

Assays Confirm Structurally Controlled Uranium System at Portland Creek

First batch of assay results received from the Phase 2 drilling program at the Portland Creek Uranium Project, covering holes PCDD25-007 to PCDD25-018 (excluding -011A).

Assays confirm uranium mineralisation across holes PCDD25-008, 10, 12, 14 and 16 spanning across >2 km strike length, up to 347 ppm U_3O_8 .

The multiple broad spaced drillholes encountering low levels of uranium mineralisation indicate a significant hydrothermal event through the district.

Assays establish a direct correlation between uranium levels encountered in drillholes and the fracturing levels of the host rock, consistent with Infini's exploration model of a shear-hosted mineralisation system.

Phase 2 drill program, together with past soil assays up to 74,997 ppm U_3O_8 , confirms an enriched uranium system is present at Portland Creek and major focus will be on intersecting favorable fractured / brecciated structure which has emplaced the high-grade system.

Polymetallic signatures confirmed in laboratory assays, including uranium associated with molybdenum, zinc and copper, supporting the presence of a fertile hydrothermal system.

Portland Creek airborne geophysics survey results expected in Q1 CY2026 to drive target refinement for an expanded 2026 exploration and drilling campaign.

Infini Resources Ltd (ASX: I88, "Infini" or the "Company") has received the first batch of laboratory assay results from the Phase 2 diamond drilling program at its flagship Portland Creek Uranium Project in Newfoundland, Canada. The assays cover drillholes PCDD25-007 to PCDD25-018 (excluding PCDD25-011A) from the completed Phase 2 drilling program.

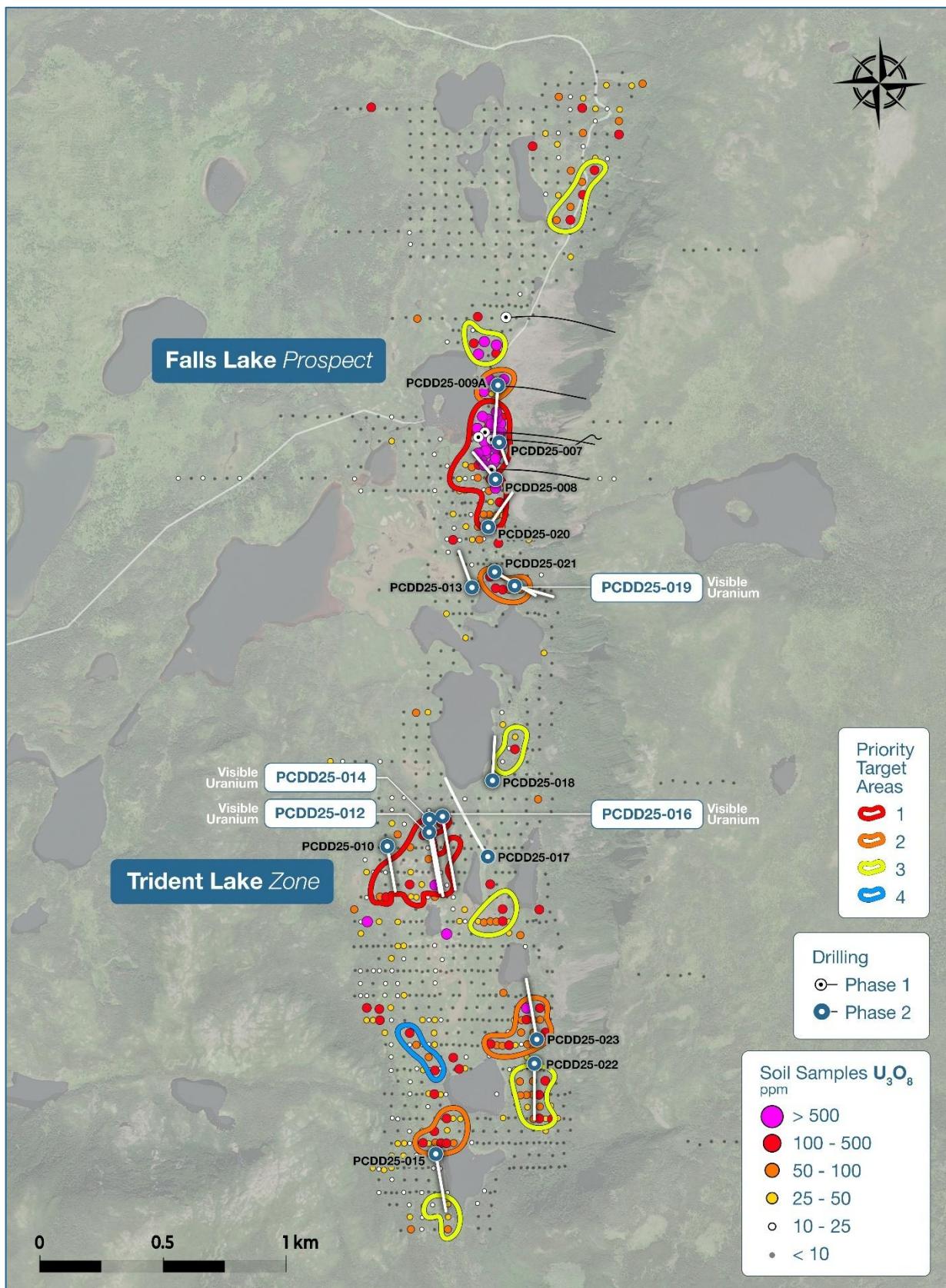
The assay results identified anomalous uranium (25 – 347 ppm U_3O_8) in 5 adjacent drillholes (PCDD25-010, 12, 14, 16 and 17) defining a mineralised zone trending NE-SW with a maximum downhole thickness of 300m. These results validate geological logging and guidance from scintillometer and portable XRF readings reported during drilling. The association of uranium with fractures within sheared granite are consistent with a structurally controlled shear-hosted uranium system.

In addition to uranium mineralisation, laboratory assays confirm localised enrichment, zinc and copper, reinforcing the interpretation of a fertile hydrothermal system at Portland Creek.

Infini's Chief Executive Officer, Rohan Bone, said: *"The first batch of assays from Phase 2 drilling provides strong validation of our exploration model at Portland Creek, confirming uranium mineralisation across multiple holes and targets within a structurally controlled hydrothermal system. Importantly, these results represent only a portion of the broader opportunity at Portland Creek. Large areas of the Project remain untested, including the source of the exceptionally high uranium-in-soil anomalies identified at Falls Lake, which continue to represent a compelling target."*

As we integrate these assay results with geological observations and the high-resolution airborne EM, magnetic and radiometric data being acquired, we expect to significantly improve our understanding of the mineralising system, its primary fluid pathways and structural controls. This combined dataset will be critical in refining target prioritisation and designing a more focused and higher-impact exploration and drilling program in 2026. We believe Portland Creek has substantial upside, and these next steps position Infini well to unlock the full potential of the Project.”

Uranium Mineralisation Confirms the Presence of a Structurally Controlled System


Assay results from Phase 2 drilling confirm the presence of uranium mineralisation and a fertile hydrothermal system across multiple drillholes within the Falls Lake Prospect and the broader Trident Lake Zone. While grades are variable, uranium has been consistently identified in multiple locations, providing confirmation that uranium-bearing fluids have circulated through a broad structural framework at Portland Creek.

Laboratory assays validate earlier indications from surface geochemistry, radiometric data and downhole observations, demonstrating that the exploration targeting applied during Phase 2 drilling is effective in identifying mineralised zones. Uranium mineralisation is predominantly hosted within fractures, joints, breccias and cavity zones developed within granitic host rocks, often coincident with zones of enhanced brittle deformation. This distribution is consistent with uranium precipitation from structurally focused fluid flow, rather than stratigraphically controlled mineralisation.

Collectively, the results confirm the presence of a broader uranium mineralising system and establish a sound geological framework for continued exploration. While Portland Creek remains a greenfield project, the confirmation of uranium mineralisation across multiple targets materially reduces geological uncertainty and supports further systematic evaluation of the Project.

Figure 1: Photo of split core from drillhole PCDD25-014 (470462E, 5558025N, UTM Zone 21, sample ID H091491) demonstrating visual uraninite mineralisation along joint surfaces and along fractures in split drill core from at downhole depth of 28m. Laboratory analysis of a 1m interval including this sample returned 124 ppm U₃O₈ (refer to Appendix 1).

Figure 2: Phase 2 drillhole locations with logged visible uranium across multiple drillholes and multiple priority targets, demonstrating the emerging potential district-scale uranium system at Portland Creek.

Hydrothermal Alteration and Structural Controls on Mineralisation

Phase 2 drilling intersected widespread hydrothermal alteration across much of the drilled area, with alteration assemblages dominated by sodic alteration (albite \pm quartz), locally overprinted by hematite and trace chlorite. Uranium mineralisation is most commonly associated with hematite-rich zones, particularly along the surfaces of suspected reactivated shear planes, indicating a close relationship between alteration, structure and mineralisation.

At Target 2, drilling intersected zones of moderate uranium mineralisation spatially associated with these hematite-altered structures. Although drillhole PCDD25-014 itself returned only limited uranium mineralisation, it intersected a broad zone of faulting characterised by shearing and brecciation, refer to Figure 3. This structural corridor is interpreted to represent a significant fluid pathway and is also independently identified in the first vertical derivative (1VD) magnetic interpretation, where it trends approximately 040° and is interpreted to dip steeply to the southeast. Oriented core data confirms the steep structural geometry observed in the geophysical interpretation.

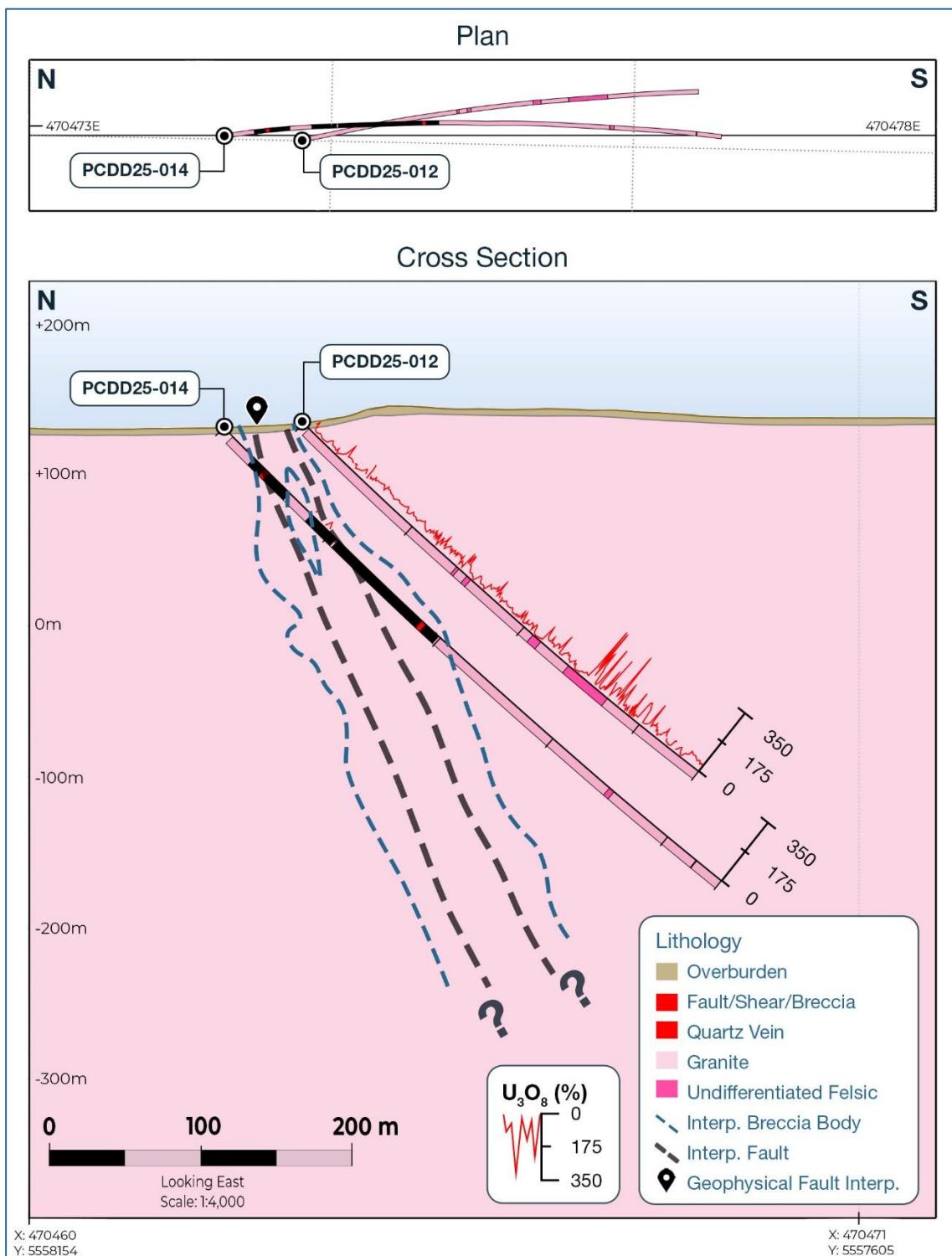
Importantly, uranium mineralisation observed in nearby drillholes appears to be marginal to, rather than centrally within, this major structure, suggesting that mineralisation may be focused along subsidiary fractures or structural splays adjacent to the primary fault zone. This relationship is consistent with structurally controlled hydrothermal systems, where mineral deposition commonly occurs in zones of enhanced permeability peripheral to major fault cores.

Laboratory assays have also identified elevated copper (up to 479 ppm), molybdenum (up to 321 ppm) and zinc (up to 676 ppm) within the drill core. A notable interval in PCDD25-009A from 151.59 m returned a 5.11 m interval averaging 303 ppm copper, 166 ppm molybdenum and 202 ppm zinc, along with elevated pathfinder elements. These polymetallic associations are consistent with hydrothermal fluid activity and support the interpretation of a broader mineralising system at Portland Creek.

While results to date confirm the presence of a coherent hydrothermal system, the bedrock source responsible for the exceptionally high uranium-in-soil anomalies at Falls Lake (up to 7.5% U₃O₈) remains unresolved. Phase 2 drilling has focused on selected targets within the Falls Lake Prospect and the broader Trident Lake Zone; however, the origin of these extreme soil anomalies remains a key area for further investigation.

Numerous untested structural, geochemical and geophysical targets remain across the Portland Creek Project, including extensions of interpreted structural corridors and secondary fault splays beyond the current drill coverage. These features represent important exploration opportunities as the Company continues to refine its understanding of the mineralising system and also represent significant exploration upside.

Unlocking the Next Phase of Growth at Portland Creek


With Phase 2 drilling completed and initial assay results in hand, Infini is now focused on advancing the Project through integrated interpretation and target refinement ahead of the next phase of exploration.

Key upcoming milestones include:

- Final batch of Phase 2 drill assays expected in Q2 CY2026, due to current congestion and extended turnaround times within laboratory assay services.
- Completion of detailed integration of assay results with geological logging, structural interpretation and existing geophysical datasets.
- Completion and interpretation of the airborne EM-magnetic-radiometric survey, with results expected in Q2 CY2026.
- Field program at Portland Creek commencing in Q2 CY2026 to ground-truth priority targets through detailed geological mapping, structural measurements and focused surface geochemical sampling in areas highlighted by drilling and geophysical interpretation

- Refinement and prioritisation of new and existing targets, including untested structural corridors associated with the highest uranium-in-soil anomalies.

Design of an expanded exploration and drilling program for H2 CY2026, aimed at testing the principal fluid pathways and structural traps interpreted to control uranium mineralisation.

Figure 3: Cross-section of holes PCDD25-012 (470459E, 5557965N, UTM Zone 21) and PCDD25-014 (470462E, 5558025N, UTM Zone 21) illustrating uranium mineralisation observed in nearby drillholes appears to be marginal to, rather than centrally within, a broad zone of faulting characterised by shearing and brecciation.

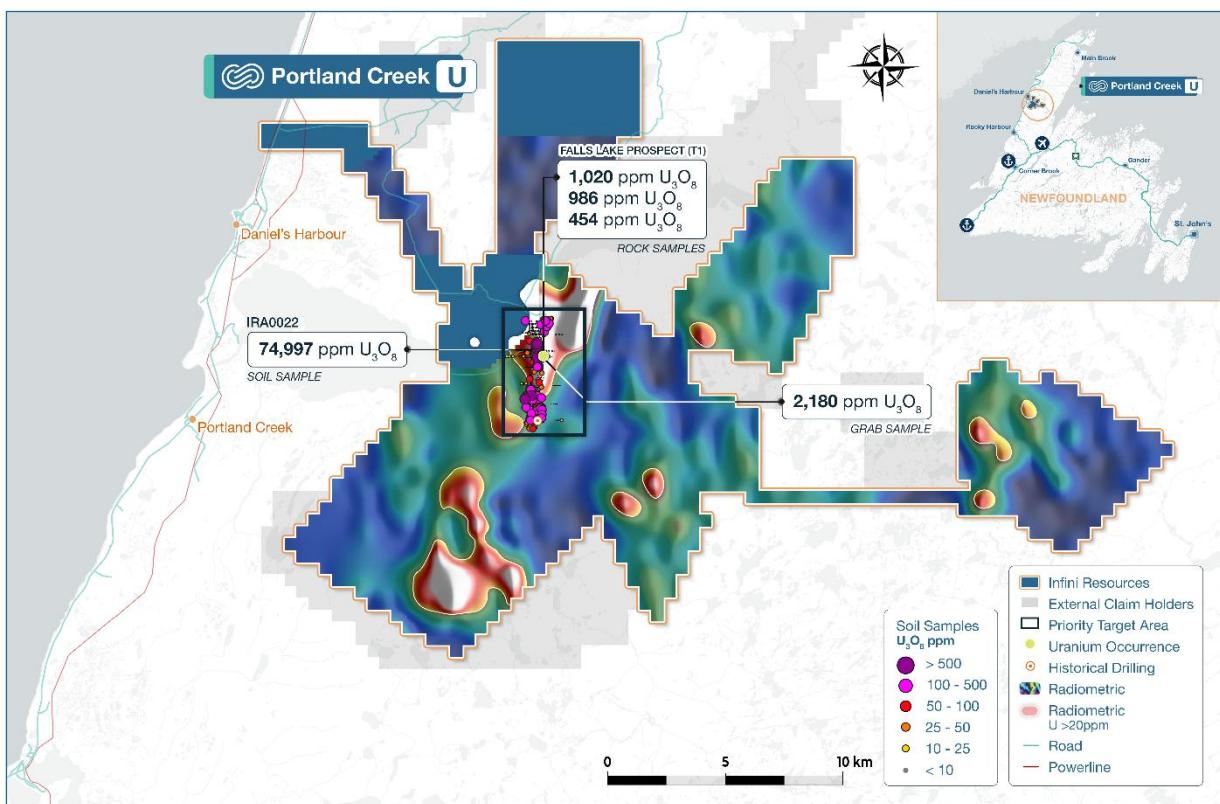
References

1. ASX Release, Infini Resources, *Extensive Downhole Uranium Intercepted at Portland Creek*, 9th October 2025.
2. ASX Release, Infini Resources, *Multiple Uranium-Bearing Zones Encountered Across Multiple Drill Holes at Portland Creek*, 21st November 2025.
3. ASX Release, Infini Resources, *Phase 2 Drilling Complete and Airborne Survey Initiated at Portland Creek*, 12th December 2025.

[END]

Release authorised by the Board of Infini Resources Ltd.

Contacts


Rohan Bone
Chief Executive Officer
E: info@infiniresources.com.au

About Portland Creek Uranium Project

The Portland Creek Uranium Project spans 328 km² and lies within the Precambrian Long-Range Complex of the Humber Tectonic-Stratigraphic Zone. The geology consists of metaquartzite and a suite of paragneisses, intruded by leucocratic granite, which are believed to have been thrust westward over Paleozoic carbonate-dominant sediments.

The project area covers a large regional uranium anomaly, first identified in the 1970's through a Newfoundland government lake sediment sampling program. Originally, one uranium showing was recorded in the Newfoundland Mineral Deposit Index, reporting 2,180 ppm U₃O₈. A compilation of historic and recent exploration data has since delineated a 6 km zone of anomalous uranium and radon gas in lake sediments, soils and in an airborne radiometric survey. This anomaly closely follows a prominent fault scarp, marking the edge of a granitic plateau interpreted as a deep-seated fault.

Since listing, the Company has verified historical uranium anomalies and completed a soil sampling grid over the Falls Lake Prospect (formerly the Talus Prospect). This work defined a ~800 m x 100 m high-grade uranium anomaly, with a peak result of 74,997 ppm U₃O₈. This anomaly is located down-ice and west of a 1.5 km radiometric anomaly. Additionally, Infini has identified a southern 500 m-wide cluster of high-grade soil samples, which includes a peak of 1,500 ppm U₃O₈ and lies 1.5 km from the recently completed Phase 2 drill program.

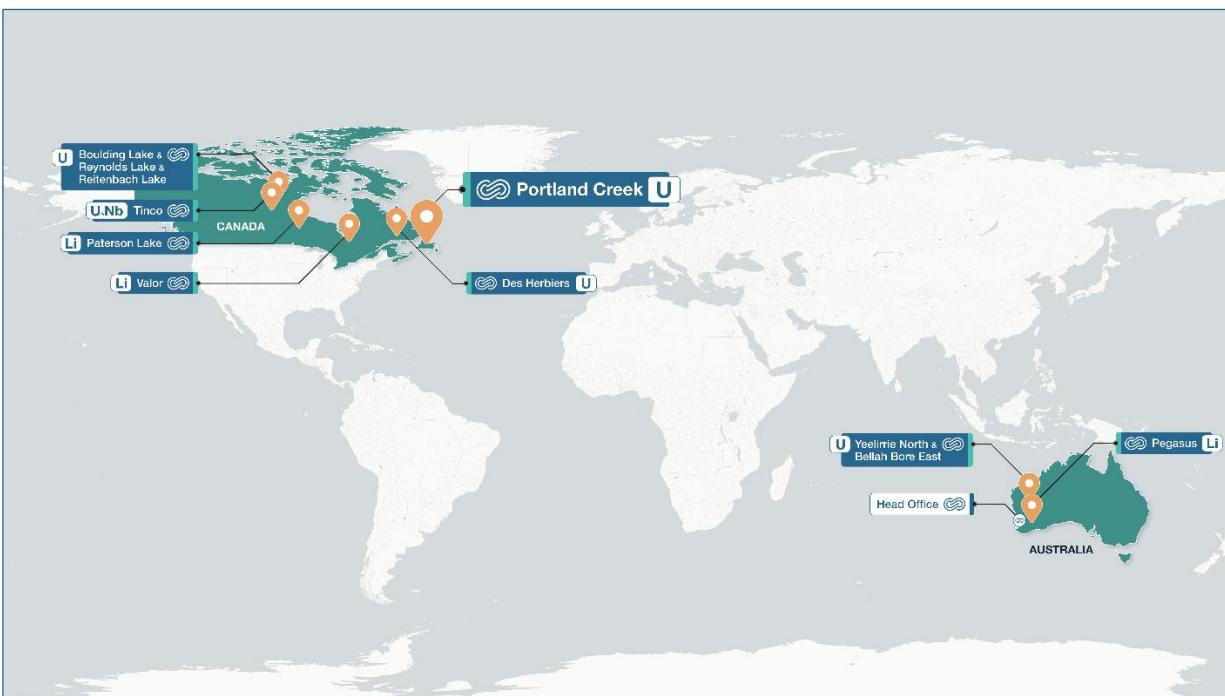


Figure 4: Overview of prospective exploration areas at Portland Creek, demonstrating the occurrence of soil sampling assays up to 74,997 ppm U₃O₈, anomalous radiometric data and Infini's package of tenements.

About Infini Resources Ltd (ASX: I88)

Infini Resources Ltd is an Australian energy metals company focused on mineral exploration in Canada and Western Australia for uranium and lithium. The company has a diversified and highly prospective portfolio of assets that includes greenfield and more advanced brownfield projects. The company's mission is to increase shareholder wealth through exploration growth and mine development.

JORC 2012 Mineral Resource Deposit	JORC 2012 Classification	Tonnes and Grade
Des Herbiers (U)	Inferred Combined Resource	162 Mt @ 123ppm U ₃ O ₈ (43.95mlb)

Figure 5: Overview of Infini's portfolio of projects and global footprint.

Competent Person & Compliance Statement

The information in this report that relates to exploration results for the Portland Creek Project is based on, and fairly represents, information and supporting documentation compiled and evaluated by Mark Couzens, Principal Geologist for the Company who is a Member of the AusIMM. Mr. Couzens has sufficient experience relevant to the style of mineralisation, type of deposit under consideration, and the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australian Code for Reporting of Exploration Results, Mineral Resources, and Ore Reserves (JORC Code). Mr. Couzens consents to the inclusion of the information in the form and context in which it appears. The information in the market announcement is an accurate representation of the available data and studies for the Portland Creek Project.

This announcement contains information on the Portland Creek Project extracted from ASX market announcements dated 10 January 2024, 15 January 2024, 29 January 2024, 19 February 2024, 28 May 2024, 1 July 2024, 10 July 2024, 22 July 2024, 14 October 2024, 23 December 2024, 26 March 2025, 4 July 2025, 14 July 2025, 28 July 2025, 30 July 2025, 3 September 2025, 11 September 2025, 9 October 2025, 13 October 2025, 21 November 2025 and 12 December 2025 reported in accordance with the 2012 edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). The original market announcements are available to view on www.infiniresources.com.au and www.asx.com.au. The Company is not aware of any new information or data that materially affects the information included in the original market announcement.

This report contains information regarding the Des Herbiers Mineral Resources Estimate extracted from the Company's Prospectus dated 30 November 2023 and released to the ASX market announcements platform on 10 January 2024, reported in accordance with the 2012 edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). The Company confirms that it is not aware of any new information or data that materially affects the information included in any original announcement and that all material assumptions and technical parameters underpinning the estimates in the original market announcement continue to apply and have not materially changed. The original market announcements are available to view on www.infiniresources.com.au and www.asx.com.au.

Forward Looking Statements

This announcement may contain certain forward-looking statements and projections. Such forward looking statements/projections are estimates for discussion purposes only and should not be relied upon. Forward looking statements/projections are inherently uncertain and may therefore differ materially from results ultimately achieved. Infini Resources Limited does not make any representations and provides no warranties concerning the accuracy of the projections and disclaims any obligation to update or revise any forward-looking statements/projects based on new information, future events or otherwise except to the extent required by applicable laws. While the information contained in this report has been prepared in good faith, neither Infini Resources Limited or any of its directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement.

Appendix 1: Intersections of anomalous uranium observed in the first batch of assays from Phase 2 drilling at Portland Creek

Table 1: Material drill hole samples (mineralised intervals >100 ppm U₃O₈) taken from the Phase 2 drilling program at Portland Creek demonstrating localised uranium intercepts. Intervals are down hole length. True width not known.

Hole number	UTM East	UTM North	UTM Elevation	Azimuth (°)	Dip (°)	From (m)	To (m)	Interval (m)	Sample ID	U ₃ O ₈ (ppm)
PCDD25-008	470730	5559405	128	320	-45	143.00	143.30	0.30	L458639	229
PCDD25-010	470291	5557916	123	170	-45	79.28	80.00	0.59	L458896	103
PCDD25-010	470291	5557916	123	170	-45	114.22	114.56	0.36	L458919	110
PCDD25-010	470291	5557916	123	170	-45	159.69	160.12	0.52	L458956	108
PCDD25-010	470291	5557916	123	170	-45	160.62	161.50	0.72	L458958	176
PCDD25-010	470291	5557916	123	170	-45	161.50	162.50	0.34	L458959	142
PCDD25-010	470291	5557916	123	170	-45	261.40	262.40	0.43	H091463	110
PCDD25-012	470461	5557972	123	170	-45	35.51	36.10	0.88	H091026	108
PCDD25-012	470461	5557972	123	170	-45	54.12	54.48	0.36	H091042	116
PCDD25-012	470461	5557972	123	170	-45	54.48	55.00	0.52	H091043	104
PCDD25-012	470461	5557972	123	170	-45	143.13	143.62	0.50	H091156	112
PCDD25-012	470461	5557972	123	170	-45	144.50	145.00	0.50	H091159	116
PCDD25-012	470461	5557972	123	170	-45	145.00	145.50	0.50	H091161	114
PCDD25-012	470461	5557972	123	170	-45	171.75	172.23	0.50	H091196	120
PCDD25-012	470461	5557972	123	170	-45	214.91	215.91	0.48	H091258	106
PCDD25-012	470461	5557972	123	170	-45	228.18	228.62	0.44	H091275	124
PCDD25-012	470461	5557972	123	170	-45	254.27	254.85	0.58	H091311	347

Hole number	UTM East	UTM North	UTM Elevation	Azimuth (°)	Dip (°)	From (m)	To (m)	Interval (m)	Sample ID	U ₃ O ₈ (ppm)
PCDD25-012	470461	5557972	123	170	-45	254.85	255.15	0.30	H091312	171
PCDD25-012	470461	5557972	123	170	-45	255.15	255.80	0.65	H091313	113
PCDD25-012	470461	5557972	123	170	-45	255.80	256.15	0.35	H091314	342
PCDD25-012	470461	5557972	123	170	-45	257.15	257.52	0.37	H091316	209
PCDD25-012	470461	5557972	123	170	-45	257.52	258.02	0.50	H091317	218
PCDD25-012	470461	5557972	123	170	-45	258.02	258.52	0.50	H091318	129
PCDD25-012	470461	5557972	123	170	-45	258.52	259.52	1.00	H091319	104
PCDD25-012	470461	5557972	123	170	-45	262.30	262.80	0.50	H091324	267
PCDD25-012	470461	5557972	123	170	-45	267.80	268.00	0.20	H091331	150
PCDD25-012	470461	5557972	123	170	-45	269.60	269.90	0.30	H091334	252
PCDD25-012	470461	5557972	123	170	-45	270.30	271.30	1.00	H091336	105
PCDD25-012	470461	5557972	123	170	-45	277.70	278.38	0.68	H091346	324
PCDD25-012	470461	5557972	123	170	-45	281.38	282.40	1.02	H091351	153
PCDD25-012	470461	5557972	123	170	-45	291.00	291.40	0.40	H091367	152
PCDD25-012	470461	5557972	123	170	-45	296.47	297.47	1.00	H091375	134
PCDD25-012	470461	5557972	123	170	-45	297.47	298.47	1.00	H091376	142
PCDD25-012	470461	5557972	123	170	-45	298.47	299.38	0.91	H091377	120
PCDD25-012	470461	5557972	123	170	-45	299.38	300.38	1.00	H091378	107
PCDD25-012	470461	5557972	123	170	-45	305.40	305.94	0.54	H091385	165
PCDD25-014	470462	5558025	131	170	-45	27.70	28.05	0.35	H091491	124
PCDD25-016	470515	5558036	133	170	-45	50.64	51.22	0.58	H091644	143

Assays Confirm Structurally Controlled Uranium System at Portland Creek

Hole number	UTM East	UTM North	UTM Elevation	Azimuth (°)	Dip (°)	From (m)	To (m)	Interval (m)	Sample ID	U ₃ O ₈ (ppm)
PCDD25-016	470515	5558036	133	170	-45	57.54	58.00	0.46	H091649	106
PCDD25-016	470515	5558036	133	170	-45	80.63	81.19	0.56	H091662	245
PCDD25-016	470515	5558036	133	170	-45	113.00	114.00	1.00	H091689	297
PCDD25-016	470515	5558036	133	170	-45	124.88	125.88	1.00	H091706	106

Appendix 2: Intersections of anomalous elements associated with hydrothermal fluids observed in the first batch of assays from Phase 2 drilling at Portland Creek

Table 2: Material drill hole samples (mineralised intervals >100 ppm Cu, or >100 ppm Mo, or >100 ppm Zn) taken from the Phase 2 drilling program at Portland Creek demonstrating localised intercepts of elements associated with hydrothermal fluids. Intervals are down hole length. True width not known.

Hole number	UTM East	UTM North	UTM Elevation	Azimuth (°)	Dip (°)	From (m)	To (m)	Interval (m)	Sample ID	Cu (ppm)	Mo (ppm)	Zn (ppm)
PCDD25-008	470730	5559405	128	320	-45	27.17	27.48	0.31	L458585	1	2	262
PCDD25-008	470730	5559405	128	320	-45	35.68	36.15	0.47	L458591	0	1	173
PCDD25-008	470730	5559405	128	320	-45	44.00	45.00	1.00	L458597	29	1	101
PCDD25-008	470730	5559405	128	320	-45	45.00	46.08	1.08	L458598	28	1	101
PCDD25-008	470730	5559405	128	320	-45	69.00	70.00	1.00	L458612	2	1	334
PCDD25-009A	470740	5559787	132	184	-45	151.00	151.59	0.59	L458769	47	48	135
PCDD25-009A	470740	5559787	132	184	-45	151.59	152.00	0.41	L458771	273	220	676
PCDD25-009A	470740	5559787	132	184	-45	152.00	152.33	0.33	L458772	318	256	220
PCDD25-009A	470740	5559787	132	184	-45	152.33	152.66	0.33	L458773	479	186	273
PCDD25-009A	470740	5559787	132	184	-45	152.66	153.00	0.34	L458774	387	104	99
PCDD25-009A	470740	5559787	132	184	-45	153.00	153.33	0.33	L458775	290	54	452
PCDD25-009A	470740	5559787	132	184	-45	153.33	153.66	0.33	L458776	275	121	179
PCDD25-009A	470740	5559787	132	184	-45	153.66	154.00	0.34	L458777	413	280	207
PCDD25-009A	470740	5559787	132	184	-45	154.00	154.33	0.33	L458778	338	139	64
PCDD25-009A	470740	5559787	132	184	-45	154.33	154.66	0.33	L458779	450	321	67
PCDD25-009A	470740	5559787	132	184	-45	154.66	155.00	0.34	L458781	175	110	68
PCDD25-009A	470740	5559787	132	184	-45	155.00	155.73	0.73	L458782	125	150	50

Hole number	UTM East	UTM North	UTM Elevation	Azimuth (°)	Dip (°)	From (m)	To (m)	Interval (m)	Sample ID	Cu (ppm)	Mo (ppm)	Zn (ppm)
PCDD25-009A	470740	5559787	132	184	-45	155.73	156.70	0.97	L458783	119	54	65
PCDD25-009A	470740	5559787	132	184	-45	180.76	181.76	1.00	L458794	16	3	143
PCDD25-009A	470740	5559787	132	184	-45	181.76	182.76	1.00	L458795	9	3	128
PCDD25-009A	470740	5559787	132	184	-45	210.00	210.30	0.30	L458798	5	2	213
PCDD25-009A	470740	5559787	132	184	-45	221.00	221.30	0.30	L458799	8	2	147
PCDD25-009A	470740	5559787	132	184	-45	283.25	284.00	0.75	L458813	18	3	108
PCDD25-009A	470740	5559787	132	184	-45	284.00	285.00	1.00	L458814	98	6	390
PCDD25-009A	470740	5559787	132	184	-45	285.00	285.49	0.49	L458815	55	3	407
PCDD25-009A	470740	5559787	132	184	-45	285.49	286.13	0.64	L458816	76	9	259
PCDD25-009A	470740	5559787	132	184	-45	298.92	299.92	1.00	L458834	102	2	55
PCDD25-010	470291	5557916	123	170	-45	79.28	80.00	0.72	L458896	5	240	26
PCDD25-010	470291	5557916	123	170	-45	127.00	128.00	1.00	L458928	1	154	7
PCDD25-014	470462	5558025	131	170	-45	424.41	425.03	0.62	H091557	39	4	105
PCDD25-015	470488	5556666	118	170	-45	278.00	279.00	1.00	H091606	35	1	130
PCDD25-015	470488	5556666	118	170	-45	281.00	282.00	1.00	H091607	64	2	110
PCDD25-015	470488	5556666	118	170	-45	286.31	287.00	0.69	H091611	183	25	103
PCDD25-015	470488	5556666	118	170	-45	288.00	289.00	1.00	H091613	22	1	141
PCDD25-015	470488	5556666	118	170	-45	295.41	296.00	0.59	H091614	49	4	225
PCDD25-015	470488	5556666	118	170	-45	296.00	296.66	0.66	H091615	27	1	168
PCDD25-017	4706700	5557873	135	327	-45	30.00	30.30	0.30	H091947	5	1	102
PCDD25-017	4706700	5557873	135	327	-45	40.00	40.30	0.30	H091948	6	1	110

Assays Confirm Structurally Controlled Uranium System at Portland Creek

Hole number	UTM East	UTM North	UTM Elevation	Azimuth (°)	Dip (°)	From (m)	To (m)	Interval (m)	Sample ID	Cu (ppm)	Mo (ppm)	Zn (ppm)
PCDD25-017	4706700	5557873	135	327	-45	50.00	50.30	0.30	H091949	6	1	127
PCDD25-017	4706700	5557873	135	327	-45	81.91	83.00	1.09	H091958	13	1	101
PCDD25-017	4706700	5557873	135	327	-45	83.00	84.00	1.00	H091959	11	1	123
PCDD25-017	4706700	5557873	135	327	-45	84.00	85.00	1.00	H091961	54	2	106
PCDD25-017	4706700	5557873	135	327	-45	85.00	86.00	1.00	H091962	10	2	130
PCDD25-017	4706700	5557873	135	327	-45	86.00	87.00	1.00	H091963	8	2	124
PCDD25-017	4706700	5557873	135	327	-45	89.00	90.00	1.00	H091966	12	1	125
PCDD25-017	4706700	5557873	135	327	-45	90.36	91.00	0.64	H091968	12	2	137
PCDD25-017	4706700	5557873	135	327	-45	91.00	91.54	0.54	H091969	7	2	103
PCDD25-017	4706700	5557873	135	327	-45	91.54	92.06	0.52	H091971	4	3	156
PCDD25-017	4706700	5557873	135	327	-45	92.06	92.51	0.45	H091972	16	3	146
PCDD25-017	4706700	5557873	135	327	-45	103.31	104.00	0.69	H091976	8	1	129
PCDD25-017	4706700	5557873	135	327	-45	104.00	105.00	1.00	H091977	8	1	132
PCDD25-017	4706700	5557873	135	327	-45	105.00	105.96	0.96	H091978	8	2	129
PCDD25-017	4706700	5557873	135	327	-45	237.94	238.31	0.37	H097128	17	1	436
PCDD25-018	470718	5558182	131	3	-45	16.00	17.00	1.00	H097292	6	1	169
PCDD25-018	470718	5558182	131	3	-45	20.98	22.00	1.02	H097293	10	2	203
PCDD25-018	470718	5558182	131	3	-45	22.00	24.00	2.00	H097294	9	1	131

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Details of Infini's soil sampling and historic lake sediment sampling have been reported previously (ASX 1st July 2024 & 10th July 2024). Core was also analysed using a portable XL3t gold+ XRF device (pXRF) at every meter marker as well as at random locations. Where spot mineralisation exceeded 200 ppm the core is tested at 25 cm spacing in the preceding and following meter of core. Based upon the scintillometer and pXRF readings sample size for the drill core was selected. Sample sizes ranged from 0.3m up to just over 2m.
Drilling techniques	<ul style="list-style-type: none"> Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	<ul style="list-style-type: none"> Details of Infini's drilling have been reported previously (ASX 28th July 2025, 30th July 2025, 3rd September 2025, 9th October 2025 and 21st November 2025). Drilling was undertaken by one heli-transportable diamond drill rig. The core was NG gauge on a single 10m core tube. The core was oriented with a ACT III RD tool.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> Core recovery was based on depths assigned by the drillers and measurement of core for that interval by Infini's contractors and recorded in a spreadsheet. Recovery was generally better than 95%, so no special measures were required. In areas with lower recovery, core loss was assigned to the intervals with broken and faulted core. No relationship between sample recovery and grade was established.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Core was visually logged, which is qualitative in nature. All core was photographed and the imagery imported into an online database (Imago) Each hole was logged in its entirety
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> Core samples were cut in half with a core splitter. Each sample interval consisted of one half of the cut NQ drill core. Each sample was bagged with a numbered tag. Prep-31 was completed on each sample: <ol style="list-style-type: none"> 1. PUL-QC Pulverizing QC Test 2. CRU-31 Fine crushing – 70% <2mm 3. SPL-21 Split sample – riffle splitter 4. PUL-31 Pulverize up to 250g 85% <75 µm Analysis was completed using ME-MS61L, with selective PbIS for Pb isotopes. Select samples were also tested for gold mineralization using Au-AA23.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	<ul style="list-style-type: none"> Flourine analysis was also completed using F-IC881. ALS Global laboratories performed the analytical work. At the start of each day the pXRF was calibration checked and both a silica blank (blank) and uranium certified reference material analysed (CRM). Blanks and CRMs were inserted every 30 samples, and a calibration check was completed. Blanks and certified reference materials were inserted every 30 samples, respectively. QAQC samples were reviewed for contamination or failure, defined as 3x SDV of the reference material with was ISO certified. Samples of core from the drilling program were submitted to ALS Global for trace element assays, in line with ALS Global's QA/QC processes.
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<ul style="list-style-type: none"> Verification of encountered intersections was conducted by Infini Resources' Exploration Manager. Data collected was completed using a logging program MX Deposit. Logs were uploaded each evening and stored on a cloud server. Internal data checks and quality control were built into the logging software to ensure no gaps or incorrect coding was used. pXRF measurements were taken to indicate any uranium mineralisation from a spot sample as an indicator only with core assays confirming the true amount of any uranium mineralisation.
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> All drillhole and sample co-ordinates relate to NAD83 UTM Zone 21N. Collar and soil sample locations were surveyed using handheld GPS. LIDAR data flown by Infini was used to establish collar RL.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. 	<ul style="list-style-type: none"> • Soil sample spacing was considered appropriate at this stage of exploration • Drillhole collar spacing was designed to intersect the source of anomalous uranium in soil and not determine a resource estimate. • Not applicable as no Mineral Resource and Ore Reserves are reported. • No sample compositing has been applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> • Drilling was oriented perpendicular to the interpreted geological structures inferred from UAV magnetics. • Relationship between drilling orientation and mineralised structures is currently unknown.
Sample security	<ul style="list-style-type: none"> • The measures taken to ensure sample security. 	<ul style="list-style-type: none"> • NQ drill core was transported by helicopter from the drill site to the core logging facility. All drill core was logged, photographed and the altered intervals were tagged for sampling. The core was then split. Groups of samples were sealed in large bags with lab security tags attached to maintain a chain of custody. Samples were stored in a locked facility and shipped using a bonded courier. All sample preparation and analysis was performed by ALS Laboratories in Vancouver, BC.
Audits or reviews	<ul style="list-style-type: none"> • The results of any audits or reviews of sampling techniques and data. 	<ul style="list-style-type: none"> • None carried out to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> • The Falls Lake prospect is located on 036683M and 036684M. • The Portland Creek uranium project comprises thirteen mineral claims (036683M, 036684M, 036685M, 037492M, 037490M, 037496M, 037495M, 039752M, 039753M, 039754M, 039755M, 036831M and 036832M). The company first staked the project in 2023/24 before expanding the footprint in October 2025 and December 2025 (100% ownership). A 2% Net Smelter Return (NSR) Royalty is applicable on tenements 036831M and 036832M. The company is not aware of any other royalties existing on the claims or impediments to obtaining a license to operate in the area. The claims are currently live and in good standing.
Exploration done by other parties	<ul style="list-style-type: none"> • Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> • Exploration between 1976 and 1980 was carried out by the Conwest Canadian Uranium Exploration JV. Work included radon gas (Track Etch) sampling, a ground scintillometer survey, and VLF-EM and ground magnetic surveys. Follow-up drilling using a portable "Pionjar" drill capable of drilling to 8 m depth identified a small, high grade uranium anomaly (so-called "loam deposit"). Only very sparse details survive on this drilling program with no assay results or location data. Five diamond holes were drilled. Partial results have been found for only one of these, which reported unmineralised granite.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Publicly available data was sourced from the Canadian Airborne Geophysical Database (CAGD) for an airborne magnetic and radiometric geophysics survey conducted over the Great Northern Peninsula (North Arm) that was flown by a fixed-wing aircraft in 1987 at a height of 250m and line spacing of 1,000m for a total of 11,892 line km. Subsequent exploration in 2007 included an airborne IMPULSE EM, magnetic and radiometric survey flown on behalf of Ucore Uranium Inc. and collection of 8 rock samples. The property was abandoned shortly after.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> The target uranium deposit type is likely to be shear-zone hosted (albitite-type) hosted in altered granite.
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Locations and results of most holes drilled by the Conwest JV are unknown. The limited historical exploration records are publicly available in the Government of Newfoundland and Labrador's GeoScience OnLine system under the report IDs: 012I/03/0125 and NFLD/3082. All drill hole collar locations and mineralised intercepts have been reported in this report for all holes completed to date. No relevant data has been excluded from this report. Drill hole details:

Hole	UTM East	UTM North	UTM Elevation (m)	Azi-muth	Dip	Length (m)
PCDD 25-007	470745	5559555	131	160	-45	130
PCDD 25-008	470730	5559405	128	320	-45	200
PCDD 25-009A	470740	5559787	132	184	-45	317

Criteria	JORC Code explanation			Commentary			
PCDD 25-010	470291	5557916	123	170	-45	263	
PCDD 25-011A	470291	5557915	123	170	-65	161	
PCDD 25-012	470461	5557972	123	170	-45	350	
PCDD 25-013	470635	5558966	128	340	-45	221	
PCDD 25-014	470462	5558025	131	170	-45	446	
PCDD 25-015	470488	5556666	118	170	-45	332	
PCDD 25-016	470515	5558036	133	170	-45	425	
PCDD 25-017	4706700	5557873	135	327	-45	491	
PCDD 25-018	470718	5558182	131	3	-45	251	
PCDD 25-019	470808	5558973	127	106	-60	323	
PCDD 25-020	470701	5559211	133	35	-55	314	
PCDD 25-021	470727	5559029	125	120	-60	380	
PCDD 25-022	470888	5557033	118	180	-45	320	
PCDD 25-023	470898	5557131	123	350	-50	386	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> No aggregation methods have been used as assay data not yet received.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Only downhole lengths are reported. Insufficient intersections have been made thus far to establish a relationship between mineralisation widths and intercept lengths. Geometry of target mineralisation has not been verified.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Appropriate diagrams are included in the main body of this report. No significant discovery is being reported.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Reporting of all geochemical results is considered balanced with results of both low and high analytes reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> No meaningful and material exploration data has been excluded from this report.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Drilling will continue testing the 12 exploration targets, with future holes aimed at identifying presence of uranium mineralisation within the exploration targets. Planned hole locations have been provided in the ASX announcement dated 28th July 2025.