.

- **21m @ 1.40g/t Au from 162m** (0.5g/t Au cut-off) including
 - 5m @ 2.33g/t Au from 163m; and
 - 6m @ 2.17g/t Au from 172m (1.0g/t Au cut-off)

ALRC026 was drilled on the same section as ALRC020 (23m @ 1.64g/t Au) and intersected the ore body 35m outside of the MRE.

- **15m @ 1.29g/t Au from 174m** (0.5g/t Au cut-off) including
 - 5m @ 1.47g/t Au from 175m; and
 - 1m @ 6.53g/t Au from 185m (1.0g/t Au cut-off)

ALRC023 is the northernmost hole drilled in the Phase 2 program (150m north of ALRC021) and again well outside of the MRE (40m), interpretation of ALRC023 in light of all the Phase 2 results as a whole suggests that there are multiple south plunging higher-grade zones related to repeated fold positions, opening up continuity of grades and widths below the pit north of ALRC023 that will be tested as part of the current drilling program.

- **20m @ 1.26g/t Au from 102m** (0.5g/t Au cut-off) including
 - 14m @ 1.62g/t Au from 108m (1.0g/t Au cut-off)

ALRC017 intersected the ore body just above ALRC018 (14m @ 2.62g/t Au) and returned 9m @ 1.05g/t Au, interpretation suggests that the top of the higher grade fold position on this section was intersected by ALRC018 and additional hole below ALRC018 is a good target for additional resources outside the existing MRE and will be progressed in the next/current drilling program.

- **9m @ 1.05g/t Au from 106m** (0.5g/t Au cut-off)

ALRC024 intersected the ore body on the section 25m south of ALRC023 and 50m below the open pit and returned 17m @ 0.95g/t Au (0.5g/t cutoff) within a broad mineralised zone of 48m @ 0.54g/t Au from 106m (0.25g/t Au cutoff – 3m internal dilution).

- **48m @ 0.54g/t Au from 106m** (0.25g/t Au cutoff – 3m internal dilution); including
 - 17m @ 0.95g/t Au from 120m (0.5g/t Au cut-off)
 - 2m @ 1.01g/t Au from 114m (0.5g/t Au cut-off)
 - 5m @ 0.50g/t Au from 106m (0.5g/t Au cut-off)

ALRC022 was drilled to test for primary gold mineralisation below historical hole MB001 which is now interpreted to be deep lead alluvial gold shed of the main deposit. Opportunity for additional new parallel gold mineralisation remains and the search will continue with a detailed drone magnetic survey due to commence next month (March '26).

The primary magnetite in the foliated volcanic host rocks is destroyed by the alteration associated with the gold mineralisation, the drone magnetics is designed to quantify the concept over the existing known deposit and extrapolate that knowledge out into the adjacent areas within the exploration license.

Figure 5: Section D-D' Displaying position of ALRC017, ALRC018 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

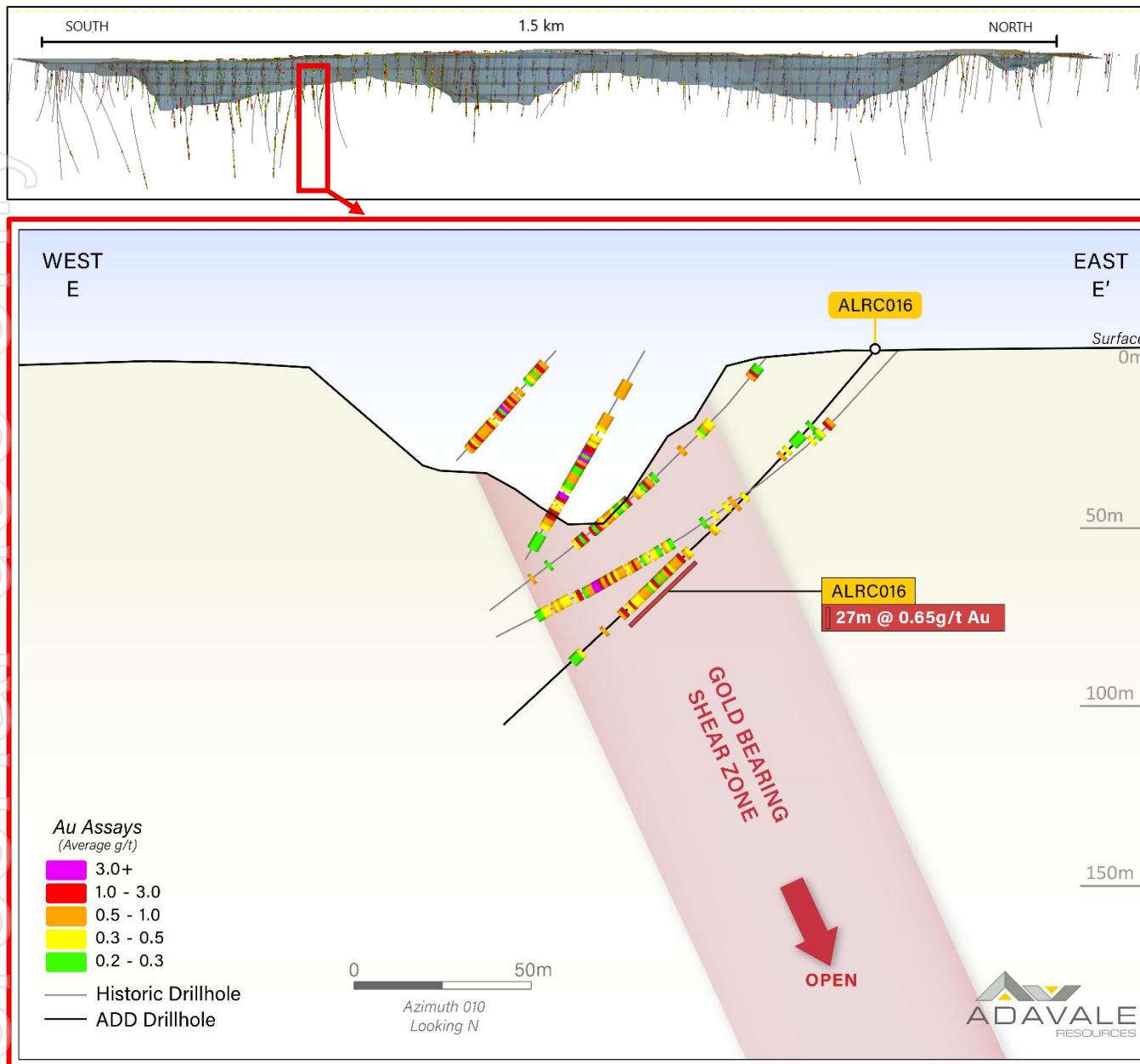


Figure 6: Section E-E' Displaying position of ALRC016 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

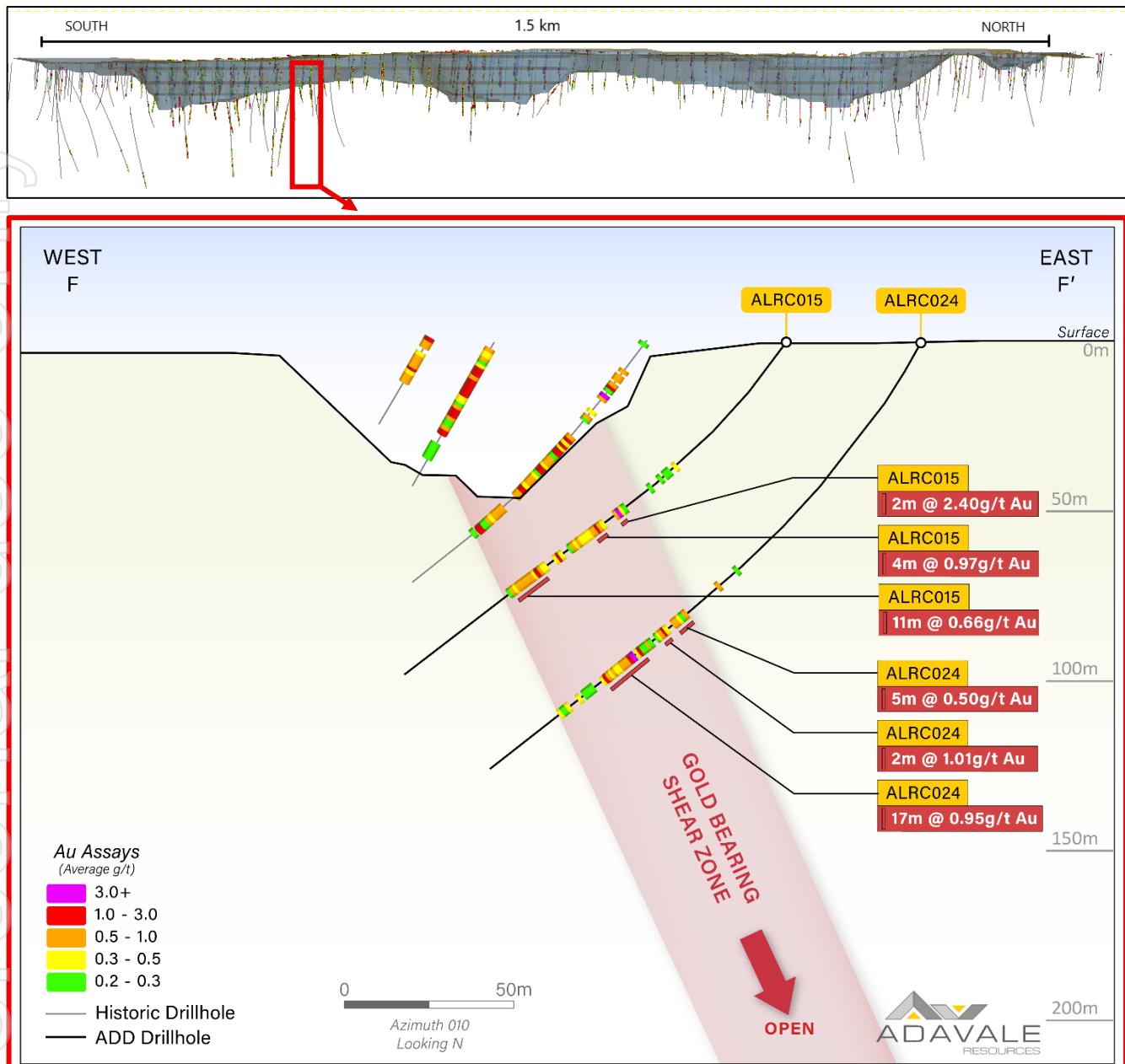


Figure 7: Section F-F' Displaying position of ALRC016 Intercept in Cross Section
Sections are 25m apart and identified in alphabetical order. A-A' being the southernmost G-G' the northern most

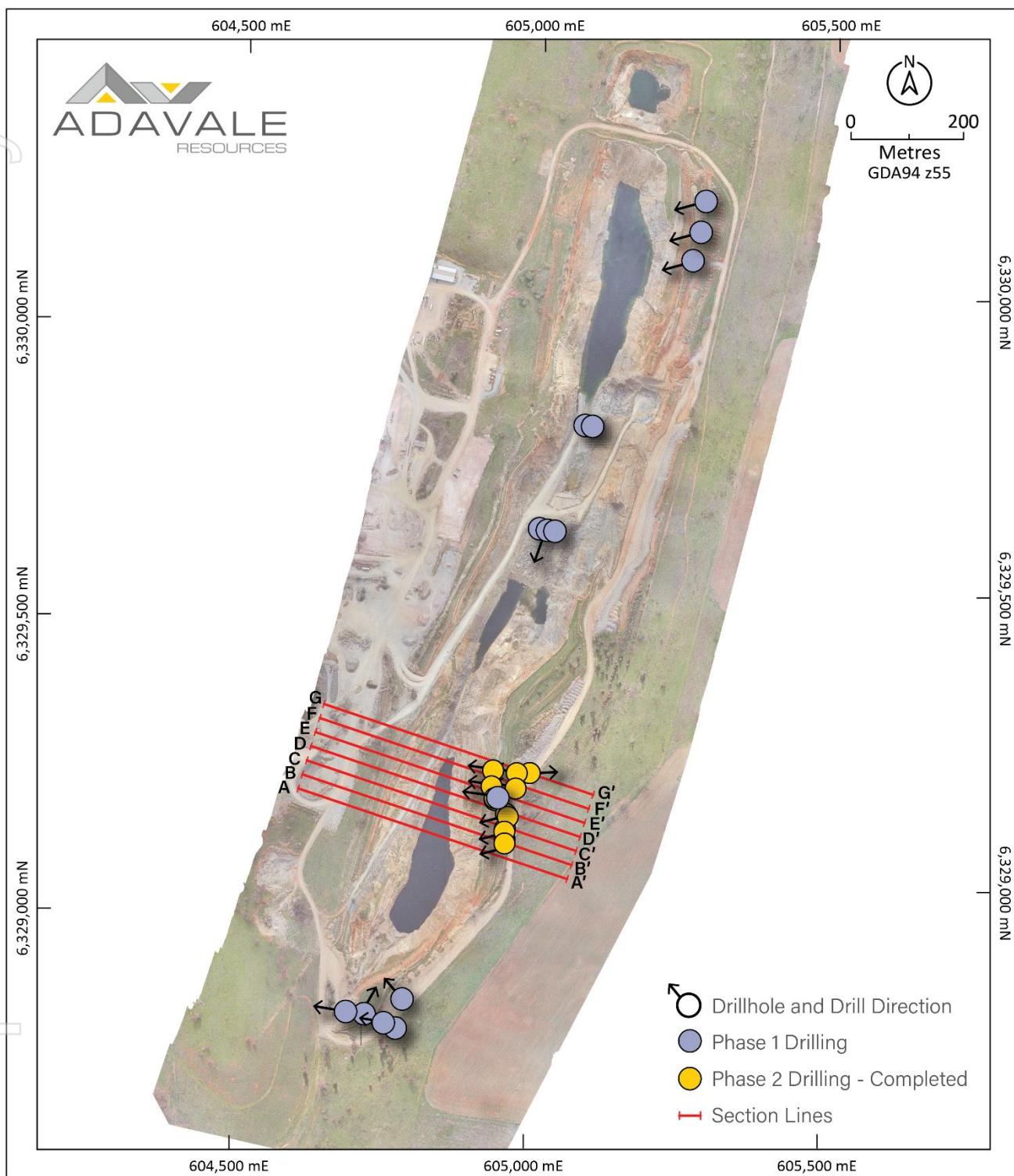


Figure 8: Drill Collars of the 26 RC holes drilled by Adavale Resources at London-Victoria Gold Mine

London-Victoria Gold Mine – Next Steps

- **Expanded Phase 3 Drilling program of an initial 6,000 metres underway**
- **pXRF-based geochemical logging** to refine lithological and geochemical discrimination and to confirm the distribution of the host andesite and sedimentary sequences.
- **Incorporate new structural data** to continually refine Adavale's geological and resource model which will in turn guide near-term drilling and resource growth.
- **Magnetic Survey:** In the light of the positive magnetics vs gold association further airborne and/or ground based magnetic survey planning is underway. Data acquisition planned for March '26.

Next Steps at the Parkes Project

Multiple ongoing exploration efforts continue to take place at the Parkes Project simultaneously, with key projects and milestones including:

- **Further Geochemical Survey Planning:** Identification of future targets for geochemical work to take place simultaneously with other activity; Parkvale South becoming a high priority dependent on results of further rock chip sampling and currently progressing ground magnetics.
- **Further Prospect Reconnaissance:** Visits to additional targets on the project is ongoing and being planned for future reconnaissance efforts, including additional areas on **No Mistake (EL8830)** and an initial visit to **The Dish (EL9711)**, as well as the Northern Areas of **Front Gate (EL8831)**.

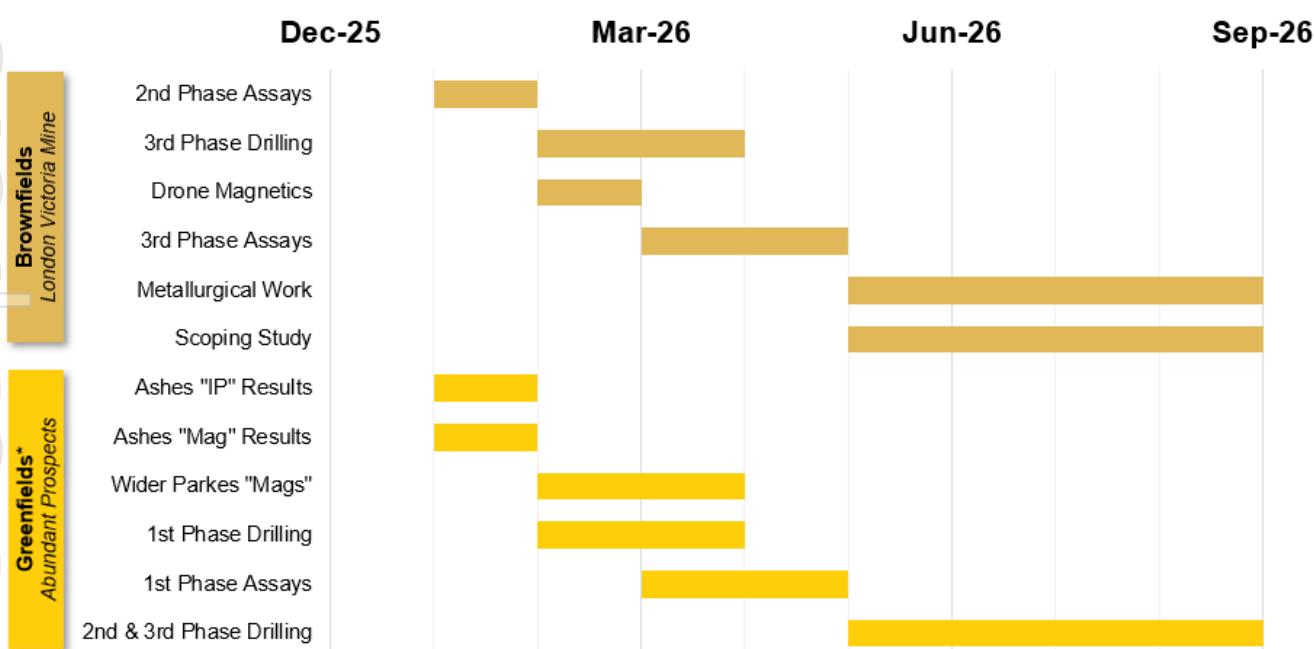


Figure 9: Gantt Chart illustrating Adavale's planned exploration work across its Parkes Gold-Copper Project, located in the Lachlan Fold Belt, NSW.

This announcement is authorised for release by the Board of Adavale Resources Limited.

Further information:

Allan Ritchie

Executive Chairman and CEO
Adavale Resources
E: investor@adavaleresources.com
P: +61 2 9127 9852

David Ward

Managing Director
Adavale Resources
E: investor@adavaleresources.com
P: +61 2 9127 9852

Jane Morgan

Media and Investor Inquiries
Jane Morgan Management
E: jm@janemorganmanagement.com.au
P: +61(0) 405 555 618

Forward Looking Statements

Certain statements in this announcement are or may be "forward-looking statements" and represent Adavale's intentions, projections, expectations, or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements don't necessarily involve known and unknown risks, uncertainties, and other factors, many of which are beyond the control of Adavale Resources, and which may cause Adavale Resources actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this announcement is a promise or representation as to the future. Statements or assumptions in this announcement as to future matters may prove to be incorrect and differences may be material. Adavale Resources does not make any representation or warranty as to the accuracy of such statements or assumptions.

ASX Announcement References

- 29 November 2024 "Transformational Gold and Copper Project Acquisition"
- 5 May 2025 "Maiden JORC Resource at London-Victoria Project"
- 20 Jan 2026 "Highest Grade Intercept at London Victoria"

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Information on the Mineral Resources presented on the London-Victoria deposit is contained in the ASX announcement dated 5 May 2025. Where the Company refers to Mineral Resource in this presentation, it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate with that announcement continue to apply and have not materially changed. The Company confirms that the form and context their with JORC Table 1 in which the Competent Person's findings are presented have not materially changed from the original announcement.

Competent Persons Statement

The information in this document that relates to exploration results is based on information compiled by David Ward BSc, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM), (Member 228604). David Ward has over 25 years of experience in metallic minerals mining, exploration and development and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a 'Competent Person' as defined under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Ward consents to the inclusion in this report of the matters based on his information in the form and context in which it appears

Appendix 1 – Collar Summary (Entire Program)

HOLE_ID	X (GDA94)	Y (GDA94)	RL	DEPTH	Dip	Azimuth (GDA94)	Status
ALRC015	604,936	6,329,224	323.9	150	-50	278	Previously released
ALRC016	604,933	6,329,198	325.0	150	-50	278	Previously released
ALRC017	604,937	6,329,175	325.0	162	-50	278	This Announcement
ALRC018	604,961	6,329,150	325.0	194	-50	278	Previously released
ALRC019	604,957	6,329,126	322.8	210	-50	276	This Announcement
ALRC020	604,955	6,329,109	322.0	210	-50	271	Previously released
ALRC021	604,955	6,329,106	321.9	231	-50	264	This Announcement
ALRC022	605,002	6,329,216	324.4	231	-60	85.6	This Announcement
ALRC023	604,974	6,329,217	325.1	231	-60	283	This Announcement
ALRC024	604,967	6,329,191	323.9	180	-60	281	This Announcement
ALRC025	604,959	6,329,144	323.9	231	-60	256.6	Previously released
ALRC026	604,957	6,329,127	322.9	231	-57	252	This Announcement

Appendix 2 – Assay Results (ALRC017, ALRC019, ALRC021, ALRC022, ALRC023, ALRC024, ALRC026)

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC017	0	1	1	0.01	ALRC017	46	47	1	-0.01
ALRC017	1	2	1	0.14	ALRC017	47	48	1	-0.01
ALRC017	2	3	1	0.05	ALRC017	48	49	1	-0.01
ALRC017	3	4	1	0.03	ALRC017	49	50	1	-0.01
ALRC017	4	5	1	-0.01	ALRC017	50	51	1	-0.01
ALRC017	5	6	1	-0.01	ALRC017	51	52	1	-0.01
ALRC017	6	7	1	-0.01	ALRC017	52	53	1	-0.01
ALRC017	7	8	1	-0.01	ALRC017	53	54	1	-0.01
ALRC017	8	9	1	-0.01	ALRC017	54	55	1	-0.01
ALRC017	9	10	1	-0.01	ALRC017	55	56	1	-0.01
ALRC017	10	11	1	-0.01	ALRC017	56	57	1	-0.01
ALRC017	11	12	1	-0.01	ALRC017	57	58	1	0.12
ALRC017	12	13	1	-0.01	ALRC017	58	59	1	0.02
ALRC017	13	14	1	-0.01	ALRC017	59	60	1	-0.01
ALRC017	14	15	1	-0.01	ALRC017	60	61	1	-0.01
ALRC017	15	16	1	-0.01	ALRC017	61	62	1	0.01
ALRC017	16	17	1	-0.01	ALRC017	62	63	1	-0.01
ALRC017	17	18	1	-0.01	ALRC017	63	64	1	-0.01
ALRC017	18	19	1	-0.01	ALRC017	64	65	1	0.03
ALRC017	19	20	1	-0.01	ALRC017	65	66	1	0.45
ALRC017	20	21	1	0.01	ALRC017	66	67	1	0.03
ALRC017	21	22	1	-0.01	ALRC017	67	68	1	0.29
ALRC017	22	23	1	0.09	ALRC017	68	69	1	0.05
ALRC017	23	24	1	-0.01	ALRC017	69	70	1	0.05
ALRC017	24	25	1	-0.01	ALRC017	70	71	1	-0.01
ALRC017	25	26	1	-0.01	ALRC017	71	72	1	0.02
ALRC017	26	27	1	-0.01	ALRC017	72	73	1	0.06
ALRC017	27	28	1	-0.01	ALRC017	73	74	1	0.48
ALRC017	28	29	1	-0.01	ALRC017	74	75	1	0.94
ALRC017	29	30	1	-0.01	ALRC017	75	76	1	0.43
ALRC017	30	31	1	-0.01	ALRC017	76	77	1	0.58
ALRC017	31	32	1	-0.01	ALRC017	77	78	1	0.43
ALRC017	32	33	1	-0.01	ALRC017	78	79	1	0.16
ALRC017	33	34	1	-0.01	ALRC017	79	80	1	0.02
ALRC017	34	35	1	0.06	ALRC017	80	81	1	0.04
ALRC017	35	36	1	0.91	ALRC017	81	82	1	-0.01
ALRC017	36	37	1	1.06	ALRC017	82	83	1	-0.01
ALRC017	37	38	1	1.12	ALRC017	83	84	1	-0.01
ALRC017	38	39	1	0.15	ALRC017	84	85	1	-0.01
ALRC017	39	40	1	0.03	ALRC017	85	86	1	-0.01
ALRC017	40	41	1	-0.01	ALRC017	86	87	1	-0.01
ALRC017	41	42	1	-0.01	ALRC017	87	88	1	0.61
ALRC017	42	43	1	0.06	ALRC017	88	89	1	0.69
ALRC017	43	44	1	-0.01	ALRC017	89	90	1	0.77
ALRC017	44	45	1	0.07	ALRC017	90	91	1	0.35

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC017	92	93	1	0.02	ALRC017	138	139	1	0.19
ALRC017	93	94	1	0.23	ALRC017	139	140	1	0.26
ALRC017	94	95	1	0.08	ALRC017	140	141	1	0.07
ALRC017	95	96	1	0.17	ALRC017	141	142	1	0.01
ALRC017	96	97	1	-0.01	ALRC017	142	143	1	-0.01
ALRC017	97	98	1	-0.01	ALRC017	143	144	1	-0.01
ALRC017	98	99	1	0.02	ALRC017	144	145	1	-0.01
ALRC017	99	100	1	0.18	ALRC017	145	146	1	-0.01
ALRC017	100	101	1	0.62	ALRC017	146	147	1	0.01
ALRC017	101	102	1	0.86	ALRC017	147	148	1	-0.01
ALRC017	102	103	1	0.49	ALRC017	148	149	1	-0.01
ALRC017	103	104	1	0.25	ALRC017	149	150	1	-0.01
ALRC017	104	105	1	0.03	ALRC017	150	151	1	-0.01
ALRC017	105	106	1	0.1	ALRC017	151	152	1	-0.01
ALRC017	106	107	1	0.86	ALRC017	152	153	1	-0.01
ALRC017	107	108	1	0.83	ALRC017	153	154	1	-0.01
ALRC017	108	109	1	0.62	ALRC017	154	155	1	-0.01
ALRC017	109	110	1	1.23	ALRC017	155	156	1	-0.01
ALRC017	110	111	1	3.21	ALRC017	156	157	1	-0.01
ALRC017	111	112	1	0.3	ALRC017	157	158	1	-0.01
ALRC017	112	113	1	0.15	ALRC017	158	159	1	-0.01
ALRC017	113	114	1	0.23	ALRC017	159	160	1	-0.01
ALRC017	114	115	1	2.05	ALRC017	160	161	1	-0.01
ALRC017	115	116	1	0.28	ALRC017	161	162	1	-0.01
ALRC017	116	117	1	0.13	ALRC019	0	1	1	0.05
ALRC017	117	118	1	0.13	ALRC019	1	2	1	0.05
ALRC017	118	119	1	0.04	ALRC019	2	3	1	0.04
ALRC017	119	120	1	0.02	ALRC019	3	4	1	0.02
ALRC017	120	121	1	0.46	ALRC019	4	5	1	0.01
ALRC017	121	122	1	0.19	ALRC019	5	6	1	0.01
ALRC017	122	123	1	0.05	ALRC019	6	7	1	0.02
ALRC017	123	124	1	0.21	ALRC019	7	8	1	0.01
ALRC017	124	125	1	0.04	ALRC019	8	9	1	-0.01
ALRC017	125	126	1	0.01	ALRC019	9	10	1	0.01
ALRC017	126	127	1	-0.01	ALRC019	10	11	1	-0.01
ALRC017	127	128	1	-0.01	ALRC019	11	12	1	-0.01
ALRC017	128	129	1	-0.01	ALRC019	12	13	1	-0.01
ALRC017	129	130	1	0.08	ALRC019	13	14	1	-0.01
ALRC017	130	131	1	0.13	ALRC019	14	15	1	-0.01
ALRC017	131	132	1	0.07	ALRC019	15	16	1	-0.01
ALRC017	132	133	1	0.06	ALRC019	16	17	1	-0.01
ALRC017	133	134	1	0.1	ALRC019	17	18	1	-0.01
ALRC017	134	135	1	0.08	ALRC019	18	19	1	-0.01
ALRC017	135	136	1	0.19	ALRC019	19	20	1	-0.01
ALRC017	136	137	1	0.15	ALRC019	20	21	1	-0.01
ALRC017	137	138	1	0.3	ALRC019	21	22	1	0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC019	22	23	1	-0.01	ALRC019	68	69	1	0.01
ALRC019	23	24	1	-0.01	ALRC019	69	70	1	0.01
ALRC019	24	25	1	-0.01	ALRC019	70	71	1	0.01
ALRC019	25	26	1	0.01	ALRC019	71	72	1	0.02
ALRC019	26	27	1	0.01	ALRC019	72	73	1	0.03
ALRC019	27	28	1	-0.01	ALRC019	73	74	1	0.01
ALRC019	28	29	1	-0.01	ALRC019	74	75	1	0.01
ALRC019	29	30	1	-0.01	ALRC019	75	76	1	0.02
ALRC019	30	31	1	-0.01	ALRC019	76	77	1	0.01
ALRC019	31	32	1	-0.01	ALRC019	77	78	1	-0.01
ALRC019	32	33	1	-0.01	ALRC019	78	79	1	0.32
ALRC019	33	34	1	-0.01	ALRC019	79	80	1	1.72
ALRC019	34	35	1	-0.01	ALRC019	80	81	1	0.37
ALRC019	35	36	1	-0.01	ALRC019	81	82	1	0.43
ALRC019	36	37	1	-0.01	ALRC019	82	83	1	1.99
ALRC019	37	38	1	-0.01	ALRC019	83	84	1	2.57
ALRC019	38	39	1	-0.01	ALRC019	84	85	1	0.25
ALRC019	39	40	1	-0.01	ALRC019	85	86	1	0.03
ALRC019	40	41	1	-0.01	ALRC019	86	87	1	0.22
ALRC019	41	42	1	-0.01	ALRC019	87	88	1	0.06
ALRC019	42	43	1	-0.01	ALRC019	88	89	1	0.4
ALRC019	43	44	1	-0.01	ALRC019	89	90	1	0.68
ALRC019	44	45	1	-0.01	ALRC019	90	91	1	0.12
ALRC019	45	46	1	-0.01	ALRC019	91	92	1	0.11
ALRC019	46	47	1	-0.01	ALRC019	92	93	1	0.09
ALRC019	47	48	1	-0.01	ALRC019	93	94	1	0.01
ALRC019	48	49	1	-0.01	ALRC019	94	95	1	0.01
ALRC019	49	50	1	-0.01	ALRC019	95	96	1	0.14
ALRC019	50	51	1	-0.01	ALRC019	96	97	1	0.02
ALRC019	51	52	1	-0.01	ALRC019	97	98	1	0.01
ALRC019	52	53	1	-0.01	ALRC019	98	99	1	-0.01
ALRC019	53	54	1	-0.01	ALRC019	99	100	1	0.02
ALRC019	54	55	1	-0.01	ALRC019	100	101	1	-0.01
ALRC019	55	56	1	-0.01	ALRC019	101	102	1	-0.01
ALRC019	56	57	1	-0.01	ALRC019	102	103	1	-0.01
ALRC019	57	58	1	-0.01	ALRC019	103	104	1	-0.01
ALRC019	58	59	1	-0.01	ALRC019	104	105	1	0.01
ALRC019	59	60	1	-0.01	ALRC019	105	106	1	-0.01
ALRC019	60	61	1	0.01	ALRC019	106	107	1	-0.01
ALRC019	61	62	1	-0.01	ALRC019	107	108	1	-0.01
ALRC019	62	63	1	-0.01	ALRC019	108	109	1	0.01
ALRC019	63	64	1	-0.01	ALRC019	109	110	1	0.03
ALRC019	64	65	1	0.01	ALRC019	110	111	1	-0.01
ALRC019	65	66	1	-0.01	ALRC019	111	112	1	-0.01
ALRC019	66	67	1	0.02	ALRC019	112	113	1	-0.01
ALRC019	67	68	1	0.01	ALRC019	113	114	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC019	114	115	1	-0.01	ALRC019	160	161	1	0.05
ALRC019	115	116	1	-0.01	ALRC019	161	162	1	0.01
ALRC019	116	117	1	0.05	ALRC019	162	163	1	-0.01
ALRC019	117	118	1	0.14	ALRC019	163	164	1	0.55
ALRC019	118	119	1	0.85	ALRC019	164	165	1	0.6
ALRC019	119	120	1	0.57	ALRC019	165	166	1	0.23
ALRC019	120	121	1	0.41	ALRC019	166	167	1	0.18
ALRC019	121	122	1	1.6	ALRC019	167	168	1	0.22
ALRC019	122	123	1	0.8	ALRC019	168	169	1	0.16
ALRC019	123	124	1	0.01	ALRC019	169	170	1	0.45
ALRC019	124	125	1	0.01	ALRC019	170	171	1	0.22
ALRC019	125	126	1	0.13	ALRC019	171	172	1	0.21
ALRC019	126	127	1	0.17	ALRC019	172	173	1	0.25
ALRC019	127	128	1	0.05	ALRC019	173	174	1	0.16
ALRC019	128	129	1	0.01	ALRC019	174	175	1	0.13
ALRC019	129	130	1	0.01	ALRC019	175	176	1	0.03
ALRC019	130	131	1	0.04	ALRC019	176	177	1	0.01
ALRC019	131	132	1	-0.01	ALRC019	177	178	1	0.17
ALRC019	132	133	1	0.03	ALRC019	178	179	1	0.07
ALRC019	133	134	1	0.06	ALRC019	179	180	1	-0.01
ALRC019	134	135	1	-0.01	ALRC019	180	181	1	0.03
ALRC019	135	136	1	-0.01	ALRC019	181	182	1	0.01
ALRC019	136	137	1	-0.01	ALRC019	182	183	1	-0.01
ALRC019	137	138	1	1.19	ALRC019	183	184	1	-0.01
ALRC019	138	139	1	0.45	ALRC019	184	185	1	-0.01
ALRC019	139	140	1	0.39	ALRC019	185	186	1	-0.01
ALRC019	140	141	1	1.22	ALRC019	186	187	1	-0.01
ALRC019	141	142	1	4.16	ALRC019	187	188	1	-0.01
ALRC019	142	143	1	1.01	ALRC019	188	189	1	-0.01
ALRC019	143	144	1	2.83	ALRC019	189	190	1	-0.01
ALRC019	144	145	1	4.91	ALRC019	190	191	1	-0.01
ALRC019	145	146	1	1.77	ALRC019	191	192	1	-0.01
ALRC019	146	147	1	1.35	ALRC019	192	193	1	-0.01
ALRC019	147	148	1	5.65	ALRC019	193	194	1	-0.01
ALRC019	148	149	1	2	ALRC019	194	195	1	-0.01
ALRC019	149	150	1	1.73	ALRC019	195	196	1	-0.01
ALRC019	150	151	1	1.39	ALRC019	196	197	1	-0.01
ALRC019	151	152	1	2.05	ALRC019	197	198	1	-0.01
ALRC019	152	153	1	1.23	ALRC019	198	199	1	-0.01
ALRC019	153	154	1	1.24	ALRC019	199	200	1	-0.01
ALRC019	154	155	1	1.37	ALRC019	200	201	1	-0.01
ALRC019	155	156	1	2.99	ALRC019	201	202	1	-0.01
ALRC019	156	157	1	0.54	ALRC019	202	203	1	-0.01
ALRC019	157	158	1	0.82	ALRC019	203	204	1	-0.01
ALRC019	158	159	1	0.7	ALRC019	204	205	1	-0.01
ALRC019	159	160	1	0.6	ALRC019	205	206	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC019	206	207	1	0.01
ALRC019	207	208	1	-0.01
ALRC019	208	209	1	-0.01
ALRC019	209	210	1	-0.01
ALRC021	0	1	1	0.03
ALRC021	1	2	1	0.03
ALRC021	2	3	1	0.03
ALRC021	3	4	1	0.04
ALRC021	4	5	1	0.01
ALRC021	5	6	1	0.03
ALRC021	6	7	1	1.91
ALRC021	7	8	1	0.37
ALRC021	8	9	1	0.16
ALRC021	9	10	1	0.09
ALRC021	10	11	1	0.04
ALRC021	11	12	1	0.01
ALRC021	12	13	1	-0.01
ALRC021	13	14	1	-0.01
ALRC021	14	15	1	-0.01
ALRC021	15	16	1	-0.01
ALRC021	16	17	1	-0.01
ALRC021	17	18	1	-0.01
ALRC021	18	19	1	-0.01
ALRC021	19	20	1	-0.01
ALRC021	20	21	1	-0.01
ALRC021	21	22	1	-0.01
ALRC021	22	23	1	-0.01
ALRC021	23	24	1	-0.01
ALRC021	24	25	1	-0.01
ALRC021	25	26	1	-0.01
ALRC021	26	27	1	-0.01
ALRC021	27	28	1	-0.01
ALRC021	28	29	1	-0.01
ALRC021	29	30	1	-0.01
ALRC021	30	31	1	-0.01
ALRC021	31	32	1	-0.01
ALRC021	32	33	1	-0.01
ALRC021	33	34	1	-0.01
ALRC021	34	35	1	-0.01
ALRC021	35	36	1	-0.01
ALRC021	36	37	1	-0.01
ALRC021	37	38	1	-0.01
ALRC021	38	39	1	-0.01
ALRC021	39	40	1	-0.01
ALRC021	40	41	1	-0.01
ALRC021	41	42	1	-0.01
Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC021	42	43	1	-0.01
ALRC021	43	44	1	-0.01
ALRC021	44	45	1	-0.01
ALRC021	45	46	1	-0.01
ALRC021	46	47	1	-0.01
ALRC021	47	48	1	0.01
ALRC021	48	49	1	-0.01
ALRC021	49	50	1	-0.01
ALRC021	50	51	1	-0.01
ALRC021	51	52	1	-0.01
ALRC021	52	53	1	-0.01
ALRC021	53	54	1	-0.01
ALRC021	54	55	1	-0.01
ALRC021	55	56	1	-0.01
ALRC021	56	57	1	-0.01
ALRC021	57	58	1	-0.01
ALRC021	58	59	1	-0.01
ALRC021	59	60	1	-0.01
ALRC021	60	61	1	-0.01
ALRC021	61	62	1	-0.01
ALRC021	62	63	1	-0.01
ALRC021	63	64	1	-0.01
ALRC021	64	65	1	-0.01
ALRC021	65	66	1	-0.01
ALRC021	66	67	1	-0.01
ALRC021	67	68	1	-0.01
ALRC021	68	69	1	0.01
ALRC021	69	70	1	-0.01
ALRC021	70	71	1	-0.01
ALRC021	71	72	1	-0.01
ALRC021	72	73	1	-0.01
ALRC021	73	74	1	-0.01
ALRC021	74	75	1	-0.01
ALRC021	75	76	1	-0.01
ALRC021	76	77	1	-0.01
ALRC021	77	78	1	-0.01
ALRC021	78	79	1	-0.01
ALRC021	79	80	1	-0.01
ALRC021	80	81	1	-0.01
ALRC021	81	82	1	-0.01
ALRC021	82	83	1	-0.01
ALRC021	83	84	1	0.01
ALRC021	84	85	1	0.01
ALRC021	85	86	1	-0.01
ALRC021	86	87	1	0.01
ALRC021	87	88	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC021	88	89	1	-0.01
ALRC021	89	90	1	0.25
ALRC021	90	91	1	0.05
ALRC021	91	92	1	0.01
ALRC021	92	93	1	0.01
ALRC021	93	94	1	-0.01
ALRC021	94	95	1	0.01
ALRC021	95	96	1	-0.01
ALRC021	96	97	1	-0.01
ALRC021	97	98	1	-0.01
ALRC021	98	99	1	0.02
ALRC021	99	100	1	0.06
ALRC021	100	101	1	0.1
ALRC021	101	102	1	0.09
ALRC021	102	103	1	0.07
ALRC021	103	104	1	0.04
ALRC021	104	105	1	0.03
ALRC021	105	106	1	0.02
ALRC021	106	107	1	0.05
ALRC021	107	108	1	0.06
ALRC021	108	109	1	0.02
ALRC021	109	110	1	0.01
ALRC021	110	111	1	0.01
ALRC021	111	112	1	0.01
ALRC021	112	113	1	-0.01
ALRC021	113	114	1	0.01
ALRC021	114	115	1	0.01
ALRC021	115	116	1	0.01
ALRC021	116	117	1	0.01
ALRC021	117	118	1	-0.01
ALRC021	118	119	1	-0.01
ALRC021	119	120	1	-0.01
ALRC021	120	121	1	-0.01
ALRC021	121	122	1	0.01
ALRC021	122	123	1	-0.01
ALRC021	123	124	1	-0.01
ALRC021	124	125	1	-0.01
ALRC021	125	126	1	-0.01
ALRC021	126	127	1	0.01
ALRC021	127	128	1	-0.01
ALRC021	128	129	1	-0.01
ALRC021	129	130	1	0.08
ALRC021	130	131	1	-0.01
ALRC021	131	132	1	0.13
ALRC021	132	133	1	0.07
ALRC021	133	134	1	5.06
ALRC021	134	135	1	1.22
ALRC021	135	136	1	0.21
ALRC021	136	137	1	0.03
ALRC021	137	138	1	0.04
ALRC021	138	139	1	0.03
ALRC021	139	140	1	0.97
ALRC021	140	141	1	0.28
ALRC021	141	142	1	0.02
ALRC021	142	143	1	0.07
ALRC021	143	144	1	0.02
ALRC021	144	145	1	1.06
ALRC021	145	146	1	0.23
ALRC021	146	147	1	0.09
ALRC021	147	148	1	0.04
ALRC021	148	149	1	0.01
ALRC021	149	150	1	-0.01
ALRC021	150	151	1	0.01
ALRC021	151	152	1	0.01
ALRC021	152	153	1	0.01
ALRC021	153	154	1	0.01
ALRC021	154	155	1	0.04
ALRC021	155	156	1	0.13
ALRC021	156	157	1	0.04
ALRC021	157	158	1	0.09
ALRC021	158	159	1	0.09
ALRC021	159	160	1	0.37
ALRC021	160	161	1	0.47
ALRC021	161	162	1	0.61
ALRC021	162	163	1	0.78
ALRC021	163	164	1	3.73
ALRC021	164	165	1	1.37
ALRC021	165	166	1	1.85
ALRC021	166	167	1	3.26
ALRC021	167	168	1	1.43
ALRC021	168	169	1	0.44
ALRC021	169	170	1	0.5
ALRC021	170	171	1	0.21
ALRC021	171	172	1	0.15
ALRC021	172	173	1	5.58
ALRC021	173	174	1	1.81
ALRC021	174	175	1	1.16
ALRC021	175	176	1	0.96
ALRC021	176	177	1	1.75
ALRC021	177	178	1	1.78
ALRC021	178	179	1	0.74
ALRC021	179	180	1	0.43

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC021	180	181	1	0.51	ALRC021	226	227	1	-0.01
ALRC021	181	182	1	0.88	ALRC021	227	228	1	-0.01
ALRC021	182	183	1	0.97	ALRC021	228	229	1	-0.01
ALRC021	183	184	1	0.15	ALRC021	229	230	1	-0.01
ALRC021	184	185	1	0.15	ALRC021	230	231	1	-0.01
ALRC021	185	186	1	0.18	ALRC022	0	1	1	0.1
ALRC021	186	187	1	0.08	ALRC022	1	2	1	0.07
ALRC021	187	188	1	0.06	ALRC022	2	3	1	0.03
ALRC021	188	189	1	0.06	ALRC022	3	4	1	0.01
ALRC021	189	190	1	0.21	ALRC022	4	5	1	-0.01
ALRC021	190	191	1	0.08	ALRC022	5	6	1	-0.01
ALRC021	191	192	1	0.05	ALRC022	6	7	1	-0.01
ALRC021	192	193	1	0.05	ALRC022	7	8	1	-0.01
ALRC021	193	194	1	0.01	ALRC022	8	9	1	-0.01
ALRC021	194	195	1	0.04	ALRC022	9	10	1	-0.01
ALRC021	195	196	1	0.02	ALRC022	10	11	1	-0.01
ALRC021	196	197	1	0.01	ALRC022	11	12	1	0.01
ALRC021	197	198	1	-0.01	ALRC022	12	13	1	-0.01
ALRC021	198	199	1	-0.01	ALRC022	13	14	1	-0.01
ALRC021	199	200	1	-0.01	ALRC022	14	15	1	-0.01
ALRC021	200	201	1	-0.01	ALRC022	15	16	1	-0.01
ALRC021	201	202	1	0.01	ALRC022	16	17	1	-0.01
ALRC021	202	203	1	-0.01	ALRC022	17	18	1	-0.01
ALRC021	203	204	1	-0.01	ALRC022	18	19	1	-0.01
ALRC021	204	205	1	-0.01	ALRC022	19	20	1	-0.01
ALRC021	205	206	1	-0.01	ALRC022	20	21	1	-0.01
ALRC021	206	207	1	-0.01	ALRC022	21	22	1	-0.01
ALRC021	207	208	1	-0.01	ALRC022	22	23	1	-0.01
ALRC021	208	209	1	-0.01	ALRC022	23	24	1	0.01
ALRC021	209	210	1	-0.01	ALRC022	24	25	1	-0.01
ALRC021	210	211	1	-0.01	ALRC022	25	26	1	-0.01
ALRC021	211	212	1	-0.01	ALRC022	26	27	1	-0.01
ALRC021	212	213	1	0.05	ALRC022	27	28	1	-0.01
ALRC021	213	214	1	-0.01	ALRC022	28	29	1	-0.01
ALRC021	214	215	1	-0.01	ALRC022	29	30	1	-0.01
ALRC021	215	216	1	-0.01	ALRC022	30	31	1	-0.01
ALRC021	216	217	1	-0.01	ALRC022	31	32	1	-0.01
ALRC021	217	218	1	-0.01	ALRC022	32	33	1	-0.01
ALRC021	218	219	1	-0.01	ALRC022	33	34	1	-0.01
ALRC021	219	220	1	-0.01	ALRC022	34	35	1	-0.01
ALRC021	220	221	1	-0.01	ALRC022	35	36	1	-0.01
ALRC021	221	222	1	-0.01	ALRC022	36	37	1	-0.01
ALRC021	222	223	1	0.01	ALRC022	37	38	1	-0.01
ALRC021	223	224	1	-0.01	ALRC022	38	39	1	-0.01
ALRC021	224	225	1	-0.01	ALRC022	39	40	1	0.01
ALRC021	225	226	1	-0.01	ALRC022	40	41	1	0.04

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC022	41	42	1	-0.01	ALRC022	87	88	1	-0.01
ALRC022	42	43	1	-0.01	ALRC022	88	89	1	-0.01
ALRC022	43	44	1	0.04	ALRC022	89	90	1	-0.01
ALRC022	44	45	1	0.02	ALRC022	90	91	1	-0.01
ALRC022	45	46	1	-0.01	ALRC022	91	92	1	-0.01
ALRC022	46	47	1	-0.01	ALRC022	92	93	1	-0.01
ALRC022	47	48	1	-0.01	ALRC022	93	94	1	-0.01
ALRC022	48	49	1	-0.01	ALRC022	94	95	1	-0.01
ALRC022	49	50	1	-0.01	ALRC022	95	96	1	-0.01
ALRC022	50	51	1	-0.01	ALRC022	96	97	1	-0.01
ALRC022	51	52	1	-0.01	ALRC022	97	98	1	0.01
ALRC022	52	53	1	-0.01	ALRC022	98	99	1	-0.01
ALRC022	53	54	1	-0.01	ALRC022	99	100	1	-0.01
ALRC022	54	55	1	-0.01	ALRC022	100	101	1	-0.01
ALRC022	55	56	1	-0.01	ALRC022	101	102	1	-0.01
ALRC022	56	57	1	-0.01	ALRC022	102	103	1	-0.01
ALRC022	57	58	1	0.01	ALRC022	103	104	1	-0.01
ALRC022	58	59	1	-0.01	ALRC022	104	105	1	0.01
ALRC022	59	60	1	-0.01	ALRC022	105	106	1	-0.01
ALRC022	60	61	1	-0.01	ALRC022	106	107	1	-0.01
ALRC022	61	62	1	-0.01	ALRC022	107	108	1	0.01
ALRC022	62	63	1	-0.01	ALRC022	108	109	1	-0.01
ALRC022	63	64	1	-0.01	ALRC022	109	110	1	-0.01
ALRC022	64	65	1	-0.01	ALRC022	110	111	1	0.01
ALRC022	65	66	1	-0.01	ALRC022	111	112	1	-0.01
ALRC022	66	67	1	-0.01	ALRC022	112	113	1	-0.01
ALRC022	67	68	1	-0.01	ALRC022	113	114	1	-0.01
ALRC022	68	69	1	-0.01	ALRC022	114	115	1	-0.01
ALRC022	69	70	1	-0.01	ALRC022	115	116	1	-0.01
ALRC022	70	71	1	-0.01	ALRC022	116	117	1	-0.01
ALRC022	71	72	1	-0.01	ALRC022	117	118	1	-0.01
ALRC022	72	73	1	-0.01	ALRC022	118	119	1	-0.01
ALRC022	73	74	1	-0.01	ALRC022	119	120	1	-0.01
ALRC022	74	75	1	-0.01	ALRC022	120	121	1	-0.01
ALRC022	75	76	1	-0.01	ALRC022	121	122	1	-0.01
ALRC022	76	77	1	-0.01	ALRC022	122	123	1	0.01
ALRC022	77	78	1	-0.01	ALRC022	123	124	1	-0.01
ALRC022	78	79	1	-0.01	ALRC022	124	125	1	-0.01
ALRC022	79	80	1	-0.01	ALRC022	125	126	1	-0.01
ALRC022	80	81	1	-0.01	ALRC022	126	127	1	-0.01
ALRC022	81	82	1	-0.01	ALRC022	127	128	1	-0.01
ALRC022	82	83	1	-0.01	ALRC022	128	129	1	-0.01
ALRC022	83	84	1	-0.01	ALRC022	129	130	1	-0.01
ALRC022	84	85	1	-0.01	ALRC022	130	131	1	-0.01
ALRC022	85	86	1	-0.01	ALRC022	131	132	1	-0.01
ALRC022	86	87	1	-0.01	ALRC022	132	133	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC022	133	134	1	-0.01
ALRC022	134	135	1	-0.01
ALRC022	135	136	1	-0.01
ALRC022	136	137	1	-0.01
ALRC022	137	138	1	-0.01
ALRC022	138	139	1	-0.01
ALRC022	139	140	1	-0.01
ALRC022	140	141	1	-0.01
ALRC022	141	142	1	-0.01
ALRC022	142	143	1	-0.01
ALRC022	143	144	1	-0.01
ALRC022	144	145	1	-0.01
ALRC022	145	146	1	-0.01
ALRC022	146	147	1	-0.01
ALRC022	147	148	1	-0.01
ALRC022	148	149	1	-0.01
ALRC022	149	150	1	-0.01
ALRC022	150	151	1	-0.01
ALRC022	151	152	1	-0.01
ALRC022	152	153	1	-0.01
ALRC022	153	154	1	-0.01
ALRC022	154	155	1	-0.01
ALRC022	155	156	1	0.01
ALRC022	156	157	1	-0.01
ALRC022	157	158	1	-0.01
ALRC022	158	159	1	-0.01
ALRC022	159	160	1	-0.01
ALRC022	160	161	1	-0.01
ALRC022	161	162	1	-0.01
ALRC022	162	163	1	-0.01
ALRC022	163	164	1	-0.01
ALRC022	164	165	1	-0.01
ALRC022	165	166	1	-0.01
ALRC022	166	167	1	-0.01
ALRC022	167	168	1	-0.01
ALRC022	168	169	1	-0.01
ALRC022	169	170	1	-0.01
ALRC022	170	171	1	-0.01
ALRC022	171	172	1	-0.01
ALRC022	172	173	1	-0.01
ALRC022	173	174	1	-0.01
ALRC022	174	175	1	-0.01
ALRC022	175	176	1	-0.01
ALRC022	176	177	1	-0.01
ALRC022	177	178	1	-0.01
ALRC022	178	179	1	-0.01
Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC022	179	180	1	-0.01
ALRC022	180	181	1	-0.01
ALRC022	181	182	1	-0.01
ALRC022	182	183	1	-0.01
ALRC022	183	184	1	-0.01
ALRC022	184	185	1	-0.01
ALRC022	185	186	1	-0.01
ALRC022	186	187	1	-0.01
ALRC022	187	188	1	-0.01
ALRC022	188	189	1	0.02
ALRC022	189	190	1	-0.01
ALRC022	190	191	1	-0.01
ALRC022	191	192	1	-0.01
ALRC022	192	193	1	-0.01
ALRC022	193	194	1	-0.01
ALRC022	194	195	1	-0.01
ALRC022	195	196	1	-0.01
ALRC022	196	197	1	-0.01
ALRC022	197	198	1	-0.01
ALRC022	198	199	1	-0.01
ALRC022	199	200	1	-0.01
ALRC022	200	201	1	-0.01
ALRC022	201	202	1	-0.01
ALRC022	202	203	1	-0.01
ALRC022	203	204	1	-0.01
ALRC022	204	205	1	-0.01
ALRC022	205	206	1	-0.01
ALRC022	206	207	1	-0.01
ALRC022	207	208	1	-0.01
ALRC022	208	209	1	-0.01
ALRC022	209	210	1	-0.01
ALRC022	210	211	1	-0.01
ALRC022	211	212	1	-0.01
ALRC022	212	213	1	0.02
ALRC022	213	214	1	-0.01
ALRC022	214	215	1	-0.01
ALRC022	215	216	1	-0.01
ALRC022	216	217	1	0.02
ALRC022	217	218	1	-0.01
ALRC022	218	219	1	-0.01
ALRC022	219	220	1	-0.01
ALRC022	220	221	1	-0.01
ALRC022	221	222	1	-0.01
ALRC022	222	223	1	-0.01
ALRC022	223	224	1	-0.01
ALRC022	224	225	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC022	225	226	1	-0.01
ALRC022	226	227	1	-0.01
ALRC022	227	228	1	-0.01
ALRC022	228	229	1	-0.01
ALRC022	229	230	1	-0.01
ALRC022	230	231	1	-0.01
ALRC023	0	1	1	0.01
ALRC023	1	2	1	0.01
ALRC023	2	3	1	-0.01
ALRC023	3	4	1	-0.01
ALRC023	4	5	1	-0.01
ALRC023	5	6	1	-0.01
ALRC023	6	7	1	-0.01
ALRC023	7	8	1	-0.01
ALRC023	8	9	1	-0.01
ALRC023	9	10	1	-0.01
ALRC023	10	11	1	-0.01
ALRC023	11	12	1	-0.01
ALRC023	12	13	1	-0.01
ALRC023	13	14	1	-0.01
ALRC023	14	15	1	-0.01
ALRC023	15	16	1	-0.01
ALRC023	16	17	1	-0.01
ALRC023	17	18	1	-0.01
ALRC023	18	19	1	-0.01
ALRC023	19	20	1	-0.01
ALRC023	20	21	1	-0.01
ALRC023	21	22	1	-0.01
ALRC023	22	23	1	0.03
ALRC023	23	24	1	-0.01
ALRC023	24	25	1	-0.01
ALRC023	25	26	1	0.01
ALRC023	26	27	1	-0.01
ALRC023	27	28	1	0.01
ALRC023	28	29	1	0.01
ALRC023	29	30	1	0.01
ALRC023	30	31	1	-0.01
ALRC023	31	32	1	0.01
ALRC023	32	33	1	0.01
ALRC023	33	34	1	0.01
ALRC023	34	35	1	-0.01
ALRC023	35	36	1	0.01
ALRC023	36	37	1	-0.01
ALRC023	37	38	1	-0.01
ALRC023	38	39	1	-0.01
ALRC023	39	40	1	0.01
Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC023	40	41	1	-0.01
ALRC023	41	42	1	-0.01
ALRC023	42	43	1	-0.01
ALRC023	43	44	1	0.01
ALRC023	44	45	1	-0.01
ALRC023	45	46	1	-0.01
ALRC023	46	47	1	-0.01
ALRC023	47	48	1	-0.01
ALRC023	48	49	1	-0.01
ALRC023	49	50	1	-0.01
ALRC023	50	51	1	-0.01
ALRC023	51	52	1	-0.01
ALRC023	52	53	1	-0.01
ALRC023	53	54	1	-0.01
ALRC023	54	55	1	-0.01
ALRC023	55	56	1	-0.01
ALRC023	56	57	1	-0.01
ALRC023	57	58	1	-0.01
ALRC023	58	59	1	-0.01
ALRC023	59	60	1	-0.01
ALRC023	60	61	1	-0.01
ALRC023	61	62	1	-0.01
ALRC023	62	63	1	-0.01
ALRC023	63	64	1	0.16
ALRC023	64	65	1	0.16
ALRC023	65	66	1	0.04
ALRC023	66	67	1	0.01
ALRC023	67	68	1	0.67
ALRC023	68	69	1	0.46
ALRC023	69	70	1	0.13
ALRC023	70	71	1	0.31
ALRC023	71	72	1	0.64
ALRC023	72	73	1	0.04
ALRC023	73	74	1	-0.01
ALRC023	74	75	1	-0.01
ALRC023	75	76	1	0.01
ALRC023	76	77	1	-0.01
ALRC023	77	78	1	-0.01
ALRC023	78	79	1	-0.01
ALRC023	79	80	1	-0.01
ALRC023	80	81	1	-0.01
ALRC023	81	82	1	-0.01
ALRC023	82	83	1	-0.01
ALRC023	83	84	1	-0.01
ALRC023	84	85	1	-0.01
ALRC023	85	86	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC023	86	87	1	0.02
ALRC023	87	88	1	0.07
ALRC023	88	89	1	0.48
ALRC023	89	90	1	0.01
ALRC023	90	91	1	0.01
ALRC023	91	92	1	0.04
ALRC023	92	93	1	0.31
ALRC023	93	94	1	-0.01
ALRC023	94	95	1	0.01
ALRC023	95	96	1	-0.01
ALRC023	96	97	1	0.59
ALRC023	97	98	1	-0.01
ALRC023	98	99	1	-0.01
ALRC023	99	100	1	-0.01
ALRC023	100	101	1	-0.01
ALRC023	101	102	1	0.06
ALRC023	102	103	1	0.92
ALRC023	103	104	1	0.17
ALRC023	104	105	1	0.02
ALRC023	105	106	1	0.7
ALRC023	106	107	1	0.42
ALRC023	107	108	1	0.17
ALRC023	108	109	1	1.73
ALRC023	109	110	1	3.25
ALRC023	110	111	1	1.05
ALRC023	111	112	1	1.27
ALRC023	112	113	1	1.5
ALRC023	113	114	1	0.31
ALRC023	114	115	1	1.72
ALRC023	115	116	1	0.62
ALRC023	116	117	1	1.04
ALRC023	117	118	1	1.24
ALRC023	118	119	1	0.94
ALRC023	119	120	1	0.99
ALRC023	120	121	1	5.41
ALRC023	121	122	1	1.67
ALRC023	122	123	1	0.32
ALRC023	123	124	1	0.03
ALRC023	124	125	1	0.04
ALRC023	125	126	1	0.03
ALRC023	126	127	1	0.01
ALRC023	127	128	1	0.31
ALRC023	128	129	1	0.37
ALRC023	129	130	1	0.39
ALRC023	130	131	1	0.73
ALRC023	131	132	1	1.4
ALRC023	132	133	1	0.21
ALRC023	133	134	1	0.24
ALRC023	134	135	1	0.28
ALRC023	135	136	1	0.07
ALRC023	136	137	1	0.04
ALRC023	137	138	1	0.01
ALRC023	138	139	1	0.02
ALRC023	139	140	1	0.08
ALRC023	140	141	1	0.17
ALRC023	141	142	1	1.68
ALRC023	142	143	1	1.33
ALRC023	143	144	1	0.58
ALRC023	144	145	1	0.94
ALRC023	145	146	1	0.52
ALRC023	146	147	1	0.47
ALRC023	147	148	1	0.65
ALRC023	148	149	1	0.5
ALRC023	149	150	1	0.34
ALRC023	150	151	1	0.56
ALRC023	151	152	1	0.54
ALRC023	152	153	1	0.25
ALRC023	153	154	1	0.23
ALRC023	154	155	1	0.03
ALRC023	155	156	1	0.01
ALRC023	156	157	1	0.01
ALRC023	157	158	1	0.01
ALRC023	158	159	1	-0.01
ALRC023	159	160	1	0.06
ALRC023	160	161	1	-0.01
ALRC023	161	162	1	-0.01
ALRC023	162	163	1	-0.01
ALRC023	163	164	1	-0.01
ALRC023	164	165	1	-0.01
ALRC023	165	166	1	0.02
ALRC023	166	167	1	0.01
ALRC023	167	168	1	-0.01
ALRC023	168	169	1	-0.01
ALRC023	169	170	1	-0.01
ALRC023	170	171	1	-0.01
ALRC023	171	172	1	-0.01
ALRC023	172	173	1	-0.01
ALRC023	173	174	1	0.01
ALRC023	174	175	1	-0.01
ALRC023	175	176	1	-0.01
ALRC023	176	177	1	0.01
ALRC023	177	178	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC023	178	179	1	-0.01	ALRC023	224	225	1	-0.01
ALRC023	179	180	1	-0.01	ALRC023	225	226	1	0.01
ALRC023	180	181	1	-0.01	ALRC023	226	227	1	-0.01
ALRC023	181	182	1	-0.01	ALRC023	227	228	1	0.01
ALRC023	182	183	1	-0.01	ALRC023	228	229	1	-0.01
ALRC023	183	184	1	0.02	ALRC023	229	230	1	-0.01
ALRC023	184	185	1	0.01	ALRC023	230	231	1	0.19
ALRC023	185	186	1	-0.01	ALRC024	0	1	1	0.03
ALRC023	186	187	1	-0.01	ALRC024	1	2	1	0.04
ALRC023	187	188	1	-0.01	ALRC024	2	3	1	-0.01
ALRC023	188	189	1	0.01	ALRC024	3	4	1	-0.01
ALRC023	189	190	1	0.03	ALRC024	4	5	1	-0.01
ALRC023	190	191	1	0.01	ALRC024	5	6	1	-0.01
ALRC023	191	192	1	-0.01	ALRC024	6	7	1	-0.01
ALRC023	192	193	1	-0.01	ALRC024	7	8	1	-0.01
ALRC023	193	194	1	-0.01	ALRC024	8	9	1	-0.01
ALRC023	194	195	1	-0.01	ALRC024	9	10	1	-0.01
ALRC023	195	196	1	0.05	ALRC024	10	11	1	-0.01
ALRC023	196	197	1	0.02	ALRC024	11	12	1	-0.01
ALRC023	197	198	1	0.01	ALRC024	12	13	1	-0.01
ALRC023	198	199	1	-0.01	ALRC024	13	14	1	-0.01
ALRC023	199	200	1	-0.01	ALRC024	14	15	1	-0.01
ALRC023	200	201	1	0.02	ALRC024	15	16	1	-0.01
ALRC023	201	202	1	0.02	ALRC024	16	17	1	-0.01
ALRC023	202	203	1	0.01	ALRC024	17	18	1	-0.01
ALRC023	203	204	1	0.02	ALRC024	18	19	1	-0.01
ALRC023	204	205	1	-0.01	ALRC024	19	20	1	-0.01
ALRC023	205	206	1	0.01	ALRC024	20	21	1	-0.01
ALRC023	206	207	1	-0.01	ALRC024	21	22	1	-0.01
ALRC023	207	208	1	0.01	ALRC024	22	23	1	-0.01
ALRC023	208	209	1	-0.01	ALRC024	23	24	1	-0.01
ALRC023	209	210	1	-0.01	ALRC024	24	25	1	-0.01
ALRC023	210	211	1	-0.01	ALRC024	25	26	1	-0.01
ALRC023	211	212	1	-0.01	ALRC024	26	27	1	-0.01
ALRC023	212	213	1	0.01	ALRC024	27	28	1	-0.01
ALRC023	213	214	1	0.02	ALRC024	28	29	1	-0.01
ALRC023	214	215	1	-0.01	ALRC024	29	30	1	-0.01
ALRC023	215	216	1	-0.01	ALRC024	30	31	1	-0.01
ALRC023	216	217	1	-0.01	ALRC024	31	32	1	-0.01
ALRC023	217	218	1	0.02	ALRC024	32	33	1	-0.01
ALRC023	218	219	1	-0.01	ALRC024	33	34	1	-0.01
ALRC023	219	220	1	-0.01	ALRC024	34	35	1	-0.01
ALRC023	220	221	1	-0.01	ALRC024	35	36	1	-0.01
ALRC023	221	222	1	0.01	ALRC024	36	37	1	-0.01
ALRC023	222	223	1	0.01	ALRC024	37	38	1	-0.01
ALRC023	223	224	1	-0.01	ALRC024	38	39	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC024	39	40	1	-0.01
ALRC024	40	41	1	-0.01
ALRC024	41	42	1	-0.01
ALRC024	42	43	1	-0.01
ALRC024	43	44	1	-0.01
ALRC024	44	45	1	-0.01
ALRC024	45	46	1	-0.01
ALRC024	46	47	1	-0.01
ALRC024	47	48	1	-0.01
ALRC024	48	49	1	-0.01
ALRC024	49	50	1	-0.01
ALRC024	50	51	1	-0.01
ALRC024	51	52	1	-0.01
ALRC024	52	53	1	-0.01
ALRC024	53	54	1	-0.01
ALRC024	54	55	1	-0.01
ALRC024	55	56	1	-0.01
ALRC024	56	57	1	-0.01
ALRC024	57	58	1	-0.01
ALRC024	58	59	1	-0.01
ALRC024	59	60	1	-0.01
ALRC024	60	61	1	-0.01
ALRC024	61	62	1	-0.01
ALRC024	62	63	1	0.02
ALRC024	63	64	1	-0.01
ALRC024	64	65	1	0.04
ALRC024	65	66	1	-0.01
ALRC024	66	67	1	-0.01
ALRC024	67	68	1	-0.01
ALRC024	68	69	1	-0.01
ALRC024	69	70	1	0.01
ALRC024	70	71	1	-0.01
ALRC024	71	72	1	-0.01
ALRC024	72	73	1	-0.01
ALRC024	73	74	1	0.01
ALRC024	74	75	1	-0.01
ALRC024	75	76	1	-0.01
ALRC024	76	77	1	-0.01
ALRC024	77	78	1	-0.01
ALRC024	78	79	1	-0.01
ALRC024	79	80	1	-0.01
ALRC024	80	81	1	-0.01
ALRC024	81	82	1	-0.01
ALRC024	82	83	1	-0.01
ALRC024	83	84	1	0.03
ALRC024	84	85	1	-0.01
Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC024	85	86	1	0.2
ALRC024	86	87	1	0.23
ALRC024	87	88	1	0.17
ALRC024	88	89	1	0.03
ALRC024	89	90	1	0.1
ALRC024	90	91	1	0.02
ALRC024	91	92	1	-0.01
ALRC024	92	93	1	0.02
ALRC024	93	94	1	0.83
ALRC024	94	95	1	0.05
ALRC024	95	96	1	0.01
ALRC024	96	97	1	0.01
ALRC024	97	98	1	-0.01
ALRC024	98	99	1	-0.01
ALRC024	99	100	1	0.04
ALRC024	100	101	1	-0.01
ALRC024	101	102	1	-0.01
ALRC024	102	103	1	0.01
ALRC024	103	104	1	0.05
ALRC024	104	105	1	0.04
ALRC024	105	106	1	-0.01
ALRC024	106	107	1	0.65
ALRC024	107	108	1	0.26
ALRC024	108	109	1	0.43
ALRC024	109	110	1	0.62
ALRC024	110	111	1	0.52
ALRC024	111	112	1	0.13
ALRC024	112	113	1	0.06
ALRC024	113	114	1	0.49
ALRC024	114	115	1	1.1
ALRC024	115	116	1	0.91
ALRC024	116	117	1	0.41
ALRC024	117	118	1	0.21
ALRC024	118	119	1	0.01
ALRC024	119	120	1	0.27
ALRC024	120	121	1	1
ALRC024	121	122	1	0.22
ALRC024	122	123	1	0.27
ALRC024	123	124	1	2.75
ALRC024	124	125	1	0.36
ALRC024	125	126	1	0.19
ALRC024	126	127	1	4.43
ALRC024	127	128	1	1.15
ALRC024	128	129	1	0.65
ALRC024	129	130	1	0.79
ALRC024	130	131	1	0.66

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC024	131	132	1	0.4	ALRC024	177	178	1	0.01
ALRC024	132	133	1	0.47	ALRC024	178	179	1	-0.01
ALRC024	133	134	1	0.62	ALRC024	179	180	1	-0.01
ALRC024	134	135	1	0.4	ALRC026	0	1	1	0.1
ALRC024	135	136	1	0.66	ALRC026	1	2	1	0.04
ALRC024	136	137	1	1.14	ALRC026	2	3	1	0.05
ALRC024	137	138	1	0.32	ALRC026	3	4	1	0.02
ALRC024	138	139	1	0.16	ALRC026	4	5	1	0.01
ALRC024	139	140	1	0.04	ALRC026	5	6	1	0.01
ALRC024	140	141	1	0.13	ALRC026	6	7	1	-0.01
ALRC024	141	142	1	0.29	ALRC026	7	8	1	-0.01
ALRC024	142	143	1	0.26	ALRC026	8	9	1	0.02
ALRC024	143	144	1	0.27	ALRC026	9	10	1	0.1
ALRC024	144	145	1	0.28	ALRC026	10	11	1	0.01
ALRC024	145	146	1	0.14	ALRC026	11	12	1	-0.01
ALRC024	146	147	1	0.33	ALRC026	12	13	1	-0.01
ALRC024	147	148	1	0.07	ALRC026	13	14	1	-0.01
ALRC024	148	149	1	0.08	ALRC026	14	15	1	-0.01
ALRC024	149	150	1	0.14	ALRC026	15	16	1	-0.01
ALRC024	150	151	1	0.47	ALRC026	16	17	1	-0.01
ALRC024	151	152	1	0.24	ALRC026	17	18	1	-0.01
ALRC024	152	153	1	0.25	ALRC026	18	19	1	-0.01
ALRC024	153	154	1	0.38	ALRC026	19	20	1	-0.01
ALRC024	154	155	1	0.07	ALRC026	20	21	1	-0.01
ALRC024	155	156	1	0.13	ALRC026	21	22	1	-0.01
ALRC024	156	157	1	0.17	ALRC026	22	23	1	-0.01
ALRC024	157	158	1	0.1	ALRC026	23	24	1	-0.01
ALRC024	158	159	1	0.03	ALRC026	24	25	1	-0.01
ALRC024	159	160	1	0.03	ALRC026	25	26	1	-0.01
ALRC024	160	161	1	-0.01	ALRC026	26	27	1	-0.01
ALRC024	161	162	1	-0.01	ALRC026	27	28	1	-0.01
ALRC024	162	163	1	-0.01	ALRC026	28	29	1	-0.01
ALRC024	163	164	1	-0.01	ALRC026	29	30	1	-0.01
ALRC024	164	165	1	-0.01	ALRC026	30	31	1	-0.01
ALRC024	165	166	1	-0.01	ALRC026	31	32	1	-0.01
ALRC024	166	167	1	-0.01	ALRC026	32	33	1	-0.01
ALRC024	167	168	1	-0.01	ALRC026	33	34	1	-0.01
ALRC024	168	169	1	-0.01	ALRC026	34	35	1	-0.01
ALRC024	169	170	1	-0.01	ALRC026	35	36	1	-0.01
ALRC024	170	171	1	-0.01	ALRC026	36	37	1	-0.01
ALRC024	171	172	1	-0.01	ALRC026	37	38	1	-0.01
ALRC024	172	173	1	-0.01	ALRC026	38	39	1	-0.01
ALRC024	173	174	1	-0.01	ALRC026	39	40	1	-0.01
ALRC024	174	175	1	-0.01	ALRC026	40	41	1	-0.01
ALRC024	175	176	1	-0.01	ALRC026	41	42	1	-0.01
ALRC024	176	177	1	-0.01	ALRC026	42	43	1	-0.01

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC026	43	44	1	-0.01
ALRC026	44	45	1	-0.01
ALRC026	45	46	1	-0.01
ALRC026	46	47	1	-0.01
ALRC026	47	48	1	-0.01
ALRC026	48	49	1	-0.01
ALRC026	49	50	1	-0.01
ALRC026	50	51	1	-0.01
ALRC026	51	52	1	-0.01
ALRC026	52	53	1	-0.01
ALRC026	53	54	1	-0.01
ALRC026	54	55	1	-0.01
ALRC026	55	56	1	-0.01
ALRC026	56	57	1	-0.01
ALRC026	57	58	1	-0.01
ALRC026	58	59	1	-0.01
ALRC026	59	60	1	-0.01
ALRC026	60	61	1	-0.01
ALRC026	61	62	1	-0.01
ALRC026	62	63	1	-0.01
ALRC026	63	64	1	-0.01
ALRC026	64	65	1	-0.01
ALRC026	65	66	1	-0.01
ALRC026	66	67	1	-0.01
ALRC026	67	68	1	-0.01
ALRC026	68	69	1	-0.01
ALRC026	69	70	1	-0.01
ALRC026	70	71	1	-0.01
ALRC026	71	72	1	-0.01
ALRC026	72	73	1	-0.01
ALRC026	73	74	1	-0.01
ALRC026	74	75	1	-0.01
ALRC026	75	76	1	-0.01
ALRC026	76	77	1	-0.01
ALRC026	77	78	1	-0.01
ALRC026	78	79	1	-0.01
ALRC026	79	80	1	-0.01
ALRC026	80	81	1	-0.01
ALRC026	81	82	1	-0.01
ALRC026	82	83	1	-0.01
ALRC026	83	84	1	-0.01
ALRC026	84	85	1	-0.01
ALRC026	85	86	1	-0.01
ALRC026	86	87	1	-0.01
ALRC026	87	88	1	-0.01
ALRC026	88	89	1	-0.01
ALRC026	89	90	1	-0.01
ALRC026	90	91	1	-0.01
ALRC026	91	92	1	-0.01
ALRC026	92	93	1	-0.01
ALRC026	93	94	1	0.03
ALRC026	94	95	1	0.21
ALRC026	95	96	1	0.54
ALRC026	96	97	1	0.15
ALRC026	97	98	1	0.05
ALRC026	98	99	1	0.08
ALRC026	99	100	1	0.03
ALRC026	100	101	1	0.01
ALRC026	101	102	1	0.03
ALRC026	102	103	1	0.01
ALRC026	103	104	1	-0.01
ALRC026	104	105	1	0.02
ALRC026	105	106	1	0.01
ALRC026	106	107	1	-0.01
ALRC026	107	108	1	0.01
ALRC026	108	109	1	0.04
ALRC026	109	110	1	0.02
ALRC026	110	111	1	0.03
ALRC026	111	112	1	0.03
ALRC026	112	113	1	0.03
ALRC026	113	114	1	0.07
ALRC026	114	115	1	0.04
ALRC026	115	116	1	0.02
ALRC026	116	117	1	-0.01
ALRC026	117	118	1	-0.01
ALRC026	118	119	1	-0.01
ALRC026	119	120	1	-0.01
ALRC026	120	121	1	-0.01
ALRC026	121	122	1	-0.01
ALRC026	122	123	1	-0.01
ALRC026	123	124	1	-0.01
ALRC026	124	125	1	0.01
ALRC026	125	126	1	0.01
ALRC026	126	127	1	-0.01
ALRC026	127	128	1	-0.01
ALRC026	128	129	1	-0.01
ALRC026	129	130	1	0.02
ALRC026	130	131	1	0.03
ALRC026	131	132	1	0.03
ALRC026	132	133	1	0.01
ALRC026	133	134	1	0.02
ALRC026	134	135	1	0.13

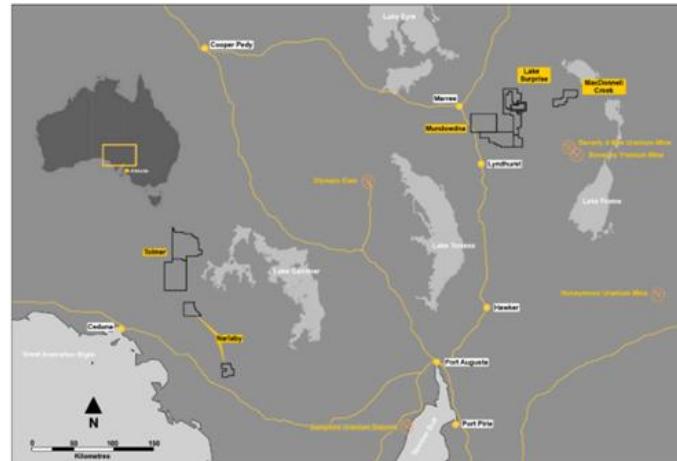
Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)	Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC026	135	136	1	0.02	ALRC026	181	182	1	0.7
ALRC026	136	137	1	0.23	ALRC026	182	183	1	0.51
ALRC026	137	138	1	0.16	ALRC026	183	184	1	0.37
ALRC026	138	139	1	0.04	ALRC026	184	185	1	0.21
ALRC026	139	140	1	0.78	ALRC026	185	186	1	6.53
ALRC026	140	141	1	0.57	ALRC026	186	187	1	0.77
ALRC026	141	142	1	0.41	ALRC026	187	188	1	0.54
ALRC026	142	143	1	0.81	ALRC026	188	189	1	0.96
ALRC026	143	144	1	1.74	ALRC026	189	190	1	0.11
ALRC026	144	145	1	1.29	ALRC026	190	191	1	0.08
ALRC026	145	146	1	0.17	ALRC026	191	192	1	0.19
ALRC026	146	147	1	0.1	ALRC026	192	193	1	0.2
ALRC026	147	148	1	0.06	ALRC026	193	194	1	0.12
ALRC026	148	149	1	0.01	ALRC026	194	195	1	0.07
ALRC026	149	150	1	0.01	ALRC026	195	196	1	0.05
ALRC026	150	151	1	-0.01	ALRC026	196	197	1	0.01
ALRC026	151	152	1	-0.01	ALRC026	197	198	1	0.03
ALRC026	152	153	1	-0.01	ALRC026	198	199	1	0.01
ALRC026	153	154	1	-0.01	ALRC026	199	200	1	0.01
ALRC026	154	155	1	-0.01	ALRC026	200	201	1	0.01
ALRC026	155	156	1	0.1	ALRC026	201	202	1	0.07
ALRC026	156	157	1	0.08	ALRC026	202	203	1	-0.01
ALRC026	157	158	1	0.14	ALRC026	203	204	1	-0.01
ALRC026	158	159	1	0.29	ALRC026	204	205	1	-0.01
ALRC026	159	160	1	0.01	ALRC026	205	206	1	-0.01
ALRC026	160	161	1	0.01	ALRC026	206	207	1	-0.01
ALRC026	161	162	1	0.02	ALRC026	207	208	1	-0.01
ALRC026	162	163	1	0.01	ALRC026	208	209	1	0.02
ALRC026	163	164	1	0.01	ALRC026	209	210	1	0.02
ALRC026	164	165	1	0.01	ALRC026	210	211	1	0.01
ALRC026	165	166	1	0.04	ALRC026	211	212	1	0.01
ALRC026	166	167	1	0.02	ALRC026	212	213	1	0.02
ALRC026	167	168	1	0.01	ALRC026	213	214	1	0.01
ALRC026	168	169	1	0.01	ALRC026	214	215	1	-0.01
ALRC026	169	170	1	0.01	ALRC026	215	216	1	-0.01
ALRC026	170	171	1	0.01	ALRC026	216	217	1	-0.01
ALRC026	171	172	1	0.01	ALRC026	217	218	1	-0.01
ALRC026	172	173	1	0.02	ALRC026	218	219	1	-0.01
ALRC026	173	174	1	0.03	ALRC026	219	220	1	-0.01
ALRC026	174	175	1	0.77	ALRC026	220	221	1	-0.01
ALRC026	175	176	1	2.62	ALRC026	221	222	1	-0.01
ALRC026	176	177	1	2.38	ALRC026	222	223	1	-0.01
ALRC026	177	178	1	0.38	ALRC026	223	224	1	-0.01
ALRC026	178	179	1	0.34	ALRC026	224	225	1	0.01
ALRC026	179	180	1	1.63	ALRC026	225	226	1	-0.01
ALRC026	180	181	1	0.7	ALRC026	226	227	1	0.02

Hole ID	Depth from (m)	Depth to (m)	Interval (m)	Au (g/t)
ALRC026	227	228	1	-0.01
ALRC026	228	229	1	0.01
ALRC026	229	230	1	0.01
ALRC026	230	231	1	-0.01

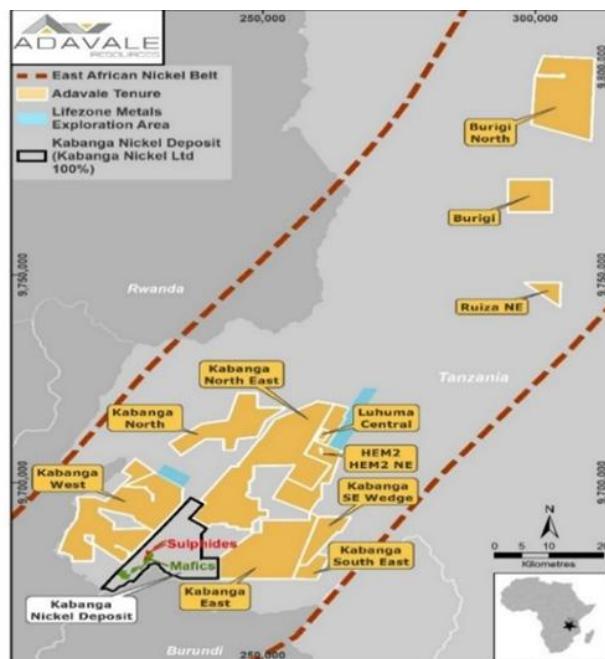
For personal use only

ABOUT ADAVALE RESOURCES

Exploring for Gold and Copper in the NSW Lachlan Fold Belt, Uranium in South Australia, and Nickel Sulphide in Tanzania.


The Parkes Project

Adavale Resources Limited (ASX:ADD) tenements span ~371km² including 100% of EL9785 and a 72.5% interest in the Parkes Gold and Copper Project, consisting of four granted exploration licences that are highly prospective for Au-Cu, primarily due to their location adjacent the giant Northparkes copper-gold mine and encompassing the Ordovician-aged rocks of the Macquarie Arc, within the crustal-scale structure of the Lachlan Transverse Zone (LTZ) that contain both Northparkes and the world-class Cadia gold-copper Mine.


South Australian Uranium Portfolio

Adavale also holds 11 granted exploration licences that are prospective for their sedimentary uranium potential. 7 are held within the northern part of the highly-prospective Northern outwash from the Flinders Ranges in South Australia, as well as 4 granted exploration licence east of Ceduna on the Eyre Peninsula, increasing Adavale's uranium tenement holdings to 4,959km².

The Kabanga Jirani Nickel Project

Adavale also holds the Kabanga Jirani Nickel Project, a portfolio of 13 highly prospective granted licences along the East African Nickel belt in Tanzania. The nine southernmost licences are proximal to the world class Kabanga Nickel Deposit (87.6Mt @ 2.63% Ni Eq). Adavale holds 100% of all licences except for two licences that are known as the Luhuma-Farm-in, which are held at 65%, adding a further 99km² and bringing the portfolio to 1,315km². Adavale's licences were selected based on their strong geochemical and geophysical signatures from the previous exploration undertaken by BHP.

Appendix 3 – JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

CRITERIA	JORC Code Explanation	Commentary
SAMPLING TECHNIQUES	<ul style="list-style-type: none"> Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> The quality of reverse circulation (RC) percussion drilling is generally medium-high because the method significantly reduces the potential of contamination, unless there is a lot of groundwater or badly broken ground. Consequently, these samples can be representative of the interval drilled and therefore can be used for Mineral Resource estimation. RC drilling was used to obtain 1m samples collected through a rig mounted cyclone and then using a rig mounted cone splitter to produce an approximately 3kg sample split for assay. The samples were then dispatched to the On Site Laboratory Services laboratory in Bendigo. The samples were then crushed and pulverised to produce a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination, with a 0.01ppm detection limit. Drill chips were logged by a trained geologist. Duplicate samples were collected approximately every 20 samples and submitted to the laboratory. Duplicates intervals were selected within zones of visual mineralisation by the onsite geologist.
DRILLING TECHNIQUES	<ul style="list-style-type: none"> Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> The drilling program was completed on the 18th of December 2025 and used reverse circulation methods. RC drilling was completed using a 140mm face sampling bit and hammer.
DRILL SAMPLE RECOVERY	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> All samples were dry and RC drilling recoveries recorded. Sample recoveries were considered to be good and within acceptable tolerance for RC drilling.

CRITERIA	JORC Code Explanation	Commentary
LOGGING	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Systematic geological logging was undertaken onsite at the time of RC drilling. Data includes: Collar information including hole depth, coordinates, survey method, survey type, survey date, tenement number, tenement name, prospect name, hole status, date commenced drilling, date completed drilling, pre-collar depth, water depth, bottom of complete oxidation, top of fresh rock. Nature and extent of weathering. Nature and extent of lithologies. Interpretation of relationship between lithologies. Nature and extent of veining. Amount and mode of occurrences of ore minerals. Magnetic susceptibility measurements for every 1m sample. Both qualitative and quantitative data was collected. RC chips were retained in chip trays and stored at Adavale's yard in Parkes. Chip trays were photographed.
SUB-SAMPLING TECHNIQUES AND SAMPLE PREPARATION	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> RC samples were collected using a rig mounted cone splitter. All of samples collected were dry. RC samples were dried, crushed, and pulverised to 90% passing 75 microns RC drilling field duplicates were taken approximately every 20 samples. The samples were dried, crushed, and pulverised to 90% passing 75 microns.
QUALITY OF ASSAY DATA AND LABORATORY TESTS	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Gold (Au) was determined by 50g fire assay (method Au-PE01S) with a detection limit of 0.01ppm. Field duplicates were sampled using the same rig mounted cone splitter as the primary samples. The results of the duplicates were within acceptable tolerance from original. Drill data is compiled and collated and reviewed by senior Adavale staff. No historic or current drillholes have been twinned. The strong foliation in the host rocks caused significant deviation in some drillholes as a result some holes have intersected the mineralised horizon close to historic drillhole intersections. All legacy and new drillholes are displayed on the cross-sections and long-sections within the announcement.

CRITERIA	JORC Code Explanation	Commentary
VERIFICATION OF SAMPLING AND ASSAYING	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> Drill data is compiled and collated and reviewed by senior Adavale staff. No historic or current drillholes have been twinned. The strong foliation in the host rocks caused significant deviation in some drillholes as a result some holes have intersected the mineralised horizon close to historic drillhole intersections. All legacy and new drillholes are displayed on the cross-sections and long-sections within the announcement.
LOCATION OF DATA POINTS	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> Drill collar locations were initially pegged and surveyed using a handheld Garmin GPS with an accuracy of 3-5m. Drillhole collar and downhole survey co-ordinates are recorded in UTM MGA94 Zone 55S. All angled RC holes were downhole surveyed using Reflex GYRO survey tool to produce azimuth and dip readings. Readings were collected typically at a 5m spacing on open hole surveys post completion of drilling the holes. Topography was determined via drone photogrammetry processed by Drone Deploy and cross checked with the legacy open pit survey.
DATA SPACING AND DISTRIBUTION	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> Drillhole collar spacing is variable for Phase 2 drilling they were designed to intersect the mineralised body approximately 25m from the next hole, ALRC017 and ALRC018 the deviation was such that they became close together by the time they reached the mineralised body. The London-Victoria deposit has an existing 2012 JORC Inferred Mineral Resource Estimate of 3.8Mt @ 0.95g/t Au for 115koz Au at a reporting cut-off of 0.25 g/t Au and 3.14Mt @ 1.06 g/t Au for 107koz at a 0.5g/t cut-off. (Adavale Resources Limited Announcement 5th May 2025). All 1m samples collected were assayed for Au and no sample compositing has been applied.
ORIENTATION OF DATA IN RELATION TO GEOLOGICAL STRUCTURE	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> Drilling was mostly designed to intercept perpendicular to north-south oriented mineralised shear zones. Drillhole deviations are considered mostly within tolerance for RC drilling in a strongly foliated host rock.
SAMPLE SECURITY	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Drill chip sample bags were collected within green plastic sample bags and stored onsite during the drilling program. The sample chain of custody has been managed by Adavale Resources Limited staff and a local courier company who delivered the assay samples to the laboratory. On completion of the drilling program the samples were palletised, stored at Adavale's yard in the Parkes Industrial Estate. The samples were then dispatched by courier to the analytical laboratory in Bendigo in two batches.
AUDITS OR REVIEWS	<ul style="list-style-type: none"> The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> Data collection and sampling techniques have not been reviewed or audited.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

CRITERIA	JORC Code explanation	Commentary
MINERAL TENEMENT AND LAND TENURE STATUS	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> The London-Victoria Gold Project is located on EL7242 situated 5km south-west of Parkes in Central-West NSW. The tenement is in good standing and no known impediments exist.
EXPLORATION DONE BY OTHER PARTIES	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> Records for mining at and around London-Victoria Project stem back to 1874 with the discovery of alluvial leads interpreted to be sourced from the eroded hard-rock deposit. Alluvial leads were quickly traced back to the hard-rock source when artisanal mining took place at this time. BHP Gold and subsequently Hargraves Resources mined the current pit between 1988-1996 which closed primarily due to low gold prices in the middle-late 1990s. Gold production comprised 145,000 ounces @ 1.5g/t Au which was mined and processed onsite up until 1996.
GEOLOGY	<ul style="list-style-type: none"> Deposit type, geological setting, and style of mineralisation. 	<ul style="list-style-type: none"> The London-Victoria Gold mine is the most significant mineralisation recognised within EL7242. The area was originally mined as a series of separate underground workings located along a north-south trend on a sheared volcanic/sediment contact, known as the London-Victoria Fault. The Fault has a more competent andesite on the hanging wall, with rheologically contrasting sediments and tuffs on the footwall. Pits/workings on this trend existed prior to the recent open pit mining, and from south to north were; Victoria mine, Shaw's open Cut, Gerbacs' Open Cut and The London Mine and workings near the Majors shaft. The most recent open cut mining of the workings (1988-1995) produced a single elongate main pit covering the Victoria, Shaw's and London workings with a small separate pit at the northern end on the Majors workings. The gold mineralisation has been interpreted as both a narrow mineralised shear/alteration zone in andesitic volcanics immediately adjacent to the steeply east dipping London-Victoria Fault contact, and as a more diffuse fracture zone east of this structure. Mineralisation dissipates to the north through the Majors pit as a series of three narrow shears within the volcanics. Overall gold mineralisation is structurally controlled, with quartz veining and sericite, silica, chlorite, pyrite alteration of volcanic and volcaniclastic rocks evident. Preliminary observations during the drilling program indicate that gold mineralisation at London Victoria is hosted within a tight antiformal structure and this hypothesis will be investigated further in the future.

CRITERIA	JORC Code explanation	Commentary
DRILL HOLE INFORMATION	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> Easting and northing of the drill hole collar. Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar. Dip and azimuth of the hole. Down hole length and interception depth. Hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> See body of announcement.
DATA AGGREGATION METHODS	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> Intercepts reported in press are the volume weighted average with generally a 0.5g/t Au cut-off and a maximum internal dilution of 2m. The cut-off is reported within the text. Significant gold results ≥ 2m downhole intervals > 0.5g/t Au are presented in the body of the report.
RELATIONSHIP BETWEEN MINERALISATION WIDTHS AND INTERCEPT LENGTHS	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Geometry and true width of the gold mineralisation have been interpreted to be striking north-north-east and steeply dipping to the east. Observations from the pit indicate that the gross control on mineralisation maybe associated within a tight antiform and the previously reported mineralised shear zones are on the contacts of the volcanics and sediments units and/or associated with an antiformal axis.
DIAGRAMS	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> See plan view maps and long sections of intercepts in the body of announcement.
BALANCED REPORTING	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> All significant gold results ≥ 2m downhole intervals > 0.5g/t Au are presented in the body of the report.

CRITERIA	JORC Code explanation	Commentary
OTHER SUBSTANTIVE EXPLORATION DATA	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> All material results are recorded shown in the body of the announcement.
FURTHER WORK	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Interpretation of post drilling optical televiewer data collected on available holes is underway. This data along with structural mapping of the pit is planned to create a working structural model which will assist in targeting future drilling. Initial interpretation of magnetic susceptibility data from the drillholes indicates that alteration associated with the mineralisation destroys the primary magnetite. Detailed ground and/or airborne magnetic surveys are being evaluated with the likelihood they will assist with identifying further alteration/mineralisation in zones with low magnetic intensity. Follow-up drilling is planned to enable a future update and potential upgrade of resource classification to the current JORC 2012 Mineral Resource Estimate (MRE) originally announced on 5th May 2025.