

Broad Spaced Arrakis RC Drilling Maps Fresh Rock**Mineralisation Over 1.2 Kilometres****Yandal Sets the Stage for Further Drilling in 2026****RC Drilling Highlights**

- All results from the late 2025 Arrakis RC drilling program have now been received. This includes assay results from the final seven holes of the seventeen-hole RC program.
- Results have mapped the Arrakis structure within fresh rock over 1.2km of strike, with mineralisation open to the southeast where an interpreted strike change occurs.

Strategic Implications and Exploration Momentum

- With the broad geometry and location of the primary mineralised structure now modelled, closer spaced drilling can be designed to test higher grade trends within the mineralised system.
- Results have demonstrated both broad shallow mineralisation and narrower high-grade mineralisation at depth, presenting clear targets for ongoing exploration.

Next Steps - Arrakis

- Installation and commissioning of the new exploration camp will commence next week.
- Planned closer-spaced drilling will focus on defining and extending the thicker and higher-grade gold zones within the currently defined structure.
- Systematic step out drilling south of the currently defined trend and RC drilling testing several parallel air-core anomalies will also be completed.
- RC and diamond drilling to re-commence in March following the commissioning of the exploration camp.

For further information or to ask questions in relation to this announcement, please visit our Investor Hub at <https://yandalresources.com.au/link/rAOo7y>

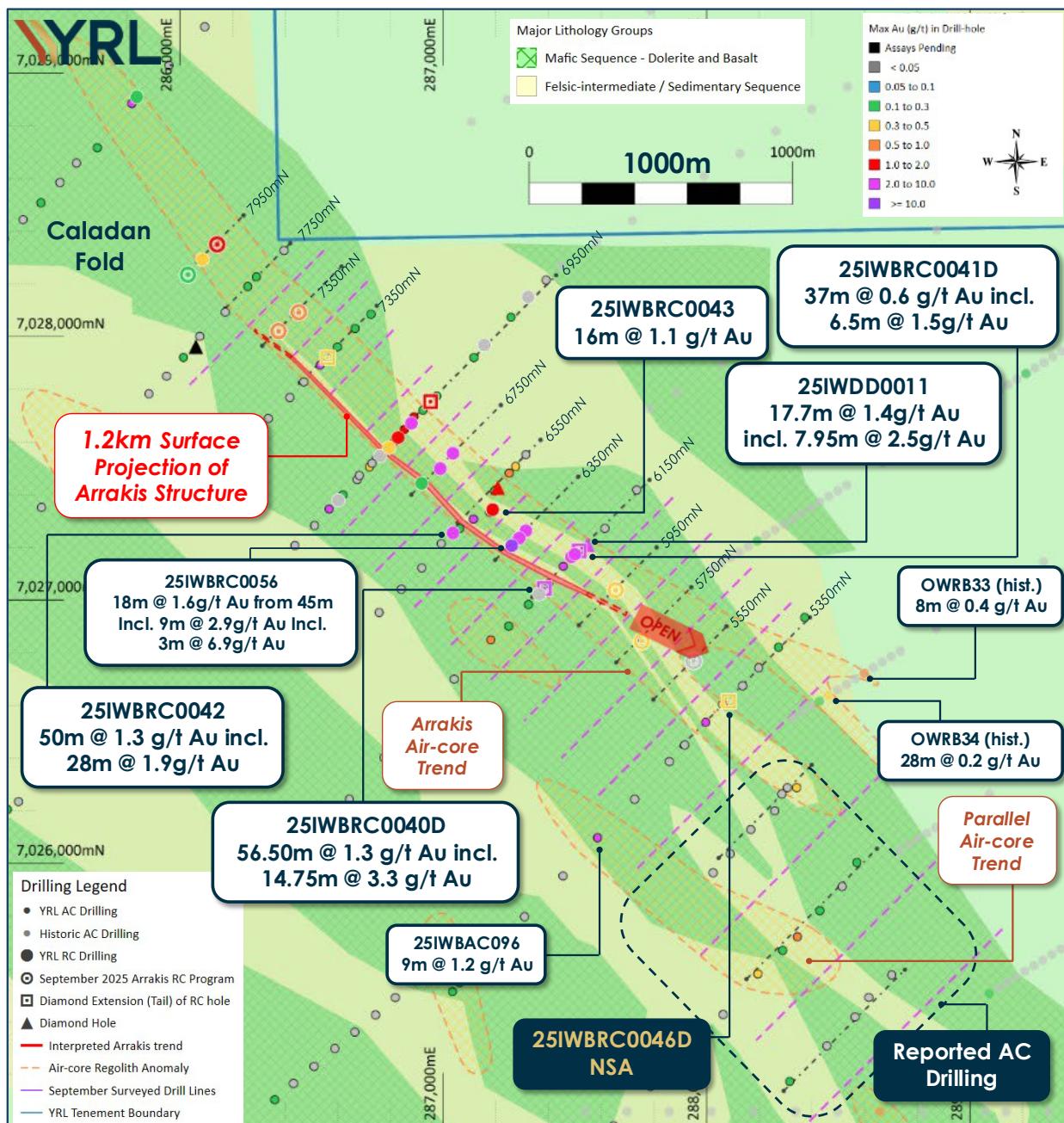
Contact Us

A: Suite 1, Level 3, 1138 Hay Street,
West Perth WA 6005
T: +61 (0)8 9389 9021
E: yandal@yandalresources.com.au
yandalresources.com.au | **ASX:YRL**

Board and Management

Chris Oorschot	Managing Director/CEO
Greg Evans	Non-Exec Chair
Katina Law	Non-Exec Director
Chris Newman	Non-Exec Director
Greg Fitzgerald	Company Secretary

Commenting on the new results, Yandal Resources' Managing Director, Mr. Chris Oorschot, said: "With these results, Yandal enters 2026 with a primary mineralised structure defined over more than 1.2km of strike at Arrakis, with demonstrated capacity to host both shallow broad-scale and narrower, high-grade gold mineralisation. Limited closer-spaced drilling has also demonstrated strong mineralisation continuity both along strike and down dip. With a strong funding position, we are well-positioned to advance and accelerate exploration across Arrakis, the New England Granite target area and the Flushing Meadows deposit in 2026.


Our broad spaced RC program has successfully mapped out the extent of our primary mineralised structure. The RC results combined with the diamond drilling results have highlighted that while the broader trend is relatively predictable, in terms of location and geometry, local complexities are present and are likely to play a role in the distribution of mineralisation. Resolving these geological controls on higher-grade and/or broader scale mineralisation will be our key focus once drilling commences in March.

Additionally, there appears to be a moderate strike change in the Arrakis structure to the southeast based on geological modelling completed on closer spaced drilling, particularly around the 6,150mN line. As a result of this strike change, drilling south of 6,150mN is unlikely to have effectively tested the primary Arrakis structure along strike to the southeast. We will look to confirm this interpretation rapidly once drilling re-commences at Arrakis."

Yandal Resources Ltd (ASX: YRL, "Yandal Resources" or the "Company") is pleased to provide an exploration update for the Arrakis Prospect within the Ironstone Well-Barwidgee Gold Project (see Figures 5 and 6). A 17-hole, 3,800m RC program was completed in mid-December across the Arrakis Prospect, testing the mineralised trend along 200m-spaced infill drill lines. Assay results from all seventeen holes have been received and reported (see Tables 2 and 3). RC results demonstrate a mineralised system with a relatively simple, predictable geometry, with higher-grade mineralisation occurring in a consistent position along strike and down dip. Several closer-spaced holes drilled to assess mineralisation continuity and potential high-grade plunge geometries were also completed, with results showing strong mineralisation continuity along strike. Results also demonstrate the potential for shallow oxide mineralisation immediately below the unmineralised transported cover.

In addition to RC drilling results, further results from the 2025 Arrakis diamond drilling program and air-core program have also been received. The diamond drilling program comprised four re-entries (diamond tails to previously reported RC holes) and four new holes drilled for a total of 1,931m. Results from 25IWBC0046D have been received, with results from one hole yet to be reported (25IWBD0013). Results from diamond hole 25IWBC0046D, the most southern diamond hole drilled across the prospect, did not intercept the Arrakis structure. This result, combined with RC drilling on lines 5,550mN and 5,750mN, suggests the Arrakis structure's strike shifts towards the south (see Figure 1), and remains open and untested towards the south-east.

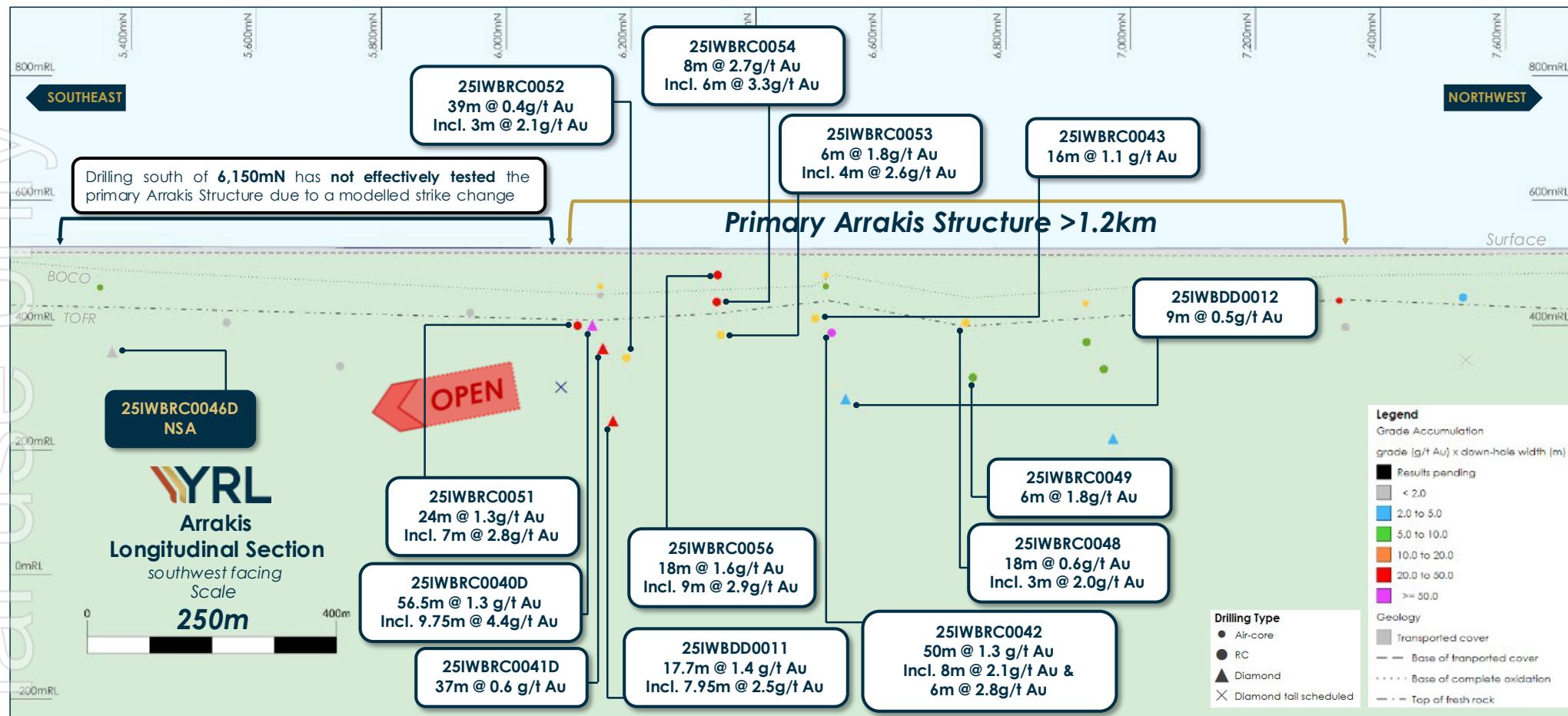
Air-core drilling across three 400m spaced lines, comprising 16 holes for 1,872m, has returned several regolith anomalies of interest (see Figure 1). Follow-up RC drilling will be completed in the June Quarter.

Figure 1: A collar plan over the Arrakis Prospect within the Caladan target area, showing simplified bedrock geology interpretation. All Yandal drilling is plotted along with all historic drilling with end-of-hole depths >20m. Collars are thematically coloured by max Au (g/t) in the hole. Dashed yellow polygons represent air-core regolith anomalies (Results include ~4m @ 0.1 g/t Au or greater, with the upper profile or the bottom-of-hole sample is 0.1g/t Au or greater). Dashed purple lines represent heritage-surveyed 100m-spaced lines to support 2026 drilling.

Arrakis RC Drilling Results Summary

Assay results from all seventeen Arrakis RC holes have now been received and reported (see Tables 2 and 4), following the reporting of the first ten RC holes in mid-January (See ASX release 15 January 2026). The program was designed to map the extent of the Arrakis mineralised system by targeting the structure and host stratigraphy across 200m-spaced sections ahead of closer-spaced drilling scheduled to commence in March 2026. The final results come from the final seven RC holes testing the northwest and southeast extents of the air-core anomaly that defines the Arrakis Prospect. RC drilling north of the 7,350mN drill line (see Figure 1) has intercepted several weakly mineralised mafic-hosted shears, but did not intercept an Arrakis-style structure comparable to intercepts located south of this section.

Towards the southeast of the 6,150mN line, RC drilling has not intercepted the Arrakis structure. A change in strike of the Arrakis structure based on drilling across the 6,350 and 6,150mN suggests that RC drilling southeast of the 6,150mN line has not effectively tested the southern extent of the Arrakis mineralised structure, and it remains open in this direction (see Figure 2).


Upon receipt of all assay results, the Arrakis RC drilling program has:

- Intercepted and mapped the Arrakis structure within fresh rock over 1.2km of strike;
- Demonstrated the potential for both near-surface broader mineralisation and deeper high-grade mineralisation;
- Demonstrated mineralisation continuity both down dip and along strike;
- Combined with diamond drilling, enabled further refinement of the geological model across Arrakis.

Significant intercepts from the completed RC program include:

- o **24m @ 1.3g/t Au** from 136m in **25IWBC0051**, including
 - **7m @ 2.8g/t Au** from 137m
- o **18m @ 1.6g/t Au** from 45m in **25IWBC0056**, including
 - **9m @ 2.9g/t Au** from 45m
- o **8m @ 2.7g/t Au** from 95m in **25IWBC0054**, including
 - **6m @ 3.3g/t Au** from 96m
- o **6m @ 1.8g/t Au** from 159m in **25IWBC0053**, including
 - **3m @ 3.1g/t Au** from 159m

RC results combined with observations from all drilling continue to demonstrate the potential for a regionally significant mineralised system. With the late 2025 RC program focused on defining the extents of the primary mineralised system, drilling in 2026 will shift to defining the extent of both broader gold mineralisation, particularly near surface, and narrower high-grade mineralisation to assess the viability of potential deeper exploration targets. Defining the extents of both mineralisation styles will enable an assessment of the scale of potentially economic mineralisation and the timing of any resource definition drilling program.

Figure 2: A longitudinal section displaying intercept midpoints within the main Arrakis mineralised structure (intercepts from subordinate structures are excluded). Grade accumulation (length multiplied by Au grade) is based on down-hole length, with no true width correction applied. This longitudinal section has been prepared to show the distribution of recent intercepts across the interpreted Arrakis trend. While there is some preliminary evidence of mineralisation continuity, additional drilling is needed to confirm mineralisation continuity on a larger scale. For this reason, grade contours and high-grade plunge interpretations have not been applied.

Arrakis Diamond Drilling Results

Eight diamond holes were completed across the Arrakis Prospect in late 2025, testing the Arrakis trend over more than 2km of strike (see Figures 1 and 2). The diamond drilling program was completed to refine a geological model for Arrakis, support exploration targeting, and future drilling. Results from 25IWBC0046D have been received (see Tables 3 and 4). The diamond tail did not intercept the Arrakis structure. It is believed that the overlying air-core intercept from 25IWBC099 (22m @ 0.5 g/t Au from 75m Including 7m @ 1.2 g/t Au, see ASX release 18 August 2025) is associated with a shale and sediment package. Interpretations suggest that the Arrakis structure, when projected along strike to the southeast, is positioned further east on the 5350mN drill line (see Figure 1). Results from the final diamond hole, 25IWBD0013, are anticipated soon.

Arrakis Air-Core Results

All air-core results from the three 400m spaced lines drilled to test for the continuation of the Arrakis air-core anomaly to the southeast have been received (see Tables 5 and 6). A total of 16 holes for 1,872m were drilled as part of the small extensional air-core program. Air-core results show a continuation of the air-core anomaly a further 400m to the southeast, and also highlight several parallel air-core anomalies of interest.

Next Steps

Preparations are underway for RC and diamond drilling to re-commence across Arrakis in March following the installation of the Exploration Camp in late February. RC drilling will then be completed on existing and targeted 100m spaced drill lines across the Arrakis trend to test mineralisation continuity to the southeast and define the geometry of high-grade mineralisation. Further diamond drilling has also been designed and scheduled to test below recent RC intercepts and provide material for preliminary metallurgical test work.

Several RC holes will also be completed below several parallel air-core anomalies (see Figure 1).

Looking Ahead

The Company maintains a strong cash position and a very active exploration schedule across 2026. Notable near-term activities and news flow include:

Arrakis Discovery

- RC and diamond drilling are scheduled to commence in March 2026;

New England Granite Target Area

- Small targeted RC drilling programs are scheduled for the June Quarter to follow up recent air-core intercepts from the Salusa prospect and assess the potential for oxide mineralisation across the Siona prospect;

Flushing Meadows (MRE 268koz @ 1.1g/t Au, see Table 1)

- Heritage surveys are being scheduled for the March Quarter;
- A framework diamond drilling program is scheduled to commence across the Flushing Meadows deposit once heritage clearance is received. The program will include 200m spaced diamond holes covering 1.6km of strike below the current MRE;

Key Exploration Infrastructure

- Operational preparations are underway for a ramp-up of exploration following the wet season in Q1 CY2026, including the establishment of a 21-person camp and the expansion of the operational team by the end of February.

Authorised by the board of Yandal Resources

For further information, please contact:

Chris Oorschot

Managing Director

Yandal Resources Limited

+61 08 9389 9021

yandal@yandalresources.com.au

Lucas Robinson

Corporate Storytime

+61 408 228 889

luca@corporatestorytime.com

About Yandal Resources Limited

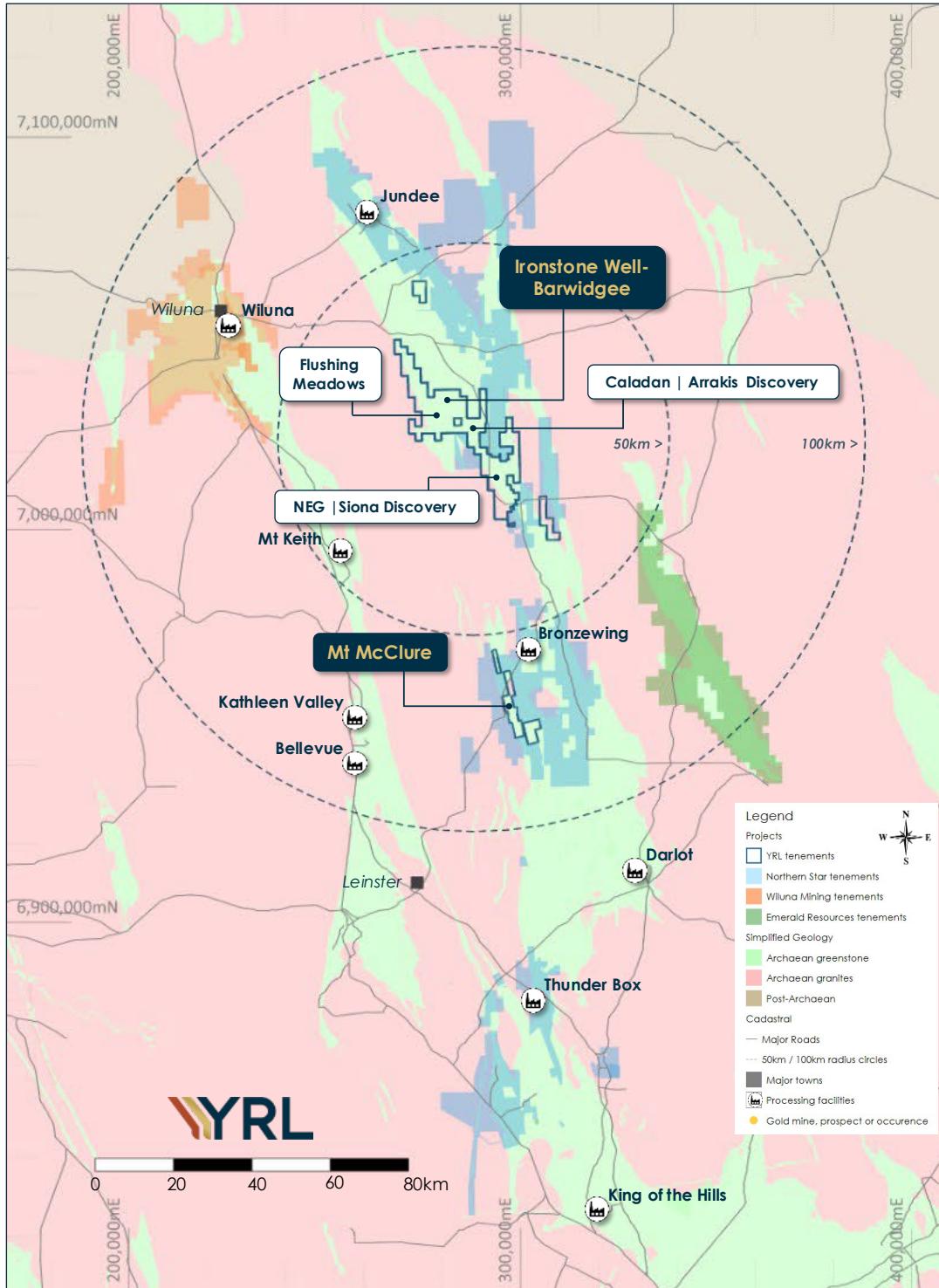
Yandal Resources has a portfolio of advanced gold exploration projects in the highly prospective Yandal and Norseman-Wiluna Greenstone Belts of Western Australia.

Ironstone Well-Barwidgee Gold Project

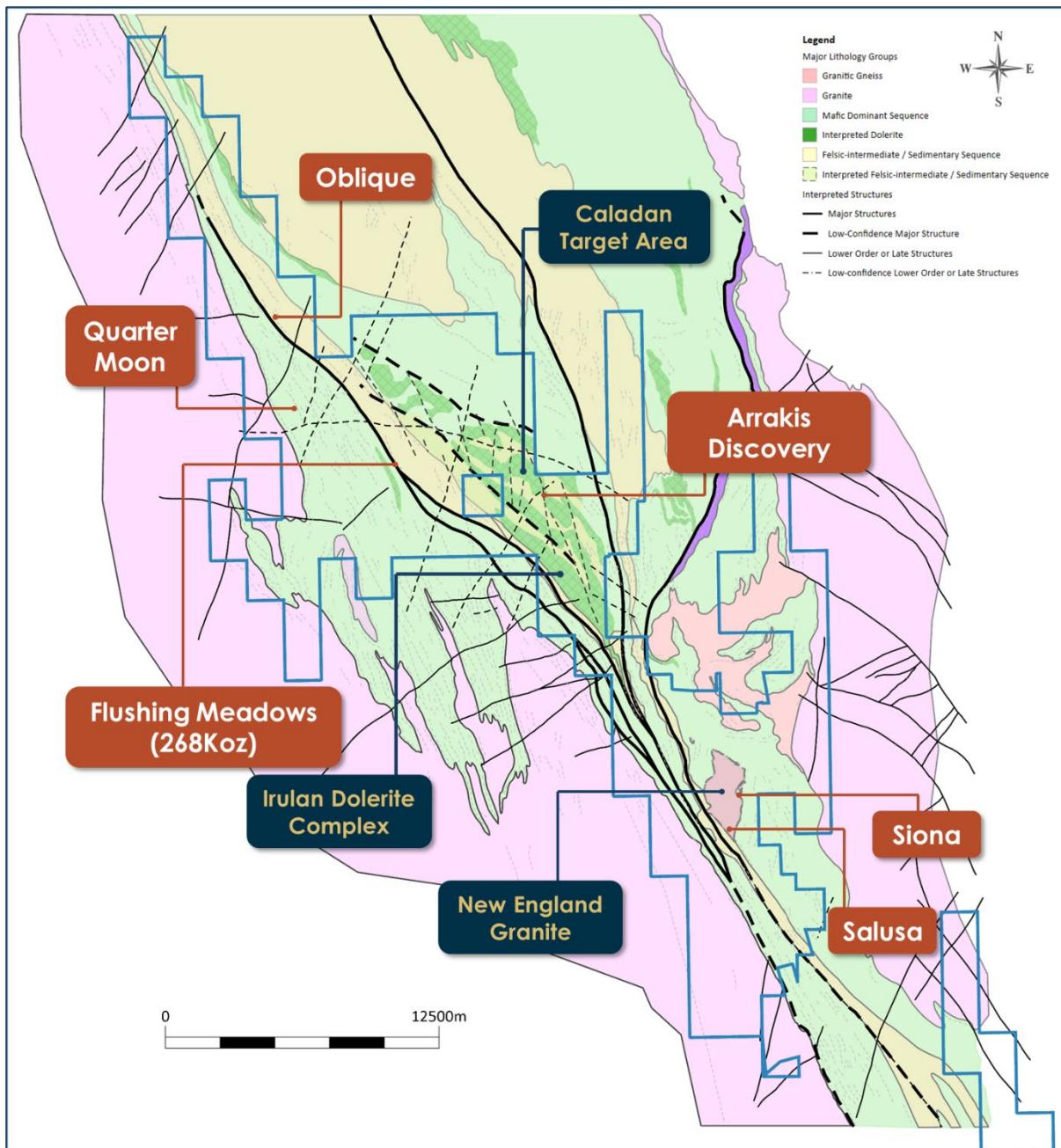
The 100% owned Ironstone Well-Barwidgee (IWB) Gold Project covers approximately 370km² of highly prospective and under-explored tenure located between the Jundee and Bronzewing mines in the northern Yandal Greenstone Belt. Yandal has an established Resource of 268,000oz of gold at Flushing Meadows (within IWB) and considers there to be strong potential to make new discoveries and expand this resource base within its extensive tenure holding. (Refer to the ASX announcement of 4 November 2020 for details of the Flushing Meadows Resource).

The IWB project area also includes two new gold discoveries, the Arrakis and Siona Prospects, both made within the last twelve months. These outcomes were driven by the execution of a targeted exploration program that followed a systematic, geologically driven strategy that was developed in early 2023. The Arrakis prospect is hosted within the Caladan fold, and the Siona prospect is hosted within the New England Granite.

Both discoveries are currently at an early stage but progressing well, with future activities focused on delineating the scale of each of the newly defined mineralised systems.


The IWB Gold Project also includes several advanced prospects, where limited historic and YRL drilling has returned robust gold intercepts, indicating the potential for shallow oxide mineralisation. Both the early-stage and more advanced prospects are the focus of ongoing exploration.

Mt McClure


The Mt McClure Gold Project, acquired in August 2022, is located ~15km southwest of the historic Bronzewing Mine and includes three mining leases with JORC 2012 Resources totalling 182,200oz Au.

The project has prospectivity for new shallow gold deposits adjacent to current Resources and in the footwall and hanging wall of the stratigraphy. Ground gravity survey data from the prior Quarter support ongoing structural/stratigraphic interpretations for 2026 targeting.

For personal use only

Figure 5: Yandal Resource exploration Project locations within the Yandal Greenstone Belt. The Arrakis Prospect is located within the Caladan target area.

Figure 6: Yandal Resource exploration target areas and prospect locations within the northern Yandal Greenstone Belt. The Arrakis Prospect is located within the Caladan target area.

Table 1 – Yandal Resources Ltd - Mineral Resource Summary

Deposit	Indicated			Inferred			Total		
	Tonnes ('000s)	Grade (g/t)	Au (oz)	Tonnes ('000)	Grade (g/t)	Au (oz)	Tonnes (000's)	Grade (g/t)	Au (Oz)
Ironstone Well									
Flushing Meadows ¹	2,141	1.3	91,000	5,245	1.1	177,000	7,386	1.1	268,000
Mt McClure									
Challenger ²				718	1.9	44,000	718	1.9	44,000
Success ³				1,255	1.9	75,000	1,255	1.9	75,000
Parmelia ⁴				252	2.1	17,000	252	2.1	17,000
HMS Sulphur ⁵				1010	1.2	39,000	1010	1.2	39,000
Gilmore ⁶				134	1.7	7,200	134	1.7	7,200
Sub-total - MMC				3,369	1.7	182,200	3,369	1.7	182,200
Grand-total⁷	2,141	1.3	91,000	8,614	1.3	359,200	10,755	1.3	450,200

Due to the effects of rounding, totals may not represent the sum of the individual components.

1. Reported above 0.5g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 4 November 2020 for full details. 2. Reported above 1.0g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 22 August 2022 for full details 3. Reported above 1.0g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 6 September 2022 for full details. 4. Reported above 1.0g/t Au lower cut-off grade; refer to Yandal Resources Ltd ASX announcement dated 20 September 2022 for full details. 5. Reported above 0.5g/t Au lower cut-off grade within this announcement 6. Reported above 1.0g/t Au lower cut-off grade within this announcement. 7. All Resources are reported as global estimates, not constrained by optimised pit shells.

Competent Person Statement

The information in this document related to Exploration Targets and Exploration Results, geology and data compilation is based on information reviewed or compiled by Mr Christopher Oorschot, a Competent Person who is a Member of The Australasian Institute Geoscientists. Mr Oorschot is the Managing Director of the Company, is a full-time employee and holds shares and options in the Company. Mr Oorschot has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Oorschot consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to the Flushing Meadows and Mt McClure Mineral Resource Estimates is based on information compiled and generated by Andrew Bewsher, an employee of BM Geological Services Pty Ltd ("BMGS"). Both Andrew Bewsher and BMGS hold shares in the company. BMGS consents to the inclusion, form and context of the relevant information herein as derived from the original resource reports. Mr Bewsher has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

YRL confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statements

This document may contain certain forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Yandal Resources Limited's (Yandal's) current expectations, estimates and projections about the industry in which Yandal operates, and beliefs and assumptions regarding Yandal's future performance. When used in this document, words such as "anticipate", "could", "plan", "estimate", "expects", "seeks", "intends", "may", "potential", "should", and similar expressions are forward-looking statements. Although Yandal believes that its expectations reflected in these forward-looking statements are reasonable, such statements are subject to known and unknown risks, uncertainties and other factors, some of which are beyond the control of Yandal and no assurance can be given that actual results will be consistent with these forward-looking statements. Drilling results presented indicate geological potential for mineralisation but there can be no certainty that these results will eventually form part of a Mineral Resource Estimate.

Table 2 – Arrakis RC drilling program collar location summary. Please note that collars have not yet been formally surveyed; the coordinates below are derived from a handheld GPS and are accurate to within +/- 5m.

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Total Depth (m)
25IWBR0047	RC	286919	7027443	522.7	222	-60	172
25IWBR0048	RC	286989	7027499	522.6	222	-60	238
25IWBR0049	RC	287037	7027557	522.5	222	-57	292
25IWBR0050	RC	287365	7027022	523.4	60	-57	262
25IWBR0051	RC	287487	7027164	523.2	195	-58	240
25IWBR0052	RC	287500	7027174	523.2	245	-57	252
25IWBR0053	RC	287314	7027263	522.5	225	-60	226
25IWBR0054	RC	287289	7027235	522.6	222	-60	184
25IWBR0055	RC	286086	7028293	523.1	222	-60	184
25IWBR0056	RC	287261	7027207	522.8	222	-60	202
25IWBR0057	RC	286031	7028235	523.4	222	-60	160
25IWBR0058	RC	287655	7027037	523.5	220	-60	269
25IWBR0059	RC	286142	7028350	522.9	222	-60	298
25IWBR0060	RC	287627	7027009	523.6	222	-60	232
25IWBR0061	RC	287758	7026851	524.1	222	-60	220
25IWBR0062	RC	287951	7026768	524.6	222	-60	148
25IWBR0063	RC	286452	7028092	522.5	222	-60	238

Table 3 – Arrakis diamond drilling program collar location summary. Please note that collars have not yet been formally surveyed; the coordinates below are derived from a handheld GPS and are accurate to within +/- 5m.

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Pre-collar Depth (m)	Total Depth (m)
25IWBR0040D	RCD	287381	7027046	523.3	049.6	-58.8	162	304
25IWBR0041D	RCD	287513	7027189	523.2	228.6	-57.6	186	294
25IWBR0044D	RCD	286563	7027921	523.0	230.9	-59.9	168	216
25IWBR0046D	RCD	288075	7026618	525.1	230.9	-60.1	210	370
25IWBD0011	DD	287541	7027217	523.0	229.6	-59.7	N/A	369

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Pre-collar Depth (m)	Total Depth (m)
25IWBD0012	DD	287207	7027427	522.5	230.1	-58.7	N/A	360
25IWBR0036D	RCD	286954	7027757	523.0	228.4	-60.0	138	456
25IWBD0013	DD	286061	7027962	525.0	46.9	-60.1	N/A	417

Table 4 – Arrakis Prospect - Summary of significant RC and diamond core assay results >0.3g/t Au with no more than 4m of continuous internal waste included unless otherwise stated. All intercept lengths are reported as down-hole lengths.

Hole ID	Sample type / Sub Interval	From (m)	To (m)	Interval (m)	Au (g/t)	Comment
25IWBR0057	1m RC	NSA			0.6	
25IWBR0058	1m RC	109	110	1	0.3	Completely weathered
25IWBR0058	1m RC	121	124	3	0.8	Completely weathered
25IWBR0058	1m RC	262	264	2	0.3	Fresh Rock
25IWBR0059	1m RC	128	129	1	1.8	Fresh Rock
25IWBR0059	1m RC	261	266	5	0.8	Fresh rock
25IWBR0060	1m RC	69	70	1	0.3	Completely weathered
25IWBR0061	1m RC	74	75	1	0.5	Moderately weathered
25IWBR0061	1m RC	88	96	8	0.5	Moderately weathered
25IWBR0062	1m RC	NSA			0.5	
25IWBR0063	1m RC	210	215	5	0.6	Fresh rock
25IWBR0046D	Half HQ Core	NSA				Arrakis primary structure not observed

Table 5 – Arrakis AC drilling program collar location summary. Please note that collars have not yet been formally surveyed; the coordinates below are derived from a handheld GPS and are accurate to within +/- 5m.

Hole ID	Hole type	East (m)	North (m)	RL (mAHD)	Azimuth (degrees)	Dip (degrees)	Total Depth (m)
25IWBC175	AC	288025	7025965	527.3	225	-60	150
25IWBC176	AC	288090	7026037	526.9	225	-60	100
25IWBC177	AC	288168	7026129	526.6	225	-57	162
25IWBC178	AC	288259	7026200	526.3	225	-57	147
25IWBC179	AC	288342	7026288	526.1	225	-58	141
25IWBC180	AC	288307	7026288	526.1	225	-57	72
25IWBC181	AC	288286	7026264	526.1	225	-60	124
25IWBC182	AC	288289	7025670	528.3	225	-60	127
25IWBC183	AC	288430	7025821	527.9	225	-60	153
25IWBC184	AC	288515	7025913	527.6	225	-60	127
25IWBC185	AC	288571	7026004	527.2	225	-60	120
25IWBC186	AC	288457	7025308	529.3	225	-60	103
25IWBC187	AC	288564	7025418	529.2	225	-60	135
25IWBC188	AC	288616	7025492	529.2	225	-60	34
25IWBC189	AC	288703	7025577	529.2	225	-60	66
25IWBC190	AC	288316	7025173	529.8	225	-60	111

Table 6 – Arrakis Prospect - Summary of significant air-core drilling assay results >0.1g/t Au with no more than 3m of continuous internal waste included unless otherwise stated. All intercept lengths are reported as down-hole lengths.

Hole ID	Sample type / Sub Interval	From (m)	To (m)	Interval (m)	Au (g/t)	Comment
25IWBC175	1m AC	NSA				
25IWBC176	1m AC	NSA				
25IWBC177	1m AC	NSA				
25IWBC178	1m AC	NSA				
25IWBC179	1m AC	118	119	1	0.3	Weakly weathered
25IWBC180	1m AC	NSA				
25IWBC181	1m AC	NSA				
25IWBC182	1m AC	64	65	1	0.1	Completely weathered
25IWBC182	1m AC	72	73	1	0.1	Completely weathered
25IWBC183	1m AC	87	88	1	0.2	Completely weathered
25IWBC183	1m AC	127	128	1	0.1	Moderately weathered
25IWBC184	1m AC	NSA				
25IWBC185	1m AC	64	65	1	0.2	Moderately weathered
25IWBC186	1m AC	58	59	1	0.1	Completely weathered
25IWBC187	1m AC	NSA				

Hole ID	Sample type / Sub Interval	From (m)	To (m)	Interval (m)	Au (g/t)	Comment
25IWBAC188	1m AC	NSA				
25IWBAC189	1m AC	NSA				
25IWBAC190	1m AC	52	53	1	0.3	Completely weathered

Relevant Previous ASX Announcements

- Arrakis RC Results Show High-Grade Mineralisation Potential, 15 January 2026
- Arrakis Diamond Drilling Delivers Strong Results, 8 December 2025
- First Arrakis Diamond Results & RC Drilling Underway, 24 November 2025
- Final Arrakis RC Results with Diamond Drilling to Commence, 13 October 2025
- Arrakis Gold Discovery Extended by 400m, 24 September 2025
- Arrakis Gold Discovery Confirmed With 54m @ 1.2g/t Au, 22 September 2025
- Arrakis RC Drilling Complete & All AC Results Now Received, 17 September 2025
- RC Drilling Commences Across Arrakis, 1 September 2025
- Arrakis Extended to Over 2.2km in Strike, 18 August 2025
- Caladan AC Results Further Extend Arrakis Mineralisation, 31 July 2025
- Caladan AC Shows Early Signs of Scale, 10 July 2025
- Caladan Air-Core Drilling Program Commences, 5 June 2025
- RIU Sydney Presentation, 7 May 2025
- Arrakis RC Drilling Results, 30 April 2025
- Ironstone Well-Barwidgee Exploration Update, 25 February 2025
- Caladan Air-Core Drilling Demonstrates Discovery Potential, 15 January 2025
- Air-core Drilling Commences Across Caladan and Irulan, 10 October 2024
- Oblique Diamond Drilling Results, 3 September 2024
- IWB Soil Results and NEG Diamond Drilling Complete, 12 August 2024
- Large-scale Gold Anomalies Across Emerging Targets, 15 July 2024
- Gold Coast Investment Showcase Presentation, 20 June 2024
- Exploration Update – IWB Ground Gravity Survey, 11 June 2024

Appendix 1 – Ironstone Well-Barwidgee Gold Project, Arrakis AC, RC and Diamond Drilling
JORC Code (2012) Table 1, Sections 1 and 2

Mr Christopher Oorschot, Managing Director of Yandal Resources, compiled the information in Section 1 and Section 2 of the following JORC Table 1 and is the Competent Person for those sections. The following Table and Sections are provided to ensure compliance with the JORC Code (2012 edition) requirements for the reporting of Exploration Results.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	<ul style="list-style-type: none"> Yandal Resources has completed RC drilling along several 200m spaced lines across the Arrakis Prospect, mineralisation associated with a >2.2km air-core trend. The drilling involved a 139mm face sampling bit down to between 148m and 292m. Holes were drilled at an angle of -60° to the southwest or northeast. Yandal Resources (YRL) RC drilling samples were collected via a rig-mounted static cone splitter, splitting approximately 12.5% of the total sample volume. Two splits are collected for each metre: a primary and a duplicate sample. The primary 1m samples are then sent to a lab for further analysis. The duplicate samples are retained on-site unless they are submitted as routine duplicates. Yandal Resources has completed diamond drilling across the Arrakis Prospect. The drilling involved a mix of RC pre-collars or rock-rolling down to fresh rock, followed by HQ (diameter of ~63.5mm) diamond core drilling to an average down-hole depth of 348m (between 216m and 465m). Holes were drilled at an angle of -60° to either the southwest or northeast. The core was halved with a core saw, with the right-hand side (looking downhole) sampled. Before sampling, a company geologist logs the core for lithology type, veining, alteration, and deformation. Sample lengths vary according to logged geological intervals of interest, with a minimum of 0.2 metres and a maximum of 1.0 metres. Sample quality is considered high. Yandal Resources has completed multiple lines of air-core (AC) drilling across the core of the Caladan target area. The drilling utilised an 85mm air-core blade reaming down to an average down-hole depth of 103m. Hole depths vary between 41m to 209m. All air-core holes were drilled to fresh rock or until blade refusal. Holes were drilled at an angle of -60° to the southwest. Groundwater was often encountered during the process of drilling; in the limited number of times where excessive water was encountered holes were close to the target depth. Yandal Resources (YRL) air-core drilling samples were collected via a rig-mounted hydraulically operated cyclone and splitter. One split was collected for each meter and then sent to a lab for further analysis. Historic RAB drilling completed by Eagle Mining, Hunter Resources and Great Central Mines was detailed in the ASX release dated 15 July 2024, the original open-file reports are referenced below:

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> ○ For historic RAB drilling completed by Eagle Mining in 1995, derived from WAMEX Report A047408, samples were taken over discrete lithological changes of varying lengths. Holes were terminated once a recognisable saprolitic horizon was intercepted. ○ For historic RAB drilling completed by Hunter Resources in 1995, derived from WAMEX Report A047408, samples were collected as 4m composites from the transported/residual interface to the bottom of the hole. ○ For historic RAB completed by Great Central Mines between 1994-1995, derived from WAMEX Report A044530, samples were collected as 4m composites down hole. All samples were assayed using an aqua regia digest with a detection limit of 0.01ppm Au.
	<p><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i></p>	<ul style="list-style-type: none"> ● For YRL RC drilling, the cone splitter is regularly cleaned and inspected. The 1m bulk samples are laid out in drill order. These bulk samples are regularly inspected for contamination, and the volume of the bulk sample is monitored. These bulk samples are retained until all results are received and may be used to collect additional field duplicates to verify lab results, logged geology or any other form of analysis. If the bulk sample appears visually low in volume or weight, this is recorded with the sample details. The same applies to damp or wet samples. ● Two splits are collected for each drilled metre: a primary and a secondary sample. The Secondary sample is retained on-site and may be used to collect additional field duplicates to verify lab results, logged geology or any other form of analysis. ● For YRL diamond drilling, sample recovery of each metre drilled was measured and recorded, and high-resolution photos of each tray before cutting were obtained. The unsampled half of the drill core is also retained. Intervals where the core is unoriented have been recorded. ● For YRL diamond drilling, when the core is cut for sampling, the same side of the core, relative to the bottom-of-hole orientation mark, is collected for analysis. For intervals without an orientation mark, the core is pieced together, and foliation or common structures are used to approximately orient the core for sampling purposes. ● Structural observations have also been recorded where the diamond core is oriented, and the core was routinely checked for any structures sub-parallel to the core axis. ● For YRL Air-core drilling, the cone splitter is regularly cleaned and inspected. The 1m bulk samples are laid out on the ground in drill order. These samples are regularly inspected for contamination, and the volume of the bulk sample is monitored. The cyclone was routinely cleaned to ensure no material buildup.
	<p><i>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling' was used to obtain</i></p>	<ul style="list-style-type: none"> ● RC drilling was used to obtain 1m samples from which a portion, between 1-5kg in weight, was dispatched to Aurum Laboratories Pty Ltd. At the lab, samples were crushed and pulverised to produce a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination with a 0.01ppm detection limit.

Criteria	JORC Code explanation	Commentary
	<p>1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</p>	<ul style="list-style-type: none"> For all YRL diamond drilling results, HQ core was cut in half and used to obtain 0.2m to 1.0m half-core samples. These samples were submitted to a laboratory, where they were dried, weighed, and crushed. The Sample pulp was then split to produce a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination with a 0.01ppm detection limit. AC drilling was used to obtain 1m samples from which a portion, between 1-3kg in weight, was dispatched to Intertek Minerals: samples were crushed and pulverised to produce a 50g charge for lead collection fire assay with OES (Optical Emission Spectroscopy) finish for gold determination with a 0.005ppm detection limit.
Drilling techniques	<p>Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</p>	<ul style="list-style-type: none"> For YRL RC drilling, a 139mm diameter face sampling bit and hammer were used. YRL diamond core was drilled using HQ (63.5mm core diameter) coring bits. For both diamond holes, diamond core drilling commenced via RC pre-collars or rock-rolling, which was completed to fresh rock. Subject to ground conditions, the core was oriented using a downhole orientation tool (Reflex ACT Mk3 NQ/HQ Core Ori kit). For YRL Air-core drilling, an 85mm air-core blade was used.
Drill sample recovery	<p>Method of recording and assessing core and chip sample recoveries and results assessed.</p> <p>Measures taken to maximise sample recovery and ensure representative nature of the samples.</p> <p>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</p>	<ul style="list-style-type: none"> For YRL holes, RC drilling recoveries are visually assessed by the supervising geologist, and any low-volume or weight samples are recorded, along with any damp or wet samples. Drill depths are routinely verified at the completion of each drill rod (every 6m). The cone splitter is checked for each drill site to ensure it is completely upright and level. Sample collection from the splitter by drilling off-siders is monitored for any inefficiencies. No relationship or bias between sample recovery and grade within the RC drilling results has been observed. For YRL diamond drilling core recovery is measured and recorded. The length of core recovered for each metre drilled is measured to the nearest 5cm and entered into an Excel spreadsheet along with information relating to fracture frequency (driller breaks are marked with a red "X"). In addition, dry and wet core photos are collected before the core is cut and retained on the company server. For YRL diamond drilling, the orientation of contacts, veins and shears is regularly measured and monitored. No relationship or bias between sample recovery and grade within the diamond drilling results has been observed. For YRL holes, air-core drilling recoveries are visually assessed by the supervising geologist, and any low-volume or oversized sample piles are recorded, along with any damp or wet samples. Drill depths are routinely verified at the completion of each drill rod (every 6m). Within the limited drilling completed, there appears to be no correlation between sample recovery and

Criteria	JORC Code explanation	Commentary
Logging	<p>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</p> <p>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</p> <p>The total length and percentage of the relevant intersections logged.</p>	<p>sample grade.</p> <ul style="list-style-type: none"> For YRL drilling, all RC holes have been logged in full by a qualified and experienced geologist. RC chips and fines from each 1m interval drilled are inspected and logged for colour, weathering, lithology, deformation, veining and sulphide species. All 1m samples are sieved and retained in labelled and annotated chip trays. Chip trays are transported to Perth for long-term storage and are available for review. The quality of logging information is considered sufficient to support Mineral Resource Estimation studies. For YRL diamond drilling, a full log of all diamond cores was completed by the supervising geologist in the field. Intervals were logged at various intervals based on changes in lithology, deformation intensity, veining types, and alteration. Both planar and linear structural measurements were also collected using a core orientation stand and a kenometer. Logging data was captured directly into an MX Deposit database. Data captured through geological logging by a geologist is qualitative in nature. In addition to geological logging, the magnetic susceptibility of each interval is measured using a KT-10 magnetic susceptibility metre, with a sensitivity of 1×10^{-6} SI Units. Magnetic susceptibility readings are quantitative in nature. For YRL drilling, all air-core holes have been logged in full by a qualified and experienced geologist. Logging data was captured in MX Deposit data capture and database software. All drilled intervals were logged for colour, weathering, lithology, deformation, veining and sulphide species. End-of-hole samples were sieved and retained in labelled and annotated chip trays. Chip trays will be transported to Perth for long-term storage and are available for review.
Sub-sampling techniques and sample preparation	<p>If core, whether cut or sawn and whether quarter, half or all core taken.</p> <p>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</p> <p>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</p> <p>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</p> <p>Measures taken to ensure that the sampling is representative of the in situ material collected, including</p>	<ul style="list-style-type: none"> YRL RC drilling utilised a rig-mounted cone splitter installed directly below and in line with the rig-mounted cyclone. Two 1-3kg sub-samples are collected into calico bags labelled with a unique alpha-numeric ID. A majority of the samples collected were dry; if samples were damp or wet, this was noted in the sample records. <ul style="list-style-type: none"> For all YRL RC drilling, samples are dried at 100°C to constant mass, crushed to <10mm and pulverised to nominally 85%, passing 75µm. For YRL RC drilling, field duplicates were collected at an initial rate of 1 duplicate for every 50 samples collected. Standards and blanks were routinely inserted into the sample sequence For labs used by YRL, internal lab quality control measures include lab duplicates and the insertion of lab standards and blanks. For YRL diamond drilling, the HQ (63.5mm diameter) cores were halved using a core saw, and the right-hand side of the core (looking downhole) was sampled. The second half of core retains the orientation line, metre marks and is stored in annotated core trays within a secure yard.

Criteria	JORC Code explanation	Commentary
	<p>for instance results for field duplicate/second-half sampling.</p> <p>Whether sample sizes are appropriate to the grain size of the material being sampled.</p>	<ul style="list-style-type: none"> ○ When determining sample intervals, core is sampled to contacts where observed so that material from a geological interval of interest is not included within the adjacent geological interval. ○ Where narrow geological intervals of interest are observed, such as quartz veining, sample lengths are reduced so that only the feature of interest is sampled down to a minimum length of 0.2m. ○ Diamond core samples are of high quality. ○ Field duplicates are not collected for YRL diamond core drilling. ○ For all drilling, samples are dried at 100°C to constant mass, crushed to <10mm and pulverised to nominally 85%, passing 75µm. ○ Sample sizes are appropriate given the fine-to-medium-grained nature of the sampled material. <ul style="list-style-type: none"> ● YRL Air-core drilling utilised a rig-mounted cone splitter installed directly below and in line with the rig-mounted cyclone. One 1-3kg sub-samples is collected into calico bags labelled with a unique alpha-numeric ID. Most samples collected were dry; if samples were damp or wet, this was noted in the sample records. <ul style="list-style-type: none"> ○ Field duplicates were collected at an initial rate of 1 duplicate for every 50 samples collected. ○ Standards and blanks were routinely inserted into the sample sequence at a frequency of 1 standard or blank for every 20 routine samples. ○ For labs used by YRL, internal lab quality control measures include lab duplicates and the insertion of lab standards and blanks
Quality of assay data and laboratory tests	<p>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</p> <p>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</p> <p>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</p>	<ul style="list-style-type: none"> ● For YRL RC drilling, samples were assayed at the following labs using the following methods: <ul style="list-style-type: none"> ○ Aurum Laboratories in Beckenham, Western Australia, assayed using a 50g fire assay with AAS (atomic absorption spectroscopy) finish for gold analysis with a 0.01ppm detection limit. ● For YRL diamond drilling, samples were assayed using a 50g charge for fire assay with an AAS (atomic absorption spectroscopy) finish for gold determination with a 0.01ppm detection limit by Aurum laboratory in Perth, Western Australia. This is considered a total digest and appropriate for the targeted style of mineralisation. ● For YRL air-core drilling, samples were assayed at the following labs using the following methods: <ul style="list-style-type: none"> ○ Intertek Minerals in Maddington, Western Australia, assayed using a 50g charge for lead collection fire assay with OES (Optical Emission Spectroscopy) finish for gold determination with a 0.005ppm detection limit. ○ This is considered a total digest and appropriate for the targeted style of mineralisation.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Magnetic susceptibility measurements were taken every meter using a KT-10 V2 instrument with a sensitivity of 1×10^{-6} SI Units. YRL QAQC field protocols include the insertion of commercially prepared certified reference material (CRM) and blank material at a rate of approximately 1 CRM/blank for every 20 samples collected. CRMs used are unidentifiable by the lab when received. QAQC performance is monitored upon receipt of each batch of results and re-assessed once all samples for a program are received. Laboratory QA/QC protocols involve inserting internal lab standards using CRMs, blanks, repeat analysis of pulps and screen tests (the percentage of pulverised material passing 75μm mesh). Laboratory QAQC results are reported with each batch. Laboratory QA/QC performance is monitored upon receipt of each batch of results and reassessed once all samples for a program are received. For YRL diamond drilling, no duplicate samples were submitted for analysis. The remaining half of the core is available for further analysis.
Verification of sampling and assaying	<p>The verification of significant intersections by either independent or alternative company personnel.</p> <p>The use of twinned holes.</p> <p>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</p> <p>Discuss any adjustment to assay data.</p>	<ul style="list-style-type: none"> Significant intercepts from YRL AC and RC drilling are verified by YRL geologists through the visual inspection of chips, reviewing the spatial location of mineralisation relative to previous intercepts, and, in the case of high-grade gold intercepts, visually confirming gold in samples. Significant intercepts from YRL diamond drilling are verified by YRL geologists through the visual inspection of chips and core, reviewing the spatial location of mineralisation relative to previous intercepts, and in the case of high-grade gold intercepts, visually confirming gold in samples. No twinned holes have been completed across Arrakis. For YRL AC and RC drilling, primary sampling and logging data are captured directly into the MX deposit application and uploaded directly to the cloud-hosted MX Deposit database. For YRL diamond drilling, primary sampling and logging data are captured directly into the MX deposit application and uploaded directly to the cloud-hosted MX Deposit database. The first lab result for each sample is used for interrogating the data, and no adjustments have been made to the data other than adjusting values below the detection limit to a null value before review.
Location of data points	<p>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</p> <p>Specification of the grid system used.</p> <p>Quality and adequacy of topographic control.</p>	<ul style="list-style-type: none"> All drill collar locations were initially pegged and surveyed using a handheld Garmin GPS, which was accurate to within 3-5m. RLs are determined using a detailed surface DTM. A final collar survey is then completed using a DGPS unit (easting, northing, and RL are accurate to within +/- 0.1m). For AC drilling, collars are surveyed using a handheld Garmin GPS, which was accurate to within 3-5m. RLs are determined using a detailed surface DTM. All Diamond and RC holes were downhole surveyed using a gyroscopic survey tool, producing azimuth readings relative to true north that are then converted to UTM MGA94 Zone 51s. Readings are collected at a maximum spacing of 30m downhole or better.

Criteria	JORC Code explanation	Commentary																				
		<ul style="list-style-type: none"> All spatial data presented is relative to UTM MGA94 Zone 51s. A local grid has been generated for the referencing of drill lines both in the field and in sections. This grid is referenced in the report. The local grid utilised a simple two-point translation from UTM MGA94 Zone 51s to Caladan Local, see translation points below: <div style="display: flex; justify-content: space-around; align-items: flex-start;"> <div style="border: 1px solid black; padding: 5px; width: 150px;"> Project Grid <table> <tr><td>Name</td><td>UTM MGA94</td></tr> <tr><td>X (1)</td><td>288187.194</td></tr> <tr><td>Y (1)</td><td>7019162.003</td></tr> <tr><td>X (2)</td><td>307986.184</td></tr> <tr><td>Y (2)</td><td>7040375.207</td></tr> </table> </div> <div style="border: 1px solid black; padding: 5px; width: 150px;"> Additional Grid <table> <tr><td>Name</td><td>Cal Local</td></tr> <tr><td>X (1)</td><td>0</td></tr> <tr><td>Y (1)</td><td>0</td></tr> <tr><td>X (2)</td><td>29000</td></tr> <tr><td>Y (2)</td><td>1000</td></tr> </table> </div> </div> <ul style="list-style-type: none"> Data from aerial surveys has been used to generate a topographic surface model; this model is used to validate the RL of surveyed holes. The terrain around the prospect area is relatively flat, with no severe changes in topography. 	Name	UTM MGA94	X (1)	288187.194	Y (1)	7019162.003	X (2)	307986.184	Y (2)	7040375.207	Name	Cal Local	X (1)	0	Y (1)	0	X (2)	29000	Y (2)	1000
Name	UTM MGA94																					
X (1)	288187.194																					
Y (1)	7019162.003																					
X (2)	307986.184																					
Y (2)	7040375.207																					
Name	Cal Local																					
X (1)	0																					
Y (1)	0																					
X (2)	29000																					
Y (2)	1000																					
Data spacing and distribution	<p>Data spacing for reporting of Exploration Results.</p> <p>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</p> <p>Whether sample compositing has been applied.</p>	<ul style="list-style-type: none"> YRL diamond, RC and AC across Arrakis are variably spaced variably between 30m and 400m, across strike. All collar details/coordinates are supplied in Table 2, 3 and 5. The hole/data spacing and distribution completed across the Arrakis prospect is NOT sufficient to establish an assessment of the degree of geological and grade continuity; and is NOT appropriate for estimating a Mineral Resource. Only significant gold intercepts have been reported, meaning all intervals >0.3 g/t Au (unless otherwise stated). These intervals have been reported as a composite where the intercept includes more than one sample. Composites may include up to 4m of continuous internal waste unless otherwise stated, and the final composite grade must exceed 0.1g/t Au. A length weighted average has been used to calculate the average grade of the composite. Samples of variable length (between 0.3m and 1.0m) were used for the reporting of significant intercepts. The first assay result was used for all significant intercepts reported. All intercepts have been reported relative to down-hole length. All intercepts are reported in grams per tonne (g/t). If a single composite includes material with a high-grade sub-interval, this has been reported as a sub-interval. Reported composite intervals were calculated and reviewed by Mr. Christopher Oorschot. All significant intercepts are detailed in Tables 4 and 6. 																				
Orientation of data in relation to geological structure	<p>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</p> <p>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to</p>	<ul style="list-style-type: none"> For YRL drilling, holes have been drilled at a -60 ° angle and oriented so as to be orthogonal to the targeted Arrakis trend. This includes both northeast and southwest-directed holes or scissors. Observations from diamond drilling at Arrakis suggest that mineralisation is striking to the northwest and with a sub-vertical dip. No northwest or southeast-directed diamond holes have been completed to adequately test for structure parallel to the drilling direction. Further drilling is needed to determine if sampling bias due to drilling direction is present. 																				

Criteria	JORC Code explanation	Commentary
	have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	<ul style="list-style-type: none"> • All YRL AC and RC samples were collected on-site under the supervision of a qualified geologist. Calico bags are tied, grouped into larger poly-weave bags that are cable tied, and then placed into sealed bulka bags for transport. The labelled bulka bags are then transported directly to the laboratory for analysis via a commercial freight company or YRL geologists. Where a commercial freight company is used for transport, consignment notes and confirmation of receipt by the lab were monitored. • All YRL diamond core was transported to Kalgoorlie and delivered directly to a secure yard for cutting. Cut core is then placed into sample bags with a unique numeric ID and sealed, and grouped into larger poly-weave bags sealed with cable ties. The samples were then transported directly to the laboratory in Perth for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	<ul style="list-style-type: none"> • No lab audits or reviews have been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<p>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</p> <p>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</p>	<ul style="list-style-type: none"> • The Caladan target area, including the Arrakis Prospect, resides in the exploration leases E 53/1843, E 53/2304, E 53/2192 and E 53/1882. Yandal Resources Limited wholly owns these tenements. • The tenements are in good standing, and no known impediments exist. • The Kultju Native Title Corporation holds native title over the Project.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	<ul style="list-style-type: none"> Previous operators who have completed exploration across the Caladan target area include Eagle Mining, Hunter Resources and Great Central Mines. Work completed by these operators included limited RAB drilling. The RAB drilling data is of reasonable quality but considered largely ineffective. For historic RAB drilling completed by Eagle Mining in 1995, derived from WAMEX Report A047408, samples were taken over discrete lithological changes of varying lengths. Holes were terminated once a recognisable saprolitic horizon was intercepted. For historic RAB drilling completed by Hunter Resources in 1995, derived from WAMEX Report A047408, samples were collected as 4m composites from the transported/residual interface to the bottom of the hole. For historic RAB completed by Great Central Mines between 1994-1995, derived from WAMEX Report A044530, samples were collected as 4m composites down hole. All samples were assayed using an aqua regia digest with a detection limit of 0.01 ppm Au.
Geology	Deposit type, geological setting and style of mineralisation.	<ul style="list-style-type: none"> The Caladan target area, including the Arrakis Prospect, hosts Archaean Orogenic Gold mineralisation. The prospect is located within the Yandal Greenstone Belt, a greenstone terrain of the Yilgarn Craton. Mineralisation is hosted within an interpreted volcano-sedimentary sequence of variable width bracketed by a broad dolerite sequence to the west, and a pillow basalt sequence to the east. Mineralisation is interpreted to be structurally controlled. The Archaean rocks are overlain by 4-20m of transported cover.
Drill hole Information	<p>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</p> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length</i>. 	<ul style="list-style-type: none"> See Tables 2, 3, 4, 5 and 6. All drilling has been reported, either within this announcement or in previous announcements. No information is excluded.

If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	<p>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</p>	<ul style="list-style-type: none"> For RC and diamond drilling, only significant gold intercepts have been reported, meaning all intervals $>0.3 \text{ g/t Au}$ (unless otherwise stated). These intervals have been reported as a composite where the intercept includes more than one sample. Composites may include up to 4m of continuous internal waste unless otherwise stated, and the final composite grade must exceed 0.3g/t Au. Samples of varying length were used for the reporting of significant intercepts. The first reported assay result was used for all significant intercepts reported. All intercepts have been reported relative to down-hole length. All intercepts are reported in grams per tonne (g/t). If a single composite includes a material high-grade sub-interval, this has been reported. Reported composite intervals were calculated and reviewed by Mr Christopher Oorschot. All significant intercepts are detailed in Tables 4. For AC drilling, only significant gold intercepts have been reported, meaning all intervals $>0.1 \text{ g/t Au}$ (unless otherwise stated). These intervals have been reported as a composite where the intercept includes more than one sample. Composites may include up to 2m of continuous internal waste unless otherwise stated, and the final composite grade must exceed 0.1g/t Au. Only 1m samples were used for the reporting of significant intercepts. The first reported assay result was used for all significant intercepts reported. All intercepts have been reported relative to down-hole length. All intercepts are reported in grams per tonne (g/t). If a single composite includes a material high-grade sub-interval, this has been reported. Reported composite intervals were calculated and reviewed by Mr Christopher Oorschot. All significant intercepts are detailed in Table 6. No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	<p>These relationships are particularly important in the reporting of Exploration Results.</p> <p>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</p> <p>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</p>	<ul style="list-style-type: none"> Initial interpretations across the Arrakis Prospect suggest mineralisation is striking to the northwest and dipping steeply to the northeast. The drill direction is broadly orthogonal to the strike of mineralisation. True widths are approximately 60% of the downhole width.
Diagrams	<p>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</p>	<ul style="list-style-type: none"> See Figures in the main body of this report and Tables 2-6.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	<ul style="list-style-type: none"> • All significant intercepts have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	<ul style="list-style-type: none"> • Several larger drainage systems transect the Caladan target area. • Transported cover is well cemented, and a rock-breaker is needed to construct sumps to hold drilling water.
Further work	<p>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</p> <p>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</p>	<ul style="list-style-type: none"> • Further work across the Caladan target area and Arrakis Prospect includes: <ul style="list-style-type: none"> ○ 100m spaced RC drilling in 2026, ○ Further diamond drilling in 2026 ○ Analysis of bottom-of-hole multi-element data from recently completed air-core drilling, ○ Routine down-hole pXRF analysis of RC sample pulps is underway ○ The submission of select samples for multi-element analysis, ○ The preparation of thin sections on select samples and petrographic analysis, ○ Infill ground gravity survey will be scheduled for early 2026. ○ Preliminary metallurgical analysis of fresh rock mineralisation. ○ Baseline flora and fauna surveys are being scheduled for early 2026.