

ASX ANNOUNCEMENT

12 FEBRUARY 2026

torque
METALS

ASX: TOR

20M @ 5.8G/T GOLD IN PARIS AS HIGH-GRADE SYSTEM CONTINUES TO GROW ALONG-STRIKE CONTINUITY, NEW MINERALISED STRUCTURES AND DHEM VECTORING REINFORCES PARIS AS A GROWING, DEVELOPMENT-READY GOLD SYSTEM

HIGHLIGHTS

- Extensional drilling targeting along strike continuity delivers a standout intercept of:
 - ✓ **20m @ 5.8 g/t gold** from 222m, including **7m @ 13.5 g/t gold** from 225m in 26PRC205
- **Paris confirmed as multi-lode gold system** with down-plunge continuity of at least **~700m below 2024-MRE**, stacked lodes of up to **~12m** true thickness and lateral (**~100–130m**) and down-dip (**~50–80m**) extents with lodes remaining open to the south and southwest
- DHEM-guided drilling returns high-grade mineralisation at depth, including:
 - ✓ **5m @ 6.0 g/t gold** from 432m (~343m vertical depth) in 25PRC167, with additional off-hole plates extending mineralisation down-plunge and along strike (east–west)
- **New mineralised structure identified** south of the Paris Deposit, intersecting shallow oxide/transitional gold in a previously undrilled zone, including:
 - ✓ **7m @ 1.8 g/t gold** from 41m in 25PRC182 and **5m @ 1.2g/t gold** from 52m in 25PRC184
- **250koz @ 3.1g/t gold MRE (RPEEE A\$3,000/oz)**, with post-2024 MRE drilling delivering multiple high-grade intersections beyond resource envelope, demonstrating significant grow potential of existing MRE
- **Multi-rig drilling campaign underway** through CY2026, with Paris located on Mining Leases near existing processing infrastructure, supporting faster permitting and evaluation of open-pit toll-treatment options

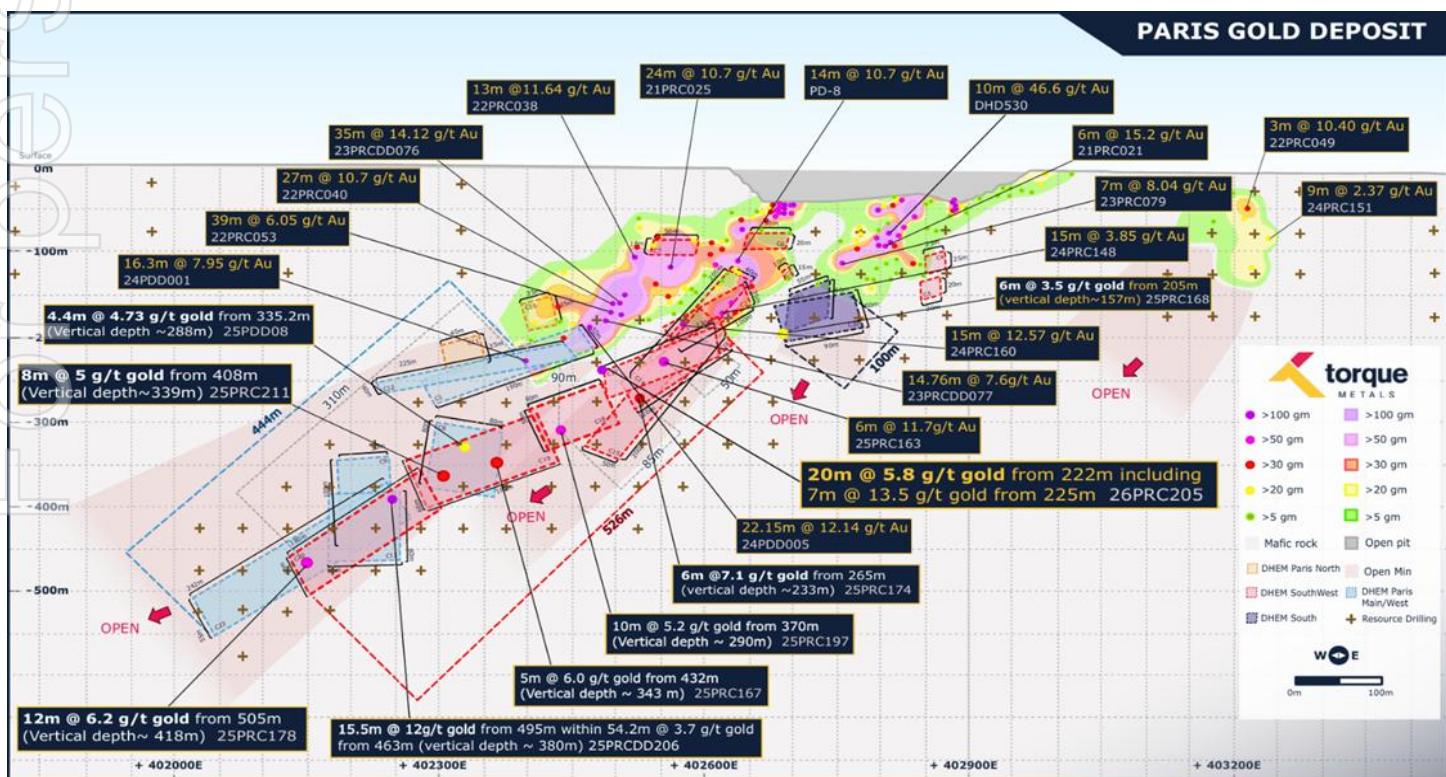


Figure 1 Paris gold deposit, drilling program and DHEM plates indicating extensions beyond existent MRE

PARIS GOLD CAMP

Figure 2 Observation, HHH and Paris deposits showing the untested potential both at depth and along strike along the 2.5km mineralised corridor which remains open.

TORQUE'S MANAGING DIRECTOR, CRISTIAN MORENO, COMMENTED:

*"These latest drilling results reinforce our interpretation of Paris as a scalable, multi-lode gold system rather than a single, narrow shoot. The standout intercept of **20 metres at 5.8 g/t gold**, including **7 metres at 13.5 g/t gold**, confirms strong along-strike continuity of high-grade mineralisation and supports our strategy of systematically increasing ounces per vertical metre within the existing resource framework."*

"The continued success of our DHEM-guided targeting is particularly encouraging. The intersection of high-grade mineralisation at more than 340 metres vertical depth, together with newly identified off-hole conductor plates, highlights clear potential for further extensions down-plunge and along strike beyond the current Mineral Resource envelope."

"In addition, the identification of a new shallow mineralised structure south of the Paris Deposit introduces another growth front. The presence of oxide and transitional mineralisation near infrastructure is strategically important, particularly as we advance drilling under a multi-rig program toward the next Mineral Resource update and ongoing development studies."

DRILLING AND GEOLOGICAL CONTEXT

Building on the successful step-out drilling completed in 2025, Torque's drilling strategy has evolved to focus on horizontal extensional drilling, with the objective of increasing ounces per vertical metre and advancing a future Mineral Resource update.

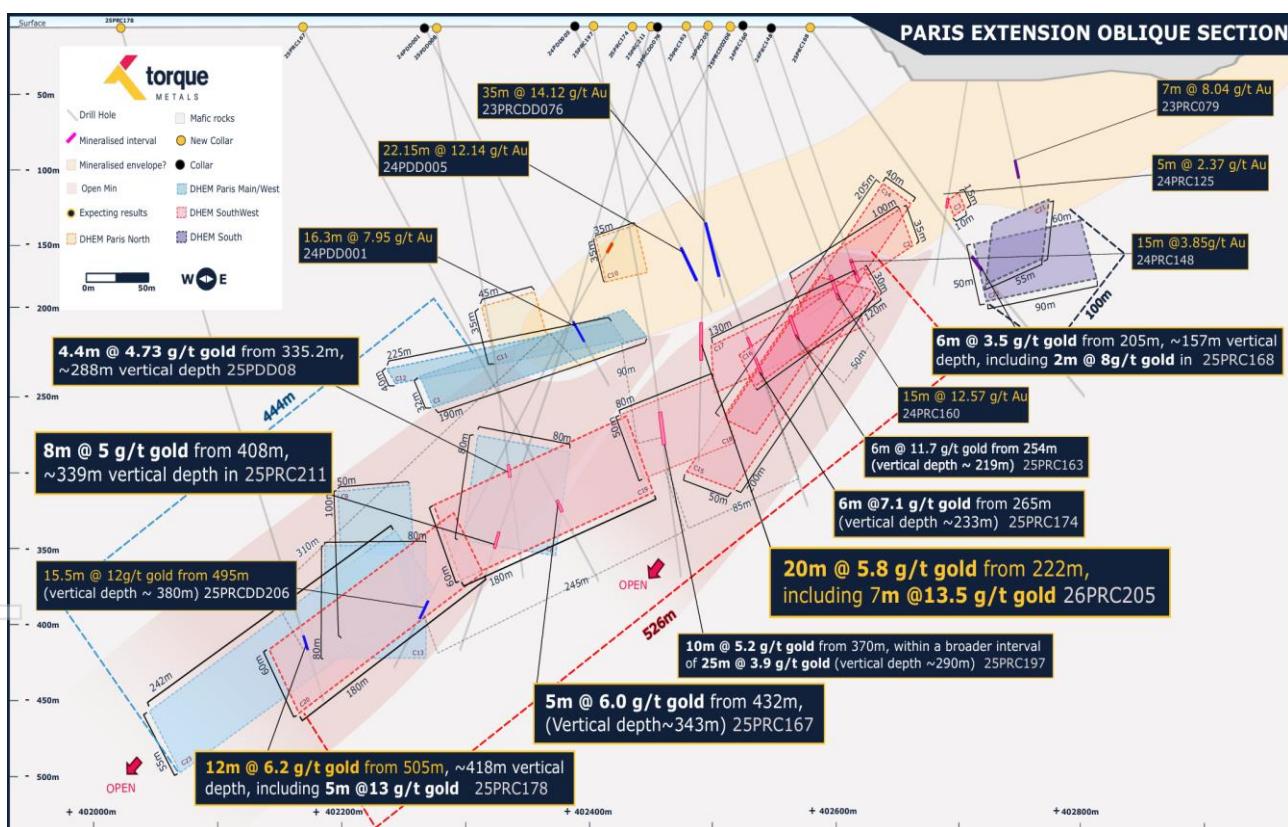


Figure 3 Paris extension oblique section

In the Paris Southwest lode, hole 25PRC174 intersected **6m @ 7.1g/t gold** from 232m¹, extending mineralisation westward. Follow-up drilling with hole 26PRC205, positioned approximately 35 metres west, delivered **20m @ 5.8g/t Au** from 222m, including **7m @ 13.5 g/t gold** from 225m, clearly demonstrating that mineralisation extends laterally and is not confined to a narrow, isolated vein.

¹ Refer to ASX Announcement dated 22 September 2025 "Strong gold intercept and new conductors extend Paris"

DHEM-guided drilling continues to demonstrate its effectiveness in targeting high-grade mineralisation. Hole 25PRC180 provided valuable vectoring information, with subsequent DHEM identifying stronger conductive zones up-dip.

This targeting directly led to hole 25PRC167, which intersected **5m @ 6.0g/t gold** from ~405m vertical depth, confirming the robustness of the geophysical model and extending mineralisation down-plunge.

NEW SOUTHERN STRUCTURE AND EXPLORATION UPSIDE

Drilling south of the Paris Deposit has identified a previously unrecognised mineralised structure, intersecting shallow oxide and transitional gold consistent with the Paris mineralisation style.

- ✓ **7m @ 1.8g/t gold** from 41m in hole 25PRC182
- ✓ **5m @ 1.2g/t gold** from 52m in hole 25PRC184 confirmed structural continuity further south

Given the oxide-transitional nature of this mineralisation, DHEM is not considered optimal in this zone. Torque is planning further drilling to trace the structure and assess its potential connection to higher-grade primary mineralisation at depth.

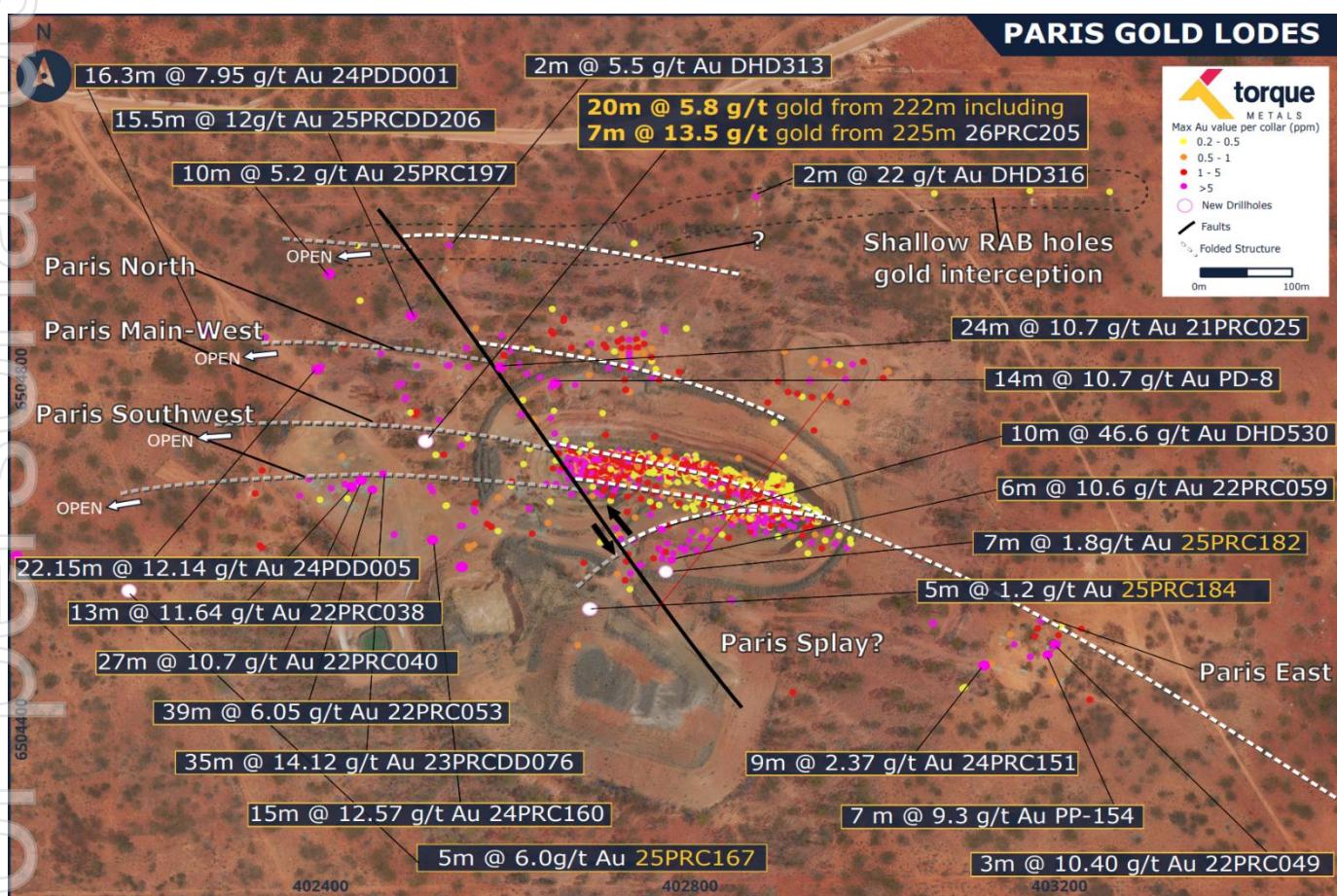


Figure 4 Structural interpretation of mineralised lodes at Paris deposit.

In addition, wildcat drilling completed in December targeting southern and deeper extensions intersected low-grade mineralisation generating multiple conductor plates in holes 25PRC185, 25PRC165, 25PRC177 and 25PRC176. These results are interpreted as vectoring information and have materially improved the geological model. Follow-up drilling is planned to directly test these conductors, which are interpreted to represent a potential new mineralised zone

PARIS DEPOSIT – DEVELOPMENT CONTEXT

Engineering studies, conceptual mine design, geotechnical, hydrological, metallurgical and permitting work are progressing in parallel with drilling at Paris. These activities are intended to support a **development-ready pathway**, leveraging the Project's granted Mining Leases and proximity to established processing infrastructure.

The geological interpretation of the Paris Gold Deposit is underpinned by an integrated dataset comprising drilling results, historical mining records, ATV/OTV structural analysis, downhole electromagnetic (DHEM) surveys and three-dimensional geological modelling. Mineralisation is interpreted to be structurally controlled, hosted within shear zones and forming steeply dipping lodes (~60–80 degrees) with demonstrated plunge continuity.

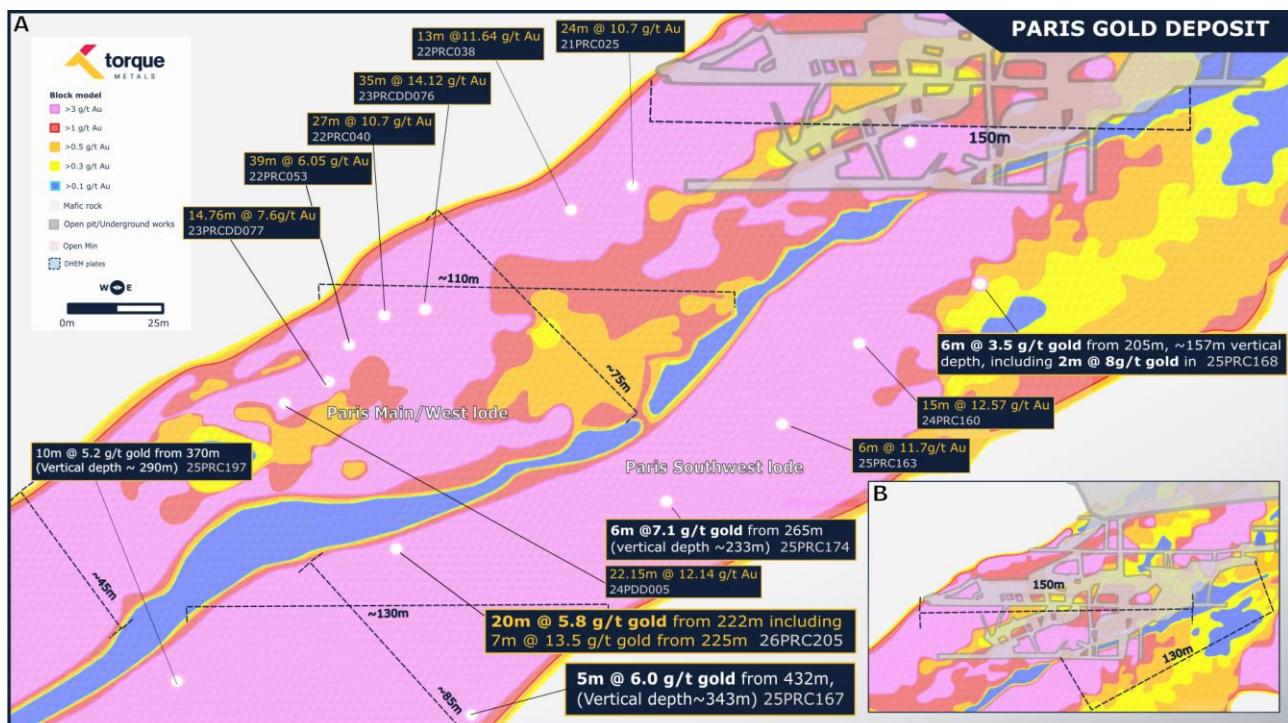


Figure 5 Paris gold deposit, Paris main/west and southwest block model. Note this image does not include Paris North and East lodes.

The main mineralised lodes typically exhibit true thicknesses of up to **~12 metres** and demonstrate continuous down-plunge extents of at least **~700 metres and open**, extending well below the limits of the RPEEE pit shell associated with the 2024 Mineral Resource Estimate.

Horizontal continuity across individual lodes is currently interpreted over **~100–130 metres**, with down-dip extents of **~50–80 metres**; these dimensions are considered conservative and are expected to evolve with ongoing drilling and technical studies. Historical mining and previous technical studies (BMGS, 2019)² confirm that the Paris deposit has been successfully exploited using both open pit and underground methods.

Review of historical survey data and preliminary scoping work indicates that underground mining was undertaken using sublevel long-hole open stoping (LHOS), a method well suited to the geometry and style of mineralisation observed at Paris. Comparable deposits within the Eastern Goldfields region have been successfully developed using similar mining approaches, supporting the technical plausibility of future underground development at Paris.

² BMGS. (2019). Phase 2 – Paris gold project: Scoping Studies for Open Pit and Underground Mining of the HHH and Paris Deposits. Perth: Austral Pacific Pty Ltd.

EXPLORATION POTENTIAL AT PARIS GOLD CAMP

Paris Gold Project presents a significant regional exploration opportunity within a highly prospective greenstone belt. Our initial focus has been across **2.5km** strike, yielding multiple substantial results.

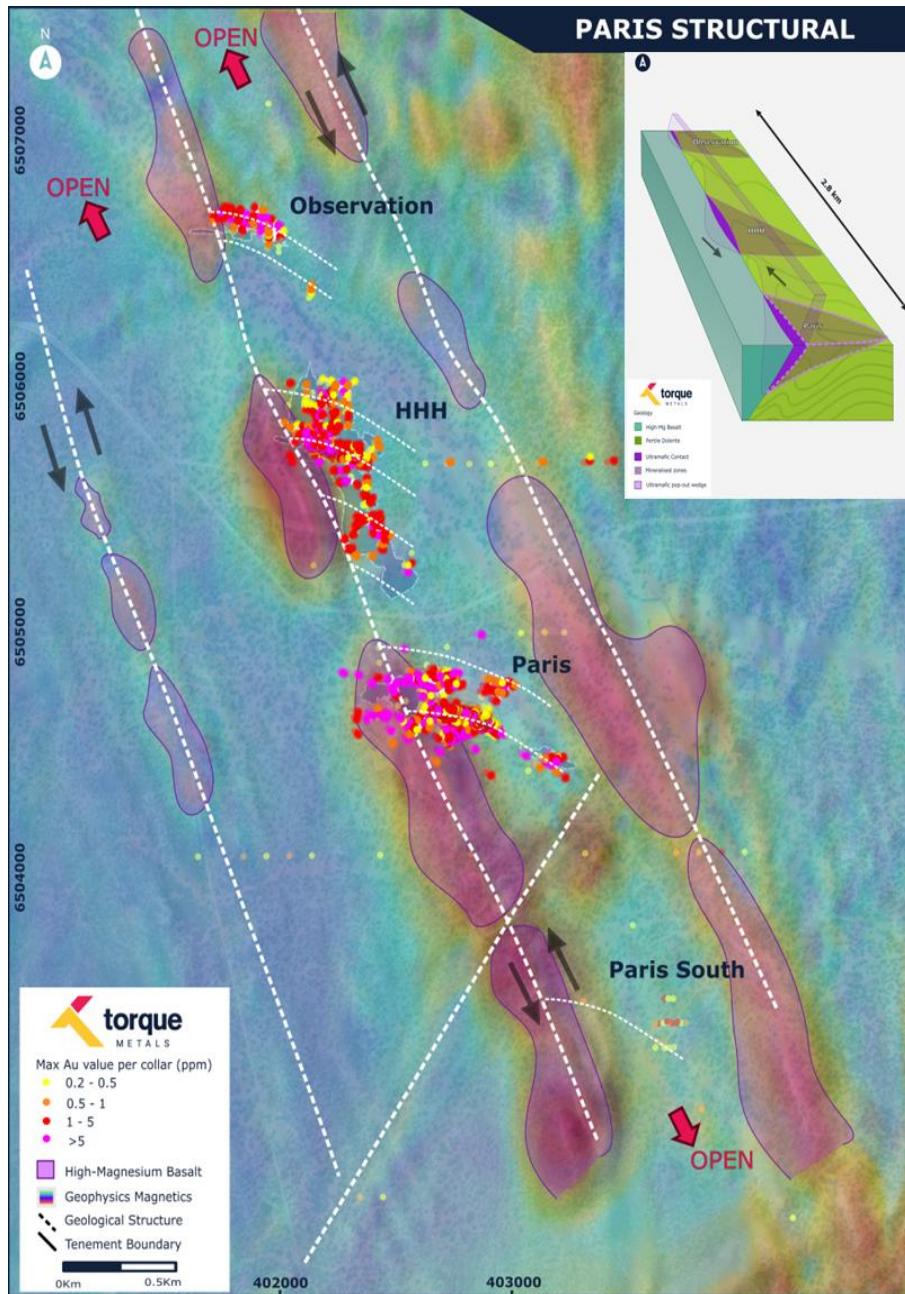


Figure 6 Paris Structural framework, mineral resources and drilling.

Torque is now executing an aggressive, integrated exploration strategy that combines continuous multi-rig drilling with downhole electromagnetic (DHEM) surveys to refine and extend gold mineralisation across the Paris Gold Project. The program is focused on both resource definition and step-out drilling within areas of known mineralisation, while progressively expanding into priority targets along the broader 57-kilometre strike length, which remains largely untested by modern exploration.

The current 250,000oz Mineral Resource Estimate at 3.1 g/t Au provides a strong foundation, with mineralisation open in multiple directions and clear potential for further growth. Located within a highly endowed gold district near established operations such as Westgold's Beta Hunt and St Ives Goldfields, Paris continues to demonstrate the scale, continuity and strategic positioning expected of an emerging gold camp.

ABOUT TORQUE METALS

Torque's entire Paris Exploration Camp covers **~1,200km²** of land, including 16 mining leases, 2 prospecting licences and 48 exploration licences **~90km** Southeast of Kalgoorlie in WA. Torque is focused on mineral exploration in this well-established mineral province.

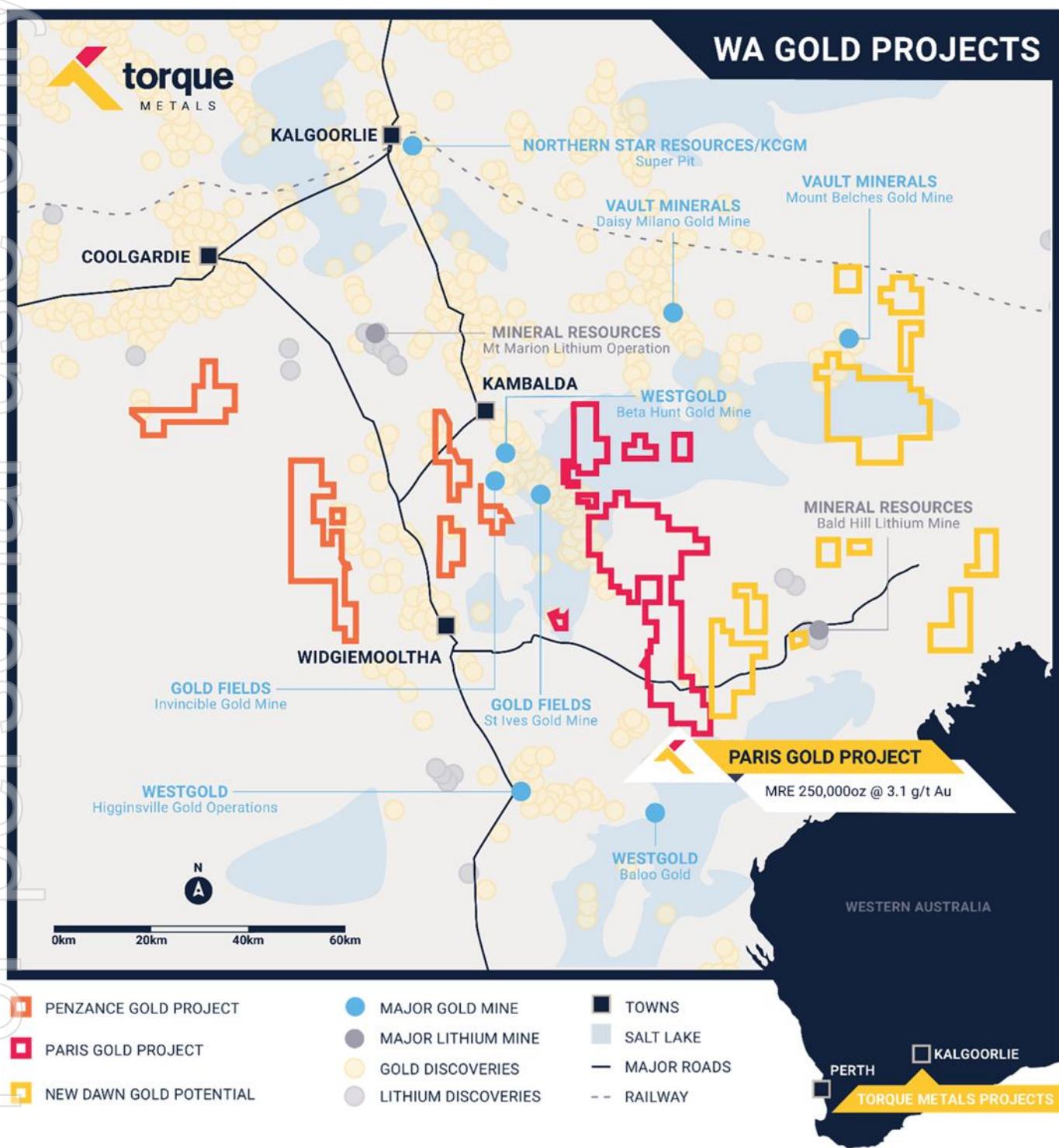


Figure 7 Paris Exploration Camp; Paris Gold, New Dawn Lithium and Penzance Gold/Lithium projects

Torque has embedded its presence and staked its future on the mineral endowed region south of Kambalda, WA. Through exemplary technical application and rewarding field work Torque recorded its inaugural gold resource within the Paris Gold Project, an inventory within **2.5km** strike of a **57km** long prospective corridor.

PARIS GOLD PROJECT AND MINERAL RESOURCE ESTIMATE

Paris MRE¹ includes three deposits (Paris, HHH and Observation), which are only partially tested. The project, fully controlled by Torque, covers **~57km** strike length within **~350km²** greenstone belt. Paris MRE spans **2.5km** strike length and an area of **2.5km²**, with strong indications of interlinking structures between Paris, HHH, Observation deposits and promising gold mineralisation now identified just outside the resource area.

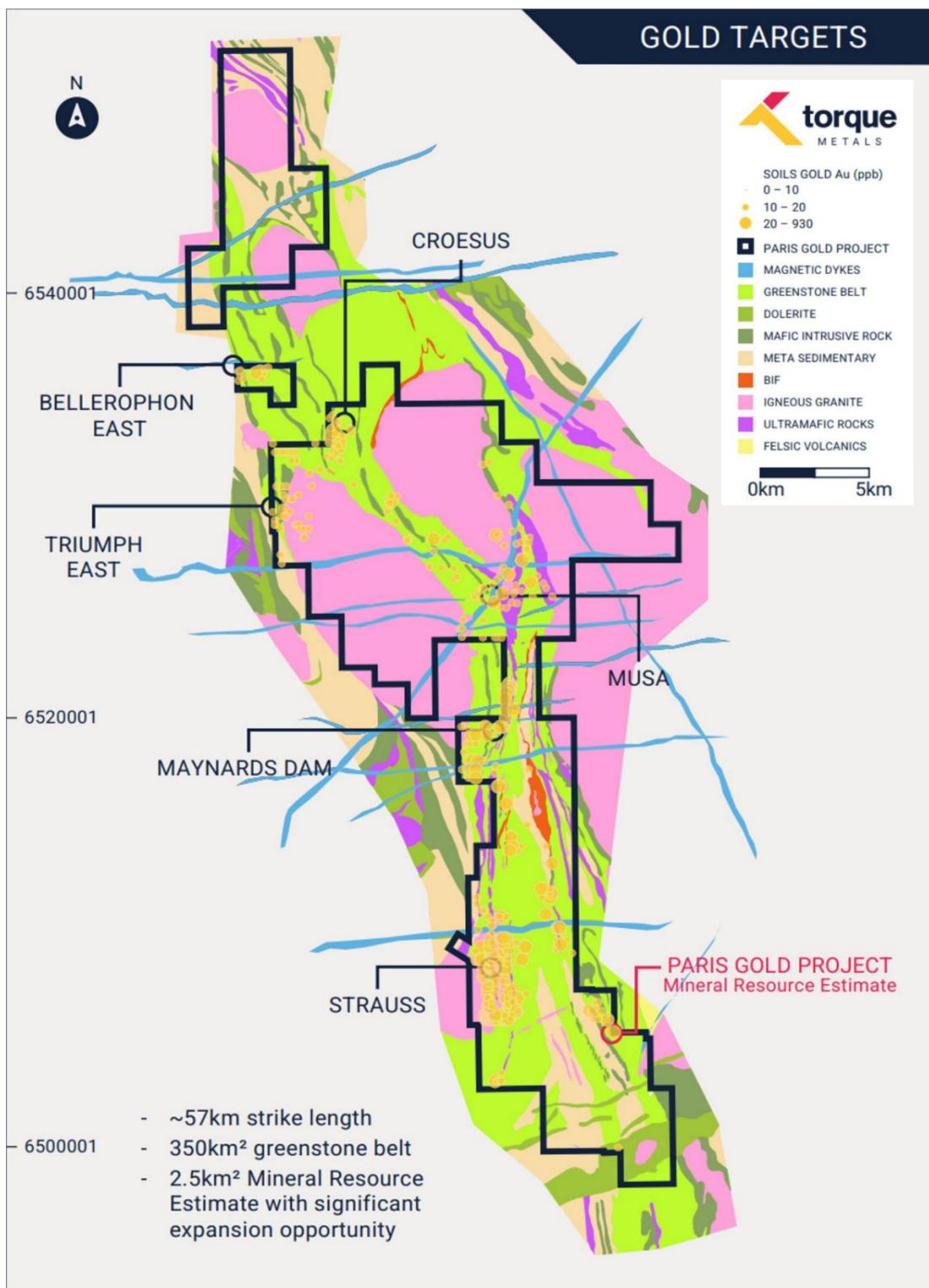


Figure 8 Paris Gold Project, regional scale and greenstone belt dominance.

The Paris Gold Project MRE¹, based on RC and Diamond drilling completed and assayed up to 1 September 2024, was prepared by independent consultants (Mining Plus Pty Ltd) in accordance with the JORC code (2012 Edition), incorporating the Paris, HHH, Observation deposits (see tables 1 and 2 below).

Table 1 Paris Gold Project, Global Mineral Resource Estimate

Potential Mining Scenario	Indicated			Inferred			Total		
	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
	(Kt)	(g/t)	('000 Oz)	(Kt)	(g/t)	('000 Oz)	(Kt)	(g/t)	('000 Oz)
Open Pit	601	3.2	62	1,428	2.8	128	2,029	2.9	190
Underground	5	5.4	1	484	3.8	59	489	3.8	60
Total	606	3.2	63	1,912	3.0	187	2,518	3.1	250

Table 2 Paris, HHH and Observation Mineral Resource Estimate

Deposit	Indicated			Inferred			Total		
	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
	(Kt)	(g/t)	('000 Oz)	(Kt)	(g/t)	('000 Oz)	(Kt)	(g/t)	('000 Oz)
Paris	284	3.7	34	810	4.5	118	1,094	4.3	152
HHH	97	3.3	10	1,048	1.9	63	1,145	2.0	73
Observation	225	2.7	19	54	3.5	6	279	2.8	25
Total	606	3.2	63	1,912	3.0	187	2,518	3.1	250

COMPLIANCE STATEMENT

Information in this announcement that relates to Exploration Results is based on information compiled by Mr Cristian Moreno, who is a Member of the Australasian Institute of Mining and Metallurgy, Australian Institute of Management and Member of the Australian Institute of Company Directors. Mr Moreno is an employee of Torque Metals Limited. Mr Moreno has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC code'). Mr Moreno consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to the Mineral Resource Estimate and classification of the Paris Gold Project is based on information compiled by Kate Kitchen, who is a Member of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Kate Kitchen is an independent consultant employed full time by Mining Plus Pty Ltd. Kate Kitchen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC code'). Kate Kitchen consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

FORWARD LOOKING STATEMENTS

This announcement contains certain forward-looking statements which may be identified by words such as "believes", "estimates", "expects", "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on several assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Where the Company expresses or implies an expectation or belief as to future events or results, such an expectation or belief is expressed in good faith and believed to have a reasonable basis.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this announcement will occur and investors are cautioned not to place undue reliance on these forward-looking statements.

PREVIOUSLY REPORTED RESULTS

There is information in this announcement relating to exploration results which were previously announced on the ASX before 12 February 2026. Other than as disclosed in this announcement, the Company states that it is not aware of any new information or data that materially affects the information included in the original market announcements. All material assumptions and technical parameters underpinning the MRE continue to apply and have not materially changed since previously released on 18 September 2024.

Specific exploration results referred to in this announcement were originally reported in the following Company announcements and historical technical reports in accordance with ASX Listing Rule 5.7:

Hole ID	Title	Date
DHD572	A31612 (WMC Resources Ltd, Kambalda Project – Technical Report)	1990
DHD818	A60119 (Kambalda project technical report) and prospectus (23 June 2021)	1-Mar-00
DHD549	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report)	2001
DHD964	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report)	2001
DHD965	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report)	2001
DHD871	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report)	2001
DHD548	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report) and New gold discovery at Paris Project (15-Sep-22)	2001
DHD549	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report)	2001
DHD873	A62133 (WMC Resources Ltd, Kambalda Project – Technical Report)	2001
15DDH001	Combined annual technical report and prospectus (23 June 2021)	1-Mar-16
18S00015	A119443 (Austral Pacific Pty Ltd, Combined Annual Report (C40/2016) for the Paris Gold) Project	2019
PBC024	A120103 (Lefroy Exploration, Marloo Dam Annual Technical Report)	2019
PBC035	A120103 (Lefroy Exploration, Marloo Dam Annual Technical Report)	2019
PBC038	A120103 (Lefroy Exploration, Marloo Dam Annual Technical Report)	2019
PCR052	A124209 (Lefroy Exploration, Marloo Dam Annual Technical Report)	2020
17RC023	Prospectus	23-Jun-21
21ORC009	Broad, high-grade gold hits at Paris gold corridor extended 900m to the north	18-Aug-21
21HRC003	New high-grade discovery at Paris / High-grade gold confirmed below and adjacent to existing pits	18-Oct-21
21HRC009	New high-grade discovery at Paris / High-grade gold confirmed below and adjacent to existing pits	18-Oct-21
21HRC013	New high-grade discovery at Paris / High-grade gold confirmed below and adjacent to existing pits	18-Oct-21
21ORC036	Outstanding gold intercepts from Paris project	20-Jan-22
21SRC005	New gold discovery at Paris Project	15-Sep-22
21SRC021	New gold discovery at Paris Project	15-Sep-22
21HRC023	New gold discovery at Paris project	27-Jan-22
21HRC018	New gold discovery at Paris project	27-Jan-22
DHD316	Emerging high-grade gold zone adjacent to Paris pit	21-Feb-22
DHD530	Emerging high-grade gold zone adjacent to Paris pit	21-Feb-22
DHD507	A vibrant Australian gold explorer	28-Jun-22
DHD425	A vibrant Australian gold explorer	28-Jun-22
PS001	Paris delivers 185g/t bonanza gold interval	28-Jun-22
21SRC026	New gold discovery at Paris project	27-Jan-22
21SRC022	New gold discovery at Paris Project	15-Sep-22
22PRC049	Paris gold zone grows to ~900m in strike	29-Sep-22
21ORC031	Drilling set to recommence at 2.5km Paris gold camp	16-Nov-22

For personal use only

Hole ID	Title	Date
22HRC035	further high-grade gold intersections support 'Paris gold camp' in WA gold fields	2-Feb-23
22HRC035	further high-grade gold intersections support 'Paris gold camp' in WA gold fields	2-Feb-23
23PRCDD076	Paris Delivers 185g/t Bonanza Gold Interval	5-Jul-23
23HRC063	Strong gold intersections at Paris gold camp	28-Aug-23
23HRC048	Strong gold intersections at Paris gold camp	28-Aug-23
24HRC087	Strong gold results extend prospects, bolstered by shallow discovery	17-Jun-24
24HRC076	Strong gold results extend prospects, bolstered by shallow discovery	17-Jun-24
24HRC086	Strong gold results extend prospects, bolstered by shallow discovery	17-Jun-24
24HRC077	Strong gold results extend prospects, bolstered by shallow discovery	17-Jun-24
24ODD002	Strong gold results extend prospects, bolstered by shallow discovery	17-Jun-24
24DHHH004	Drilling results from Paris gold project	23-Oct-24
24PRC160	15m @ 12.57g/t gold intercept at Paris	7-Nov-24
25PRC206	High-grade assays confirm expansion of pyrrhotite-associated gold zone at Paris	4-Aug-25
25HRC94	first extension hole at HHH hits 5m at 15.2 g/t gold	13-Nov-25

APPENDIX 1: LABORATORY ASSAY RESULTS: PHOTON ASSAY

Only gold assays ≥ 0.3 ppm (0.3 g/t) are recorded in the following table, except where relevant as part of a longer intercept. All intercepts are presented as down-hole lengths.

Hole ID	From (m)	To (m)	Length (m)	Au (ppm)
25PRC167	432	437	5	6.01
25PRC180	393	396	3	0.94
25PRC182	41	48	7	1.76
25PRC184	52	57	5	1.2
26PRC205	222	242	20	5.8

APPENDIX 2: COLLAR AND DOWN HOLE SURVEY OF DIAMOND AND RC DRILLHOLES AT THE PARIS GOLD PROJECT

Downhole surveys were completed on all the DD and RC drill holes by the drillers. They used a True North seeking Gyro downhole tool to collect the surveys approximately every 5m down the hole. The azimuth shown is the magnetic true north azimuth of the drilling direction. All locations on Australian Geodetic Grid MGA_GDA94-51.

Hole ID	Coordinates			Depth (m)	Survey method	Grid	Azimuth	Dip	Type	Prospect
	Easting	Northing	RL (m)							
25PRC165	402466.064	6504427.401	300.232	474	RTK GPS	GDA94Z51	13	-50	RC	Paris
25PRC167	402179.45	6504532.32	302.55	456	RTK GPS	GDA94Z51	48	-50	RC	Paris
25PRC176	402514.445	6504368.135	298.729	580	RTK GPS	GDA94Z51	332	-60	RC	Paris
25PRC177	402563.726	6504585.06	299.856	330	RTK GPS	GDA94Z51	27	-62	RC	Paris
25PRC180	402310.028	6504535.426	301.413	456	RTK GPS	GDA94Z51	28	-62	RC	Paris
25PRC182	402782.709	6504594.497	300.844	366	RTK GPS	GDA94Z51	305	-60	RC	Paris
25PRC184	402715.189	6504566.808	300.757	318	RTK GPS	GDA94Z51	38	-70	RC	Paris
25PRC185	402778.797	6504516.761	305.185	390	RTK GPS	GDA94Z51	320	-55	RC	Paris
26PRC205	402511.5211	6504726.725	299.149	325	RTK GPS	GDA94Z51	130	-85	RC	Paris

APPENDIX 3: JORC CODE, 2012 EDITION – TABLE 1 EXPLORATION RESULTS

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Industry-standard drilling methods, such as diamond drilling (DD) and reverse circulation drilling (RC) were used to sample the project. Chips and (or) Diamond core are produced and sampled for assays. The RC drilling was to generally accepted industry standards producing 1.0m samples which were collected beneath the cyclone and then passed through a cone splitter. The splitter reject sample was collected into green plastic bags or plastic buckets and laid out on the ground in 20-50m rows. RC Chips were sampled at 1m intervals to produce an approximate representative 3kg sample into pre-numbered calico sample bags. The full length of each hole drilled was sampled when drilling RC, and mineralised intervals with a 3-5m buffer is sampled when collecting diamond core Samples of Diamond core were selected based on a combination of alteration, sulphide percentage, and presence of quartz veining. Minimum core sample intervals of 0.3m and maximum sample intervals of 1.3m were used, with a nominal 1m sample length chosen. Sample intervals were determined by Torque geologists and cut in half for sampling in Kalgoorlie by an external contractor. All sampling processing and handling was conducted by Torque geologists. All sampling undertaken is relevant to the style of mineralisation and within best industry practice All samples collected are submitted to a certified commercial laboratory in Kalgoorlie and (or) Perth. The samples were analysed using the photon assay (Chrysos™ PAAU02) method which uses a 0.5kg sample and requires minimal handling. Samples are dried, crushed and homogenised to ensure homogeneity as uniform sample distribution is important to a quality analysis.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> RC holes were drilled with a truck-mounted Schramm T685 fitted with a hands-free Sandvik DA554 rod-handler. The diamond rig was an 8x8 truck-mounted Sandvik DE-880 fitted with a hands-free rod handling system. Rod and air trucks are Mercedes 8 x 8 trucks with a 2400cfm 1000psi Hurricane booster and a 350psi/1270cfm auxiliary compressor. All equipment supplied by the drilling contractor. RC holes were drilled using a 145mm (5.5in) face-sampling drilling bit. Diamond drilling was cored using HQ and NQ/NQ2 diamond bits (triple tube). Relevant support vehicles were provided.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the</i> 	<ul style="list-style-type: none"> Diamond drilling gathers uncontaminated fresh core samples that are processed on the drill site to eliminate drilling fluids and cuttings, resulting in clean core for logging and analysis.

	<ul style="list-style-type: none"> <i>samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> The RC samples were individually weighed to ensure control on recovery and sufficient sample material to be collected for the Photon analysis method. This was governed by field Geologists and drillers. To ensure maximum sample recovery and the representivity of the samples, an experienced Company geologist was present during drilling to monitor the sampling process. Any issues were immediately rectified. Sample recovery was recorded by the Company Field staff (Geologists or Assistants) based on how much of the sample is returned from the cyclone and cone splitter. This is recorded as good, fair, poor or no sample. Torque is satisfied that the RC holes have taken a sufficiently representative sample of the interval and minimal loss of fines has occurred in the RC drilling resulting in minimal sample bias. No twin RC drill holes have been completed to assess sample bias. Core recoveries were recorded for each drill run by Torque personnel and recorded in the database At this stage no investigations have been made into whether there is a relationship between sample recovery and grade.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> Torque geologists logged all RC chips and or Diamond core using current company logging methodology. Lithological logging is conducted on site and capturing occurs directly into a cloud hosted database (MX deposit). The qualitative component of the logging describes oxidation state, grain size, lithology code assignment, and stratigraphy code assignment. All 1m RC samples were sieved and chips collected into 20m chip trays for geological logging of colour, weathering, lithology, alteration and mineralisation for potential Mineral Resource estimation and mining studies. RC and Diamond drilling (DD) logging is both qualitative and quantitative in nature. The total length of the RC and DD holes were logged. Where no sample was returned due to cavities/voids it was recorded as such. Logging was completed at sufficient detail to support interpretation and resource modelling purposes and initial mining studies. All chips and drill core samples have been photographed following industry standards and information is being stored
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all cores taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality, and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> Sampling technique: <ul style="list-style-type: none"> All RC samples were collected from the RC rig and were collected beneath the cyclone and then passed through the cone splitter, for each meter drilled The samples were generally dry, and all attempts were made to ensure the collected samples were dry. However, on deeper portions of some of the drillholes some samples were logged as moist and/or wet. The cyclone and cone splitter were cleaned with compressed air at the end of every completed hole. Core samples were marked up during logging and sampled by cutting lengthwise in half and sampling half the core. Half core was sent to the laboratory for analysis with the remaining core retained in the core tray The sample sizes were appropriate to correctly

		<p>represent the mineralisation based on the style of mineralisation, the thickness and consistency of intersections, and the sampling methodology for the primary elements.</p> <ul style="list-style-type: none"> • Quality Control Procedures <ul style="list-style-type: none"> • At least one duplicate sample was collected every hole. • Certified Reference Material (CRM) samples were inserted, approximately every 50 samples • Blank washed sand material was inserted in the field approximately every 50 samples. • Overall QAQC insertion rate of 1:10 samples. • Laboratory repeats taken and standards inserted at pre-determined level specified by the laboratory. • The sample sizes are considered appropriate to correctly represent the mineralisation based on the style of mineralisation, the thickness and consistency of intersections, the sampling methodology and the assay value ranges expected for gold.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> • <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> • <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> • <i>Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> • All samples were sent to Intertek or SGS laboratory in Kalgoorlie or Perth. Photon Assay method has shown to provide quick turnaround times and high accuracy. • Duplicates, blanks and samples containing standards are included in the samples submitted for analysis, as described above. • The quality control procedures employed and described above are considered to provide acceptable levels of accuracy and precision.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> • <i>The verification of significant intersections by either independent or alternative company personnel.</i> • <i>The use of twinned holes.</i> • <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> • <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> • Significant intersections have been independently verified by alternative company personnel. • The Competent Person has visited the site and supervised the drilling and sampling processes used in the field. • All primary data related to logging and sampling are captured into Excel templates on palmtops or laptops and subsequently loaded up to a secure cloud platform database (MX deposit) • The database is managed by a qualified database geologist. • All paper copies of data have been stored. • No adjustments or calibrations have been made to any assay data, apart from resetting below detection values to half positive detection.
<i>Location of data points</i>	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> • All collars were initially located by a Geologist using differential RTK-GPS • Downhole surveys are being completed on all the RC/DD drill holes by the drillers. They used a True North seeking Gyro downhole tool to collect the surveys approximately every 5 -10m down the hole. • The grid system for the Paris Project is MGA_GDA94 Zone 51. • Topographic data is collected by differential RTK-GPS • Topographic high-resolution (8cm) drone survey conducted by Goldfields Technical Services Pty in

		November 2023.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> This programme is the ninth follow-up drilling programme across several different prospects. There may still be variation in the drill spacing and drillhole orientation until geological orientations and attitude of mineralisation can be established with a suitable degree of certainty. The spacing and distribution of the data points is generally sufficiently consistent to establish the degree of geological and grade continuity. No Sample composting have been applied to the reported drill holes. Samples were collected in 1m intervals, dispatched and assayed as they were collected as the sub-sample from the shoot.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> The main lithological units are in predominantly north-south orientation and dipping sub-vertical. Mineralised structures at Paris are often oriented at approximately 290°. The possible presence of Riedel structures has led to several different drillhole azimuth orientations being used to generate further technical information and to intersect specific mineralised structures, but always with an attempt to drill orthogonal to the strike of the interpreted structure. Due to locally varying intersection angles between drillholes and lithological units, all results are defined as downhole widths. True widths are not yet known. No drilling orientation and sampling bias has been recognised at this time and drilling is not considered to have introduced a sampling bias.
<i>Sample security</i>	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> Samples collected are placed in calico bags at site and transported to the relevant Perth or Kalgoorlie laboratory by courier or company field personnel. Sample security is not considered a significant risk.
<i>Audits or reviews</i>	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> The Company database was originally compiled from primary data by independent database consultants based on original assay data and historical database compilations. Data is now managed by suitably qualified in-house personnel. Prior to this drilling program (2024) there has been reviews and audits on Torque's database and sampling techniques by two external consultants (SRK and MiningPlus). The outcomes of the reviews deemed Torque's database management, sampling techniques and QC to be on industry standard and adequate for the style of mineralisation. No new external reviews have been conducted on the current reported drilling results; however internal reviews of the database and sampling techniques are ongoingly managed by qualified Torque staff.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The relevant tenements (M15/498, M15/497, M15/496) are 100% owned by and registered to Torque Metals Limited. At the time of reporting, there are no known impediments to obtaining a licence to operate in the area and the tenements are in good standing.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> In 1920, Paris Gold Mine Company was floated in Adelaide to take up a 12-month option over the mine area. Just to the south, another company had an option over the Paris South Gold Mine but soon abandoned it to focus attention on the Observation Gold Mine, 1 km to the north, which it abandoned in turn after only one month. The Paris Mine at the time contained 5 shafts and 2 costeans. Gold was said to be erratic in a quartz, schist, jasper lode jumbled by faults. At some point it was excavated as an open pit. Western Mining Corporation (WMC) started to explore the Paris area in the 1960s and relied on aerial magnetics supported by geological mapping to assess mineralisation potential. This work identified the basalt/gabbro contact as the major control for Paris style gold-copper mineralisation and extensions to the ultramafic units that host the nickel mineralisation around the Kambalda Dome. In the early 1970s the area was the focus of both nickel and copper-zinc exploration. Reconnaissance diamond drilling for nickel was undertaken by WMC that drilled on 5 lines spaced at 800m across the interpreted basal contact position of the Democrat Hill Ultramafic and the BLF. The basal contact of the Kambalda Komatiite (and equivalents) is host to all the nickel mines in the Kambalda district and is the primary exploration area of interest for nickel mineralisation. Base metal exploration involved reconnaissance mapping, gossan search, soil, and stream sediment sampling. In 1973, DHD 101 was drilled to follow up a copper anomaly on the Democratic Shale. Results showed the anomalous gossan values to be associated with a sulphidic shale with values in the range 0.1 to 0.2% Cu and 0.8-1.0% Zn. During the early 1980s, Esso Exploration Australia and Aztec Exploration Limited conducted exploration programs along strike from the Paris Mine. Primary area of interest was copper-zinc-(gold) mineralisation in the felsic volcanics. Work included geochemistry, geophysics, and drilling. The Boundary gossan was discovered, and later drill tested with a single diamond hole in 1984. This hole failed to locate the primary source of the anomalous surface geochemistry. In 1988, Julia Mines conducted an intensive drilling program comprising air core, RC and diamond holes concentrated around the Paris Mine. This work was successful in delineating extensions and parallel lodes to the known Paris mineralisation. both along strike and down plunge. Paris Gold Mine was developed and worked in 1989 by Julia Mines and produced 24koz gold, 17koz silver and 245t copper. Estimated recovered gold grade was 11.2g/t.

	<ul style="list-style-type: none"> • In 1989/90, WMC completed a six-hole diamond drilling program to test for depth extensions to the Paris mineralisation below the 180m depth. Results defined a narrow (1-2m) high-grade zone over 70m of strike and intersected hanging wall lodes 10m and 30m stratigraphically above the interpreted main lode. This was the last drilling program to be carried out on the Paris Mine by WMC. From 1994 to 1999, WMC focused their gold resource definition drilling on the HHH deposit and conducted a series of RC drilling campaigns resulting in 30m drill line spacings with holes every 10m to 20m along the lines. Elsewhere, exploration by WMC and later by St Ives Gold Mining Company identified several areas of interest based on favourable structural and geochemistry evaluations. The 7km x 1km long N-S trending soil anomaly at Strauss was systematically drill tested in 2000 and yielded encouraging results associated with the Butcher's Well Dolerite. Air core drilling in 2005 focussed on the southern strike extensions of the mineralisation discovered in the 2000 program with limited success. • Gold Fields Australia (SIGMC - St Ives Gold Mining Company) explored the area in 2008. The Paris and HHH deposits were tested as part of SIGMC's air core programme. Drilling (148 holes, 640m x 80m) focused on poorly exposed differentiated dolerite proximal to interpreted intrusives. The exploration potential was supported by a structural interpretation which highlighted strong NNW trending magnetic features with the apparent intersection of crustal-scale lineaments observed in the regional gravity images. Anomalous values are associated with a felsic intrusive in sediments on the western margin of the area of interest. • Austral Pacific Pty Ltd acquired the Paris Gold Project from SIGMC in July 2015. Mineral Resource and Reserve estimates were compiled in-house and exploitation of the Paris and HHH deposits focused on a staged approach with gold production as a priority and near mine exploration to follow.
Geology	<ul style="list-style-type: none"> • <i>Deposit type, geological setting, and style of mineralisation.</i> <ul style="list-style-type: none"> • The Paris Gold Project covers a north-south trending belt of Archaean granite-greenstone terrain, and most of the package is currently situated to the east of the Boulder Lefroy Structural Zone (BLSZ). Consequently, the Parker Domain dominates the project geology, defined as existing east of the BLFZ and bounded to the east by the Mount Monger Fault. The Parker Domain comprises a series of ultramafic and mafic units interlayered with felsic volcanoclastic and sediments. The stratigraphic sequence is like the Kambalda Domain. • Gold mineralisation is widespread, occurring in almost all parts of the craton, but almost entirely restricted to the supracrustal belts. Gold occurs as structurally and host-rock controlled lodes, sharply bounded high-grade quartz veins and associated lower-grade haloes of sulphide-altered wall rock. Mineralisation occurs in all rock types, although Fe-rich dolerite and basalt are the most common, and large granitic bodies are the least common hosts. Most deposits are accompanied by significant alteration, generally comprising an outer carbonate halo, intermediate to proximal potassio-mica and inner sulphide zones. The principal control on gold mineralisation is structure, at different scales, constraining both fluid flow and deposition positions.

Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i> <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth AND hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> All relevant information for the drillholes reported in this announcement can be found in the relevant tables and appendices included herein. Only gold assays ≥ 0.03 ppm (0.03 g/t) are recorded in the assay data table, except where relevant as part of a longer intercept. All intercepts are presented as down-hole lengths.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> No high-grade cuts or caps have been applied to the assay results reported in this announcement. Arithmetic length weighted averages are used: example 432m to 437m in hole 25PRC167 is reported as 5m @ 6.01 g/t gold, of contiguous samples, calculated as follows: $[(1m*0.85\text{gpt}) + (1m*1.98\text{gpt}) + (1m*5.24\text{gpt}) + (1m*21.18\text{gpt}) + (1m*0.84\text{gpt})] / [5] = 30.09/5\text{m} = 6.01 \text{ g/t gold over 5m.}$ No metal equivalent values have been used.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> <i>These relationships are particularly important in the reporting of Exploration Results.</i> <i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i> <i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').</i> 	<ul style="list-style-type: none"> All results are reported as downhole widths. Insufficient knowledge of the structural controls on the mineralisation and attitude of the mineralised horizons is known yet to allow true widths to be established.
Diagrams	<ul style="list-style-type: none"> <i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i> 	<ul style="list-style-type: none"> Appropriate maps and summary intercept tables are included in this report. Where sufficient structural data have been gathered to allow meaningful interpretation of the structural setting controlling the mineralisation, appropriate sections for significant discoveries are also included. Where structural data is as yet insufficient to allow meaningful interpretation, sections are not provided as to do so could be considered misleading.
Balanced reporting	<ul style="list-style-type: none"> <i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised avoiding misleading reporting of Exploration Results.</i> 	<ul style="list-style-type: none"> The individual assays for all drill hole intercepts mentioned herein are reported in Appendix 1, with the qualification that only gold assays ≥ 0.03 ppm (0.03 g/t) are shown, except where relevant as part of a longer intercept. All intercepts are presented as down-hole widths.
Other substantive exploration data	<ul style="list-style-type: none"> <i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or</i> 	<ul style="list-style-type: none"> All meaningful and material information has been included in the body of this announcement. Torque's main exploration aim is to establish if any gold mineralisation present is significant enough to warrant advancement to resource definition. Torque continues to explore with the objective of compiling appropriate data to enable a resource to be defined. Previous announcements have reported the outcome of metallurgical testwork

	<i>contaminating substances.</i>	conducted to investigate the possible presence, and impact, of any other elements that might also be present within mineralised zones and which could be viewed by some to be deleterious. The metallurgical test work and characterisation studies clearly demonstrated that the presence of elements such as copper did not in any way adversely impact the gold recoveries from mineralised zones which remained more than 96% (see announcements including full technical reports as appendix, 27-Sep-2023 and 17-Dec-2024).
<i>Further work</i>	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Plans for future work are discussed in the body of this announcement. The possible locations, and extent, of follow-up drilling has not yet been confirmed but will likely include further RC and possibly diamond drilling.