

ANSTO Testwork Confirms > 96% Recovery of Magnetic Rare Earths at the Caladão Project, Minas Gerais

HIGHLIGHTS:

- > 96% recovery of Magnetic Rare Earth Oxides (MREO) achieved in ANSTO acid leach tests using hydrochloric acid (HCl) on selected Caladão composites under controlled conditions
- Testwork completed on 3m composites from two diamond holes approximately 2km apart, supporting repeatability across multiple tested locations within Area A
- HCl tests delivered a stronger overall response than sulphuric acid (H_2SO_4) and represent a substantial improvement versus earlier acid leach outcomes reported in prior work
- Results support a two-pathway development concept at the Caladão Project:
 - Near-term priority: modular in situ recovery (ISR) targeting ionic adsorption clay zones using magnesium sulphate ($MgSO_4$) in priority wellfields, including the Paraíso (Area A) and Woolrich and (Area B) deposits
 - Longer-term optionality: an acid leach pathway capable of extracting MREO from portions of the profile that are not ionic clays, providing the potential to maximise MREO recovery across mineralisation styles
- Gallium recovery increased to up to ~30% in these tests, with additional gallium-focused testwork at ANSTO previously showing Gallium recoveries up to 50% using oxalic acid, as announced on 27 January 2026.

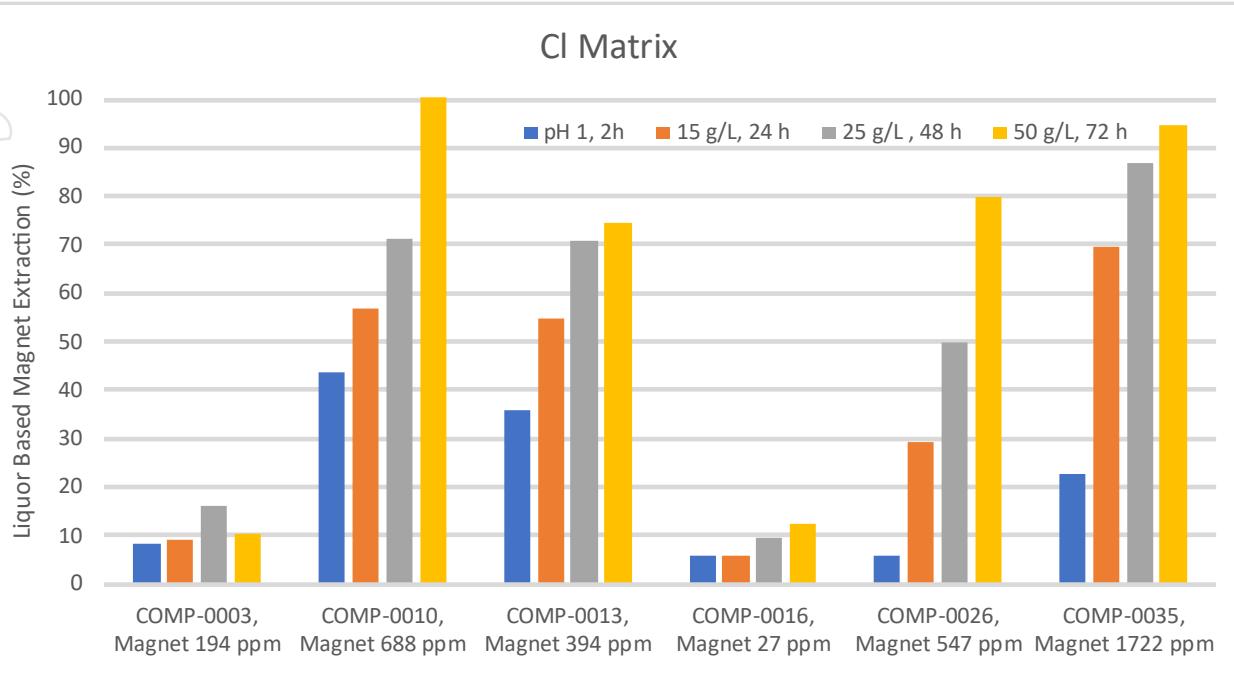
Axel REE Limited (ASX: AXL, “Axel” or “the Company) today reports additional metallurgical testwork completed by ANSTO on 3m composite samples from 2 diamond holes 2km apart (Figure 1, Appendix 2). Acid leach tests were undertaken using hydrochloric acid (HCl) and sulphuric acid (H_2SO_4) under comparable conditions, with HCl delivering the stronger overall extraction response. Testing commenced at approximately pH 1 and acidity was increased over up to 72 hours at 50°C.

Under the HCl test conditions, ANSTO reported up to 100% magnetic rare earth oxides (MREO) recovery for selected composites, indicating that parts of the Caladão Project’s weathered profile are highly amenable to acid leaching of MREO.

Non-Executive Chairman, Paul Dickson, said:

“ANSTO’s results reinforce Caladão’s unique advantage: the ability to prioritise our strategy to progress low-cost, in situ recovery (ISR) on the ionic clay-hosted mineralisation using $MgSO_4$, while also demonstrating that magnetic rare earths and gallium can be extracted at very high recoveries under acid leach conditions from selected non-ionic composites.

This creates valuable optionality to maximise recovery as Caladão advances. We are becoming increasingly confident that the already defined rare earth and gallium mineralisation at the Caladão Project has the potential to be developed into one of the largest gallium and rare earth operations outside China.”


Acid leach tests were conducted on both holes under the same conditions by HCl (Figure 2) and H₂SO₄ (Figure 3) with better overall response in HCl, extraction improved with each increase in acidity in most cases (except Comp 003). This represents a significant upgrade in recovery compared to previous leach tests conducted at ANSTO, where magnet extraction from composite 35 (hole 36) showed a steady increase in recovery under acid leaching, achieving 28% recovery after 5 days (Figure 4).

The Company previously announced (ASX release 30 July 2025) from ANSTO testwork that non-ionic REE was recoverable in primary/secondary mineral phases, with early-stage acid leaching showing up to 28% MREO recovery after five days under acidic conditions. First-pass gallium recovery via acid leach also returned up to 25% gallium recovered.

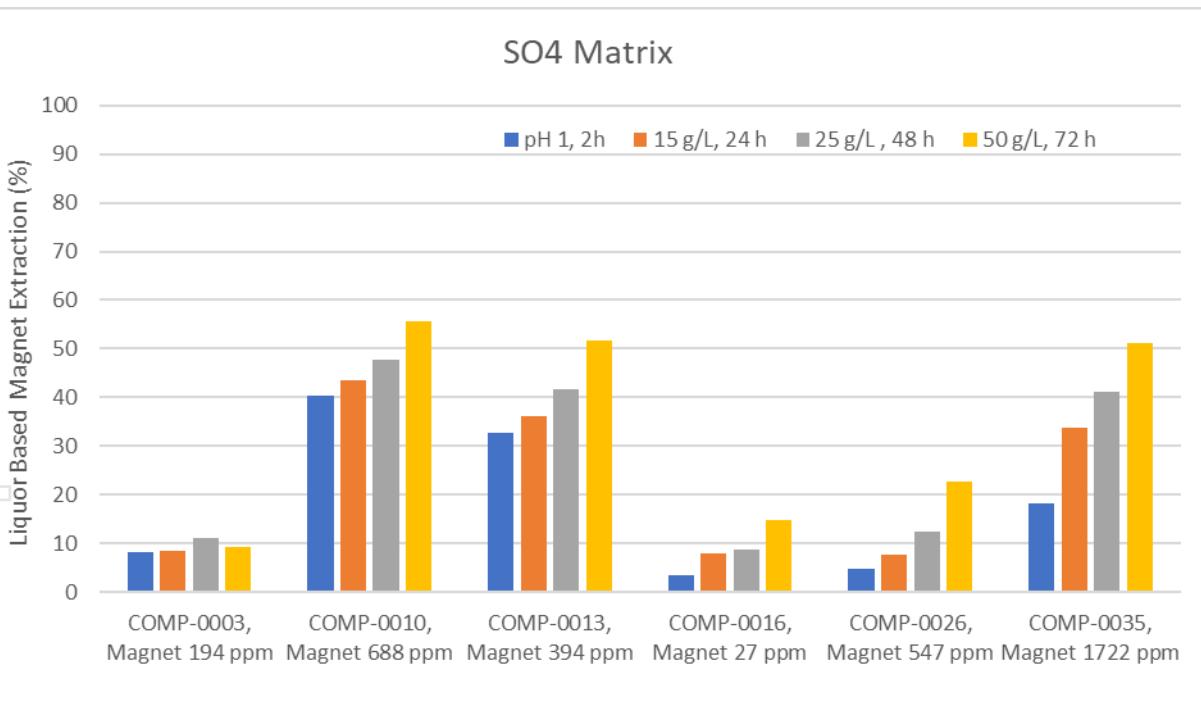

The latest ANSTO acid-leach program represents a step-change in the reported outcomes for non-ionic REE. Under HCl leach conditions (starting around pH 1 with progressively increased acidity, up to 72 hours at 50 °C), ANSTO reported **up to 100% recovery of MREO (previously 28%)** on the same selected composites, materially improving upon earlier acid-leach performance. Gallium recoveries also increased to **up to ~30% (previously 25%)**. Specific additional leaching tests using oxalic acid for gallium were also previously performed at ANSTO with significant improvements up to **50% gallium** recovered (refer ASX release 26 January 2026).

Figure 1 - Map of central area A with location of DDH-018 and DDH-036.

Figure 2 – Magnetic rare earth extraction using HCl

Figure 3 – Magnetic rare earth recoveries using H₂SO₄

For personal use only

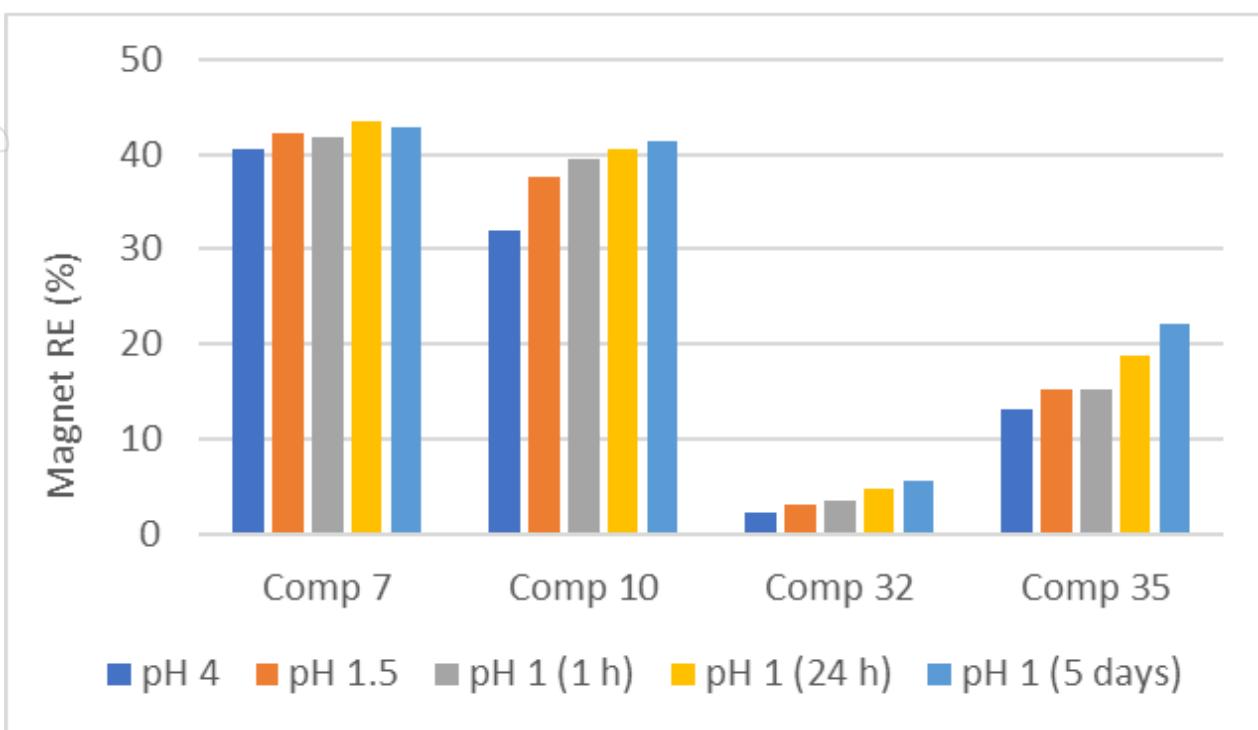


Figure 2 – First ANSTO acid leaching procedure

HCl in Rare Earth Processing

HCl is a well-established reagent in global rare earth processing, typically used to produce rare-earth chloride liquors for downstream purification and separation (e.g., solvent extraction). In many hard-rock/mineral-sands flowsheets, HCl is applied after an upfront “cracking/digestion” step (alkaline or thermal) to convert refractory REE minerals into forms that can be efficiently leached¹.

Commercial and technical precedent includes:

- **India (IREL):** alkaline/caustic digestion routes followed by HCl leaching to generate rare-earth chloride solutions are documented in industry references, with IREL being a commercial user of caustic digestion-based processing pathways.¹
- **Mineral sands monazite/xenotime concentrates:** “chloride route” variants have been demonstrated commercially, with process-selection guidance noting that HCl requirements can be material and economics are strongly influenced by reagent supply logistics and impurity/effluent management.²
- **Carbonate/silicate REE feeds:** HCl-based leaching flowsheets (often paired with oxidation roasting or other pretreatments) for bastnäsite and other REE-bearing materials, illustrating broader applicability of chloride chemistry in REE hydrometallurgy.³⁴

While HCl is industrially proven as part of certain REE flowsheets, project-specific economics depend on factors including acid consumption, impurity dissolution, corrosion/materials selection, and brine/effluent

¹ Beer, G. 2024, *Process selection considerations for recovery of rare earths from mineral sands concentrates*, Met-Chem Consulting Pty Ltd, conference presentation (ALTA 2024 Lithium-Battery Technology–Rare Earths), accessed 24 January 2026

² CSIRO 2024, *Supplementary report: rare earths. From minerals to materials: Assessment of Australia's critical mineral mid-stream processing capabilities*, CSIRO, Canberra, May, accessed 24 January 2026.

³ Peelman, S., Sun, Z.H.I., Sietsma, J. & Yang, Y. 2014, ‘Leaching of rare earth elements: past and present’, paper presented at ERES2014: 1st European Rare Earth Resources Conference, Milos, 4–7 September, accessed 24 January 2026

⁴ Wang, M., Zeng, M., Wang, L., Zhou, J., Cui, D., Wang, Q., Weng, R. & Chen, X. 2013, ‘Catalytic leaching process of bastnaesite with hydrochloric acid after oxidation roasting pretreatment’, *Journal of the Chinese Society of Rare Earths*, vol. 31, no. 2, pp. 148–153, doi:10.11785/S1000-4343.20130204, accessed 24 January 2026

management. The Company's metallurgical results therefore support processing optionality across multiple mineralisation styles, subject to further optimisation and economic assessment.

Next Steps

Axel REE's development strategy remains focused on prioritising ionic adsorption clay wellfields for modular ISR using magnesium sulphate (**MgSO₄**), targeting a pathway designed to be scalable and repeatable across multiple wellfields.

In parallel, the ANSTO acid leach results provide clear longer-term processing optionality: a potential pathway to extract magnetic rare earths from non-ionic clay areas (and/or portions of the profile less responsive to mild salt leaching), supporting a broader concept of maximising MREO recovery over the life of the project.

Given the Company's current focus on ISR pathway definition and scale-up, no further acid leach testing is planned at this stage, however the acid leach route remains a viable option to revisit as Caladão progresses.

This announcement was authorised by the Board of Directors.

For enquiries regarding this release please contact:

Axel REE Limited

P: +61 3 9249 9859

E: investors@axelreelimited.com.au

Julia Maguire

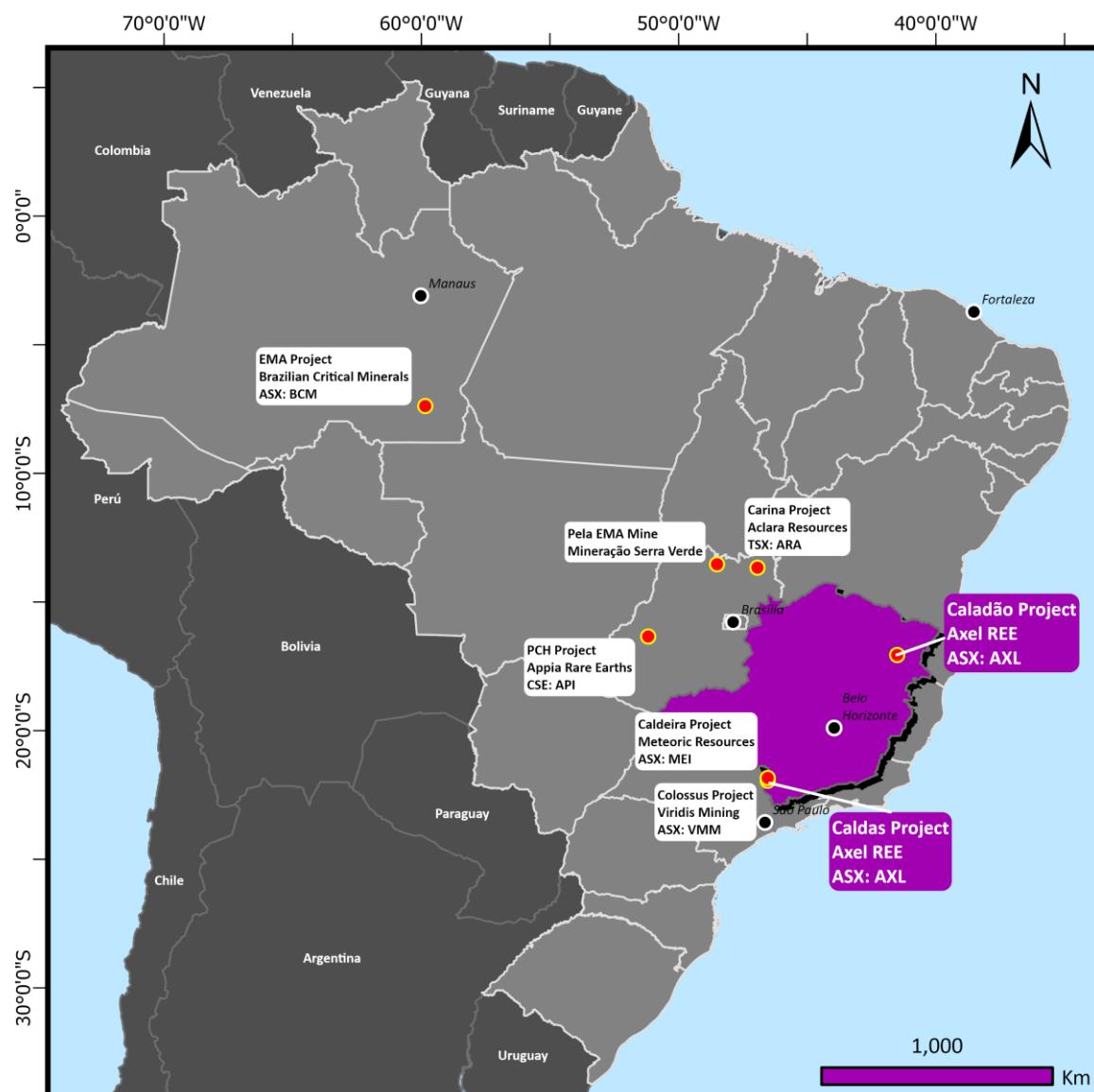
The Capital Network

P: +61 2 8999 3699

E: julia@thecapitalnetwork.com.au

About Axel REE

Axel REE is a critical minerals exploration company which is primarily focused on developing the Caladão REE-Gallium and Caldas REE Projects in Brazil. Together, the project portfolio covers over 1,000km² of exploration tenure in Brazil, the third largest country globally in terms of REE Reserves.


Axel is advancing a low-cost, modular development concept at Caladão based on in situ recovery (**ISR**) of ionic clay-hosted rare earth mineralisation using magnesium sulphate leaching. This approach aims to minimise surface disturbance and capital intensity by deploying modular hydrometallurgical plants within wellfields. In parallel, Axel is progressing metallurgical programs to unlock additional value from gallium and scandium within the near-surface oxidised profile.

JORC 2012 Mineral Resource Deposit	JORC 2012 Classification	Tonnes and Grade
Caladão Project – Area A	Inferred	233Mt @ 2,133ppm TREO
Marambaia – Area B	Inferred	126Mt @ 1,154ppm TREO
Tiger Creek – Area B	Inferred	85Mt @ 1,050ppm TREO
Woolrich – Area B	Inferred	128Mt @ 1,013ppm TREO

Table 3. Inferred Rare Earth MRE Area A & Area B for a total MRE tonnage of 572Mt.

JORC 2012 Mineral Resource Deposit	JORC 2012 Classification	Tonnes and Grade
Caladão Project – Area A	Inferred	100Mt @ 42.0ppm Gallium
Caladão Project – Area B	Inferred	339Mt @ 36.6ppm Gallium

Table 4. Inferred Gallium MRE Area A & Area B for a total MRE tonnage of 439Mt.

Figure 5. Map of Axel REE key projects in Brazil

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Antonio de Castro, BSc (Hons), MAusIMM, CREA who acts as AXEL's Senior Consulting Geologist through the consultancy firm, ADC Geologia Ltda. Mr. de Castro has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Castro consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

Cautionary statement

The Caladão Mineral Resource Estimate is currently classified as Inferred. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration will result in the determination of Indicated or Measured Mineral Resources or an Ore Reserve. Any development concept is subject to further technical studies, regulatory approvals and funding.

Forward Looking Statement

This announcement contains projections and forward-looking information that involve various risks and uncertainties regarding future events. Such forward-looking information can include without limitation statements based on current expectations involving a number of risks and uncertainties and are not guarantees of future performance of the Company. These risks and uncertainties could cause actual results and the Company's plans and objectives to differ materially from those expressed in the forward-looking information. Actual results and future events could differ materially from anticipated in such information. These and all subsequent written and oral forward-looking information are based on estimates and opinions of management on the dates they are made and expressly qualified in their entirety by this notice. The Company assumes no obligation to update forward-looking information should circumstances or management's estimates or opinions change.

Reference to Previous Announcements

In addition to new results reported in this announcement, the information that relates to previous exploration results is extracted from:

- AXL ASX release 30 July 2025 "*Ionic Clays Confirmed From Initial Met Tests at Caladao*"
- AXL ASX release 26 November 2025 "*Breakthrough REE Metallurgy at Caladao In Situ Leach Target*"
- AXL ASX release 27 January 2026 "*Gallium Recovery Doubled, Breakthrough Scandium Co-Recovery*"

The Company confirms that it is not aware of any new information or data that materially affects the information contained in these announcements and, in the case of estimates of mineral resources, that all material assumptions and technical parameters underpinning the estimates in the announcements continue to apply and have not materially changed.

Appendix 1: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling	<p>ANSTO, Australian Nuclear Science and Technology Organization were supplied with 39 composites samples numbered CLD-COMP-001 to 039 compiled from the weathered portion of area A in the Caladão project. They consist of disaggregated rejects from ½ core, received back from SGS laboratory derived from the 2024 drill program. Collar locations are presented in appendix 1.</p> <p>ANSTO were tasked to conduct 2 additional leaching acid tests on 6 selected composites with HCL and H₂SO₄ starting at pH 1 with increasing acidity with temperature at 50 celsius (refer table 4 and 5).</p> <p>Test work results are for 6 individual 3 metre composite samples, from the diamond holes DDH-018 and DDH-036, both from 2m to end of the saprolite zone.</p> <p>The use of disaggregated rejects and the its composites are considered appropriate for leaching test works and reporting exploration results.</p>
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	<p>The drilling technique is a diamond drill rig Mach 320-03 with HQ diameter using the wireline technique.</p> <p>Each drill site was cleaned and leveled with a backhoe loader.</p> <p>All holes are vertical.</p> <p>Drilling is stopped once the intersection with unweathered basement intrusives is confirmed = +3 to 5m of fresh rock.</p>
Drill sample recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<p>Core recoveries were measured after each drill run, comparing the length of core recovered vs. drill depth. Overall Core recoveries are 92.5%, achieving 95% in the saprolite target horizon, 89% in the transitional rock (fresh fragments in clay), and 92.5% in fresh rock.</p>
Logging	<p>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</p> <p>The total length and percentage of the relevant</p>	<p>The geology was described in a core facility by a geologist - logging focused on the soil (humic) horizon, saprolite, and fresh rock boundaries. The depth of geological boundaries is honored and described with downhole depth – not meter by meter. The total lengths of all holes have been geologically logged.</p> <p>Other important parameters for collecting data include grain size, texture, and color, which can help identify the parent rock before weathering.</p>

Criteria	JORC Code explanation	Commentary
	<i>intersections logged.</i>	All drilled holes have a digital photographic record. The log is stored in a Microsoft Excel template with inbuilt validation tables and a pick list to avoid data entry errors.
Sub-sampling techniques and sample preparation	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i>	The core was cut in half which was taken on a meter basis to SGS for preparation. Sample preparation (drying, crushing, splitting and pulverising) is carried out by SGS laboratory, in Vespasiano MG, using industry-standard protocols: Dried at 100°C, the fresh rock is 75% crushed to sub 3mm, the saprolite is just disaggregated with hammers, riffle split sub-sample, 250 g pulverized to 95% passing 150 mesh, monitored by sieving, aliquot selection from pulp packet. Each disaggregated rejects were riffle split at equal weight to produce the 3 meter composites. No duplicate or repeat composite sampling has been run at this stage. As received disaggregate rejects are considered appropriate to represent the REE mineralization.
Quality of assay data and laboratory tests	<i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i>	All head samples were analysed by a combination of XRF at ANSTO and fusion digest/ICP-MS (ALS, Brisbane) for the following elements: XRF – Al, As, Ba, Ca, Co, Cr, Cs, Cu, Fe, Hf, K, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Si, Sn, Ta, Ti, V, Zn, Zr Lithium Tetraborate Fusion Digest/ICP-MS – Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sc, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Y, Yb, Zr A summary of the REE head analysis for each sample is presented in table 3 for hole 18 and for hole 36. Full chemical analysis was provided in the Data Pack. Liquor samples were analysed by ICP OES (ANSTO) for gangue elements and by ICP MS (ALS, Brisbane) for REE, Sc, Ga, Th, U ANSTO and ALS included standards and blank materials to monitor the performance of the laboratory in keeping with NATA accreditation. The standards and blanks used displayed acceptable levels of accuracy and precision.
Verification of sampling and assaying	<i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i>	Result reviewed by the Company's Consultant Geologist and the Operator Manager, and specialists at ANSTO. Apart from the routine QA/QC procedures by the Company and the laboratory, there was no other independent or alternative verification of sampling and assaying procedures.

Criteria	JORC Code explanation	Commentary																																																			
	<p>Discuss any adjustment to assay data.</p>	<p>No twinned holes were used.</p> <p>Primary data is stored both in its source electronic form and where applicable, on paper. Assay data is retained in both the original certificate (pdf) form, where available, and the text files received from the laboratory. Primary data collection follows a structured protocol, with standardized data entry procedures ensure that any issues are identified and rectified. All data is stored both in physical forms, such as hard copies and electronically, in secure databases with regular backups.</p> <p>The adjustments to the data were made when required, converting the rare earth element values into the industry standard rare earth format. The conversion factors used are included in the table below. (source: https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors)</p> <table border="1"> <thead> <tr> <th>Element ppm</th><th>Conversion Factor</th><th>Oxide Form</th></tr> </thead> <tbody> <tr><td>La</td><td>1.1728</td><td>La2O3</td></tr> <tr><td>Ce</td><td>1.2284</td><td>CeO2</td></tr> <tr><td>Pr</td><td>1.2082</td><td>Pr6O11</td></tr> <tr><td>Nd</td><td>1.1664</td><td>Nd2O3</td></tr> <tr><td>Eu</td><td>1.1579</td><td>Eu2O3</td></tr> <tr><td>Gd</td><td>1.1526</td><td>Gd2O3</td></tr> <tr><td>Tb</td><td>1.1762</td><td>Tb4O7</td></tr> <tr><td>Dy</td><td>1.1477</td><td>Dy2O3</td></tr> <tr><td>Ho</td><td>1.1455</td><td>Ho2O3</td></tr> <tr><td>Er</td><td>1.1435</td><td>Er2O3</td></tr> <tr><td>Tm</td><td>1.1421</td><td>Tm2O3</td></tr> <tr><td>Yb</td><td>1.1387</td><td>Yb2O3</td></tr> <tr><td>Lu</td><td>1.1371</td><td>Lu2O3</td></tr> <tr><td>Y</td><td>1.2699</td><td>Y2O3</td></tr> <tr><td>Sc</td><td>1.5337</td><td>Sc2O3</td></tr> <tr><td>Ga</td><td>1.3442</td><td>Ga2O3</td></tr> </tbody> </table> <p>Rare earth abbreviations typically used in industry reporting and throughout this report were in accordance with IUPA guidelines, and were as follows:</p> <p>REE - Rare Earth Elements, value presented as oxide assay.</p> <p>REO – Rare Earths Oxides, value presented as oxide assay.</p> <p>TREE La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu plus Y and Sc.</p> <p>MREE – Pr, Nd, Tb, Dy.</p> <p>LREE: La+Ce+Pr+Nd and Sm.</p> <p>HREE: Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu plus Y.</p>	Element ppm	Conversion Factor	Oxide Form	La	1.1728	La2O3	Ce	1.2284	CeO2	Pr	1.2082	Pr6O11	Nd	1.1664	Nd2O3	Eu	1.1579	Eu2O3	Gd	1.1526	Gd2O3	Tb	1.1762	Tb4O7	Dy	1.1477	Dy2O3	Ho	1.1455	Ho2O3	Er	1.1435	Er2O3	Tm	1.1421	Tm2O3	Yb	1.1387	Yb2O3	Lu	1.1371	Lu2O3	Y	1.2699	Y2O3	Sc	1.5337	Sc2O3	Ga	1.3442	Ga2O3
Element ppm	Conversion Factor	Oxide Form																																																			
La	1.1728	La2O3																																																			
Ce	1.2284	CeO2																																																			
Pr	1.2082	Pr6O11																																																			
Nd	1.1664	Nd2O3																																																			
Eu	1.1579	Eu2O3																																																			
Gd	1.1526	Gd2O3																																																			
Tb	1.1762	Tb4O7																																																			
Dy	1.1477	Dy2O3																																																			
Ho	1.1455	Ho2O3																																																			
Er	1.1435	Er2O3																																																			
Tm	1.1421	Tm2O3																																																			
Yb	1.1387	Yb2O3																																																			
Lu	1.1371	Lu2O3																																																			
Y	1.2699	Y2O3																																																			
Sc	1.5337	Sc2O3																																																			
Ga	1.3442	Ga2O3																																																			

Criteria	JORC Code explanation	Commentary
		<p>TREO (Total Rare Earth Oxide) = $\text{La}_2\text{O}_3 + \text{CeO}_2 + \text{Pr}_6\text{O}_{11} + \text{Nd}_2\text{O}_3 + \text{Sm}_2\text{O}_3 + \text{Eu}_2\text{O}_3 + \text{Gd}_2\text{O}_3 + \text{Tb}_4\text{O}_7 + \text{Dy}_2\text{O}_3 + \text{Ho}_2\text{O}_3 + \text{Er}_2\text{O}_3 + \text{Tm}_2\text{O}_3 + \text{Yb}_2\text{O}_3 + \text{Y}_2\text{O}_3 + \text{Lu}_2\text{O}_3$ plus Y_2O_3 and Sc_2O_3</p> <p>MREO (Magnetic Rare Earth Oxide) = $\text{Pr}_6\text{O}_{11} + \text{Nd}_2\text{O}_3 + \text{Tb}_4\text{O}_7 + \text{Dy}_2\text{O}_3$</p> <p>LREO (Light Rare Earth Oxide) = $\text{La}_2\text{O}_3 + \text{CeO}_2 + \text{Pr}_6\text{O}_{11} + \text{Nd}_2\text{O}_3 + \text{Sm}_2\text{O}_3$</p> <p>HREO (Heavy Rare Earth Oxide) = $\text{Eu}_2\text{O}_3 + \text{Gd}_2\text{O}_3 + \text{Tb}_4\text{O}_7 + \text{Dy}_2\text{O}_3 + \text{Ho}_2\text{O}_3 + \text{Er}_2\text{O}_3 + \text{Tm}_2\text{O}_3 + \text{Yb}_2\text{O}_3 + \text{Lu}_2\text{O}_3$ plus Y_2O_3</p> <p>$\text{NdPr} = \text{Nd}_2\text{O}_3 + \text{Pr}_6\text{O}_{11}$</p> <p>$\text{DyTb} = \text{Dy}_2\text{O}_3 + \text{Tb}_4\text{O}_7$</p> <p>CREO (Critical Rare Earth Oxide) = $\text{Nd}_2\text{O}_3 + \text{Eu}_2\text{O}_3 + \text{Tb}_4\text{O}_7 + \text{Dy}_2\text{O}_3 + \text{Y}_2\text{O}_3$</p> <p>(From U.S. Department of Energy, Critical Material Strategy, December 2011)</p> <p>There are three commonly applied approaches to calculating extraction for leaching :</p> <p><u>Tail over Head</u>, which is calculated as 1 – tail grade/head grade. Where notable mass loss occurs in leaching, as is common for acid leaching, the tail grade is increased due to the mass loss and would result in an underestimation extraction. In this case, the tail grade is corrected via accounting for the solids mass loss, or via a « tie-in » with a non-soluble element such as Pb.</p> <p><u>Mass Basis</u>, which is calculated as element mass in liquor/(element mass in liquor + element mass in solids) for the discharge liquor and solids. This method ignores the head assay and somewhat eliminates sampling error impacting the head assay. It also accounts for any mass loss within the test.</p> <p><u>Liquor out over solids in</u>, which is calculated as element mass in liquor/element mass in solids in. This method is the most prone to error, as it includes sampling errors on the head assay, error in the liquor assay and error in the liquor SG assay. Small errors in the liquor assay can result in large percentage differences in extraction when the extraction extends its high (>70%) due to the nature of the calculation.</p> <p>The data in the tables presented below are based on liquor analysis, including the intermediate samples. The tail over head extraction method was used for the final residue only at the completion of the test, and was reported in the individual test sheets (but not included in the this summary tables).</p>
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	Drill hole collar locations were surveyed using a Real Time Kinematic (RTK) GPS unit, ensuring sub-metre accuracy for all recorded positions. All spatial data were captured and reported using the SIRGAS 2000 geodetic

Criteria	JORC Code explanation	Commentary
	<p>estimation.</p> <p>Specification of the grid system used.</p> <p>Quality and adequacy of topographic control.</p>	datum, projected to UTM Zone 24 South.
Data spacing and distribution	<p>Data spacing for reporting of Exploration Results.</p> <p>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</p> <p>Whether sample compositing has been applied.</p>	<p>39 individual composites were carried out on 2 diamond drillholes from 2m down to the fresh rock, samples numbered CLD-COMP-001 to 039 (table 2) from the DDH-018 and DDH-036 which are 1.94 km apart.</p> <p>Each one represents a different Style of REE mineralization in the area A.</p> <p>No resources are reported.</p> <p>The disaggregated rejects from each 1 metre interval returned from SGS over a 3 metre interval established around 2kg composites for test works at ANSTO.</p>
Orientation of data in relation to geological structure	<p>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</p> <p>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</p>	<p>All drill holes were drilled vertically, which is deemed the most suitable orientation for this type of supergene deposit. These deposits typically have a broad horizontal extent relative to the thickness of the mineralised body, exhibiting horizontal continuity with minimal variation in thickness.</p> <p>Given the extensive lateral spread and uniform thickness of the deposit, vertical drilling is optimal for achieving unbiased sampling. This orientation allows for consistent intersections of the horizontal mineralised zones, providing an accurate depiction of the geological framework and mineralisation.</p> <p>No evidence suggests that the vertical orientation has introduced any sampling bias concerning the key mineralised structures. The alignment of the drilling with the deposit's known geology ensures accurate and representative sampling. Any potential bias from the drilling orientation is considered negligible.</p>
Sample security	The measures taken to ensure sample security.	<p>The composite samples were prepared in the AXEL's core facility in Padre Paraiso-MG, supervised by a geologist.</p> <p>The sealed plastic bags were sent directly to ANSTO by airfreight. The Company has no reason to believe that sample security poses a material risk to the integrity of the assay data.</p> <p>The transport from the Project to the airport was undertaken by a competent, independent contractor.</p>
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Regular technical meetings were held with ANSTO personnel during the testing period. The ANSTO leaching report was reviewed by AXEL's experienced Consultant Geologist Antonio de Castro and Board members.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p>Type, reference name/number, location and ownership, including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</p> <p>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</p>	<p>The CALADÃO leases are 100% owned by AXEL with no issues in respect to native title interests, historical sites, wilderness or national park and environmental settings.</p> <p>The Company is not aware of any impediment to obtain a licence to operate in the area.</p>
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	In the Caladão Project, we are unaware of previous professional mineral exploration programs in the Region of Padre Paraíso MG. However, there is a history of previous artisanal gemstone mining in that region, particularly aquamarine.
Geology	Deposit type, geological setting and style of mineralisation.	<p>The rare earth mineralization at Caladão is hosted in a pegmatitic (porphyritic) granite, the Caladão Granite, as well as in a granodiorite, charnockite and a leuco granite in area A.</p> <p>Allanite and apatite were recognized in petrography but most of the primary minerals in the fresh rocks and secondary mineral phases in its weathered portion were not yet defined.</p> <p>The Caladão Granite in the Region of Padre Paraíso is in the so-called Lithium Valley in the northeast portion of the Minas Gerais State. Axel was the first exploration company to recognize the REE potential of these Neoproterozoic granites on the eastern flank of the São Francisco Craton. These granites are subalkaline to alkaline and are considered late to post-tectonic relative to the Salinas Formation. Weathering over these granites develops up to 60-meter-thick profiles that often contain abundant kaolinites and high grade rare earths.</p>
Drill hole Information	A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes:	Key leach test results and implications from this study are summarized in this report and tables presented in appendix 2.
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</p> <p>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should</p>	<p>No data aggregation methods have been applied.</p> <p>No metal equivalents are reported.</p>

	<p>be stated and some typical examples of such aggregations should be shown in detail.</p> <p>The assumptions used for any reporting of metal equivalent values should be clearly stated.</p>	
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</p>	At this stage of exploration insufficient data exists to confidently estimate true widths.
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</p>	Refer to figure 1 and 3, and appendix 2 in this announcement.
Balanced reporting	<p>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</p>	<p>See text to this announcement with the ANSTO data presented in this report to provide a transparent and comprehensive overview of the leaching tests conducted and its implications.</p> <p>The results obtained are exclusive for the holes tested and can not be extrapolated to any specific area in the project.</p> <p>The use of diagrams, such as geological maps and tables, is intended to enhance understanding of the data.</p> <p>This report accurately reflects the ANSTO test work results and the exploration activities and findings without bias or omission.</p>
Other substantive exploration data	<p>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</p>	There is no additional substantive exploration data to report currently.
Further work	<p>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</p>	Define the ionic rare earth well fields in the project to sustain modular in situ operation as in China.

Appendix 2. Tables and Figures.

Table 1- drillhole collar location

HoleID	Easting	Northing	RL (m)	Depth (m)	Azimuth	Dip
CLD-DDH-018	231,513.87	8,112,386.14	765.55	48.15	0	-90
CLD-DDH-036	231,424.35	8,110,449.96	842.70	81.45	0	-90

Table 2 – Composites sent to ANSTO

HoleID	CompositeID	From (m)	To (m)	Regolith	Lithology	Dry wt. (g)
CLD-DDH-018	CLD-COMP-001	2.00	5.00	Lateritic soil	Soil	1,995
CLD-DDH-018	CLD-COMP-002	5.00	8.00	Lateritic soil	Soil	2,042
CLD-DDH-018	CLD-COMP-003	8.00	11.00	Upper Saprolite	Porphyritic Granite	2,081
CLD-DDH-018	CLD-COMP-004	11.00	14.00	Upper Saprolite	Porphyritic Granite	2,092
CLD-DDH-018	CLD-COMP-005	14.00	17.00	Upper Saprolite	Porphyritic Granite	2,099
CLD-DDH-018	CLD-COMP-006	17.00	20.00	Upper Saprolite	Granodiorite	2,086
CLD-DDH-018	CLD-COMP-007	20.00	23.00	Upper Saprolite	Granodiorite	2,047
CLD-DDH-018	CLD-COMP-008	23.00	26.00	Upper Saprolite	Granodiorite	2,066
CLD-DDH-018	CLD-COMP-009	26.00	29.00	Upper Saprolite	Granodiorite	2,108
CLD-DDH-018	CLD-COMP-010	29.00	32.00	Upper Saprolite	Granodiorite	2,088
CLD-DDH-018	CLD-COMP-011	32.00	35.00	Upper Saprolite	Granodiorite	2,059
CLD-DDH-018	CLD-COMP-012	35.00	38.00	Lower Saprolite	Granodiorite	2,080
CLD-DDH-018	CLD-COMP-013	38.00	41.00	Lower Saprolite	Granodiorite	2,098
CLD-DDH-018	CLD-COMP-014	41.00	44.37	Lower Saprolite	Granodiorite	2,015
CLD-DDH-036	CLD-COMP-015	2.00	5.00	Lateritic soil	Soil	2,013
CLD-DDH-036	CLD-COMP-016	5.00	8.00	Lateritic soil	Soil	2,018
CLD-DDH-036	CLD-COMP-017	8.00	11.00	Lateritic soil	Soil	2,094
CLD-DDH-036	CLD-COMP-018	11.00	14.00	Lateritic soil	Soil	1,925
CLD-DDH-036	CLD-COMP-019	14.00	17.00	Upper Saprolite	Porphyritic Granite	2,047
CLD-DDH-036	CLD-COMP-020	17.00	20.00	Upper Saprolite	Porphyritic Granite	2,107
CLD-DDH-036	CLD-COMP-021	20.00	23.00	Upper Saprolite	Porphyritic Granite	2,097
CLD-DDH-036	CLD-COMP-022	23.00	26.00	Upper Saprolite	Porphyritic Granite	1,892
CLD-DDH-036	CLD-COMP-023	26.00	29.00	Upper Saprolite	Porphyritic Granite	1,986
CLD-DDH-036	CLD-COMP-024	29.00	32.00	Upper Saprolite	Porphyritic Granite	1,889
CLD-DDH-036	CLD-COMP-025	32.00	35.00	Upper Saprolite	Porphyritic Granite	2,062
CLD-DDH-036	CLD-COMP-026	35.00	38.00	Upper Saprolite	Porphyritic Granite	2,016
CLD-DDH-036	CLD-COMP-027	38.00	41.00	Upper Saprolite	Porphyritic Granite	1,987
CLD-DDH-036	CLD-COMP-028	41.00	44.00	Upper Saprolite	Porphyritic Granite	2,090
CLD-DDH-036	CLD-COMP-029	44.00	47.00	Upper Saprolite	Porphyritic Granite	2,027
CLD-DDH-036	CLD-COMP-030	47.00	50.00	Upper Saprolite	Porphyritic Granite	2,042
CLD-DDH-036	CLD-COMP-031	50.00	53.00	Upper Saprolite	Porphyritic Granite	2,015
CLD-DDH-036	CLD-COMP-032	53.00	56.00	Upper Saprolite	Porphyritic Granite	2,030
CLD-DDH-036	CLD-COMP-033	56.00	59.00	Upper Saprolite	Porphyritic Granite	1,998

HoleID	CompositeID	From (m)	To (m)	Regolith	Lithology	Dry wt. (g)
CLD-DDH-036	CLD-COMP-034	59.00	62.00	Lower Saprolite	Porphyritic Granite	2,023
CLD-DDH-036	CLD-COMP-035	62.00	65.00	Lower Saprolite	Porphyritic Granite	2,038
CLD-DDH-036	CLD-COMP-036	65.00	68.00	Lower Saprolite	Porphyritic Granite	2,043
CLD-DDH-036	CLD-COMP-037	68.00	71.00	Lower Saprolite	Porphyritic Granite	2,113
CLD-DDH-036	CLD-COMP-038	71.00	74.00	Lower Saprolite	Porphyritic Granite	2,060
CLD-DDH-036	CLD-COMP-039	74.00	76.92	Lower Saprolite	Porphyritic Granite	2,010

Table 3. REE composite head grades for these tests

HoleID	CompositeID	TREO	MREO	La2O3 ppm	CeO2 ppm	Pr6O11 ppm	Nd2O3 ppm	Sm2O3 ppm	Eu2O3 ppm	Gd2O3 ppm	Tb4O7 ppm	Dy2O3 ppm	Ho2O3 ppm	Er2O3 ppm	Tm2O3 ppm	Yb2O3 ppm	Lu2O3 ppm	Y2O3 ppm
CLD-DDH-018	CLD-COMP-003	1,769	228	299	1,169	49	170	24	1	13	2	7	1	2	0	2	0	29
CLD-DDH-018	CLD-COMP-010	2,800	808	710	954	164	605	87	11	49	6	32	5	14	2	10	1	149
CLD-DDH-018	CLD-COMP-013	1,887	462	368	609	84	331	54	10	47	7	40	7	20	2	14	2	292
CLD-DDH-036	CLD-COMP-016	279	32	62	153	7	21	3	1	3	0	3	1	2	0	2	0	20
CLD-DDH-036	CLD-COMP-026	6,660	643	674	5,098	143	470	69	9	41	5	25	4	10	1	7	1	103
CLD-DDH-036	CLD-COMP-035	7,086	2,021	2,293	1,695	408	1,476	230	35	181	21	116	19	48	5	33	4	522

For persons under 18 years of age, Axel REE Limited (ASX: AXL) does not recommend that you use this website. Axel REE Limited (ASX: AXL) is not responsible for the content of any external websites linked from this website.

Table 4 – Percentage of rare earths recovered in the acid tests for comp-03, 10 and 13

Sample ID	Conditions Reagent	Liquor Based 72h (50 g/L) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %	Lu %	Y %	Ga %	Pb %	Nd/Pr %	Tb/Dy %	Magnets %	TREY %	TREY-Ce %
CLD-COMP-003	Acid Water (SO ₄ , pH 1)	6.5	60.6	8.7	9.2	10.3	31.0	8.6	18.3	11.9	11.1	51.4	51.6	13.0	12.7	19.1	0.0	9.1	13.0	9.2	42.3	8.0	
CLD-COMP-0010	Acid Water (SO ₄ , pH 1)	46.9	28.6	58.1	55.3	54.9	64.0	55.0	54.3	49.8	53.2	51.4	51.6	54.4	52.8	16.4	0.0	55.9	50.5	55.7	44.2	52.0	
CLD-COMP-0013	Acid Water (SO ₄ , pH 1)	39.7	43.7	49.5	50.0	53.3	61.3	67.6	65.9	67.4	76.2	83.4	72.7	65.7	75.9	22.6	0.0	49.9	67.2	51.7	51.3	54.9	
CLD-COMP-003	Acid Water (Cl, pH 1)	7.6	61.0	10.3	10.3	11.4	34.3	11.9	20.3	13.1	28.7	12.3	14.4	14.0	15.1	0.0	10.3	14.4	10.5	43.0	9.3		
CLD-COMP-0010	Acid Water (Cl, pH 1)	92.4	94.0	105.8	101.1	94.5	85.2	92.8	90.4	81.6	88.6	76.9	76.4	60.4	83.8	12.7	0.0	102.0	83.0	101.1	94.9	95.4	
CLD-COMP-0013	Acid Water (Cl, pH 1)	79.3	71.1	78.0	73.8	73.9	73.7	79.3	76.8	74.7	83.6	78.2	78.4	76.7	72.1	81.5	30.1	0.0	74.6	75.0	74.7	75.7	77.8
Sample ID	Conditions Reagent	Liquor Based 48h (25 g/L) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %	Lu %	Y %	Ga %	Pb %	Nd/Pr %	Tb/Dy %	Magnets %	TREY %	TREY-Ce %
CLD-COMP-003	Acid Water (SO ₄ , pH 1)	8.1	57.6	11.1	10.8	12.5	31.0	12.9	18.3	15.8	25.9	22.3	25.9	26.4	9.5	0.0	10.9	16.3	11.1	41.2	10.5		
CLD-COMP-0010	Acid Water (SO ₄ , pH 1)	40.0	17.4	48.5	47.6	47.9	61.4	49.4	49.7	43.9	47.9	45.5	51.6	46.5	36.2	49.5	11.5	0.0	47.8	44.8	47.6	35.8	44.9
CLD-COMP-0013	Acid Water (SO ₄ , pH 1)	29.5	34.3	38.0	39.8	44.9	55.5	61.0	61.8	61.8	72.3	68.5	71.5	67.9	73.5	17.7	0.0	39.5	61.8	41.8	42.9	47.0	
CLD-COMP-003	Acid Water (Cl, pH 1)	12.9	66.0	16.1	15.6	16.4	34.3	16.7	20.3	21.9	28.7	37.0	28.7	37.4	10.6	0.0	15.7	21.6	15.9	48.4	15.6		
CLD-COMP-0010	Acid Water (Cl, pH 1)	63.6	48.3	76.9	70.6	70.0	73.8	69.2	65.3	60.0	65.0	59.3	76.4	57.4	60.4	65.3	10.0	0.0	71.9	60.9	71.4	61.2	67.6
CLD-COMP-0013	Acid Water (Cl, pH 1)	76.0	65.8	72.6	69.6	69.9	73.7	78.7	76.8	75.5	83.6	79.7	91.5	84.5	22.1	0.0	70.2	75.7	70.8	72.7	75.9		
Sample ID	Conditions Reagent	Liquor Based 24h (15 g/L) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %	Lu %	Y %	Ga %	Pb %	Nd/Pr %	Tb/Dy %	Magnets %	TREY %	TREY-Ce %
CLD-COMP-003	Acid Water (SO ₄ , pH 1)	5.6	59.4	8.2	8.2	9.1	31.0	8.6	18.3	11.9	11.1	51.4	51.6	13.0	9.5	8.9	0.0	8.2	13.0	8.4	41.1	7.1	
CLD-COMP-0010	Acid Water (SO ₄ , pH 1)	36.1	15.0	44.2	43.4	44.8	56.5	46.0	45.2	47.9	47.9	45.5	51.6	36.2	46.1	9.0	0.0	43.5	42.7	43.5	31.7	41.0	
CLD-COMP-0013	Acid Water (SO ₄ , pH 1)	3.4	27.5	34.1	33.8	39.3	52.7	53.7	61.8	60.4	72.3	57.1	61.0	67.7	72.2	10.5	0.0	23.3	60.6	36.1	37.7	42.5	
CLD-COMP-003	Acid Water (Cl, pH 1)	6.5	64.1	9.0	9.1	10.1	34.3	9.5	20.3	8.8	12.3	14.4	10.5	7.5	0.0	9.1	10.8	9.1	44.5	8.0			
CLD-COMP-0010	Acid Water (Cl, pH 1)	49.9	25.0	58.1	56.6	56.7	68.2	57.9	55.2	50.7	59.1	57.3	51.6	55.2	8.2	0.0	56.9	51.4	56.7	44.4	54.0		
CLD-COMP-0013	Acid Water (Cl, pH 1)	55.6	48.3	53.5	52.8	54.4	64.1	70.2	72.3	71.7	79.4	76.7	91.5	76.7	72.1	81.3	15.9	0.0	52.9	71.8	54.9	57.8	62.2
Sample ID	Conditions Reagent	Liquor Based 2h (pH 1) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %	Lu %	Y %	Ga %	Pb %	Nd/Pr %	Tb/Dy %	Magnets %	TREY %	TREY-Ce %
CLD-COMP-003	Acid Water (SO ₄ , pH 1)	5.6	57.9	8.2	8.0	9.1	31.0	8.6	18.3	11.9	11.1	51.4	51.6	13.0	9.5	4.1	0.0	8.1	9.8	8.1	40.1	7.0	
CLD-COMP-0010	Acid Water (SO ₄ , pH 1)	33.7	10.7	40.5	40.5	47.0	53.7	43.2	40.7	38.9	42.6	39.6	51.6	36.2	43.8	4.1	0.0	40.5	39.2	40.5	29.1	38.3	
CLD-COMP-0013	Acid Water (SO ₄ , pH 1)	23.0	25.5	27.5	30.5	35.0	49.6	55.1	57.7	57.7	65.5	71.5	63.9	65.7	69.0	4.0	0.0	29.9	57.7	32.8	35.4	40.0	
CLD-COMP-003	Acid Water (Cl, pH 1)	5.8	49.6	8.4	8.2	8.8	34.3	7.1	10.2	8.8	12.3	14.4	10.5	7.5	0.0	9.1	7.2	8.2	34.8	7.1			
CLD-COMP-0010	Acid Water (Cl, pH 1)	38.5	11.7	44.0	43.6	42.7	56.6	46.7	45.2	41.3	47.3	43.9	57.3	43.0	40.2	47.3	3.6	0.0	43.7	41.9	43.6	32.0	42.0
CLD-COMP-0013	Acid Water (Cl, pH 1)	33.5	27.7	31.0	33.2	37.8	54.5	59.2	63.3	61.0	71.0	67.5	78.4	70.2	72.1	74.3	2.7	0.0	32.7	61.3	35.7	40.0	45.7
Sample ID	Conditions Reagent	Liquor Based 48h (25 g/L) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %	Lu %	Y %	Ga %	Pb %	Nd/Pr %	Tb/Dy %	Magnets %	TREY %	TREY-Ce %
CLD-COMP-0016	Acid Water (SO ₄ , pH 1)	4.5	29.9	8.0	9.1	8.0	7.8	8.0	10.2	9.4	9.4	6.5	5.7	7.9	15.3	0.0	15.7	8.0	14.9	24.5	9.6		
CLD-COMP-0026	Acid Water (SO ₄ , pH 1)	8.2	16.3	12.6	12.6	12.9	16.0	12.8	10.4	12.2	19.5	20.0	22.3	19.8	30.0	18.3	6.6	0.0	23.7	21.9	22.7	19.2	19.5
CLD-COMP-0035	Acid Water (SO ₄ , pH 1)	29.5	50.7	44.3	42.3	35.2	37.7	25.0	24.2	20.8	38.7	36.6	41.3	36.6	40.5	32.7	51.9	0.0	39.4	42.5	39.9	45.4	42.9
CLD-COMP-0016	Acid Water (Cl, pH 1)	6.0	10.3	8.8	10.0	8.8	11.2	11.2	10.3	12.2	11.9	16.5	20.7	16.6	13.5	3.1	11.4	0.0	8.8	11.9	12.6	14.9	10.5
CLD-COMP-0026	Acid Water (Cl, pH 1)	43.5	17.8	50.8	49.5	46.8	45.5	50.3	45.5	50.9	49.9	50.1	48.7	43.4	32.9	5.0	0.0	9.7	8.8	9.6	8.6	6.6	
CLD-COMP-0035	Acid Water (Cl, pH 1)	73.5	63.3	88.2	86.9	78.3	93.4	87.5	84.4	80.4	90.9	79.7	75.1	20.2	0.0	87.2	85.3	87.1	75.9	79.8			
Sample ID	Conditions Reagent	Liquor Based 24h (15 g/L) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %	Lu %	Y %	Ga %	Pb %	Nd/Pr %	Tb/Dy %	Magnets %	TREY %	TREY-Ce %
CLD-COMP-0016	Acid Water (SO ₄ , pH 1)	4.1	15.6	8.0	7.8	8.0	8.0	8.0	10.2	9.4	9.4	6.5	5.7	7.9	15.3	0.0	7.9	8.0	7.9	12.4	5.7		
CLD-COMP-0026	Acid Water (SO ₄ , pH 1)	3.5	11.6	4.7	4.8	4.8	6.4	4.7	5.2	4.4	6.5	5.7	7.9	16.4	2.2	0.0	7.3	7.6	7.6	12.5	6.5		
CLD-COMP-0035	Acid Water (SO ₄ , pH 1)	25.9	48.2	33.2	34.4	30.0	31.4	20.0	18.9	16.1	13.4	10.3	11.7	13.5	10.3	3.1	11.4	0.0	35.2	33.9	33.9	32.2	
CLD-COMP-0016	Acid Water (Cl, pH 1)	4.0	7.2	4.4	7.1	8.8	11.2	28.4	29.1	28.5	25.0	24.4	26.1	32.9	26.5	1.8	0.0	6.5	0.0	5.8	5.9	4.4	
CLD-COMP-0026	Acid Water (Cl, pH 1)	23.3	13.7	29.4	29.0	29.1	31.5	29.6	28.4	29.1	28.5	26.1	24.4	32.9	14.9	4.0	0.0	6.5	0.0	5.8	4.3	4.7	
CLD-COMP-0035	Acid Water (Cl, pH 1)	56.9	58.5	70.8	69.2	62.2	75.2	67.4	72.6	68.3	71.8	68.4	73.9	64.5	12.3	0.0	69.6	69.0	69.5	62.2	63.3		
Sample ID	Conditions Reagent	Liquor Based 2h (pH 1) Extraction (%)																					
		La %	Ce %	Pr %	Nd %	Sm %	Eu %	Gd %	Tb %	Dy %	Ho %	Er %	Tm %	Yb %</th									