

Cobre Limited A.C.N. 626 241 067 (ASX: CBE)

Level 10, Kyle House, 27 Macquarie Place

SYDNEY NSW 2000

Tel: + 61 407 123 143

www.cobre.com.au

12 February 2026

ASX Limited - Company Announcements Platform

COBRE RAISES \$60M TO ACQUIRE A MAJORITY INTEREST IN SIERRA ATACAMA COPPER PROJECT IN THE WORLD CLASS ANTOFAGASTA REGION

CHILE

Highlights:

- Sierra Atacama Copper Project is a ~40,000 ha district scale project located in the world class copper belt of the Antofagasta region of northern Chile.
- The acquisition can transform Cobre into a material copper producer, taking the well capitalised, but small scale private operations, and rapidly turning this into a long-life cash generative asset, with strong upside potential.
- The Project includes an operating underground mine which currently produces approximately 400t of copper cathode per month with significant potential for rapid optimisation and expansion (>1000t/m).
- The Project includes scope to develop large-scale open-pit mining, where early works can begin immediately, and an extension of the existing Mining Lease.
- Over the coming 18 months, the Company intends to leverage the significant installed asset base, including new crushing circuit and functional SX-EW plant, to push expansion, putting the company firmly on a footing to being a globally significant copper producer.
- Exploration ground remains highly unexplored, providing tremendous potential upside given major copper discoveries nearby. It sits immediately adjacent to the Marimaca copper project (213.5 mt @ 0.4% Cu¹) (ASX:MC2) and Capstone Copper Corporations' (ASX:CSC) Mantos Blancos copper project (500 mt @ ~1% Cu)¹.

¹Technical Report May 2021(www.capstonecopper.com), Marimaca Copper Files NI 43-101 Technical Report (www.marimaca.com). Both deposits refer to mineral resources including measured, indicated and inferred quoted in non-JORC, NI43-101 reports available on Technical Report May 2021(www.capstonecopper.com) Marimaca Copper Files NI 43-101 Technical Report (www.marimaca.com)

- The recent equity raise was strongly supported with Cobre proposing to issue a total of 400,000,000 fully paid ordinary shares at \$A0.15 per share for ~A\$60 million in cash before costs.
- Cobre's existing major shareholder Tribeca Investment Partners is cornerstoring the placement which also introduces a number of new institutional investors to the register.
- Funds raised will be applied to:
 - fund the earn-in and acquisition of the interest in the Sierra Atacama copper project
 - capital expenditure
 - exit of certain onerous contracts
 - a drilling program for the new assets in Chile, and existing Botswana assets
 - working capital.
- Cobre also proposes to issue up 56,000,000 performance rights to Directors and key contractors pursuant to a newly adopted equity incentive plan.
- The agreement with Minera Salar Blanco to acquire the interest in the Project is binding and exclusive.

BACKGROUND

Cobre Limited (**CBE** or the **Company**) is pleased to advise that it has entered into a binding and exclusive agreement with Chilean-based Minera Salar Blanco (**MSB**) to acquire up to a 51% interest in the Sierra Atacama Copper Project (**Project**) in the Antofagasta region of northern Chile. The Project includes an operating underground mine which is currently producing approximately 400t of copper cathode / month via heap leach, solvent extraction and electrowinning (SXEW).

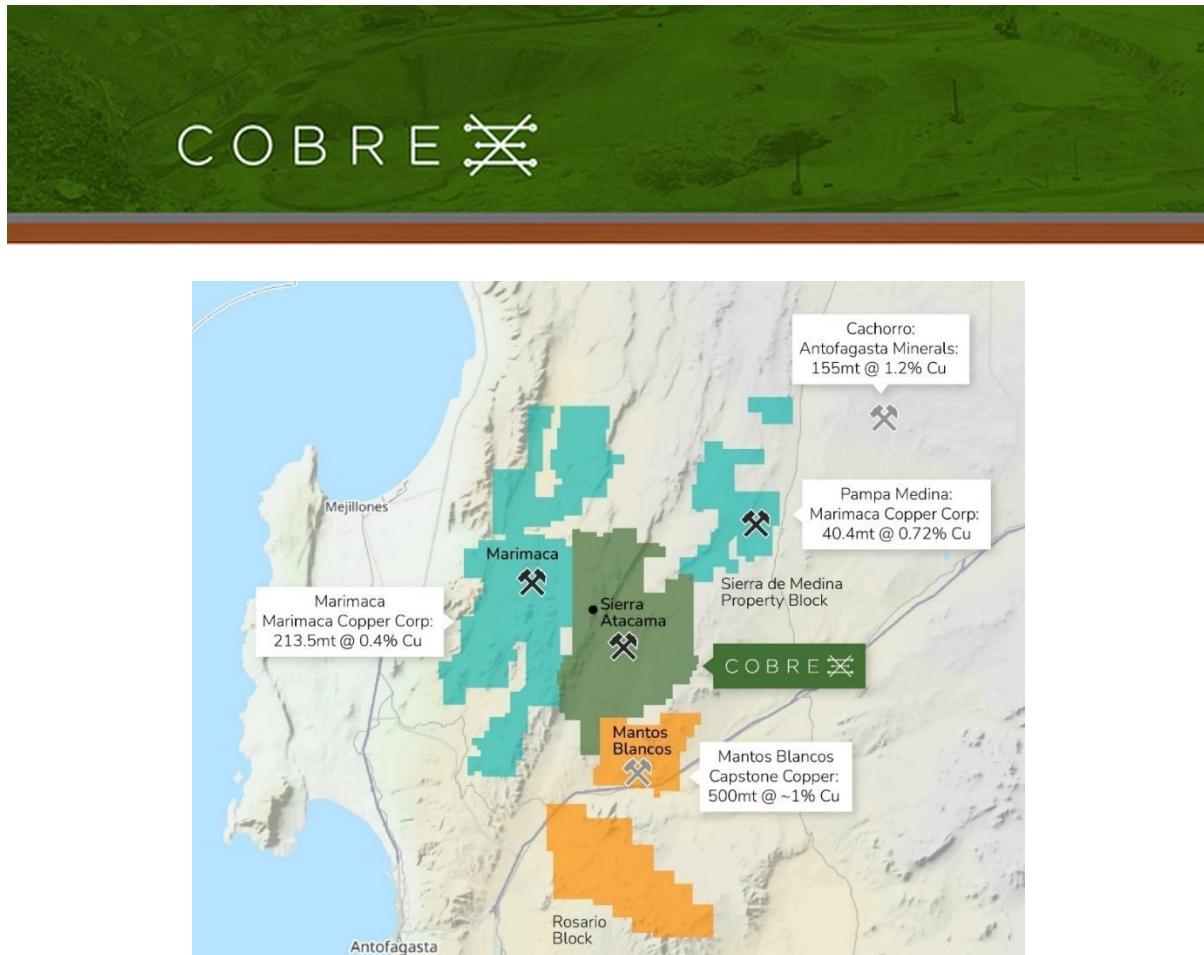


Figure 1. Location of the Sierra Atacama property relative to surrounding deposits. (deposit sizes quoted from company websites)

Commenting on this highly transformational acquisition for Cobre, Executive Chairman, Martin Holland, said:

"This acquisition is highly transformational for Cobre. We are moving from being an explorer-developer to a producer in a production hub in Chile which is surrounded by substantial infrastructure. This represents a very exciting opportunity for Cobre to blend this new asset together with the Company's existing assets in Botswana.

I have had had a long term trusted and successful relationship with the vendor, Martin Borda, and the opportunity for Cobre to partner with him on this project is a true privilege.

With the Kitlanya projects the subject of the BHP agreement, our agreement with Sinomine for the Okavango Copper Project advancing well and the development of the ISCR project at Ngami coming along strongly, it was time for Cobre to venture out and seek opportunities to take the Company to the next level. The Board of Cobre believe that the Sierra Atacama Project in Chile has the potential to transform the Company into one of the ASX's most exciting copper producers.

We are extremely pleased with the strong level of demand shown in this capital raising from both new and existing sophisticated and professional investors and the endorsement this provides for the justification for this transaction.

C O B R E

We are also excited to announce that highly experienced mining executive, Phil Mitchell, will also be joining a newly established advisory board to help guide Cobre through its next level. Phil has significant expertise in mining mergers and acquisitions, having previously served as Head of Business Development and Strategy at Rio Tinto. He also held key roles as Chief Financial Officer of Rio Tinto Iron Ore and as a member of the Executive Committee at Anglo American. Additionally, he led acquisitions for Robert Friedland's company, HPX. We welcome Phil to the Cobre team. Godspeed."

The Project contains a 2025 NI 43-101 Mineral Resource as outlined below:

Classification	Tonnes (mt)	CuT (%)	CuS (%)
Measured	13.986	0.78	0.65
Indicated	44.097	0.67	0.56
Inferred	51.519	0.64	0.53
Measured + Indicated	58.083	0.66	0.55
Measured + Indicated + Inferred	109.602	0.67	0.56

The resource is based on an open pit mining method and is based on the following information.

Sample type	Quantity Drill/Channels	% Drill/Channels	Quantity Samples	% Samples
Diamond DH	138	1.8	11,044	703.0
Reverse Circulation DH	440	5.6	46,789	31.1
Down The Hole	893	11.3	67,390	44.8
Underground Channels	6,407	81.3	25,116	16.7
Total	7,878	100.0	150,339	100.0

Mineral Reserves as provided in the NI43-101, calculated using a whittle model, are outlined for the Nicolasa and Roxanna deposits as follows (categories were not sub-divided in the report)

Classification	Total Rock (Mt)	Ore (Mt)	CuT (%)	CuS (%)
Nicolasa: Proven and Probable	56.44	7.33	0.88	0.73
Roxanna: Proven and Probable	215.17	35.98	0.61	0.51
Total	43.31	0.67		

The Mineral Resource Estimate for the Project was previously reported in accordance with Canadian National Instrument 43-101. This estimate is considered a foreign estimate for the purposes of the ASX Listing Rules and has not been prepared in accordance with the JORC Code (2012). A Competent Person has not undertaken sufficient work to classify the foreign estimate as a Mineral Resource under the JORC Code, and it is uncertain whether further evaluation will result in a JORC-compliant Mineral Resource. The Company is not relying on this foreign estimate for the purposes of this announcement.

The foreign estimates appear to have been conducted in a reasonable manner, but Cobre or the Competent Person have not independently validated the estimates and the presentation of this information for investors is not to be regarded as the company adopting or endorsing these estimates.

Cobre intends to undertake a process of validation of historical exploration data to convert the foreign estimates to estimates prepared in accordance with the JORC Code (2012).

In accordance with ASX Listing Rule 5.12, Cobre provides additional information related to these foreign estimates in Appendix 1.

A table of significant intersections for shallow hammer drilling and deeper diamond and reverse circulation drilling is provided below. Intersections are ranked by copper x intersection length. For a complete list of significant intersections using a cut-off grade of 2% CuT refer to accompanying JORC Section 2. A complete list of drill collars, elevation, depth, azimuth and dip is provided in JORC Section 2.

	Hole ID	From	To	CuT %	Length (m)
Shallow historical holes					
1	M1090220	0	4.2	19.3	4.2
2	M1090259	0	4.2	15.5	4.2
3	M1260472	0	6	10.1	6
4	M1260204	0	6	8.4	6
5	M1070223	0	4.2	11.8	4.2
6	ARC27_M5	0	2.5	18.3	2.5
7	M1260160	0	6	7.3	6
8	M1090137	0	2.6	16.2	2.6
9	M1170124	0	4.8	8.7	4.8
10	M1090114	0	4.2	9.4	4.2
RC and Diamond holes					
1	SMRC-086	67	85	4.1	18
2	SMR-134	45	73	2.1	28
3	SADDH-70	2	22	2.7	20
4	XC-2	100	109	5.1	9
5	SMR-129	89	103	2.7	14

6	CHS-1	12	27	2.2	15
7	SMRC-098	79	93	2.3	14
8	RP-09-01	198	202	7.5	4
9	SM-02-09	46	58	2.3	12
10	RP-06-08	48	58	2.8	10
11	011-RC7-03	164	172	3.3	8
12	079-RC7-01	294	306	2.1	12
13	RP-01-01	32	36	6	4
14	SMR-129A	56	65	2.6	9
15	016-RC7-01	94	104	2.3	10
16	SADDH-46	16	20	5.4	4
17	SADDH-40	20	30	2.1	10
18	RP-01-02	44	52	2.6	8
19	SADDH-36	26	30	5	4
20	RC6-SA-6	186	188	10	2
21	SMRC-066	55	62	2.8	7
22	DTH-EXP-25	37	46	2.1	9
23	RC-12A	250	252	9.5	2
24	M-10	229	234	3.7	5
25	DTH-EXP-16	20.5	23.5	5.6	3
26	RC-12A	78	80	8	2
27	SADDH-50	28	32	3.9	4
28	N06-08	11.5	17.5	2.6	6
29	RP-00-01	106	110	3.7	4
30	SADDH-57	8	10	7.4	2
31	RP-20-03	192	196	3.6	4
32	SMRC-070	44	51	2.1	7
33	SADDH-60	34	40	2.4	6
34	SADDH-36	58	64	2.4	6
35	SADDH-43	20	24	3.6	4
36	RP-10-04	40	44	3.6	4
37	RP-06-07	42	44	7.1	2
38	SMR-129	116	120	3.4	4
39	RC6-15	338	340	6.7	2
40	RC-08	256	260	3.2	4
41	SMRC-084	61	65	3.1	4
42	SMR-015	75	81	2.1	6
43	SADDH-34	10	14	3.1	4
44	SADDH-35	66	70	3	4
45	C-04A	23.5	28	2.6	4.5
46	SA-13	23	27	2.9	4
47	SMRC-072	92	97	2.3	5

48	SI-15	90	94.5	2.4	4.5
49	082-RC7-01	84	86	5.1	2

SOLID MINE INFRASTRUCTURE; MINING LEASE IS CURRENT

The mine infrastructure can be refurbished and scaled to 1000t of copper / month with relatively low capital expenditure. Cobre is currently undertaking an engineering study which will provide a pathway for short-term optimisation of the current operation and staged expansion.

EXPANSION FROM SMALL UNDERGROUND OPERATION TO OPEN PIT MINING OVER NEXT 18 MONTHS

Based on a review of 140km of existing drilling and channel samples, the current operation favours large open pit operation. Cobre will address this opportunity in three stages:

1. Verification of the existing 140km of drilling data along with channel samples using a combination of re-assay and twinned drill holes;
2. Lateral expansion of the existing operations along strike using a combination of reverse circulation and diamond drilling; and
3. A combination of underground and surface drilling to expand the current mining resource at depth. Results will be used to re-calculate a JORC compliant resource and follow-on mining feasibility study.


DRILLING PROGRAMME TO UNLEASH FURTHER PROJECT POTENTIAL

Deep drill results and samples from the deep portion of the operating mining have intersected high grades of copper sulphide mineralisation which may contain additional precious metal credits. An underground and surface drill programme designed to assess the deeper mixed and sulphide zones is in preparation and will be implemented as a priority.

The project includes highly prospective exploration ground which extends from both the Miramaca and Mantos Blancos deposits on the western and southern border respectively. To date the property remains unexplored with systematic modern methods despite evidence of historical artisanal working and outcropping copper bearing vein systems. There are at least seven areas identified for exploration in the mining concessions alone, with further opportunities to be defined in the exploration concessions. Exploration success could add significantly to the resource base of the project, to support higher throughput and longer mine life. A systemic exploration programme including airborne geophysics, soil sampling, trenching and drill testing will be implemented as a priority.

ADDITIONAL REVENUE AVAILABLE FROM LEVERAGING EXISTING ASSETS

Historical leach pads operated at recoveries of approximately 50% copper according to past production records and contain high residual copper grades based on limited available assay results.

These pads present an opportunity for reprocessing, providing an independent supply of pregnant copper solution for the SXEW plant. Metallurgical studies are in progress to assess the viability of this programme.

PROJECT ASSETS & LIABILITIES

- 15,000ha of contiguous mining concessions
- 25,100ha of exploration concessions
- 80km of underground infrastructure
- Underground Fleet including 2 Scoops, Production Drill Rig, Haulage Trucks
- Crusher
- Leach Pads and Ponds
- Onsite Laboratory
- SXEW circuit:
 - Operating capacity 700 t/month
 - Installed capacity 1,200–1,400 t/month
 - Expansion capacity 2,400 t/month
- **\$100m of tax credits** held within the operating company
- Circa USD25m corporate debt paid in \$600k monthly instalments
- Upcoming debt settlement: Circa US\$3m due in mid-February 2026 subject to settlement agreement; Cobre to fund via cash on hand.

Figure 2. Overview of the Sierra Atacama mining operation.

Figure 3. Electrowinning and solvent extraction plants.

Figure 4. Staged crusher circuit.

WORLD CLASS PROJECT LOCATION

The Sierra Atacama Copper Project is located in the II Region of northern Chile, approximately 50 km to the northeast of the Antofagasta city, a major mining hub (see Figure 1), close to ports for exporting product and importing consumables.

The mining concessions of the Sierra Atacama Project cover an area approximately 10 km in width by 17 km in length, comprising a total of 65 mining concessions. The mining concessions occupy the northern part of the total property holdings. The southern part consists of exploration concessions, which extend as far south as the Mantos Blancos mine project area (see Figures 5 and 6).

FIRST CLASS REGIONAL LOCATION

The Project site and operational area are located east of the Coastal Range, at an average elevation of approximately 1,200 meters above sea level (masl).

The project area is located within a tectonically complex zone, predominantly underlain by volcanic rocks of the La Negra Formation (of Jurassic age, 174–182 Ma) and intrusives belonging to the Naguayán Plutonic Complex (Jurassic, 169.6 Ma) to the west, and the Ercilla Batholith (Jurassic, 180–182 Ma) to the east.

These Jurassic geological units (Figure 5) are emplaced over and through older rock sequences present in the vicinity, including the Rencoret units (Upper Triassic to Sinemurian – lower early Jurassic) and the Sierra del Tigre Formation (Devonian).

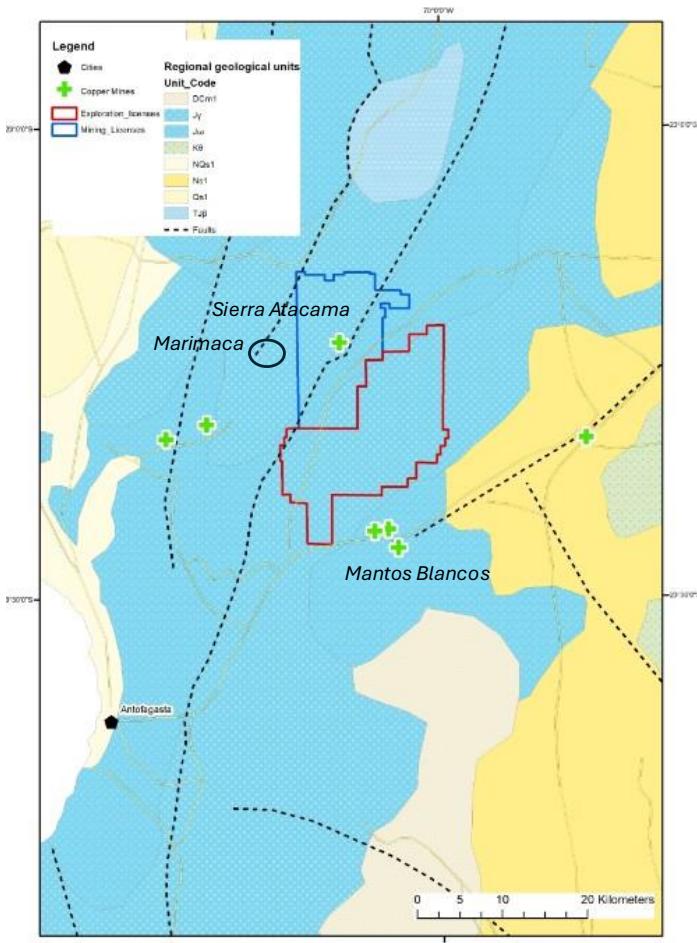


Figure 5. Regional geological setting.

MINERALISATION IS FAVOURABLE BUT REQUIRES FURTHER EXPLORATION

Sierra Atacama is an oxidized copper deposit that is structurally controlled. The dominant copper minerals are, by far, chrysocolla and atacamite. Thick bands of chalcocite have also been identified within larger accumulations of chrysocolla; in some cases, chalcocite rims are partially replaced by cuprite.

The main mineralized intervals appear to be associated with a reactivated fault zone characterized by poor geotechnical quality.

Deeper sulphide mineralisation is known, but has not been part of the historical exploitation. The deeper sulphide mineralisation provides a source of future mineralisation which could be exploited, subject to mining studies. Geological mapping indicates a certain degree of mineralogical zoning within the mineralised structures:

- Specularite–chlorite–epidote assemblages occur at shallow levels (up to 300 m below surface), and
- Magnetite–actinolite–epidote assemblages are observed at deeper levels, suggesting the presence of a calcic alteration assemblage.

PROJECT AREA GEOLOGY

The main geological feature hosting the Sierra Atacama Deposit is the Atacama Fault System, which locally trends N30°E with a dip of approximately 75°E. Sierra Atacama is interpreted as an extensional structural system, consistent with a Riedel-type shear model. Therefore, mineralization is not hosted in simple veins, but rather in structural corridors that act as conduits for mineralizing fluids.

The mine area can be divided into three distinct zones, each displaying marked geological differences that influence the distribution of copper mineralization. From east to west, these are the: Chabuca-Rebeca, Nicolasa, and Roxana sectors.

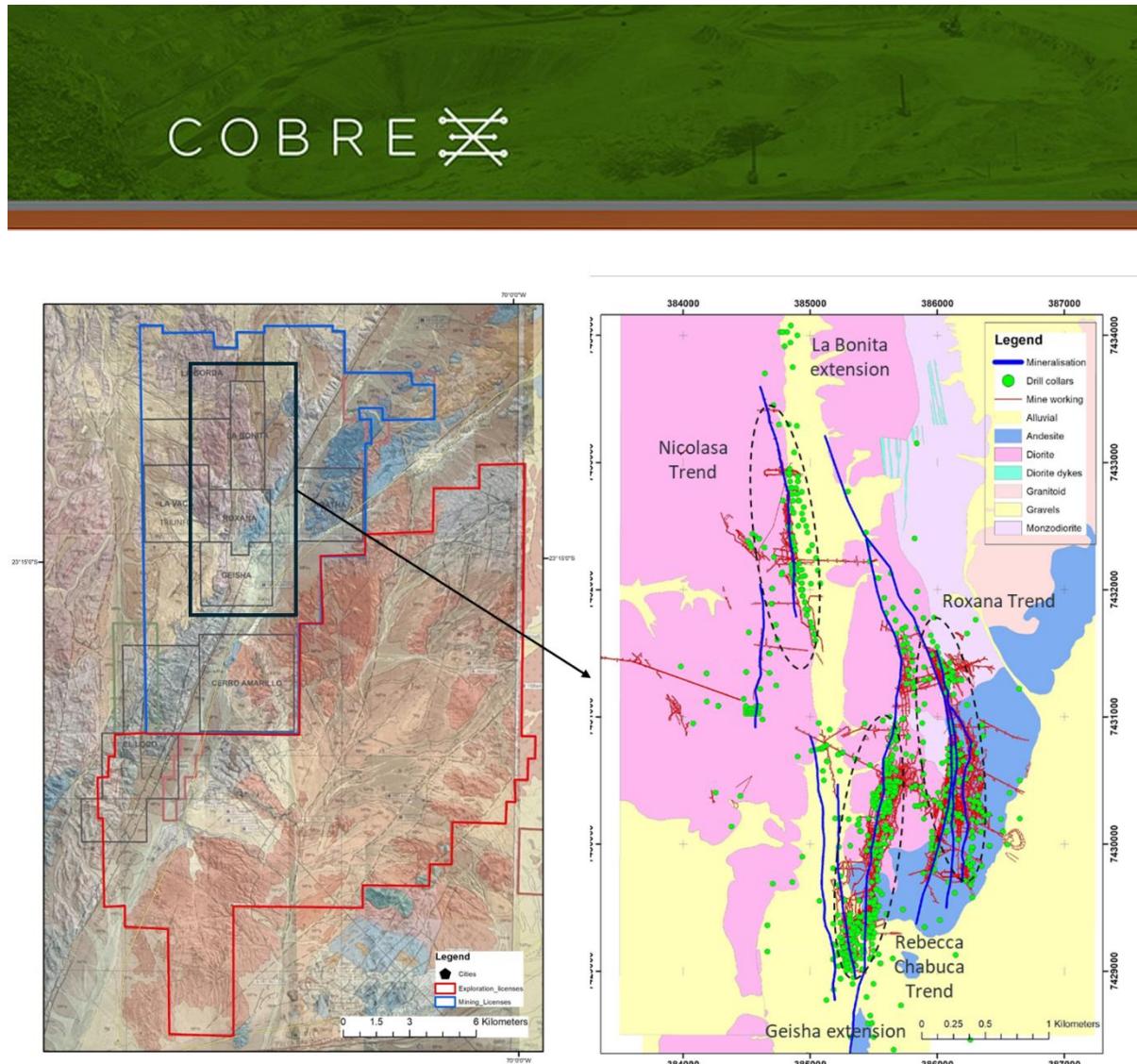


Figure 6. Local geology with primary mineralised trends highlighted.

Nicolasa

The Nicolasa Sector is located in the northwestern portion of the mining area, where vein-like structures are hosted within intrusive rocks of the Naguayán Batholith. The Nicolasa Fault-Vein (N-S trending / subvertical) represents a fracture system that formed open structural traps favourable for the emplacement of mineralized bodies. This structure extends over approximately 3,000 meters, of which only 1,500 metres in the southern portion have been historically exploited.

Chabuca-Rebeca

This fault-vein structure was extensively mined in the past and, as a result, is the area with the most comprehensive geological information, supported by a large number of drill holes and accessible open workings. All available data indicate that the fault-vein extends approximately 1,200 meters along a NNE strike direction, and is recognized vertically for at least 200 meters along its 70°E dipping plane.

Roxana

The Roxana Zone is hosted entirely within a volcanic environment of high permeability. As a result of tectonic activity in the area, the resulting structural corridors enabled the emplacement of large, north-south elongated mineralized bodies. These same corridors previously allowed the intrusion of tabular dioritic dykes, ranging from 20 to 100 meters in thickness.

Subsequent tectonic reactivation caused brecciation (cataclasite formation) in these dykes, creating favourable conditions for intense copper enrichment and associated hydrothermal alteration.

The most prominent structural zones in the Roxana sector are Cecilia (N-S oriented, subvertical mineralisation), Claudia-Diome, Teresita, and Chabuca.

TRANSACTION TERMS

- The transaction is structured as an earn-in and acquisition agreement:
 - Cobre to fund US\$10 million for an initial 20% interest the Project. This initial earn-in amount to be paid in 2 tranches – US\$3 million by 13 February 2026 (which has already been paid) and the balance to be paid within 8 weeks after the execution of long-form transaction documentation (**Initial Investment**)
 - Cobre may fund US\$10 million within 12 months of the Initial Investment for a further 20% interest in the Project (**Subsequent Investment**)
 - Cobre may within 12 months of the Subsequent Investment acquire an additional 11% interest in the Project from MSB for US\$10 million

For personal use only

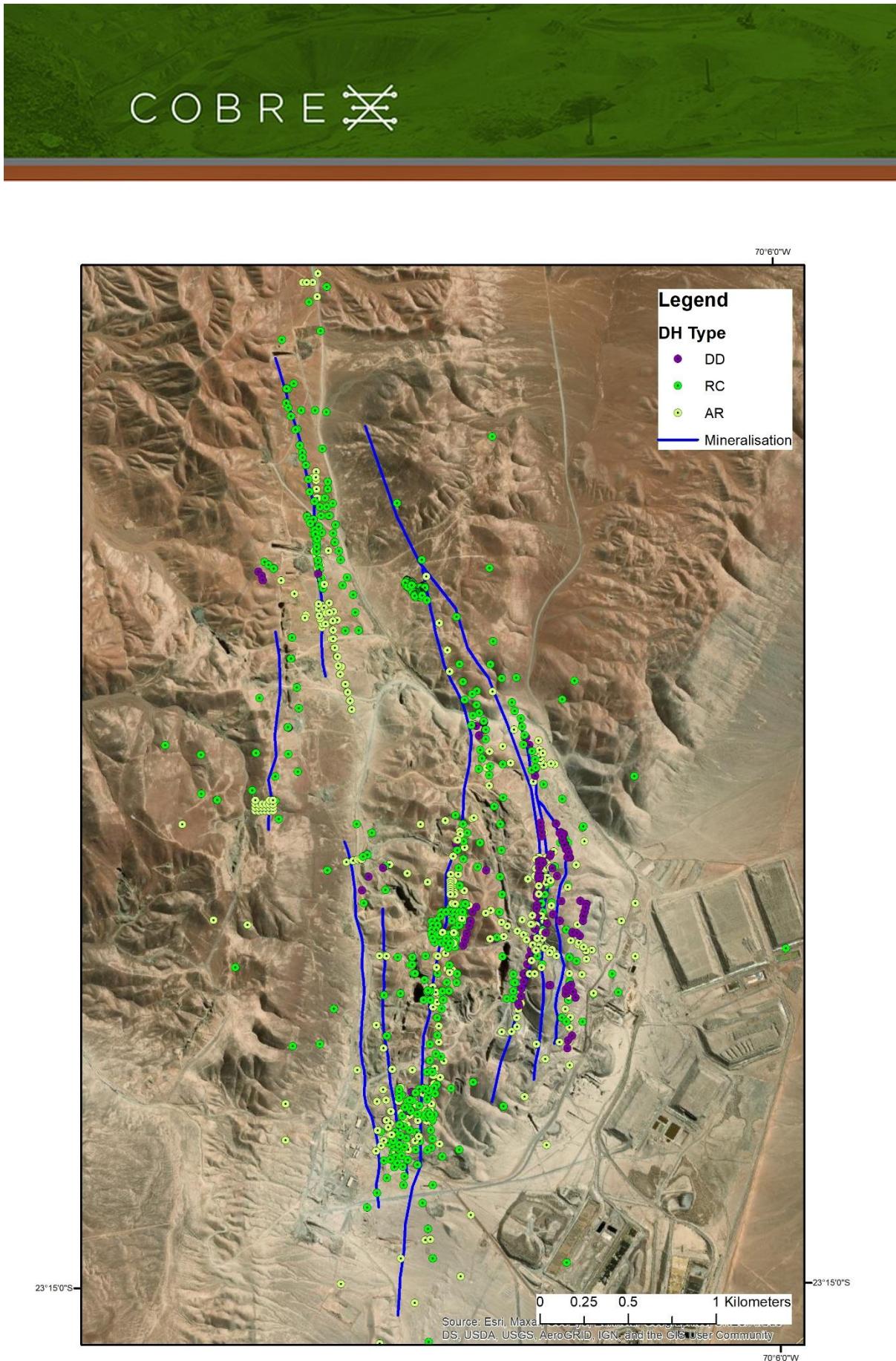


Figure 7. Project areas, with the location of drillholes classified by drill type.

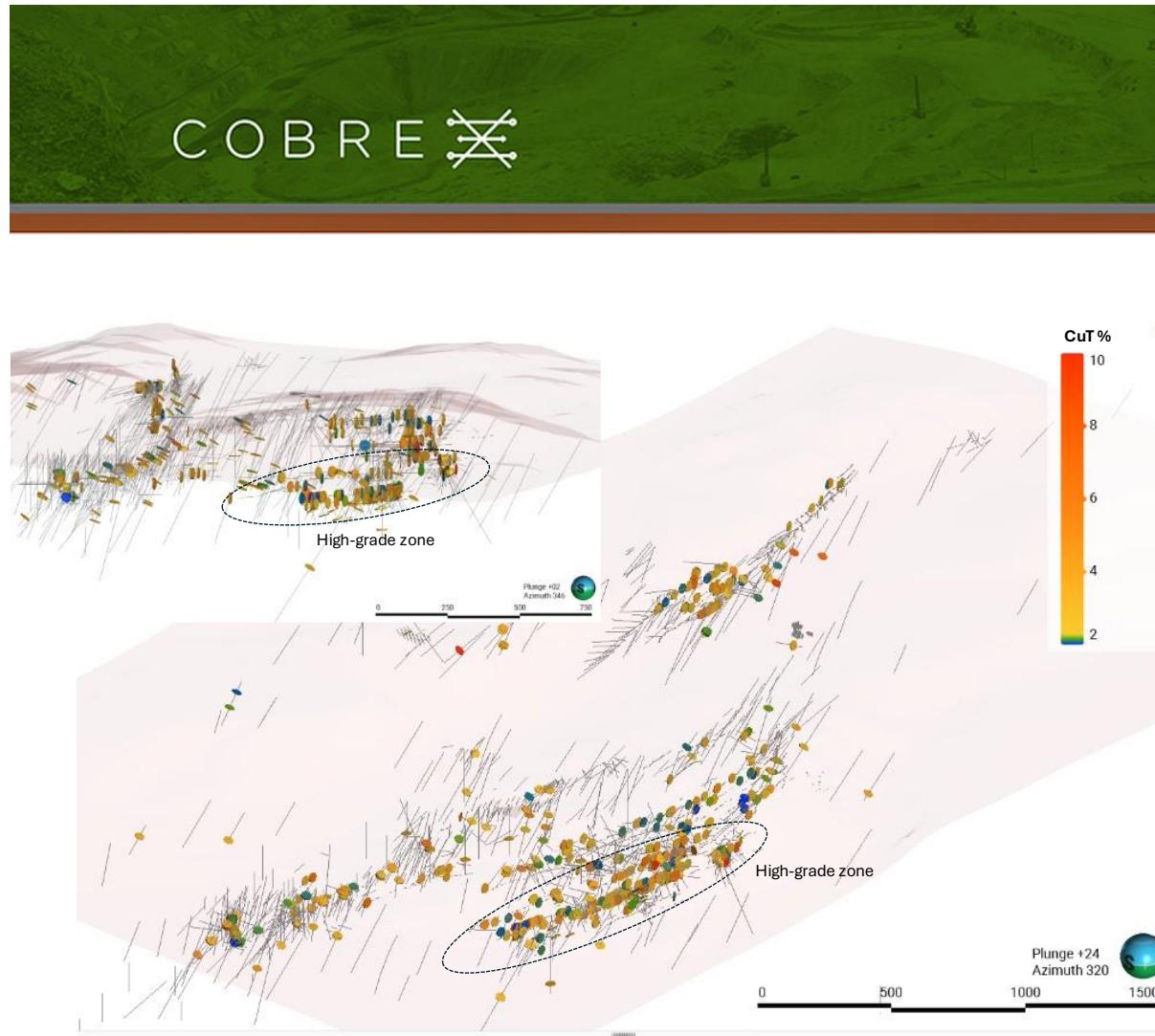


Figure 8. Drill and channel intersections >2% Cu over 2m. Note the high-grade zones at depth which will form a focus for the next phase of exploration drilling. A complete set of notable drill intersections has been included in JORC Section 2.

- Completion of the transaction remains subject to certain conditions being satisfied, including:
 - Cobre obtaining all necessary shareholder approvals to complete the transaction
 - Cobre completing its due diligence on the Project to its sole satisfaction
 - execution of long-form transaction documents
 - no material adverse effect impacting the Project
 - all necessary government and regulatory consents and approvals being obtained
- At completion of the Initial Investment, the parties will enter into a shareholders' agreement in respect of the Project. Under this agreement:
 - prior to the Subsequent Investment, Cobre and MSB to have 50/50 board representation on the board. Thereafter, Cobre and MSB will be entitled to appoint 1 director for each 20% interest held

- after the Initial Investment, the CEO and management will be managed by the board as directed by Cobre and will have responsibility for the day-to-day administration and definition of the work program of the project
- following the Subsequent Investment, the intention is that any further funding required will be debt funded by third parties. If such funding is not available, such funding will be contributed proportionately by the shareholders
- if a party's interest in the Project is less than 20%, the other party will have the right to acquire the other party's interest for an amount equal to the fair market valuation of the interest

- An exclusivity period of 90 days has been obtained
- Either Cobre or MSB may terminate the binding agreement if the conditions referred to in paragraphs 2 and 3 above are not satisfied within 6 weeks of the date of the term sheet

EQUITY RAISE

The Company is pleased to advise that it has received binding commitments to raise \$60 million (before costs) through a placement to new and existing professional and sophisticated investors (**Placement**).

The Placement comprises the issue of approximately:

- 49 million fully paid ordinary shares in the Company (**New Shares**) (representing approximately \$7.4 million) at an issue price of \$0.15 per New Share, pursuant to the Company's existing placement capacity under ASX Listing Rules 7.1 and 7.1A² (**Tranche 1 Placement Shares**); and
- 351 million New Shares (representing approximately \$52.6 million) (**Tranche 2 Placement Shares**) subject to receiving shareholder approval at a forthcoming general meeting, which is expected to be held in April 2026 (**General Meeting**).

Certain Directors of the Company propose to participate in the Placement for \$185,000 (in aggregate), which is subject to shareholder approval at the General Meeting.

The New Shares will rank equally with the Company's existing shares on issue.

The issue price represents a discount of 6.3% to the last close price on 6 February 2026 of \$0.16 per share and a \$0.002 discount to the 15-day VWAP of \$0.152 per share.

Cobre's existing major shareholder Tribeca Investment Partners is cornerstoning the Placement with a commitment of \$15 million, with shares subject to 3 month period of voluntary escrow.

² 43,296,721 shares are to be issued pursuant to LR 7.1 and 5,864,481 are to be issued pursuant to LR 7.1A.

The Placement also introduces a number of new institutional investors to the Company's register, emphasising the transformative nature of the proposed acquisition.

Use of Funds

The Company intends to use the funds raised from the Placement in the following manner:

Funding item	US\$	A\$	Comment
Acquisition/earn-in 1	3.2m	4.5 m	Mine optimisation; UG drill testing of sulphide zone; commencement of 3D modelling; geotechnical and resource studies; geophysical surveys.
Acquisition/earn-in 2	7.0m	10.0m	Infill resource drilling; initial open pit starter resource drilling
Capital expenditure	7.0m	10.0m	Grade control drilling, connection to national grid; crusher expansion; expansion of SX-EW
Exit of onerous contracts	3.2m	4.5m	Restructuring of existing debt and sub-optimal contracts
Drilling	7.0m	10.0m	Extension to sulphide zone; lateral resource drilling for large open pit delineation; exploration drilling
Working capital (Site)	11.2m	16.0m	Mine optimisation, upgrading of mine fleet, working costs
Botswana Drilling	3.5m	5.0 m	Extension drilling at Ngami; well field operation
Total	US42m	A\$60.0m	

Appointment of Phil Mitchell as Board Advisor

The Company is also pleased to announce that Phil Mitchell (the former Head of Business Development and Strategy at Rio Tinto) has been appointed as a board advisor to the Company. Mr Mitchell has significant expertise in mining mergers and acquisitions during his tenure at Rio Tinto, notably holding key roles, including Chief Financial Officer. Mr Mitchell is a member of the Executive Committee at Anglo American and also led acquisitions for Robert Friedland's company, High Power Exploration.

Mr Mitchell's appointment is subject to customary terms and conditions, including remuneration, which are commensurate with his position as a board advisor to the Company.

Performance Rights

In addition to the issue of Tranche 1 Placement Shares and Tranche 2 Placement Shares, the Board has approved the grant by the Company of up to 56,000,000 performance rights to the Directors and

certain key contractors of the Company. The grant of the performance rights will be subject to shareholder approval at the General Meeting.

The proposed issue of the performance rights is subject to achievement of certain vesting conditions as further set out in the table below. The vesting conditions are (**Vesting Conditions**):

Tranche 1 Performance Rights

Tranche 1 Performance Rights may vest subject to the agreement with MSB. Tranche 1 Performance Rights will vest subject to the primary transaction documents for the Proposed Transaction being signed, which will be determined in reference to the following vesting scale:

Performance level	Primary transaction documents with MSB signed	% of maximum vesting
Target	Successful	100%
Below target	Unsuccessful	0%

Tranche 2 Performance Rights

Tranche 2 Performance Rights will vest subject to obtaining funding for the transaction, which will be determined in reference to the following scale:

Performance level	Project Finance Documents being signed	% of maximum vesting
Target	Successful	100%
Below target	Unsuccessful	0%

Tranche 3 Performance Rights

Tranche 3 Performance Rights will vest if the Share price increases compared to the Starting Share Price as determined by comparing the VWAP calculated over the 10 trading days immediately following the date on which the assessment is undertaken and up to the Expiry Date (**Assessment Period**), which will be determined in reference to the following vesting scale:

Share Price Premium to Starting Share Price	% of maximum vesting
100% premium to the Starting Share Price	100%
75% premium to the Starting Share Price	75%

50% premium to the Starting Share Price	50%
25% premium to the Starting Share Price	25%

The Participant can request, at any time during the Assessment Period for the Board to undertake an assessment of the achievement of the vesting condition for Tranche 3 Performance Rights.

The Starting Share Price is \$0.15, being the issue price under the Placement.

The following weightings are proposed to apply to each grant:

- Tranche 1: 40% of Performance Rights granted.
- Tranche 2: 20% of Performance Rights granted.
- Tranche 3: 40% of Performance Rights granted.

The Performance Rights will otherwise comply with the ASX Listing Rules insofar as it relates to performance securities, including that:

- they will not be transferrable;
- they will have no voting rights;
- they will expire upon the earlier of 5 years or termination of employment if unvested;
- not provide any rights to participate in the surplus profits or assets of the Company upon a winding up of the Company;
- they will not confer on the holder an entitlement to receive dividends, whether fixed or at the discretion of the Directors;
- they will not confer any right to a return of capital, whether in a winding up, upon a reduction of capital or otherwise;
- they will not confer any right to participate in any new issue of Shares of the Company during the currency of the Performance Rights without exercising the Performance Rights into Shares; and
- they will not be quoted

Further information on the performance rights will be included in the Company's notice of meeting for the General Meeting.

Effect on Capital Structure

The capital structure of the Company on completion of the Placement and following the General Meeting is expected to be as follows:

Capital Structure	Shares	Options	Performance Rights
Existing securities	523,644,812	270,759,452 ¹	Nil
Tranche 1 Placement	49,161,202	N/A	Nil
Tranche 2 Placement	350,838,798 ²	N/A	Nil
Performance Rights	-	-	56,000,000 ³
Total	923,644,812	270,759,452	56,000,000

Notes:

1. The Company has on issue 165,578,009 listed options (ASX: CBEO) and 105,181,443 unlisted options with various expiry dates and exercise prices.
2. The Tranche 2 Placement Shares are subject to shareholder approval at the General Meeting.
3. The Company proposes to issue 56,000,000 performance rights to Directors and certain key contractors of the Company, subject to receiving shareholder approval at the General Meeting.

Advisers

CPS Capital Group Pty Ltd and Defender Asset Management Pty Limited acted as joint lead managers and bookrunners to the Placement and Tribeca Capital Advisory as corporate advisors.

Baker McKenzie acted as legal adviser in Australia and Chile.

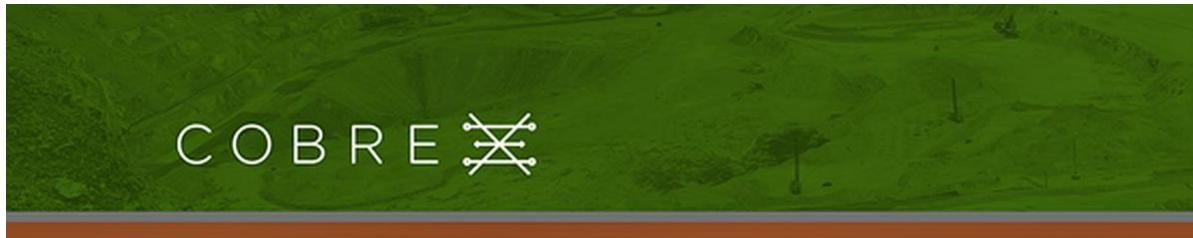
Indicative Timetable*

Event	Timing
Trading Halt	9 February 2026
Announcement of Acquisition and Placement	12 February 2026
Trading Halt/Suspension Lifted	
Settlement of Tranche 1 Placement Shares	17 February 2026
Allotment and issue of Tranche 1 Placement Shares	18 February 2026
Dispatch of notice of meeting to shareholders	Mid-February 2026
General Meeting	April 2026
Settlement of Tranche 2 Placement Shares	April 2026
Allotment and issue of Tranche 2 Placement Shares	April 2026

*The timetable above is indicative only and may change. The Company reserves the right to amend any or all of these dates and times without notice, subject to the Corporations Act, the Listing Rules and other applicable laws.

Cautionary Statement about Forward-Looking Statements

This announcement contains certain "forward-looking statements" including statements regarding our intent, belief or current expectations with respect to Cobre's business and operations, market conditions, results of operations and financial condition, and risk management practices. The words "likely", "expect", "aim", "should", "could", "may", "anticipate", "predict", "believe", "plan", "forecast" and other similar expressions are intended to identify forward-looking statements. Indications of, and guidance on, future earnings, anticipated production, life of mine and financial position and performance are also forward-looking statements. These forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Cobre's actual results, performance and achievements or industry results to differ materially from any future results, performance or achievements, or industry results, expressed or implied by these forward-looking statements. Relevant factors may include (but are not limited to) changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which Cobre operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

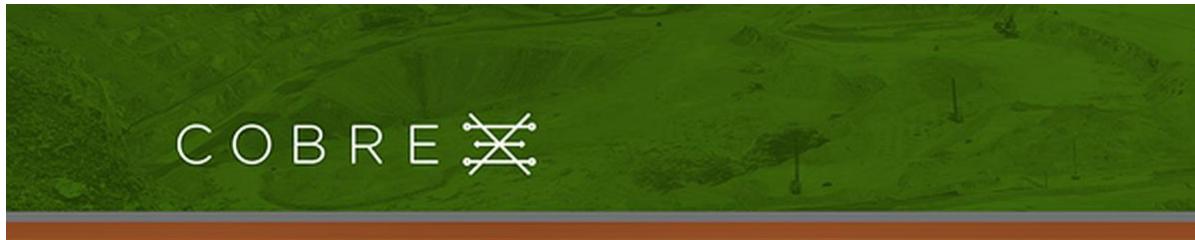

Forward-looking statements are based on Cobre's good faith assumptions as to the financial, market, regulatory and other relevant environments that will exist and affect Cobre's business and operations in the future. Cobre does not give any assurance that the assumptions will prove to be correct. There may be other factors that could cause actual results or events not to be as anticipated, and many events are beyond the reasonable control of Cobre. Readers are cautioned not to place undue reliance on forward-looking statements, particularly in the current economic climate with the significant volatility, uncertainty and disruption caused by the COVID-19 pandemic. Forward-looking statements in this document speak only at the date of issue. Except as required by applicable laws or regulations, Cobre does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in assumptions on which any such statement is based. Except for statutory liability which cannot be excluded, each of Cobre, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in these forward-looking statements and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in forward-looking statements or any error or omission.

Competent Person Statement

The information in this announcement that relates to exploration results is based on information compiled by Mr Adam Wooldridge, a Competent Person and a member of a Recognised Professional

Organisations (ROPO). Adam Wooldridge has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC 2012). Adam is the Chief Executive Officer at Cobre Limited and a member of the South African Council for Natural Scientific Professions, a recognised professional organisation. Mr Wooldridge has undertaken a site visit and inspected the existing operation, core yard and sample storage. During the visit he was assisted by mining engineers Luke Bryan (Novoco Consulting) and Ben Wilson (Unicorn Consulting) along with further geological input from Murray Brooker (Hydrominex Geoscience)

Adam Wooldridge consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.



APPENDIX 1 – Additional Technical Information Relating to Foreign Estimate

ASX Listing Rule 5.12

The Project mineral resources are classified as a 'foreign estimate' as defined in Chapter 19 of the ASX Listing Rules. Additional information is detailed in the table below.

ASX Listing Rule	ASX Explanation/requirement	Commentary
5.12.1	<i>The source and date of the historical estimates or foreign estimates.</i>	<ul style="list-style-type: none">• The resources and reserve are from the NI 43-101 report with an effective date of 15th August, 2025, with the report titled "NI 43-101 Technical Report Sierra Atacama Copper Project, Antofagasta, IInd Region, Chile. "prepared by Geoinvest Limitada of Santiago, Chile, with primary author Mr Sergio Alvarado Casas, R.M.
5.12.2	<i>Whether the historical estimates or foreign estimates use categories of mineralisation other than those defined in Appendix 5A (JORC Code) and if so, an explanation of the differences.</i>	<ul style="list-style-type: none">• The owner of the Sierra Atacama project is not a company listed on a Canadian stock exchange. However, the NI 43-101 report format is widely used for the documentation of exploration and mining project data in the Americas.• While not a JORC-compliant resource the categories of mineralisation reported under the Canadian NI 43-101 standard are similar and comparable resource and reserve categories to the JORC (2012) categories.
5.12.3	<i>The relevance and materiality of the historical estimates or foreign estimates to the entity.</i>	<ul style="list-style-type: none">• Cobre and the CP consider these foreign estimates to be material for the company, as the project is an operating copper mine, with a long history of operations. The estimates provide a general quantification of the size of the project and the potential for larger scale open pit development, compared to historical underground and open pit operations.

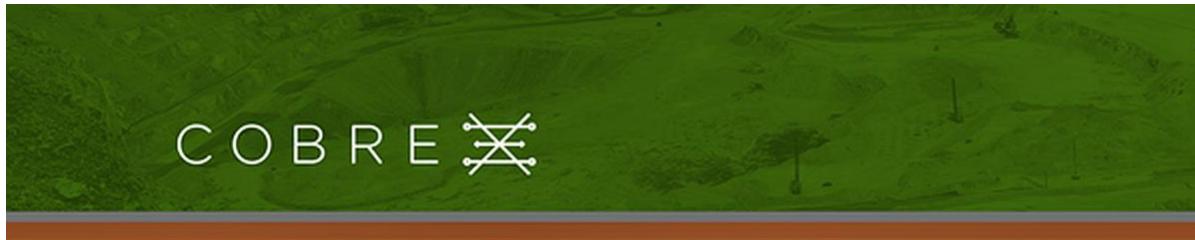
ASX Listing Rule	ASX Explanation/requirement	Commentary
5.12.4	<i>The reliability of the historical estimates or foreign estimates, including by reference to any of the criteria in Table 1 of Appendix 5A (JORC Code) which are relevant to understanding the reliability of the historical estimates or foreign estimates.</i>	<ul style="list-style-type: none">• The historical estimate appears to have been conducted with a reasonable technical basis by the authors (Geoinvest) in 2025. Some of the estimates were entirely based on modelling by Geoinvest. Some of the estimation is believed to have been based on models developed by the operator Sierra Atacama.• The available information meets most JORC Table 1 requirements, with the availability of collar and survey data, geological logs, assay data and consultants reports regarding data collection and estimation.• The QA/QC of analytical samples was not consistent with what would be considered current best practice, with historical assaying not accompanied by standards, field duplicates and blanks. This would be a focus of future planned work.• Analyses are predominantly for total copper. The mining operation is in the oxidised to mixed portion of mineralisation, overlying a deeper sulphide zone. A general conversion factor has been used for the relationship between total copper and soluble copper, which can be extracted and processed in the SX-EW plant.• Specific gravity data is not available from cores and the estimate has used an average value across all blocks (2.74 g/cc).• The deposit is clearly described as structurally controlled and vein-style at a conceptual level, with mineralisation associated with fault zones and structural corridors rather than simple disseminated geometry. However, this geological interpretation is not fully carried through into the grade block model implementation. The estimation domains are primarily defined by grade shells, and the interpolation is performed using Ordinary Kriging within orthogonal, non-rotated block models. As a result, while the geology is described as vein-style, the resource model itself is not implemented as a truly structure- or vein-controlled model. In structurally controlled systems, one would normally expect clearer

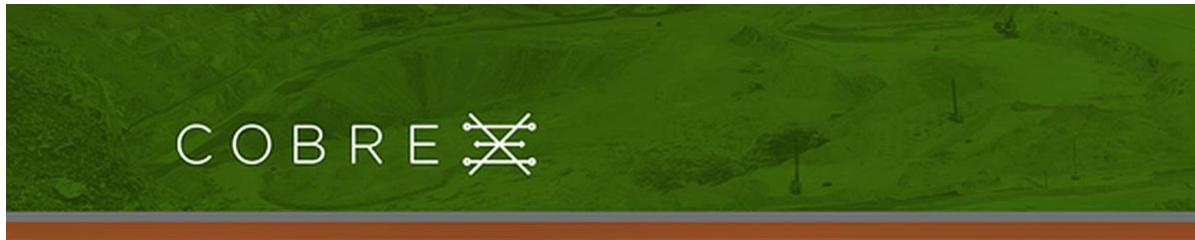
ASX Listing Rule	ASX Explanation/requirement	Commentary
		<p>documentation of how structures influence domains, search orientations, or estimation strategy.</p> <ul style="list-style-type: none">• The report does document an open pit optimisation step: Chapter 15.4 states that pit optimisation was carried out in Whittle for the Nicolasa and Chabuca-Rebeca/Roxana sectors, using the validated block models and the economic/geotechnical parameters in Table 15-2, with results reported at revenue factor 1.0 (Figures 15-4 and 15-5). However, the documentation reads as an optimised shell summary rather than a fully transparent mine design and method-selection trade-off, which limits how confidently a reader can rely on the open pit conclusion without seeing the underlying design/assumption set in more detail. A complete mine design will be undertaken as part of the next stage of work by Cobre.

ASX Listing Rule	ASX Explanation/requirement	Commentary
5.12.5	<i>To the extent known, a summary of the work programs on which the historical estimates or foreign estimates are based and a summary of the key assumptions, mining and processing parameters and methods used to prepare the historical estimates or foreign estimates.</i>	<ul style="list-style-type: none"> • To the extent known to the Company, the historic reports indicate the following activities occurred on the properties, contributing to the estimation of the foreign resource. The project owner: <ul style="list-style-type: none"> ○ Carried out extensive drilling from surface, although a significant portion of this is reverse circulation drilling. ○ Carried out extensive underground channel sampling. ○ Carried out extensive surface trenching and sampling. ○ Has mined the deposit extensively in underground and open cut workings. • The estimation is believed to be based on definition of a 0.4% Cu cut-off for copper that has been determined by the economic processing of material extracted from the mines, using actual mining costs. • The resource estimate does discount past production from workings. • The estimation was undertaken in Leapfrog software, using ordinary kriging. • Mineralisation consists of mostly acid soluble oxide mineralisation, with metallurgical testwork indicating copper recoveries of 72% and an average CuS (soluble) to CuT (total) of 0.83. • The Mineral reserve calculation utilises an open-pit mine plan considering metallurgical rates, geotechnical constraints and projected operating costs provided by the previous project owner.
5.12.6	<i>Any more recent estimates or data relevant to the reported mineralisation available to the entity.</i>	<ul style="list-style-type: none"> • At the date of this announcement the foreign estimates documented in the August 2025 NI 43-101 report have not been superseded by any later estimates. No more recent estimate has been provided to the company.
5.12.7	<i>The evaluation and/or exploration work that needs to be completed to verify the historical estimates or foreign estimates as mineral</i>	<ul style="list-style-type: none"> • The company is currently undertaking an evaluation of the data available, with the aim of verifying the foreign estimate as Mineral Resources and to define the subsequent steps to improve the understanding regarding the definition of Mineral

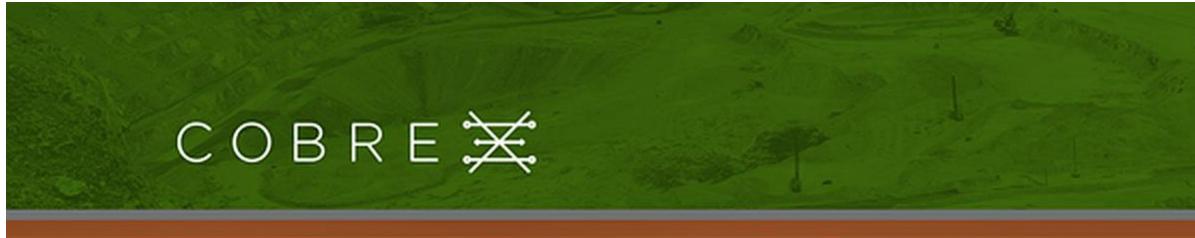
ASX Listing Rule	ASX Explanation/requirement	Commentary
	<i>resources or ore reserves in accordance with Appendix 5A (JORC Code)</i>	<p>Reserves. Activities planned include the following:</p> <ul style="list-style-type: none">○ Validation of the location of a portion of the historical drillholes with high precision GPS and downhole surveying equipment to check the dip and azimuth of holes.○ Relogging of a portion of historical drillholes.○ Reassaying a portion of the historical assays, including soluble and total copper and other potentially economic and deleterious elements (including for gold).○ Use of standards, field duplicates and blanks as part of the re-assaying program.○ It is likely that twin hole drilling of a portion of the original holes in the deposit will be required to verify the historical work and estimate in accordance with Appendix 5A (JORC Code).○ The geological models will be evaluated with the validation information and modified as necessary.○ At this stage Cobre would like to re-assess the potential open pit design in the current NI43-101 report against all existing underground mine working infrastructure and replace the simple reserve estimate with a thorough planned pit shell which accounts for geotechnical and practical design aspects etc. This will provide a more robust estimate.
5.12.8	<i>The proposed timing of any evaluation and/or exploration work that the entity intends to undertake and a comment on how the entity intends to fund that work.</i>	<ul style="list-style-type: none">● Evaluation work will commence in 1Q26 and continue through 2026, to produce a JORC estimate for Mineral Resources and Mineral Reserves.● A new reserve calculation will be undertaken following completion of an updated JORC compliant Mineral Resource Estimate expected in Q4 2026.● The company will fund this initial validation and exploration work from existing

ASX Listing Rule	ASX Explanation/requirement	Commentary
		<p>funds. Additional funds will be raised as required, in compliance with listing rules, its Constitution, market conditions and appropriate shareholder approval in order to undertake additional drilling and geological evaluation.</p>
5.12.9	<i>A cautionary statement proximate to, and with equal prominence as, the reported historical estimates or foreign estimates stating that: the estimates are historical estimates or foreign estimates and are not reported in accordance with the JORC Code; a competent person has not done sufficient work to classify the historical estimates or foreign estimates as mineral resources or ore reserves in accordance with the JORC Code; and it is uncertain that following evaluation and/or further exploration work that the historical estimates or foreign estimates will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code.</i>	<ul style="list-style-type: none">• The company cautions that the NI 43-101 estimates are not reported in accordance with the JORC Code (2012). A competent person has not yet completed sufficient work to classify the NI 43-101 Estimates as JORC (2012) Code compliant Mineral Resources and Mineral Reserves. It is uncertain that following evaluation and or further exploration work that the NI 43-101 Estimates will be able to be reported as Mineral Resources or Mineral Reserves in accordance with the JORC Code.• No information has come to the attention of the Company that causes it to question the accuracy or reliability of the NI 43-101 Estimates, but the company has not independently validated these estimates and the models on which they are based and therefore the company and CP are not to be considered to reporting, adopting or endorsing these estimates in the Ni 43-101 report.


ASX Listing Rule	ASX Explanation/requirement	Commentary
5.12.10	<i>A statement by a named competent person or persons that the information in the market announcement provided under rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The statement must include the information referred to in rule 5.22(b) and (c).</i>	<ul style="list-style-type: none">• Mr Adam Wooldridge, CEO of Cobre is the Competent Person for this announcement.• “The information in this announcement that relates to historical exploration reporting and foreign non-JORC resources has been prepared by Mr Adam Wooldridge . The information in the market announcement provided under rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project and the information referred to in rule 5.22(b) and (c).”


APPENDIX 2 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

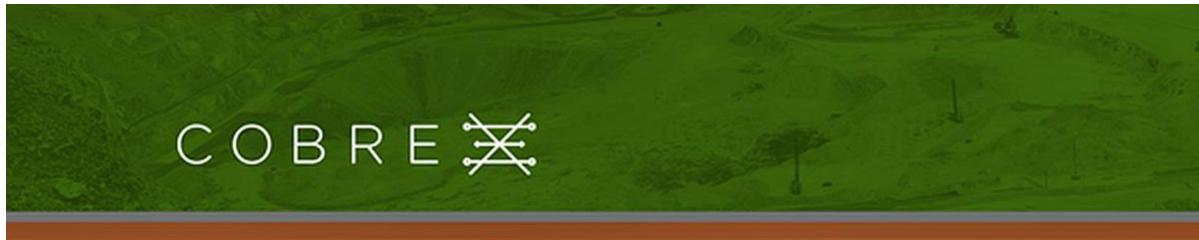

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	<ul style="list-style-type: none"><i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i><i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of</i>	<ul style="list-style-type: none">Drilling consisted of a combination of Reverse Circulation (RC) and diamond drillholes. With a total of 1471 drillholes in the mine area of the project. 642 of the pre-2021 drillholes are stored in sheds on site.Much of the historical drilling was down the hole (believed to be open hole) hammer sampling (44.8%) of samples, with face sampling reverse circulation (31.1%); underground channel samples (16.7%) and diamond drilling (7%).Underground sampling consisted of cut/chipped channels along the walls of drives over variable sample lengths.Mineralised structures are interpreted to be generally steeply dipping and drillholes were designed to drill across the mineralised structures.Underground samples were taken along drive walls, generally at a high angle to the mineralisation, although this depends on the orientation of the different underground workings with respect to the mineralisation.The mineralisation is predominantly oxide mineralisation to the depth drilled, and a relatively high portion of this mineralisation is acid soluble (CuS), as distinguished from the total copper content (CuT).Drill core and RC drilling has been conducted in different drilling campaigns, with differences between campaigns.It is not clear how drill core was historically split.Assays were typically 2 m assays, though thicknesses vary between approximately 1 and 3 m long, depending on mineralisation and core recovery.

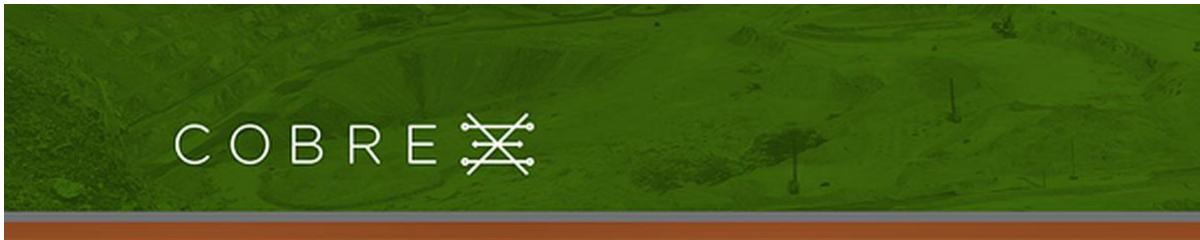

Criteria	JORC Code explanation	Commentary
	<i>detailed information.</i>	
<i>Drilling techniques</i>	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Diamond drill holes are believed to have been predominantly HQ core diameter, with NQ diameter, depending on the hole depth and condition. It is believed triple tubes were not always used in the drilling, as core was generally highly competent. RC drilling was conducted. The date of the drilling relates to the type of bit that was used with the RC drilling. Approximately 76% of drilling intervals comes from reverse circulation (RC) and conventional air methods.
<i>Drill sample recovery</i>	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> Drill cores were recovered to surface and placed in core boxes, stored in core racks and on pallets. Core trays were labelled with hole and depth intervals, allowing identification of holes and core intervals. Core recovery was noted and is generally high, due to the compact nature of the intrusive to volcanic host rock. Samples were sent for analysis to different laboratories over the history of the project. It is not clear whether there is a relationship between core recovery and copper grade. Sample bias could conceivably have happened, as oxide copper is present on fracture surfaces and could be broken into smaller pieces during sampling for analysis. This will be an area of additional evaluation for historical drill core.
<i>Logging</i>	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource</i> 	<ul style="list-style-type: none"> Core and RC drill chips have been geologically logged for a description of the lithology and mineralisation. Underground rock chip samples were described for lithology and

Criteria	JORC Code explanation	Commentary
	<p><i>estimation, mining studies and metallurgical studies.</i></p> <ul style="list-style-type: none"> ● <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> ● <i>The total length and percentage of the relevant intersections logged.</i> 	<p>mineralisation.</p> <ul style="list-style-type: none"> ● Descriptions are considered sufficient to support the resource estimate and mining studies. ● Logging is generally qualitative. ● The total length of drilling is recorded as 149,121 metres. ● Simple lithological logs of drill holes were prepared during the drilling process. This information was collated in excel spreadsheets and a database.
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> ● <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> ● <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> ● <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> ● <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> ● <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> ● <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> ● Core was split for assay. Core was split using a core chisel for submission of one half of the core for the 2021 and later activities. 2 m samples were collected for the samples from 2021 onward. For more historical samples the procedures are less clear. ● Details of the sample preparation are not certain, due to the historical nature of the activities for many drill holes. ● Drill hole orientations appear to have generally intersected mineralisation across the dip of the structure, although intersections do not represent true thicknesses of mineralisation. ● Historical quality control procedures were variable and prior to 2021 QA/QC procedures were not in place in drilling and sampling programs. ● For activities since 2021 a full range of QA/QC samples were collected, involving blanks, field duplicates, coarse reject duplicates, field and pulp duplicates and certified reference materials. ● Given that the descriptions of core recovery generally appear to be acceptable (high recovery) it is likely that sufficient sample was submitted for analysis to produce repeatable results. ● Sample sizes were considered appropriate for the mineralisation style.

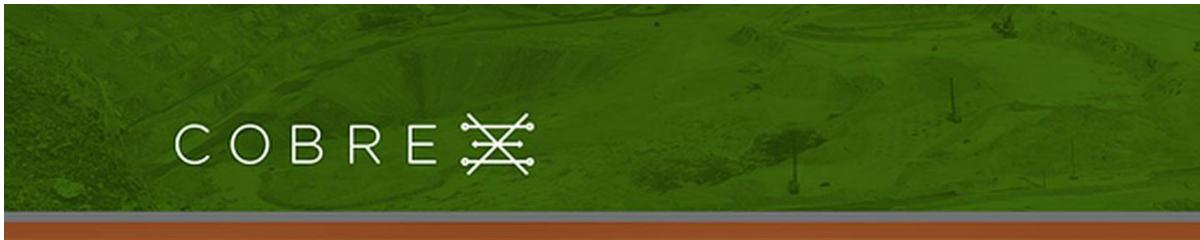
Criteria	JORC Code explanation	Commentary
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Samples were analysed for total copper, and in a lesser number of analyses of the same samples were analysed for soluble copper. The drillhole logs include total copper grades (CuT), a limited number of soluble copper grades (representing only 8.2% of the total assays), and lithological descriptions. Consequently a most samples do not have soluble copper analyses. Similarly gold and silver were not widely analysed. Samples were sent to Activation Geological Services SpA (AGS), in Coquimbo, Chile, for analysis of samples from 2021 onwards. AGS holds ISO/IEC 17025 accreditation and participates in international proficiency testing programs (as of the date of samples analysis during 2021. These samples were dried, crushed, milled, pulverised and prepared with four acid digestion. Statistical evaluations applied included Absolute Mean Percentage Difference (AMPD) for precision and Mean Percentage Difference (MPD) for bias. Batches are rejected if more than one CRM fails (>3 standard deviations) or if duplicate errors exceeded 10% relative difference. Previous sample campaigns were analysed in different laboratories. For drilling campaigns and trench sampling carried out in other sectors of the Sierra Atacama property, no formal QA/QC process was documented. These datasets lack certified control samples.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Cobre personnel have undertaken validation of a portion of the available project data. More complete verification was carried out by consultants Geoinvest in 2025, included an evaluation of exploration data provided by owner CMSA, covering historical drilling, trenching, underground workings, and surface geological mapping. The information was cross-checked against original field records and geological logs to confirm accuracy and consistency. Geoinvest reported

Criteria	JORC Code explanation	Commentary
		<p>no discrepancies or inconsistencies that they stated could materially affect the interpretation of the mineralized zones or exploration potential.</p> <ul style="list-style-type: none"> • No twinned holes are known to have been undertaken. • Data entry procedures are believed to have varied over time.
<i>Location of data points</i>	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control. 	<ul style="list-style-type: none"> • Drill collars are available in UTM coordinates. Elevations appear to have been determined by surveying holes. • The location of drillholes and trenches was evaluated by Geoinvest in 2025. • Surveys observed indicate that for at least the shallower holes downhole surveys are restricted to a single dip and azimuth value and not multiple down hole surveys. • High-resolution surface topography was obtained through drone-based aerial surveys. • Underground voids were presumably surveyed using laser scanning technology (LiDAR)
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. 	<ul style="list-style-type: none"> • Drillholes have variable spacings and depth. • The data spacing and distribution is considered sufficient to demonstrate geological and grade continuity, sufficiently to support resource estimation and the classification applied. • RC samples were collected on a 2 m basis for the most recent drilling program. • It is uncertain whether compositing occurred in more historic programs.
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. • If the relationship between the drilling orientation 	<ul style="list-style-type: none"> • The orientation is generally considered to have been appropriate for the mineralisation, with drilling intended to drill at a high angle across the deposit orientation. • Potential sampling bias will be evaluated in the 3D models in more detail and

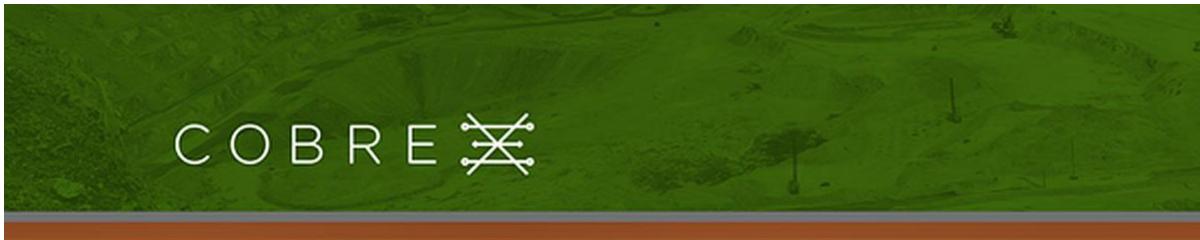

Criteria	JORC Code explanation	Commentary
	<i>and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	more detailed assessment of the project is undertaken.
<i>Sample security</i>	<ul style="list-style-type: none"><i>The measures taken to ensure sample security.</i>	<ul style="list-style-type: none">It is unknown the details of how samples were sent to the assay laboratories from the project.
<i>Audits or reviews</i>	<ul style="list-style-type: none"><i>The results of any audits or reviews of sampling techniques and data.</i>	<ul style="list-style-type: none">A review of the project data was undertaken by independent consultants Geoinvest in 2025. Geoinvest also undertook the most recent resource estimate.


Section 2 Reporting of Exploration Results

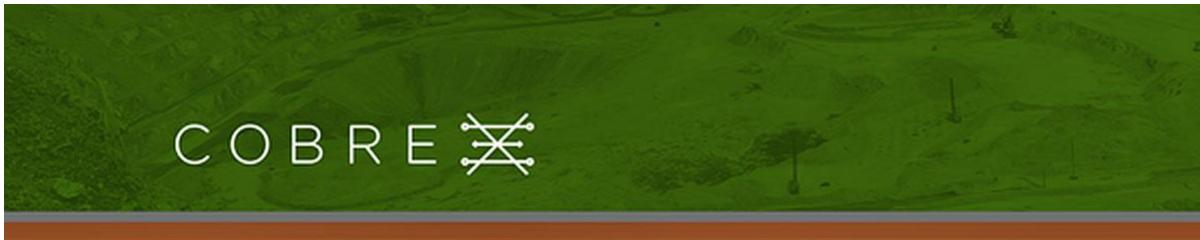
(Criteria listed in the preceding section also apply to this section.)


Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	<ul style="list-style-type: none">The Sierra Atacama project consists of 65 mining concessions covering an area of ~15,000 haThe Sierra Atacama project also contains exploration concessions covering an area of ~25,000 haThe properties are 100% held by the current owner CMSA.There are no joint ventures or overriding royalties.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"><i>Acknowledgment and appraisal of exploration by other parties.</i>	<ul style="list-style-type: none">Exploration has been conducted on the mining concessions by the current and former owners, consisting of trenching, rock chip sampling and drilling.
<i>Geology</i>	<ul style="list-style-type: none"><i>Deposit type, geological setting and style of mineralisation.</i>	<ul style="list-style-type: none">The deposit shows a variable style, which has elements of manto and porphyry copper style mineralisation, which are common to the coastal belt area in northern Chile.
<i>Drill hole Information</i>	<ul style="list-style-type: none"><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i><ul style="list-style-type: none"><i>easting and northing of the drill hole collar</i><i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i>	<ul style="list-style-type: none">There is extensive drilling in the project, with 1471 holes known to have been drilled. Coordinates are in UTM zone 19 south, PSAD 1956 Datum.Holes were surveyed downhole, although the equipment is unknown. Drillhole collar evaluations are recorded in drillhole collar data.Drillhole dip and azimuth are variable, but generally towards 270 or 90 degrees. The deepest hole is more than 900 m, although most holes are much shallower.

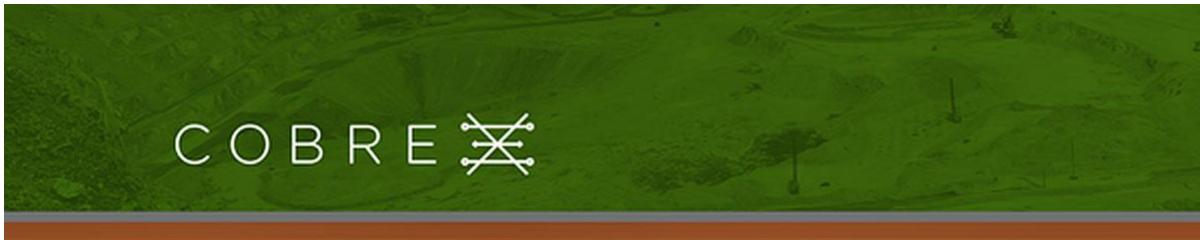
Criteria	JORC Code explanation							Commentary								
		<ul style="list-style-type: none"> ○ <i>dip and azimuth of the hole</i> ○ <i>down hole length and interception depth</i> ○ <i>hole length</i>. ● <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 														
Hole ID	East	North	Elevation	Depth	Type	Dip	Azimuth									
008-RC7-01	385334.2	7428899.9	1255.1	290	AC	68	270									
008-RC7-02	385499.5	7428900.2	1243.7	228	AC	48	270									
009-RC7-01	385340.8	7428949.9	1255.6	310	AC	60	270									
010-RC7-01	385411.8	7429015.4	1253.9	330	AC	45	270									
010-RC7-02	385413.8	7429015.5	1254.0	310	AC	65	270									
011-RC7-01	385552.5	7429062.0	1246.1	400	AC	50	270									
011-RC7-02	385554.4	7429062.0	1246.1	426	AC	75	270									
011-RC7-03	385355.0	7429041.1	1258.7	306	AC	50	270									
011-RC7-04	385222.5	7429038.6	1267.8	210	AC	50	270									
012-RC7-01	385492.4	7429112.2	1251.2	360	AC	70	270									
012-RC7-02	385404.1	7429099.9	1257.6	146	AC	60	270									
013-RC7-01	385498.4	7429162.3	1251.2	290	AC	55	270									
013-RC7-02	385427.7	7429148.9	1256.8	138	AC	55	270									
014-RC7-01	385488.3	7429212.4	1252.2	310	AC	55	270									
014-RC7-02	385205.6	7429202.3	1273.3	180	AC	50	270									
014-RC7-03	385408.7	7429199.9	1258.2	316	AC	50	270									


Criteria	JORC Code explanation						Commentary	
015-RC7-01	385495.2	7429262.3	1253.0	280	AC	55	270	
016-RC7-01	385508.4	7429300.1	1253.4	260	AC	55	270	
017-RC7-01	385493.0	7429345.4	1255.7	290	AC	45	270	
032-RC7-01	385391.4	7430101.2	1318.8	294	AC	70	270	
032-RC7-02	385400.3	7430101.5	1318.8	246	AC	50	270	
033-RC7-01	385372.6	7430150.3	1320.7	234	AC	46	270	
033-RC7-02	385384.0	7430151.3	1320.1	296	AC	75	270	
034-RC7-01	385384.5	7430194.4	1318.0	298	AC	74	270	
065-RC7-01	385890.9	7431776.5	1369.5	162	AC	45	250	
067-RC7-01	385828.0	7431856.5	1358.6	222	AC	65	255	
071-RC7-01	385079.8	7432047.7	1369.1	320	AC	65	270	
071-RC7-02	385005.1	7432046.5	1376.0	228	AC	45	270	
073-RC7-01	385060.0	7432150.2	1368.6	336	AC	60	270	
075-RC7-01	385048.1	7432250.0	1368.6	386	AC	59	270	
077-RC7-01	385015.2	7432350.1	1369.9	348	AC	55	270	
079-RC7-01	384977.3	7432450.0	1371.2	344	AC	56	270	
080-RC7-01	384968.4	7432499.9	1371.8	250	AC	45	270	
081-RC7-01	384942.7	7432549.9	1373.9	250	AC	45	270	
081-RC7-02	384944.2	7432550.0	1373.5	380	AC	62	270	
082-RC7-01	384871.1	7432604.7	1379.3	130	AC	45	270	
082-RC7-02	384935.8	7432599.4	1373.8	280	AC	45	270	
083-RC7-01	384948.5	7432647.2	1371.7	280	AC	45	270	
083-RC7-02	384949.5	7432647.2	1371.6	420	AC	57	270	
083-RC7-03	384854.6	7432638.9	1384.0	202	AC	45	270	

Criteria	JORC Code explanation						Commentary	
084-RC7-01	384865.2	7432699.8	1384.1	100	AC	45	270	
084-RC7-02	384906.6	7432700.0	1377.1	250	AC	45	270	
084-RC7-03	384914.5	7432699.8	1376.4	230	AC	64	270	
085-RC7-01	384859.0	7432749.9	1383.5	100	AC	45	270	
085-RC7-02	384897.7	7432749.9	1377.1	192	AC	60	270	
086-RC7-01	384858.4	7432800.1	1385.3	162	AC	45	270	
086-RC7-02	384889.6	7432800.1	1382.5	310	AC	64	270	
087-RC7-01	384902.7	7432850.0	1379.2	250	AC	55	270	
087-RC7-02	384903.8	7432850.0	1379.1	380	AC	70	270	
099-RC7-01	384711.9	7433449.9	1411.9	150	AC	50	270	
104-RC7-01	384644.5	7433699.8	1433.3	180	AC	60	270	
105-RC7-01	384863.1	7433749.9	1405.8	250	AC	63	270	
110-RC7-01	384898.6	7433999.5	1411.8	234	AC	50	270	
116-RC7-01	384943.1	7434309.8	1392.4	250	AC	50	270	
125-RC7-01	384937.4	7434770.0	1368.5	180	AC	57	270	
A-005	385675.0	7430499.9	1343.6	49.5	AC	55	270	
A-007	385600.4	7430475.0	1337.4	31.5	AC	60	270	
A-008	385625.3	7430474.3	1337.8	49.5	AC	60	270	
A-009	385649.9	7430475.1	1338.5	49.5	AC	60	270	
A-010	385674.6	7430474.1	1341.0	49.5	AC	55	270	
A-011	385599.5	7430450.1	1334.8	21	AC	45	270	
A-011A	385600.0	7430451.0	1335.0	12	AC	90	360	
A-011B	385600.0	7430452.5	1335.0	7.5	AC	45	0	
A-012	385626.6	7430450.0	1338.4	30	AC	50	270	

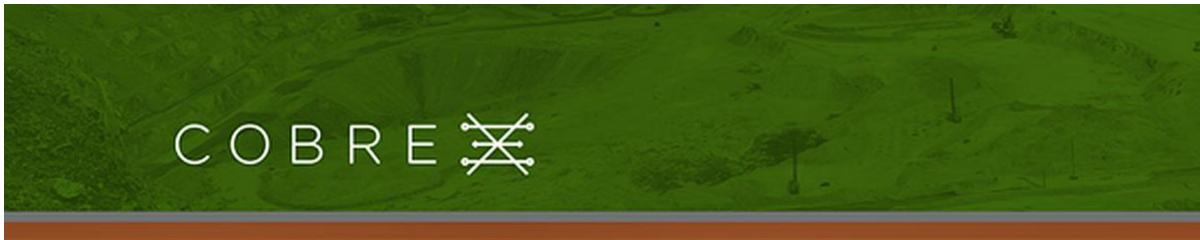

Criteria	JORC Code explanation					Commentary	
A-013	385650.4	7430449.9	1340.5	45	AC	60	270
A-014	385672.9	7430450.0	1342.2	45	AC	75	270
A-016	385624.3	7430425.0	1344.2	30	AC	50	270
A-017	385649.4	7430425.0	1345.4	45	AC	60	270
A-018	385674.7	7430425.2	1346.9	45	AC	75	270
A-019	385650.0	7430399.9	1349.9	45	AC	55	270
A-020	385674.9	7430400.2	1351.9	49.5	AC	85	270
A-021	385650.9	7430375.2	1351.3	45	AC	55	270
A-021A	385650.1	7430375.2	1351.3	10.5	AC	55	270
A-023	385621.5	7430349.8	1351.7	39	AC	70	270
A-025	385628.7	7430326.3	1356.1	49.5	AC	70	270
A-027	385524.9	7430301.0	1317.8	19.5	AC	85	270
A-028	385550.4	7430299.9	1334.4	40.5	AC	75	270
A-029	385575.4	7430299.9	1341.1	39	AC	75	270
A-030	385600.1	7430300.0	1348.6	30	AC	75	270
A-031	385631.7	7430295.7	1359.5	60	AC	75	270
A-032A	385512.6	7430277.5	1321.3	34.5	AC	85	270
A-033	385549.6	7430275.1	1336.4	69	AC	75	270
A-034	385573.4	7430274.8	1340.6	69	AC	75	270
A-036	385624.6	7430276.7	1358.7	60	AC	75	270
A-043	385624.7	7430251.4	1360.1	67.5	AC	60	270
A-083	385550.7	7430450.1	1331.5	34.5	AC	60	270
A-084	385575.1	7430449.8	1332.4	39	AC	60	270
A-087	385544.0	7430424.1	1329.9	34.5	AC	60	270

Criteria	JORC Code explanation						Commentary	
A-088	385494.2	7430395.3	1324.9	34.5	AC	60	270	
A-089	385523.7	7430400.8	1328.4	34.5	AC	60	270	
A-091	385500.7	7430375.2	1325.0	34.5	AC	60	270	
A-092	385529.8	7430375.3	1330.8	34.5	AC	60	270	
A-093	385494.9	7430350.1	1325.2	34.5	AC	60	270	
A-094	385518.7	7430350.5	1328.6	37.5	AC	60	270	
A-095	385491.8	7430325.4	1324.4	34.5	AC	60	270	
A-096	385525.0	7430320.9	1324.1	81	AC	60	270	
A-097	385539.2	7430318.9	1317.6	39	AC	60	270	
A-098	385574.7	7430325.4	1341.3	54	AC	60	270	
A-099	385599.3	7430325.0	1349.1	55.5	AC	60	270	
A-100	385500.4	7430300.0	1323.7	60	AC	60	270	
AL-01-01	384449.9	7430376.1	1448.8	150	AR	61	247	
AL-02-01	384256.7	7430403.5	1449.7	200	AR	67	241	
AL-03-01	384079.1	7430947.7	1442.4	200	AR	59	250	
C-00	386000.8	7429980.9	1340.3	133.5	AC	48	87	
C-01	385958.0	7430000.1	1341.2	106.5	AC	48	88	
C-01A	385956.2	7430000.1	1341.0	120	AC	62	276	
C-01B	385919.7	7429957.9	1331.1	120	AC	55	235	
C-02	385957.4	7430049.9	1349.3	140	AC	55	83	
C-02A	385966.7	7430049.8	1349.4	127.5	AC	73	88	
C-03	385956.8	7430097.9	1361.9	142	AC	53	89	
C-04	386119.8	7430150.1	1353.9	97.5	AC	24	265	
C-04A	386121.9	7430152.9	1354.1	121	AC	90	360	


Criteria	JORC Code explanation						Commentary	
C-05	386094.3	7430199.8	1357.8	102	AC		42	264
C-06	386121.3	7430250.2	1352.7	110.5	AC		36	266
C-07	386121.1	7430250.3	1353.1	90	AC		5	270
C-07A	386123.8	7430250.4	1352.1	150	AC		90	360
C-08	386117.7	7430300.4	1349.5	106.5	AC		0	266
C-09	386119.7	7430300.6	1348.3	123	AC		39	270
C-10	386122.6	7430349.8	1347.6	88.5	AC		37	268
C-10A	386124.1	7430350.0	1347.3	148.5	AC		90	360
C-11	386132.0	7430400.0	1351.2	111	AC		0	272
C-12	386133.4	7430400.1	1350.0	99	AC		34	268
C-13	386121.2	7430449.8	1356.2	72	AC		3	269
C-13A	386123.8	7430450.2	1354.7	85.5	AC		38	264
C-14	386125.3	7430450.2	1354.4	103.5	AC		90	360
C-15	386117.1	7430499.9	1371.1	96	AC		21	270
C-16	386173.8	7430500.3	1348.5	129	AC		28	271
C-16A	386174.6	7430501.3	1348.8	129	AC		17	5
C-17	386122.9	7430550.0	1381.0	70.5	AC		54	270
C-18	386134.1	7430549.9	1379.7	91.5	AC		70	270
C-19	386138.0	7430599.8	1379.5	81	AC		50	270
C-19A	386165.5	7430615.7	1383.0	103.5	AC		49	54
C-1B	385956.2	7429957.9	1331.1	120	AC		55	235
C-20	386142.4	7430649.8	1381.0	82.5	AC		50	270
C-21	386158.2	7430700.7	1383.3	81	AC		50	270
C01-08	386129.0	7430670.0	1214.0	35.5	AR		21	270

Criteria	JORC Code explanation						Commentary	
C02-08	386129.0	7430670.0	1214.0	45	AR		44	270
C03-08	386138.0	7430694.0	1214.0	55	AR		16	315
C04-08	386138.0	7430694.0	1214.0	60	AR		32	315
C05-08	386103.0	7430761.0	1216.0	31	AR		56	90
C06-08	386103.0	7430761.0	1216.0	40	AR		77	90
C07-08	386115.0	7430604.0	1215.0	67.5	AR		19	250
C08-08	386115.0	7430604.0	1215.0	43	AR		40	270
CH01-08	385349.6	7429116.0	1101.9	38.5	AR		60	270
CH02-08	385180.0	7429808.0	1201.0	40	AR		0	270
CH03-08	385220.0	7429677.0	1168.0	40	AR		63	270
CHP-24-09	385307.9	7429375.0	1102.9	35.5	AR		2	94
CHP-25-09	385353.1	7429240.1	1101.9	31	AR		73	83
CHP-26-09	385399.9	7429150.1	1107.3	35.5	AR		66	282
CHP-28-09	385418.9	7429175.0	1110.0	56.5	AR		33	264
CHP-29-09	385420.6	7429174.8	1110.9	56.5	AR		88	332
CHP-32-09	385313.7	7429452.7	1100.7	25	AR		88	231
CHP-33-09	385317.2	7429452.8	1102.3	22	AR		5	96
CHP-35-09	385341.1	7429275.0	1101.9	31	AR		70	268
CHP-36-09	385328.5	7429250.4	1133.4	40	AR		90	0
CHS-1	385338.6	7429105.9	1150.0	35	AR		0	276
CHS-2	385299.0	7429112.5	1150.0	18	AR		0	270
DCH093-001	385219.5	7430701.1	1329.6	290	DD		66	272
DCH093-002	385231.5	7429268.5	1274.8	80	DD		76	272
DCH093-003	385852.5	7430297.5	1362.5	380	DD		69	261

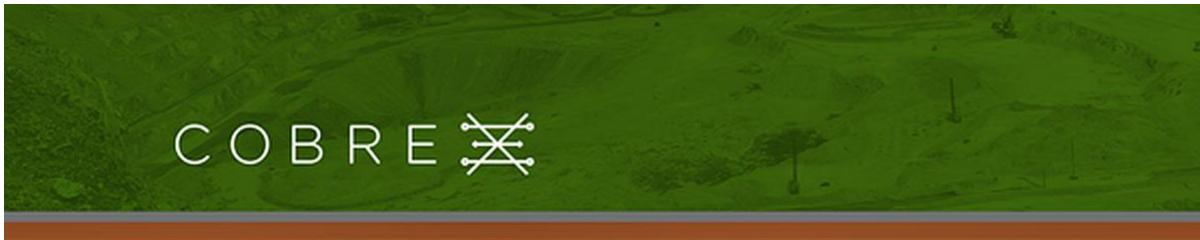
Criteria	JORC Code explanation						Commentary	
DCH093-004	384682.6	7431496.9	1471.3	286	DD		55	273
DIDTH-02	386251.0	7430873.0	1145.0	35	AC		30	90
DIDTH-03	386236.0	7430873.0	1145.0	40	AC		90	0
DIDTH-04	386224.0	7430843.0	1145.0	30	AC		90	0
DIDTH-05	386244.0	7430843.0	1145.0	30	AC		90	0
DIDTH-06	386268.0	7430843.0	1145.0	30.6	AC		90	0
DTH-EXP-01	384871.8	7432066.0	1403.3	29.5	AR		90	0
DTH-EXP-02	384865.8	7432100.7	1400.8	23.5	AR		90	0
DTH-EXP-03	384857.4	7432141.9	1394.5	20.5	AR		90	0
DTH-EXP-04	384859.7	7432165.4	1390.1	13.5	AR		90	0
DTH-EXP-05	384857.1	7432199.6	1389.4	16	AR		90	0
DTH-EXP-06	384855.4	7432182.7	1389.4	17	AR		90	0
DTH-EXP-07	384874.9	7432084.8	1402.0	20.5	AR		90	0
DTH-EXP-08	384861.7	7432113.4	1399.9	31	AR		90	0
DTH-EXP-09	384863.0	7432153.4	1391.7	14.5	AR		90	0
DTH-EXP-10	384853.0	7432174.2	1389.8	26.5	AR		90	0
DTH-EXP-11	384869.9	7432191.2	1389.3	14.5	AR		90	0
DTH-EXP-12	385494.1	7429448.5	1120.1	34	AR		0	93
DTH-EXP-13	385508.5	7429475.0	1120.8	60	AR		0	86
DTH-EXP-14	385498.6	7429414.0	1120.9	30	AR		0	91
DTH-EXP-15	385975.8	7429850.0	1164.0	60	AR		61	260
DTH-EXP-16	385997.0	7429953.9	1152.3	68.5	AR		58	263
DTH-EXP-17	386049.0	7430176.5	1159.9	45	AR		54	265
DTH-EXP-18	385947.9	7429771.5	1170.7	70	AR		55	237

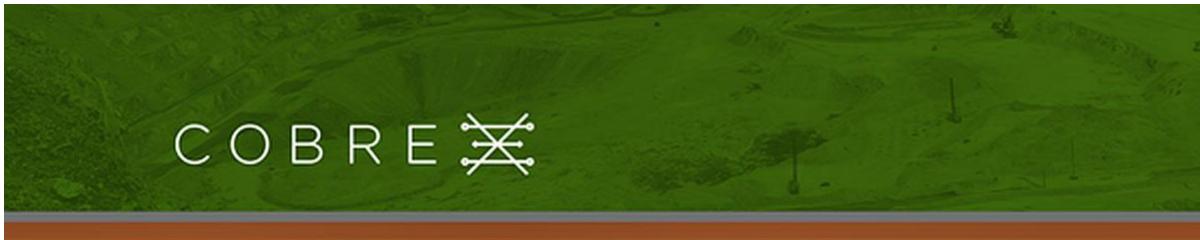

Criteria	JORC Code explanation						Commentary	
DTH-EXP-19	386001.6	7429995.4	1153.7	55	AR		59	274
DTH-EXP-20	386069.1	7430236.8	1161.4	55.5	AR		56	267
DTH-EXP-21	386081.2	7430653.5	1148.9	70	AR		49	95
DTH-EXP-22	386086.5	7430749.2	1148.0	61	AR		53	86
DTH-EXP-23	386096.0	7430543.9	1152.5	59.5	AR		60	266
DTH-EXP-24	386114.8	7430607.0	1150.7	61.5	AR		60	270
DTH-EXP-25	386087.1	7430697.7	1148.3	62.5	AR		63	97
DTH-EXP-26	385987.0	7429897.6	1157.8	65.5	AR		69	261
DTH-EXP-27	385998.8	7429976.4	1152.5	61	AR		60	275
DTH-EXP-28	385978.3	7429799.1	1171.5	70	AR		38	258
DTH-EXP-29	386087.0	7430374.3	1158.9	61	AR		64	257
DTH-EXP-30	386096.8	7430458.6	1155.7	85	AR		65	253
DTH-EXP-33	385612.8	7430497.8	1344.0	45	AR		36	283
DTH-EXP-34	385627.5	7430495.6	1344.0	52	AR		37	282
DTH-EXP-38	385360.9	7429099.3	1103.6	70	AR		0	270
DTH-EXP-39	385351.4	7429127.4	1104.0	61	AR		0	271
DTH-EXP-40	386325.1	7430264.7	1181.0	46	AR		37	52
DTH-EXP-41	386321.7	7430379.6	1178.8	45	AR		59	262
DTH-EXP-42	386141.9	7430616.9	1258.6	60	AR		36	83
DTH-EXP-43	386145.9	7430699.8	1257.9	65	AR		29	104
DTH-EXP-44	386148.5	7430647.0	1258.9	61	AR		31	98
DTH-EXP-45	386145.2	7430727.7	1258.8	65	AR		38	104
DTH-EXP-46	386143.7	7430757.8	1258.6	61	AR		35	107
DTH-I-1-09	385010.7	7430733.1	1290.4	50.5	AR		20	257

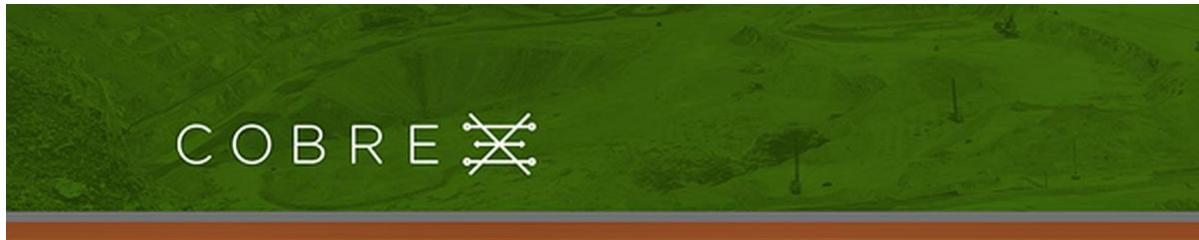
Criteria	JORC Code explanation						Commentary	
DTH-I-2-09	385048.1	7430741.9	1290.0	50.5	AR		58	257
DTH-I-3-09	385074.6	7430747.8	1289.7	67.5	AR		58	257
DTH-I-4-09	385101.0	7430754.0	1290.1	67	AR		58	257
DTH-I-5-10	385089.7	7430751.4	1290.1	67	AR		85	257
DTH-I-6-10	385096.5	7430749.0	1289.9	67	AR		55	205
DTH-L01-10	385423.7	7429293.1	1210.6	67	AR		8	219
DTH-L02-10	385442.4	7429319.4	1211.1	49	AR		10	324
DTH-L03-10	385458.5	7429330.3	1211.0	50	AR		9	52
DTHAL-01-01	384450.2	7430376.1	1448.8	150	AR		61	247
DTHLL-01	385199.1	7427998.4	1240.6	121.5	AR		90	360
DTHLL-02	385550.1	7427900.0	1212.9	81	AR		90	360
DTHLL-03	384924.6	7427299.6	1244.2	120	AR		90	360
DTHLL-04	385398.8	7428230.4	1232.2	120	AR		90	360
DTHLL-05	385657.6	7428380.8	1217.9	76	AR		90	360
DTHLL-06	385715.2	7428729.7	1232.0	37	AR		90	360
DTHLL-07	385457.1	7428587.2	1239.4	121.5	AR		90	360
DTHLL-08	385486.6	7428590.7	1231.3	120	AR		60	270
DTHLL-09	385318.8	7428482.5	1248.3	120	AR		90	360
DTHLL-10	384979.8	7428337.9	1266.9	63	AR		90	360
DTHLL-11	385189.7	7427610.7	1222.7	67.5	AR		90	360
DTHLL-12	385201.2	7426601.6	1201.9	73.5	AR		90	360
DTHMG-00-02	385183.2	7429373.7	1281.7	152	AR		90	360
DTHMG-02-01	385188.5	7429209.5	1276.7	200	AR		90	360
DTHMG-02-02	385072.1	7429553.0	1297.8	150	AR		84	324

Criteria	JORC Code explanation						Commentary	
DTHMG-02-03	385385.4	7429553.7	1271.9	150	AR		87	300
DTHTS-02-01	384664.3	7429359.9	1330.5	158	AR		62	264
DTHTS-03-01	384664.4	7429154.2	1326.2	200	AR		76	281
ERM-1	385126.8	7430777.1	1343.5	160	AR		40	298
ERM-1A	385127.7	7430776.8	1343.4	179.5	AR		40	298
ERM-2	385255.8	7430720.1	1325.6	192	AR		40	298
ERM-3	385355.7	7430668.8	1325.1	181	AR		40	298
ERM-4	385470.8	7430620.5	1331.0	181	AR		40	298
F01A-08	386192.2	7431289.0	1298.4	20	AR		0	0
F02A-08	386123.0	7431310.0	1298.6	20	AR		0	0
F03A-08	386108.7	7431325.5	1298.7	20.5	AR		0	0
F07-08	386016.0	7431421.9	1400.1	31.5	AR		73	235
F08-08	386023.2	7431414.8	1401.7	40	AR		70	235
F09-08	386131.6	7431282.0	1403.4	41.5	AR		62	235
F10-08	386131.6	7431282.0	1403.4	59.5	AR		81	235
F11-08	386113.5	7431305.2	1410.2	46.5	AR		68	235
F12-08	386114.0	7431305.6	1410.4	69	AR		81	235
F13-08	386109.1	7431327.3	1412.0	43.5	AR		61	235
F14-08	386109.5	7431327.7	1412.0	68.5	AR		74	235
F15-08	386106.0	7431369.9	1415.5	70	AR		45	233
F16-08	386124.3	7431352.8	1411.6	77.5	AR		45	233
G1-A	385612.4	7430120.2	1178.0	59.5	AR		0	250
G1-B	385581.6	7430126.3	1177.3	25	AR		45	258
G1-C	385581.6	7430126.3	1177.3	31	AR		70	258

Criteria	JORC Code explanation						Commentary	
G340-1-10	386329.7	7430275.5	1209.2	50.5	AR		7	180
G340-3-10	386404.7	7430233.1	1205.9	70	AR		42	269
G340-4-10	386403.0	7430233.1	1206.5	70	AR		7	271
G340-5-10	386369.5	7430228.9	1181.4	22	AR		39	237
G340-6-10	386370.8	7430229.8	1181.2	40	AR		82	220
G340-7-10	386353.5	7430250.2	1180.9	25	AR		52	235
G340-8-10	386355.9	7430251.8	1180.6	40	AR		90	218
G340-9-10	386371.8	7430181.6	1189.3	59.5	AR		5	94
HS-1	385450.0	7429450.0	1170.0	121	AR		40	120
HS-2	385276.0	7429088.0	1170.0	63	AC		45	120
HS-3	385276.5	7429185.5	1170.0	70.5	AC		0	90
HS-4	385303.0	7429063.5	1170.0	126	AC		0	90
HS-5	385282.0	7429088.0	1170.0	129	AC		0	270
HS-A	385323.0	7429411.0	1178.0	60	AC		0	270
HS-B	385357.0	7429375.0	1179.0	39	AC		0	270
HS-C	385361.0	7429345.0	1179.0	51	AC		0	259
JP-1	385497.5	7430005.0	1251.0	80	AR		12	258
JP-2	385500.5	7430023.5	1250.0	102	AR		45	296
JP-3	385500.5	7430023.5	1251.0	80	AR		12	296
JP-4	385522.0	7430204.0	1251.0	73	AR		12	299
JP-5	385557.0	7430335.0	1250.0	102	AR		55	272
JP-6	385557.0	7430335.0	1251.0	80	AR		12	272
JP-7	385259.0	7429185.0	1170.0	123	AR		0	270
JP-8	385259.0	7429250.0	1171.0	111	AR		0	270

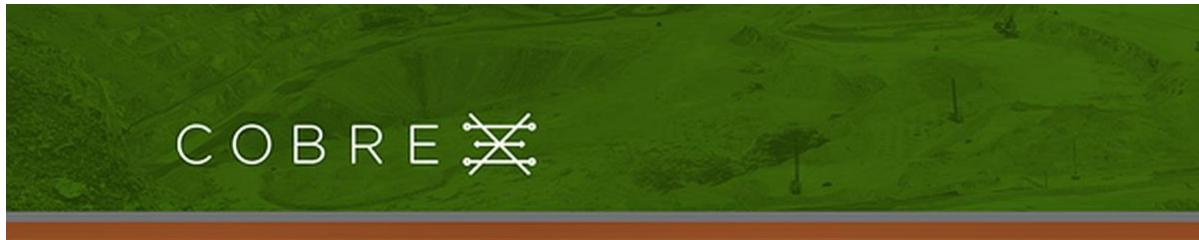

Criteria	JORC Code explanation						Commentary	
L01-08	385335.0	7429329.8	1266.0	85.5	AR		52	259
L02-08	385321.6	7429311.1	1266.5	82.5	AR		61	263
L03-08	385354.0	7429309.9	1264.1	89.5	AR		62	262
L04-08	385344.0	7429290.0	1264.2	80.5	AR		52	267
L05-09	385459.8	7429299.9	1256.6	68.5	AR		90	0
L06-09	385460.0	7429325.0	1257.4	64	AR		90	0
L07-09	385484.7	7429324.6	1255.9	77.5	AR		90	0
L08-09	385484.9	7429300.2	1254.9	80.5	AR		90	0
L09-09	385485.1	7429275.0	1254.2	80.5	AR		90	0
L10-09	385460.2	7429275.0	1256.0	80.5	AR		90	0
L11-09	385433.1	7429287.6	1258.0	80.5	AR		90	0
L12-09	385472.9	7429262.2	1254.9	34	AR		90	0
L13-09	385465.5	7429263.3	1255.5	80.5	AR		90	0
L14-09	385475.0	7429313.0	1175.0	55.5	AR	-10	103	
L15-09	385475.0	7429313.0	1175.0	50.5	AR	44	103	
L16-09	385473.0	7429314.0	1175.0	50.5	AR	77	103	
L17-09	385470.0	7429316.0	1175.0	40	AR	62	285	
M-01	386275.2	7429794.8	1233.1	136	AR	65	282	
M-02	386216.7	7429711.2	1220.1	100	AR	65	272	
M-03	386347.4	7430095.1	1246.7	205	AR	57	273	
M-04	386166.4	7430699.9	1384.0	136	AR	60	278	
M-05	386130.7	7430900.8	1403.8	80	AR	70	272	
M-06	386123.9	7430335.5	1346.6	150	AR	60	275	
M-07	386132.2	7430402.4	1351.3	156	AR	60	274	


Criteria	JORC Code explanation						Commentary	
M-08	386251.5	7429898.7	1247.1	120	AR	65	273	
M-09	386281.6	7429972.5	1252.6	90	AR	60	277	
M-10	386275.5	7429793.7	1223.2	274	AR	90	36	
M-11	386220.2	7429711.7	1220.0	130	AR	70	272	
M-12	386170.0	7430701.2	1384.0	236	AR	90	360	
M-14	385961.1	7431486.2	1389.1	70	AR	60	240	
M-15	386070.4	7431189.8	1390.6	90	AR	60	247	
M-16	386650.0	7430200.0	1201.2	250	AR	60	270	
M-17	386650.0	7430500.0	1231.3	260	AR	65	270	
M-18	386570.0	7430400.0	1229.9	260	AR	60	270	
N-01	384911.4	7432204.5	1382.5	89.5	AR	50	270	
N-02	384912.2	7432204.6	1382.5	115	AR	70	270	
N-06	384873.7	7432349.4	1382.6	93	AR	50	270	
N-08	384862.5	7432398.6	1384.4	43	AR	50	270	
N-08A	384861.0	7432417.8	1384.5	100.5	AR	50	270	
N-11	384820.7	7432916.2	1390.4	115	AR	37	270	
N-12	384838.1	7432950.0	1387.1	43	AR	40	270	
N-12A	384837.8	7432950.0	1387.0	109	AR	40	270	
N-13	384839.1	7432949.9	1387.1	124	AR	57	270	
N-14	384837.2	7432900.0	1387.8	100	AR	40	270	
N-15	384838.1	7432900.0	1387.7	123	AR	57	270	
N-16	384840.5	7432850.1	1387.7	100	AR	40	270	
N-17	384841.4	7432850.1	1387.4	126	AR	57	270	
N-18	384843.8	7432800.1	1386.4	89.5	AR	40	270	

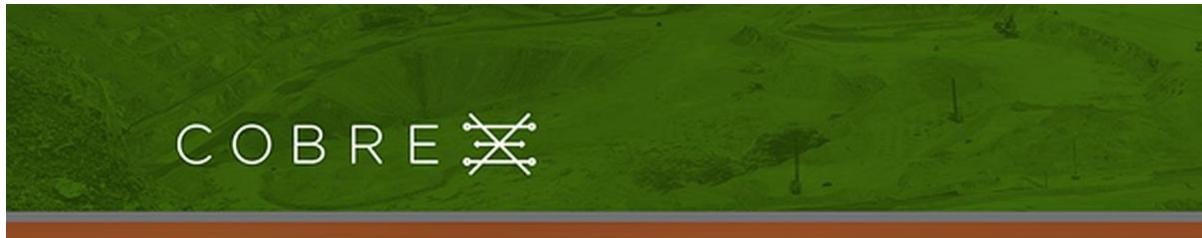

Criteria	JORC Code explanation						Commentary	
N-32	384907.3	7432501.8	1378.3	121	AR	69	270	
N-34	384831.3	7432499.3	1386.6	184	AR	13	270	
N-35	384831.9	7432499.4	1386.2	151	AR	50	270	
N01-08	384787.1	7432700.4	1254.6	22	AR	0	300	
N02-08	384892.3	7432085.8	1248.6	59.5	AR	0	225	
N03-08	384882.6	7432176.8	1248.6	50.5	AR	0	225	
N04-08	384786.8	7434025.0	1400.1	53.5	AR	60	270	
N05-08	384818.6	7434025.0	1401.7	55	AR	71	270	
N06-08	384830.0	7432500.0	1389.2	17.5	AR	90	0	
N07-08	384840.0	7432500.0	1386.9	25	AR	42	270	
N08-08	384841.0	7432475.0	1386.9	19	AR	80	270	
N09-08	384848.0	7432400.0	1385.9	8.5	AR	90	0	
N11-08	384763.5	7434025.0	1399.3	61	AR	50	90	
N12-08	384784.8	7434025.0	1400.2	62	AR	50	90	
NIDTH-01	384826.0	7432615.0	1250.0	45	AC	35	260	
NIDTH-02	384822.0	7432598.0	1250.0	40	AC	35	260	
NIDTH-03	384837.0	7432570.0	1250.0	43.5	AC	35	260	
NIDTH-04	384842.0	7432545.0	1250.0	45	AC	35	260	
NIDTH-05	384842.0	7432524.0	1249.0	42	AC	35	260	
NIDTH-06	384841.0	7432496.0	1250.0	45	AC	35	260	
NIDTH-07	384826.0	7432615.0	1250.0	40.5	AC	50	260	
NIDTH-08	384829.0	7432596.0	1250.0	45	AC	35	260	
NIDTH-09	384837.0	7432570.0	1250.0	40.5	AC	50	260	
NIDTH-10	384842.0	7432545.0	1250.0	40.5	AC	50	260	

Criteria	JORC Code explanation						Commentary	
NIDTH-11	384842.0	7432524.0	1249.0	37.5	AC	50	260	
NIDTH-14	384806.0	7432655.0	1250.0	45	AC	0	260	
NIDTH-15	384801.0	7432675.0	1253.0	45	AC	0	270	
NIDTH-16	384823.0	7432679.0	1253.0	45	AC	0	90	
NIDTH-17	384787.0	7432697.0	1254.0	45	AC	0	260	
NIDTH-18	384853.0	7432421.0	1249.0	36	AC	35	260	
NIDTH-19	384853.0	7432421.0	1249.0	30	AC	50	260	
NIDTH-20	384849.0	7432447.0	1250.0	42	AC	35	260	
NIDTH-21	384849.0	7432447.0	1249.0	31.5	AC	50	260	
NIDTH-22	384787.0	7432697.0	1253.0	45	AC	45	260	
NIDTH-23	384823.0	7432679.0	1253.0	45	AC	40	90	
NIDTH-24	384799.0	7432675.0	1250.0	45	AC	45	270	
NIDTH-25	384806.0	7432655.0	1250.0	45	AC	45	260	
NIDTH-26	384858.0	7432398.0	1250.0	45	AC	35	260	
NIDTH-27	384858.0	7432398.0	1250.0	24	AC	50	260	
NIDTH-28	384867.0	7432343.0	1250.0	21	AC	35	260	
NIDTH-29	384867.0	7432343.0	1250.0	6	AC	50	260	
NIDTH-30	384872.0	7432310.0	1248.0	45	AC	35	260	
NIDTH-31	384878.0	7432288.0	1248.0	45	AC	35	260	
NIDTH-32	384823.0	7432679.0	1253.0	70.5	AC	20	90	
NIDTH-33	384806.0	7432655.0	1250.0	66	AC	20	260	
NIDTH-34	384833.0	7432620.0	1250.0	90	AC	0	80	
NIDTH-35	384835.0	7432597.0	1250.0	90	AC	0	80	
NIDTH-36	384845.0	7432570.0	1250.0	90	AC	0	80	

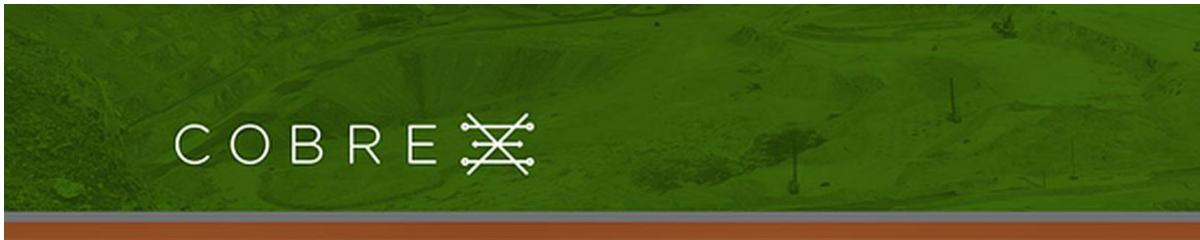

Criteria	JORC Code explanation						Commentary	
NINDTH-01	384669.0	7433420.0	1340.0	30	AC		60	250
NINDTH-02	384678.0	7433420.0	1340.0	30.6	AC		85	250
NINDTH-03	384669.0	7433341.0	1340.0	30.6	AC		60	80
NINDTH-04	384669.0	7433341.0	1340.0	30.6	AC		80	80
NINDTH-05	384697.0	7433266.0	1340.0	30	AC		60	80
NINDTH-06	384697.0	7433266.0	1340.0	30.6	AC		80	80
NINDTH-07	384731.0	7433192.0	1340.0	30.6	AC		60	250
NINDTH-08	384731.0	7433192.0	1340.0	30.6	AC		85	250
NINDTH-09	384760.0	7433059.0	1340.0	30.6	AC		60	80
NINDTH-10	384760.0	7433059.0	1340.0	30.6	AC		80	80
NINDTH-11	384781.0	7432988.0	1340.0	30	AC		60	80
NINDTH-12	384781.0	7432988.0	1340.0	30.6	AC		80	80
NINDTH-13	384794.0	7432906.0	1340.0	39.6	AC		75	260
NINDTH-14	384794.0	7432906.0	1340.0	36	AC		50	260
NINDTH-15	384802.0	7432836.0	1340.0	30.6	AC		60	80
NINDTH-16	384802.0	7432836.0	1340.0	30.6	AC		80	80
NINDTH-17	384829.0	7432782.0	1340.0	39.6	AC		60	80
NINDTH-18	384829.0	7432782.0	1340.0	39.6	AC		85	80
NINDTH-19	384671.0	7433421.0	1370.0	26	AC		25	260
NINDTH-20	384671.0	7433421.0	1370.0	30	AC		40	260
NINDTH-21	384681.0	7433314.0	1370.0	30.6	AC		25	80
NINDTH-22	384681.0	7433314.0	1370.0	30.6	AC		40	80
NINDTH-23	384722.0	7433189.0	1370.0	30	AC		25	80
NINDTH-24	384722.0	7433189.0	1370.0	30	AC		40	80


Criteria	JORC Code explanation						Commentary	
NINDTH-25	384746.0	7433100.0	1370.0	30.6	AC		25	80
NINDTH-26	384746.0	7433100.0	1370.0	36	AC		40	80
NINDTH-27	384761.0	7433029.0	1370.0	30	AC		25	80
NINDTH-28	384761.0	7433029.0	1370.0	30	AC		40	80
NO-1	384780.1	7432135.6	1414.3	140.5	AR		45	229
NO-2	384775.9	7432120.0	1415.9	129	AR		45	205
NO-3	384856.8	7432132.0	1394.7	111	AR		45	205
NO-4	384852.2	7432198.4	1389.0	130	AR		20	263
NO-5	384714.9	7432257.2	1432.6	120	AR		40	222
NO-6	384639.3	7432331.3	1413.7	129	AR		32	222
NS-01	384896.3	7432146.1	1388.4	90	AR		53	255
NS-02	384936.3	7432157.0	1382.5	106	AR		44	255
NS-02A	384914.8	7432150.8	1385.5	138	AR		69	255
NS-03	384931.8	7432101.1	1383.7	91	AR		40	255
NS-04	384958.7	7432108.2	1379.6	113.5	AR		60	255
NS-04A	384933.6	7432101.6	1383.6	126	AR		60	253
NS-05	384933.4	7432050.0	1383.3	129	AR		36	270
NS-06	384934.4	7432049.9	1383.2	148	AR		54	270
NS-07	384937.3	7432000.1	1386.5	79	AR		40	270
NS-08	384938.9	7431999.6	1386.6	100	AR		65	270
NS-09	384925.4	7431999.8	1389.7	178	AR		17	270
NS-10	384934.8	7431999.9	1387.1	178	AR		57	270
NS-11	384940.0	7431950.1	1390.4	77.5	AR		12	270
NS-12	384944.0	7431950.1	1389.4	154	AR		45	270

Criteria	JORC Code explanation						Commentary	
NS-12A	384982.7	7431842.0	1381.8	151	AR		62	270
NS-13	384957.1	7431900.2	1385.9	151	AR		12	270
NS-14	384958.3	7431900.2	1385.8	160	AR		40	270
NS-14A	384959.3	7431900.2	1385.6	166	AR		62	270
NS-14B	384981.3	7431842.1	1381.8	110.5	AR		39	270
NS-16A	384964.3	7431847.8	1386.6	107	AR		17	265
NS-17	384973.3	7431799.6	1384.8	100	AR		11	260
NS-17A	384975.1	7431800.4	1384.3	151	AR		45	260
NS-18	385002.6	7431743.2	1379.8	155.5	AR		18	265
NS-18A	385004.8	7431743.0	1379.7	170.5	AR		40	260
NS-19	385016.1	7431698.1	1377.3	121	AR		15	260
NS-19A	385017.5	7431698.3	1377.0	181	AR		40	260
NS-20	385030.2	7431648.9	1374.6	121	AR		17	260
NS-20A	385031.1	7431649.1	1374.5	170.5	AR		40	260
NS-21	385039.7	7431599.6	1373.3	110.5	AR		24	260
NS-21A	385041.6	7431600.1	1373.2	185.5	AR		43	260
P-00	386278.3	7429849.8	1228.2	111	AR		50	270
P-00A	386278.9	7429849.9	1228.0	88	AR		71	270
P-00B	386280.2	7429852.5	1227.9	135	AR		69	270
P-01	386230.4	7429850.2	1237.8	108	AC		30	275
P-02	386232.2	7429850.2	1237.6	24	AC		82	310
P-03	386268.7	7429949.6	1251.7	79.5	AC		25	273
P-03A	386268.4	7429949.9	1253.0	121.5	AC		-4	270
P-04	386269.3	7429949.7	1251.5	97.5	AC		69	278

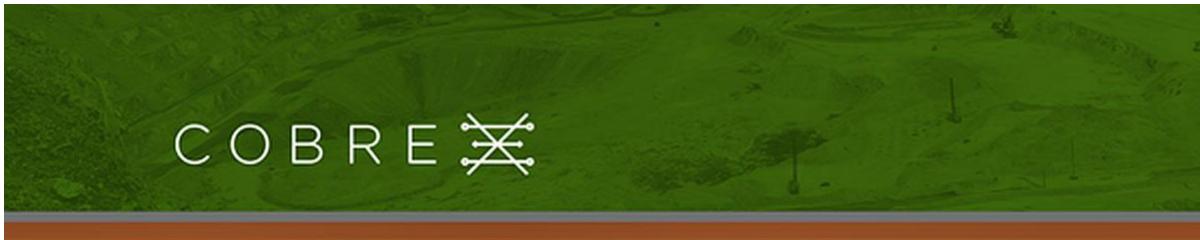

Criteria	JORC Code explanation						Commentary	
P-05	386277.8	7430059.0	1266.5	150	AC		7	274
P-06	386277.3	7430049.8	1265.2	72	AC		58	270
P-07	386278.0	7430049.9	1265.2	100.5	AC		90	360
P-08	386316.3	7430171.8	1280.9	91.5	AC		56	272
P-09	386274.8	7430194.6	1289.7	100.5	AC		14	336
P-10	386275.3	7430192.4	1288.7	81	AC		69	324
P-11	386255.1	7430349.1	1354.9	87	AC		55	270
P-12	386257.2	7430349.6	1354.8	120	AC		69	270
P-24	386267.5	7430599.7	1375.0	130.5	AC		60	284
PD-01	385272.0	7429070.0	1169.6	120	AC		0	246
PD-02	385282.0	7429088.0	1169.6	129	AC		0	270
PD-18	385495.0	7429555.0	1221.0	112.5	AC		0	270
PD-19	385495.0	7429555.0	1221.0	120	AC		40	270
PD-20	385495.0	7429555.0	1221.0	99	AC		64	270
PD-45	385545.0	7429992.0	1207.0	52.5	AC		27	270
PD-46	385545.0	7429992.0	1207.0	64.5	AC		80	270
PN-2	385522.5	7429850.0	1210.0	50	AR		72	270
PN-3	385545.0	7429900.0	1210.0	54.5	AR		81	270
PS-1	385505.0	7429537.0	1208.0	46.5	AR		20	126
PS-2	385505.0	7429537.0	1208.0	79.5	AR		5	140
Q-01-10	386272.4	7430780.3	1332.9	67	AR		10	84
Q-1	386282.3	7430288.7	1367.5	100	AR		80	228
Q-2	386282.3	7430288.7	1372.3	81	AR		50	228
Q-4	386313.5	7430717.3	1347.0	68.5	AR		50	228

Criteria	JORC Code explanation					Commentary	
Q-5	386360.3	7430850.2	1399.4	45	AR	50	263
-R1	385600.0	7430627.0	1356.5	31	AR	50	83
-R2	385600.6	7430626.8	1356.6	32.5	AR	70	83
-R3	385599.7	7430661.8	1353.5	32.5	AR	55	83
-R4	385600.2	7430661.9	1356.6	38.5	AR	75	83
-R5	385599.4	7430627.2	1351.6	99	AR	40	278
-R6	385601.7	7430663.4	1348.6	104.5	AR	57	270
RB-01	385529.9	7430200.2	1347.7	92	AR	58	299
RB-02	385538.7	7429132.9	1328.0	70	AR	43	260
RC-01	385500.3	7428482.4	1223.2	300	AC	45	270
RC-02	385443.0	7428797.0	1245.3	300	AC	60	270
RC-03	385469.9	7429098.5	1252.3	308	AC	62	270
RC-04	385603.7	7429449.3	1262.7	380	AC	65	270
RC-05	385864.7	7430305.6	1384.1	380	AC	65	270
RC-06	385897.0	7431289.4	1416.6	300	AC	65	270
RC-07	385750.8	7431705.3	1372.5	300	AC	72	270
RC-08	386192.0	7430707.4	1390.1	276	AC	72	270
RC-09	386023.4	7431443.7	1394.3	280	AC	75	270
RC-10	386553.9	7429994.6	1208.1	114	AC	60	270
RC-11	385229.4	7430203.0	1302.1	150	AC	90	360
RC-12	384903.9	7432892.9	1379.1	60	AC	60	270
RC-12A	384903.9	7432892.9	1379.1	300	AC	60	270
RC-13	384989.0	7432304.8	1371.0	278	AC	60	270
RC-14	385223.8	7429976.9	1291.8	150	AC	90	360


Criteria	JORC Code explanation						Commentary	
RC-15	385240.2	7429747.0	1281.9	138	AC		84	270
RC6-1	385649.9	7429100.0	1240.2	360	AC		60	269
RC6-10	386643.7	7431221.4	1246.6	300	AC		60	255
RC6-11	386303.4	7431763.2	1282.9	260	AC		60	255
RC6-12	385975.4	7431779.7	1372.5	350	AC		60	250
RC6-13	385821.9	7432402.8	1370.0	150	AC		66	270
RC6-14	385838.5	7433149.8	1389.1	200	AC		60	270
RC6-15	384832.7	7433298.8	1396.9	360	AC		60	270
RC6-16	384754.4	7433298.7	1405.4	144	AC		50	270
RC6-17	384380.1	7430136.5	1455.7	140	AC		60	300
RC6-18	384706.6	7429687.6	1334.1	216	AC		60	220
RC6-19	384896.0	7433288.0	1396.6	230	AC		65	270
RC6-2	385730.2	7429484.7	1264.4	354	AC		64	263
RC6-20	384934.2	7432769.3	1375.4	264	AC		50	270
RC6-21	385130.9	7430650.0	1340.6	192	AC		60	270
RC6-22	385154.2	7430900.0	1341.5	180	AC		60	270
RC6-23	385107.9	7430500.1	1334.5	180	AC		60	270
RC6-24	385233.1	7430574.8	1326.3	320	AC		60	270
RC6-25	384859.1	7429700.1	1320.7	170	AC		60	270
RC6-26	384938.6	7429900.0	1319.4	190	AC		60	270
RC6-27	385769.6	7430843.5	1371.6	256	AC		90	0
RC6-28	384874.0	7433079.7	1388.9	260	AC		58	270
RC6-29	386235.4	7431656.6	1306.1	250	AC		60	239
RC6-3	384901.8	7430688.0	1375.8	264	AC		60	268


Criteria	JORC Code explanation						Commentary	
RC6-30	385843.0	7431986.4	1309.7	240	AC	45	250	
RC6-31	385635.4	7432126.4	1325.1	120	AC	50	250	
RC6-4	385755.2	7430707.2	1360.0	220	AC	76	289	
RC6-5	385130.3	7430774.2	1342.1	250	AC	52	290	
RC6-6A	385230.8	7430711.0	1327.1	274	AC	60	296	
RC6-6B	385105.8	7430763.4	1101.6	96	AC	59	293	
RC6-7	385768.7	7430843.5	1371.6	230	AC	70	271	
RC6-8	386235.3	7431092.4	1419.2	292	AC	55	270	
RC6-9	385850.1	7431050.0	1398.4	200	AC	70	270	
RC6-C-2	385446.6	7423497.4	1174.5	100	AC	45	250	
RC6-C-3	385530.4	7423395.0	1172.6	100	AC	45	250	
RC6-C-5	385412.5	7423617.4	1177.1	90	AC	45	250	
RC6-C-6	385920.8	7423418.9	1176.4	96	AC	55	290	
RC6-C-7	385970.1	7423534.0	1184.0	102	AC	55	290	
RC6-C-8	385875.2	7423302.0	1172.7	90	AC	55	290	
RC6-LL-1	385476.2	7428008.6	1221.8	134	AC	90	0	
RC6-LL-2	386260.3	7428459.8	1191.1	168	AC	90	0	
RC6-LL-3	386537.2	7427470.1	1163.6	140	AC	90	0	
RC6-LL-4	386087.7	7426176.8	1155.6	102	AC	90	0	
RC6-LL-5	387683.0	7428882.8	1166.6	84	AC	90	0	
RC6-LL-6	387504.5	7430244.6	1178.4	114	AC	90	0	
RC6-SA-1	384607.6	7431079.9	1508.9	150	AC	45	260	
RC6-SA-10	384739.8	7431606.1	1484.1	252	AC	60	270	
RC6-SA-11	384729.7	7431724.0	1473.9	220	AC	50	270	

Criteria	JORC Code explanation						Commentary	
RC6-SA-12	384698.3	7431889.4	1469.0	160	AC	65	270	
RC6-SA-13	384695.3	7431889.3	1468.7	124	AC	50	270	
RC6-SA-14	384700.4	7432008.6	1453.9	150	AC	45	270	
RC6-SA-15	384702.5	7432008.7	1453.9	174	AC	70	270	
RC6-SA-16	384626.2	7430979.2	1503.6	150	AC	50	259	
RC6-SA-2	384476.7	7431140.5	1509.1	190	AC	47	79	
RC6-SA-3	384607.3	7431219.3	1487.0	202	AC	45	260	
RC6-SA-4	384734.0	7431246.0	1502.5	300	AC	50	258	
RC6-SA-5	384497.9	7431352.6	1472.5	150	AC	45	258	
RC6-SA-6	384681.1	7431345.8	1483.4	280	AC	45	259	
RC6-SA-7	384676.6	7431498.7	1470.8	240	AC	50	269	
RC6-SA-8	384516.9	7431665.4	1483.4	170	AC	45	290	
RC6-SA-9	384678.6	7431498.5	1471.0	200	AC	66	270	
RC6-TS-1	384186.2	7431120.2	1489.2	204	AC	60	266	
RC6-TS-2	384276.0	7431085.9	1472.9	110	AC	70	259	
RC6-TS-3	384276.8	7431086.1	1472.9	140	AC	90	0	
RC6-TS-4	383982.2	7431396.1	1522.3	120	AC	55	248	
RC6-TS-5	384185.5	7431341.9	1526.2	170	AC	50	270	
RC6-V-1	389209.4	7431394.5	1226.4	200	AC	80	135	
RC7-SM-01	386518.5	7430098.5	1212.9	258	AC	45	310	
RC7-SM-02	386257.3	7429826.6	1230.5	170	AC	85	313	
RC7-SM-03	386350.8	7429826.5	1212.6	166	AC	50	289	
RC7-SM-04	386412.0	7429983.2	1219.1	168	AC	45	275	
RC7-SM-05	386351.3	7430930.9	1395.6	260	AC	45	245	


Criteria	JORC Code explanation						Commentary	
RC7-SM-06	384544.8	7432437.6	1418.0	160	AC		50	215
RC7-SM-07	384568.7	7432421.5	1420.4	160	AC		50	215
RC7-SM-08	384598.9	7432400.6	1424.5	160	AC		45	215
RC7-SM-09	384597.4	7432399.0	1424.7	150	AC		70	215
RC7-SM-10	386354.1	7430936.7	1395.5	400	AC		45	275
RCH093-001	385376.8	7429383.0	1264.4	270	AC		60	272
RCH093-002	385473.3	7428650.5	1234.9	300	AC		62	264
RCH093-003	385302.4	7430194.2	1306.2	300	AC		60	270
RCH093-004	385900.7	7429346.9	1231.8	300	AC		60	273
RCH093-005	385895.5	7430197.6	1360.6	400	AC		59	270
RCH093-006	385068.0	7430950.1	1360.5	300	AC		58	271
RCH093-007	385438.3	7432449.3	1341.1	300	AC		59	275
RCH093-008	385297.0	7432771.2	1358.8	300	AC		60	273
RCH093-009	385723.2	7431687.9	1370.8	300	AC		59	270
RCH093-010	384798.8	7433913.3	1425.0	300	AC		61	274
RM-1	386104.8	7430276.9	1165.8	108	AR		5	297
RM-2	385979.7	7430341.5	1156.2	70.5	AR		2	297
RM-3	385923.0	7430371.3	1155.3	21	AR		90	297
RM-4	385923.0	7430371.3	1159.0	109.5	AR		0	297
RM-5	385707.0	7430486.0	1140.9	165	AR		3	297
RP-00-01	385440.7	7429424.3	1262.4	200	AR		61	302
RP-00-02	385444.7	7429422.0	1261.7	248	AR		73	305
RP-00-04	385406.2	7429357.1	1263.3	200	AR		58	299
RP-00-05	385407.0	7429356.0	1263.3	210	AR		79	295

Criteria	JORC Code explanation						Commentary	
RP-00-06	385493.1	7429361.5	1257.3	252	AR		59	273
RP-00-07	386020.5	7429400.5	1226.2	200	AR		61	286
RP-01-01	385499.5	7429522.1	1265.6	180	AR		61	272
RP-01-01A	385368.6	7429297.6	1264.1	218	AR		64	301
RP-01-02	385504.7	7429522.0	1265.6	170	AR		73	273
RP-01-02A	385415.9	7429266.7	1259.2	140	AR		65	300
RP-01-03	385543.1	7429510.2	1264.2	180	AR		67	300
RP-01-04	385512.2	7429563.5	1272.6	110	AR		68	301
RP-02-01	385563.8	7429604.1	1286.5	250	AR		59	301
RP-02-02	386138.4	7429614.6	1220.7	200	AR		61	286
RP-02-03	386276.4	7429580.6	1205.5	200	AR		61	286
RP-03-01	385534.2	7429712.3	1295.2	260	AR		59	265
RP-03-01A	386145.5	7429127.2	1214.7	152	AR		61	286
RP-03-02	386270.8	7429710.5	1213.0	236	AR		60	285
RP-03-02A	385292.7	7429085.5	1263.9	150	AR		61	300
RP-04-01	385891.1	7429769.8	1319.2	220	AR		59	306
RP-04-02	385535.2	7429802.8	1315.8	170	AR		60	273
RP-04-03	385535.6	7429802.7	1315.6	196	AR		81	277
RP-05-01	386002.3	7429930.6	1342.0	220	AR		57	295
RP-05-03	385501.6	7429910.6	1316.9	180	AR		61	278
RP-05-07	385524.8	7429939.7	1324.7	202	AR		64	291
RP-06-01	386411.7	7429988.3	1218.8	172	AR		59	285
RP-06-02	386274.2	7429974.1	1256.0	180	AR		61	287
RP-06-07	385513.5	7429997.1	1310.3	190	AR		60	291

Criteria	JORC Code explanation						Commentary	
RP-06-08	385518.1	7429995.8	1310.6	190	AR		90	360
RP-07-01	386275.2	7430100.1	1274.1	140	AR		60	287
RP-07-02	386117.6	7430135.5	1352.5	200	AR		61	286
RP-07-05	385593.3	7430108.1	1342.5	200	AR		60	291
RP-07-06	385597.0	7430105.9	1342.5	204	AR		90	360
RP-08-01	385237.8	7430198.6	1302.1	100	AR		60	270
RP-08-06	385571.1	7430214.9	1361.7	250	AR		60	270
RP-08-07	385573.1	7430215.1	1361.8	200	AR		90	360
RP-08-08	385197.7	7430201.1	1305.7	236	AR		61	90
RP-08-10	386500.0	7430195.6	1220.7	198	AR		59	285
RP-09-01	386122.3	7430301.8	1348.5	226	AR		68	273
RP-09-02	386022.2	7430319.9	1389.0	192	AR		64	94
RP-09-03	386015.9	7430319.9	1389.6	250	AR		80	92
RP-09-04	385825.3	7430297.5	1387.0	226	AR		60	270
RP-09-05	385618.9	7430332.6	1356.7	250	AR		70	270
RP-09-06	385620.5	7430332.7	1356.8	210	AR		90	360
RP-09-07	385618.7	7430271.7	1360.0	192	AR		58	269
RP-1	386088.9	7429700.2	1189.2	107.5	AR		7	250
RP-10-01	386114.7	7430428.9	1354.2	156	AR		58	270
RP-10-02	386006.8	7430404.8	1398.4	200	AR		55	83
RP-10-04	385660.5	7430413.0	1350.2	216	AR		60	270
RP-10-05	385665.7	7430413.5	1350.2	254	AR		75	270
RP-11-01	386173.8	7430487.2	1347.8	220	AR		56	266
RP-11-03	385686.1	7430499.1	1342.8	94	AR		60	279

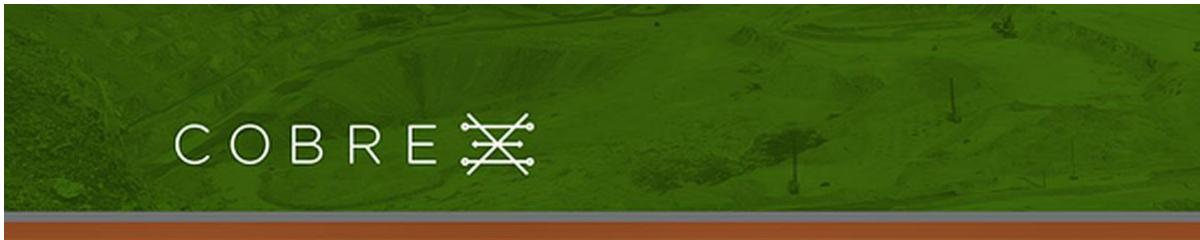
Criteria	JORC Code explanation						Commentary	
RP-11-04	385687.4	7430499.1	1342.6	222	AR		75	281
RP-12-01	386167.3	7430628.8	1380.3	200	AR		58	271
RP-12-02	386168.5	7430628.7	1380.2	200	AR		80	267
RP-12-03	385675.2	7430572.3	1367.6	220	AR		60	268
RP-12-04	385678.9	7430572.3	1367.8	250	AR		74	272
RP-12-05	386266.1	7430590.7	1376.0	230	AR		60	284
RP-12-06	386040.4	7430637.0	1382.8	246	AR		60	93
RP-13-01	385644.2	7430663.6	1359.9	140	AR		60	257
RP-14-01	385681.3	7430816.9	1358.8	270	AR		63	265
RP-14-02	385682.3	7430816.9	1358.8	272	AR		76	275
RP-14-03	386186.5	7430792.4	1395.6	180	AR		60	270
RP-15-01	385430.0	7430946.6	1353.0	162	AR		59	256
RP-16-01	385724.2	7430979.5	1371.4	302	AR		61	264
RP-16-02	385734.1	7430986.1	1372.0	222	AR		71	260
RP-16-03	385572.2	7430969.6	1390.0	200	AR		60	255
RP-18-01	385819.7	7431166.5	1371.8	150	AR		60	254
RP-19-01	386170.4	7431292.3	1401.3	280	AR		60	255
RP-19-03	385807.6	7431269.0	1392.7	208	AR		59	256
RP-20-01	385821.8	7431362.4	1396.6	220	AR		59	254
RP-20-02	385898.0	7431391.4	1409.4	230	AR		60	254
RP-20-03	386099.8	7431423.1	1410.8	282	AR		59	255
RP-21-01	385742.1	7431514.9	1380.0	148	AR		59	255
RP-23-01	385838.6	7431700.9	1378.6	180	AR		61	255
RP-24-01	385596.9	7431815.3	1369.3	150	AR		60	256

Criteria	JORC Code explanation						Commentary	
RP-26-01	385583.4	7431935.7	1370.7	200	AR		60	255
RP-27-01	385536.6	7432090.8	1353.1	200	AR		59	255
RP-29-01	384885.6	7432309.8	1381.8	200	AR		61	240
RP-30-01	385463.2	7432355.0	1336.1	150	AR		60	255
RP-35-01	384836.1	7432918.4	1388.0	150	AR		60	270
SA-01	384494.3	7431023.7	1521.7	28	AR		50	90
SA-02	384514.4	7431023.6	1517.5	30	AR		50	90
SA-03	384534.3	7431023.8	1514.0	28	AR		50	90
SA-04	384554.3	7431023.8	1511.5	28	AR		50	90
SA-05	384574.2	7431023.5	1510.6	28	AR		50	100
SA-06	384594.5	7431023.9	1509.3	28	AR		50	90
SA-07	384494.5	7431043.7	1520.2	28	AR		50	90
SA-08	384514.3	7431043.8	1515.9	25	AR		50	90
SA-09	384534.2	7431043.8	1512.3	28	AR		50	90
SA-10	384554.2	7431043.8	1509.4	28	AR		46	90
SA-11	384574.1	7431043.8	1509.5	28	AR		45	90
SA-12	384594.1	7431043.8	1509.9	27	AR		48	90
SA-13	384494.0	7431064.2	1517.9	27	AR		50	90
SA-14	384513.8	7431063.2	1513.6	28	AR		50	100
SA-15	384534.2	7431063.7	1510.3	28	AR		54	100
SA-16	384554.5	7431063.6	1506.9	28	AR		53	100
SA-17	384573.9	7431062.6	1508.2	28	AR		50	100
SA-18	384594.1	7431063.9	1508.4	27	AR		45	90
SA-19	384494.2	7431083.7	1514.7	28	AR		50	90

Criteria	JORC Code explanation						Commentary	
SA-23	384574.7	7431083.7	1506.5	28	AR	55	100	
SA-24	384594.0	7431083.8	1506.8	26	AR	50	100	
SADDH-01	386309.1	7429963.4	1242.5	110	DD	56	282	
SADDH-02	386197.9	7430951.7	1208.8	20	DD	90	0	
SADDH-03	386199.9	7430952.2	1209.2	34	DD	35	73	
SADDH-04	386256.2	7430806.6	1191.1	40	DD	0	259	
SADDH-06	386250.9	7430826.7	1157.0	108	DD	62	115	
SADDH-07	386253.7	7429986.2	1250.4	80	DD	67	290	
SADDH-08	386250.6	7430826.5	1156.9	94	DD	67	183	
SADDH-09	386256.3	7430011.0	1262.7	72.9	DD	50	269	
SADDH-10	386251.6	7430831.0	1157.1	102	DD	65	34	
SADDH-11	386248.9	7430830.3	1156.9	82	DD	70	302	
SADDH-12	386269.5	7430027.5	1263.5	95.6	DD	68	279	
SADDH-13	386279.0	7430758.8	1158.6	100	DD	67	77	
SADDH-14	386276.0	7430759.1	1158.7	54	DD	82	243	
SADDH-15	386226.2	7430902.3	1191.8	50	DD	0	70	
SADDH-16	386297.0	7429996.0	1252.4	94.25	DD	48	267	
SADDH-17	386219.3	7430900.0	1191.6	24	DD	0	252	
SADDH-18	386242.6	7430855.1	1191.5	50	DD	-1	72	
SADDH-19	386236.5	7430853.2	1191.5	42	DD	0	254	
SADDH-20	386262.9	7430808.2	1191.2	42	DD	1	78	
SADDH-21	386270.2	7430762.4	1190.9	74	DD	15	71	
SADDH-22	386263.9	7430760.2	1190.7	48	DD	15	254	
SADDH-23	386285.3	7430038.0	1262.9	122	DD	48	272	

Criteria	JORC Code explanation						Commentary	
SADDH-24	386245.0	7430894.0	1158.3	66	DD	46	70	
SADDH-25	386237.2	7430891.0	1157.8	58	DD	56	258	
SADDH-26	385785.4	7431525.9	1298.8	20	DD	1	252	
SADDH-27	385791.3	7431527.9	1298.8	22	DD	1	71	
SADDH-28	386371.1	7430495.8	1332.7	164	DD	45	270	
SADDH-29	385798.0	7431483.6	1297.5	30	DD	59	249	
SADDH-30	385800.4	7431484.5	1297.4	26	DD	73	65	
SADDH-31	385747.9	7431507.2	1299.2	84	DD	25	66	
SADDH-32	385761.7	7431452.5	1298.7	96	DD	28	65	
SADDH-33	386090.8	7430285.1	1072.6	68	DD	65	270	
SADDH-34	386069.2	7430297.9	1070.5	70	DD	66	89	
SADDH-35	386035.5	7430152.2	1070.3	74	DD	62	85	
SADDH-36	386017.0	7430096.9	1070.2	70	DD	63	87	
SADDH-37	385726.5	7430451.0	1143.3	50	DD	66	280	
SADDH-38	386369.7	7430495.8	1333.7	100	DD	14	272	
SADDH-39	386021.1	7430101.6	1070.4	50	DD	65	265	
SADDH-40	385713.0	7430400.0	1137.3	40	DD	70	277	
SADDH-41	386003.9	7430016.8	1069.9	64	DD	71	97	
SADDH-42	385715.8	7430400.1	1137.4	52	DD	70	85	
SADDH-43	385986.1	7429930.7	1070.0	60	DD	71	74	
SADDH-44	385673.5	7430261.1	1132.5	40	DD	66	279	
SADDH-45	385990.6	7429919.9	1070.4	60	DD	70	265	
SADDH-46	385693.2	7430325.8	1133.8	40	DD	69	269	
SADDH-47	385683.4	7430292.0	1134.0	40	DD	66	267	

Criteria	JORC Code explanation						Commentary	
SADDH-48	386001.4	7429972.4	1070.0	60	DD		67	259
SADDH-49	386017.1	7430054.0	1070.2	60	DD		58	261
SADDH-50	385707.5	7430372.2	1135.3	40	DD		66	278
SADDH-51	386047.1	7430197.6	1070.7	62	DD		65	269
SADDH-52	385747.8	7430479.3	1147.8	40	DD		69	276
SADDH-53	386057.7	7430235.7	1070.3	60	DD		71	265
SADDH-54	386078.5	7430355.2	1071.3	60	DD		74	243
SADDH-55	386355.3	7430426.0	1333.5	136.2	DD		61	270
SADDH-56	386083.7	7430355.2	1071.3	60	DD		69	93
SADDH-57	386093.0	7430555.2	1071.0	54	DD		72	274
SADDH-58	386100.8	7430598.2	1071.0	56	DD		71	85
SADDH-59	386090.7	7430536.1	1071.0	60	DD		65	86
SADDH-60	386091.4	7430490.3	1070.9	60	DD		74	86
SADDH-61	386090.3	7430469.4	1070.4	60	DD		71	262
SADDH-62	386089.2	7430424.9	1072.3	45	DD		10	93
SADDH-63	386085.0	7430424.9	1071.2	54	DD		73	290
SADDH-64	386361.6	7430452.4	1334.0	120	DD		49	270
SADDH-65	386222.2	7430400.0	1346.9	132	DD		66	90
SADDH-66	386352.9	7430400.0	1334.1	120	DD		51	270
SADDH-67	386361.5	7430452.4	1334.2	120	DD		29	270
SADDH-68	386367.5	7430474.8	1334.3	100	DD		19	270
SADDH-70	386271.0	7430789.6	1158.4	300	DD		59	90
SADDH-71	386233.7	7430879.6	1190.1	100	DD		28	90
SADDH-72	386103.3	7430740.0	1070.8	60	DD		69	264


Criteria	JORC Code explanation					Commentary	
SADDH-73	386106.7	7430740.9	1070.9	64	DD	59	55
SADDH-74	386102.0	7430727.5	1070.4	60	DD	68	103
SADDH-75	386107.0	7430708.4	1071.3	60	DD	63	86
SADDH-76	386103.9	7430702.0	1071.5	60	DD	58	274
SADDH-77	386100.9	7430666.9	1070.9	60	DD	64	93
SADDH-78	386098.8	7430647.5	1071.3	60	DD	62	271
SADDH-79	386104.2	7430628.8	1071.4	60	DD	71	108
SADDH-80	386100.1	7430578.6	1071.0	54	DD	65	86
SADDH-82	386141.3	7430332.6	1153.1	68	DD	48	93
SADDH-83	386147.2	7430385.1	1153.6	50	DD	37	79
SADDH-84	386182.8	7430436.0	1145.3	26	DD	27	82
SD-01	385802.3	7430687.2	1125.9	88	DD	0	60
SD-02	386101.5	7430583.6	1301.5	42	DD	45	290
SD-03	386099.3	7430564.8	1301.9	24	DD	44	300
SD-04	386099.3	7430564.8	1302.0	23.7	DD	-30	300
SD-05	386109.7	7430648.3	1216.5	20	DD	0	65
SD-06	386114.3	7430585.6	1213.6	28	DD	0	235
SD-09	386106.5	7430582.5	1341.9	10	DD	45	260
SD-09 A	386106.5	7430582.5	1342.0	6.85	DD	40	260
SD-11	386099.2	7430565.1	1301.0	11.9	DD	47	270
SD-12	386165.8	7430767.9	1206.7	48	DD	0	260
SD-13	386169.8	7430778.0	1206.3	40	DD	0	90
SD-14	386178.8	7430698.0	1209.1	36	DD	0	55
SD-15	386205.5	7430655.0	1211.3	13.45	DD	0	90

Criteria	JORC Code explanation						Commentary	
SD-16	386337.4	7430514.3	1204.4	50	DD		0	65
SD-17	386229.7	7430511.0	1210.8	8	DD		0	236
SD-19	384850.5	7432370.7	1385.8	30	DD		46	271
SD-20	384850.5	7432370.7	1385.8	19.2	DD		61	271
SD-21	386123.8	7430739.3	1388.9	20	DD		50	278
SD-22	386127.3	7430730.2	1386.3	8	DD		48	276
SD-23	386081.8	7431259.0	1397.8	46	DD		50	249
SD-24	386081.1	7431222.5	1394.4	48	DD		46	264
SD-26	386161.6	7430034.3	1237.0	33.45	DD		0	267
SD-26A	386161.6	7430034.3	1236.8	32	DD		0	267
SD-27	386167.8	7430034.8	1236.7	38	DD		0	84
SD-28	386335.0	7430315.1	1209.6	38	DD		0	230
SD-29	386119.7	7430880.3	1400.7	30.5	DD		41	271
SD-30	386119.5	7430902.1	1400.2	34	DD		43	270
SD-31	386112.7	7430932.6	1398.8	34	DD		32	262
SD-32	386110.5	7430957.1	1394.8	20	DD		45	267
SD-33	384511.1	7432382.9	1405.1	36	DD		33	229
SD-34	384530.3	7432358.2	1409.3	36	DD		42	217
SD-35	384535.3	7432334.6	1412.9	26	DD		40	224
SDD-01	385630.8	7430837.1	1350.9	182	DD		43	260
SDD-02	385635.6	7430845.3	1351.4	25.05	DD		44	318
SDD-04	385355.6	7429321.0	1178.3	98	DD		52	289
SDD-05	385355.4	7429320.2	1178.3	122	DD		52	260
SDD-06	385355.6	7429321.0	1178.3	134	DD		54	330

Criteria	JORC Code explanation						Commentary	
SDD-07	385355.4	7429320.2	1178.3	132	DD		90	0
SDD-10	385374.0	7429321.2	1197.3	198	DD		65	240
SDD-11	385374.0	7429321.2	1197.3	152	DD		90	0
SDD-12	386290.0	7429748.5	1215.8	206	DD		51	285
SDD-13	386267.3	7429721.7	1215.0	934	DD		53	290
SDD-14	385381.3	7429428.9	1163.9	116	DD		41	268
SDD-15	386263.5	7429676.2	1213.2	122	DD		58	282
SDD-16	385381.3	7429428.9	1163.9	102	DD		70	268
SDD-17	386030.8	7431440.2	1395.3	60	DD		48	223
SDD-18	386048.1	7431398.7	1403.6	88	DD		49	235
SDD-20	386293.9	7430328.1	1208.0	26	DD		37	300
SDD-21	386293.3	7430336.2	1208.4	5	DD		11	346
SDD-22	386318.4	7430330.3	1179.6	26	DD		44	281
SDD-23	385100.0	7430574.0	1341.6	216	DD		60	270
SDD-24	385135.6	7430649.7	1340.5	218	DD		90	0
SDD-25	385219.2	7430701.1	1329.2	234	DD		59	270
SI-01	386032.5	7430291.8	1255.0	121.5	AR		0	298
SI-02	386082.5	7430269.9	1259.2	109.5	AR		40	330
SI-03	386082.1	7430266.5	1258.9	33	AR		60	298
SI-03A	386082.7	7430266.3	1259.1	111	AR		60	298
SI-04	386104.4	7430259.1	1263.0	117	AR		0	343
SI-04A	386104.4	7430259.1	1262.9	30	AR		0	343
SI-05	386101.2	7430253.0	1262.9	120	AR		0	245
SI-06	386134.3	7430242.9	1265.5	99	AR		80	360

Criteria	JORC Code explanation						Commentary	
SI-07	386137.5	7430242.8	1266.9	91.5	AR		0	60
SI-08	386173.0	7430220.3	1269.9	100.5	AR		75	263
SI-09	386202.6	7430201.7	1274.5	70.5	AR		0	240
SI-10	386177.5	7430235.4	1268.0	91	AR		0	60
SI-11	386064.4	7430380.1	1255.6	180	AR		0	86
SI-12	386058.3	7430379.8	1255.5	180	AR		0	267
SI-13	386065.0	7430429.8	1254.9	180	AR		0	89
SI-14	386091.2	7430301.8	1256.8	160.5	AR		0	83
SI-15	386164.1	7430218.0	1271.0	144	AR		3	252
SI-16	386067.0	7430262.4	1257.2	160.5	AR		-7	142
SL-01	385620.6	7430599.9	1355.9	61	AR		57	262
SL-02	385621.5	7430587.4	1357.7	58	AR		53	263
SL-03	385622.5	7430574.9	1358.9	54	AR		54	265
SL-04	385623.6	7430562.3	1359.9	70	AR		55	262
SL-05	385623.6	7430550.0	1360.3	55	AR		58	265
SL-06	385619.6	7430612.5	1355.1	63	AR		56	264
SL-07	385618.6	7430625.1	1354.6	39	AR		62	289
SL-08	385599.8	7430625.2	1351.4	40	AR		60	270
SL-09	385600.0	7430612.5	1352.0	19	AR		60	270
SL-10	385599.6	7430600.1	1349.1	38	AR		58	270
SL-11	385599.7	7430587.3	1350.3	48	AR		56	263
SL-12	385600.0	7430574.3	1350.8	46	AR		57	268
SL-13	385600.1	7430562.6	1351.9	44	AR		56	267
SL-14	385599.8	7430550.2	1353.0	41	AR		56	275

Criteria	JORC Code explanation						Commentary	
SLDTH-13	385473.0	7429315.0	1175.1	30	AC	90	0	
SLDTH-14	385451.0	7429285.0	1175.2	30	AC	90	0	
SLDTH-15	385475.0	7429286.0	1175.7	30	AC	90	0	
SLDTH-16	385500.0	7429272.0	1176.4	30	AC	50	270	
SLDTH-17	385460.0	7429300.0	1145.4	30	AC	0	90	
SLDTH-18	385490.0	7429285.0	1143.8	30	AC	25	90	
SLDTH-19	385480.0	7429300.0	1213.4	33	AC	25	295	
SLDTH-20	385480.0	7429300.0	1213.4	33	AC	25	255	
SLDTH-21	385485.0	7429300.0	1213.8	30	AC	25	215	
SM-01	385890.3	7430392.9	1110.1	65.5	AR	3	270	
SM-01-09	386050.2	7430098.8	1219.1	54	AR	90	0	
SM-02	385903.6	7430310.2	1109.9	91	AR	2	267	
SM-02-09	386077.8	7430098.6	1222.8	64	AR	67	271	
SM-111-09	384848.3	7434075.7	1414.8	74.2	AR	53	262	
SM-112-09	384844.2	7433943.5	1420.2	116.35	AR	54	267	
SMR-001	385899.1	7431099.7	1389.5	102	AC	45	249	
SMR-003	386129.3	7431174.7	1395.2	33	AC	46	252	
SMR-009	386061.4	7431256.0	1402.4	68	AC	59	256	
SMR-010	386085.1	7431270.1	1397.7	120	AC	60	249	
SMR-011	386080.7	7431315.2	1409.4	120	AC	59	251	
SMR-012	385819.3	7431227.8	1389.6	120	AC	63	244	
SMR-015	385760.0	7431261.9	1378.0	90	AC	58	250	
SMR-016	385826.6	7431276.4	1393.8	120	AC	65	250	
SMR-017	386064.0	7431364.5	1413.9	120	AC	60	249	

Criteria	JORC Code explanation						Commentary	
SMR-020	385780.1	7431321.9	1379.4	121	AC		60	251
SMR-023	386015.2	7431399.8	1401.1	113	AC		59	259
SMR-025	385769.2	7431369.5	1384.6	120	AC		61	249
SMR-026	386020.3	7431454.0	1393.6	120	AC		61	253
SMR-028	385801.3	7431431.5	1392.2	120	AC		47	248
SMR-030	386008.2	7431502.1	1391.6	85	AC		60	246
SMR-031	385801.6	7431484.9	1386.7	121	AC		58	249
SMR-033	385999.5	7431549.4	1393.3	120	AC		44	250
SMR-034	385720.6	7431511.3	1381.7	60	AC		49	253
SMR-035	385789.7	7431534.1	1376.7	120	AC		60	248
SMR-036	385963.9	7431591.9	1388.1	120	AC		50	245
SMR-038	385764.2	7431579.5	1372.4	116	AC		61	248
SMR-038B	385728.4	7431566.1	1373.3	102	AC		56	247
SMR-038D	385749.1	7431626.3	1384.7	120	AC		57	247
SMR-039	385950.3	7431639.9	1388.1	105	AC		50	252
SMR-041	385681.9	7431655.7	1371.7	120	AC		57	250
SMR-043	385671.5	7431757.6	1387.9	120	AC		59	250
SMR-046	385651.9	7431857.1	1373.1	120	AC		68	247
SMR-061	385466.8	7429542.2	1257.3	120	AC		64	302
SMR-062	385523.9	7429468.3	1257.3	100	AC		53	300
SMR-097	385447.7	7429950.0	1301.0	79	AC		59	274
SMR-101	385459.0	7430200.3	1340.1	100	AC		57	271
SMR-102	385526.6	7430100.1	1331.0	60	AC		88	202
SMR-103	385577.6	7430299.9	1342.7	100	AC		65	267

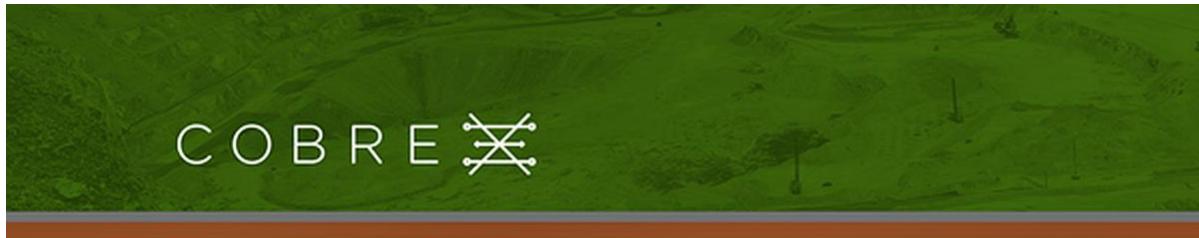
Criteria	JORC Code explanation					Commentary	
SMR-104	385483.9	7429700.0	1281.6	85	AC	53	273
SMR-105	385651.8	7430600.1	1363.8	120	AC	59	271
SMR-106	385607.6	7430400.0	1339.9	25	AC	56	268
SMR-107	385673.9	7430749.9	1349.5	120	AC	58	271
SMR-108	385675.3	7430850.1	1356.0	120	AC	41	268
SMR-109	385638.8	7430800.0	1349.4	120	AC	59	270
SMR-110	385647.6	7430700.1	1353.9	120	AC	58	272
SMR-111	385877.8	7430450.1	1374.0	119	AC	47	271
SMR-112	385893.5	7430550.1	1379.0	120	AC	50	271
SMR-113	385881.3	7430650.0	1364.0	100	AC	50	266
SMR-114	385889.2	7430800.0	1403.5	100	AC	54	274
SMR-115	385628.8	7431000.0	1375.1	120	AC	47	268
SMR-116	385694.5	7430900.1	1365.1	120	AC	49	275
SMR-117	385671.3	7430949.9	1359.7	120	AC	49	268
SMR-118	385882.9	7430950.0	1404.5	120	AC	49	273
SMR-129	385310.2	7429101.9	1263.4	120	AC	90	360
SMR-129A	385309.2	7429102.4	1263.5	76	AC	65	294
SMR-130	385289.1	7429056.9	1262.6	120	AC	90	360
SMR-131	385309.9	7429419.9	1270.8	65	AC	90	360
SMR-132	385309.9	7429444.0	1271.1	120	AC	90	360
SMR-133	385309.9	7429395.1	1269.4	61	AC	90	360
SMR-134	385289.8	7429113.9	1264.5	120	AC	90	360
SMR-135	385266.7	7429128.2	1268.4	120	AC	90	360
SMR-136	385294.8	7429025.8	1260.8	100	AC	90	360

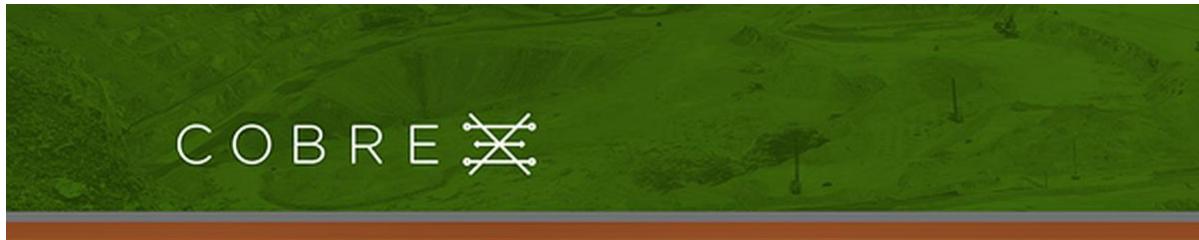
Criteria	JORC Code explanation						Commentary	
SMR-137	385269.0	7429183.9	1269.3	118	AC		90	360
SMR-138	385316.3	7429986.6	1260.8	120	AC		90	360
SMR-139	385283.0	7429002.5	1261.1	120	AC		90	360
SMR-140	385546.6	7429628.9	1284.2	120	AC		51	297
SMR-141	385484.8	7429607.7	1280.6	100	AC		90	360
SMR-142	385517.3	7429645.4	1282.3	80	AC		42	296
SMR-142A	385517.7	7429645.2	1282.2	100	AC		62	299
SMR-143	385223.1	7429152.6	1271.7	120	AC		90	360
SMR-144	385246.1	7429138.8	1269.9	120	AC		90	360
SMR-145	385507.0	7429451.9	1255.5	120	AC		69	294
SMR-147	385475.6	7429411.3	1258.1	90	AC		61	298
SMR-152	385669.0	7430450.1	1341.9	120	AC		60	262
SMR-153	385685.5	7430497.0	1341.3	100	AC		44	264
SMRC-060	385497.8	7429541.6	1268.7	170	AC		65	269
SMRC-065	385502.4	7429422.2	1255.7	68	AC		61	309
SMRC-065A	385512.9	7429417.5	1254.8	150	AC		63	301
SMRC-066	385478.1	7429435.7	1258.2	192	AC		58	298
SMRC-067	385459.7	7429446.5	1259.5	19	AC		52	302
SMRC-068	385424.3	7429446.0	1262.7	80	AC		64	250
SMRC-069	385466.7	7429386.2	1258.2	120	AC		65	306
SMRC-070	385405.8	7429422.3	1262.8	168	AC		60	299
SMRC-070A	385402.0	7429424.5	1262.9	130	AC		44	299
SMRC-071	385425.6	7429350.5	1260.1	150	AC		79	297
SMRC-072	385384.8	7429379.2	1264.3	180	AC		59	299

Criteria	JORC Code explanation						Commentary	
SMRC-072A	385369.2	7429383.2	1264.2	156	AC		43	299
SMRC-073	385414.0	7429302.6	1259.3	144	AC		64	298
SMRC-074	385375.7	7429321.3	1263.0	204	AC		62	301
SMRC-075	385342.2	7429341.8	1265.8	130	AC		63	299
SMRC-076	385327.2	7429291.3	1265.4	156	AC		64	298
SMRC-077	385369.1	7429211.2	1261.2	223	AC		63	300
SMRC-078	385336.7	7429231.5	1263.6	230	AC		63	301
SMRC-079	385313.3	7429242.6	1265.8	120	AC		64	298
SMRC-079A	385310.8	7429243.6	1265.9	180	AC		49	302
SMRC-080	385349.5	7429165.2	1262.1	186	AC		66	299
SMRC-081	385317.7	7429182.0	1265.3	150	AC		66	298
SMRC-082	385288.6	7429200.8	1267.1	140	AC		63	299
SMRC-083	385339.4	7429115.3	1262.7	180	AC		64	300
SMRC-084	385309.6	7429130.1	1265.3	162	AC		63	299
SMRC-085	385276.5	7429151.9	1268.2	150	AC		64	300
SMRC-086	385324.4	7429065.3	1261.3	200	AC		64	300
SMRC-087	385299.6	7429025.1	1260.8	200	AC		64	299
SMRC-088	385259.7	7429045.2	1264.7	150	AC		65	299
SMRC-089	385239.5	7428940.1	1262.7	219	AC		65	300
SMRC-090	385184.1	7428855.4	1265.0	216	AC		64	300
SMRC-092	385127.9	7428772.7	1267.3	250	AC		59	292
SMRC-094	385330.8	7429003.3	1258.8	210	AC		65	301
SMRC-095	385359.2	7429043.2	1258.1	200	AC		64	299
SMRC-096	385486.2	7429999.9	1308.4	21	AC		50	267

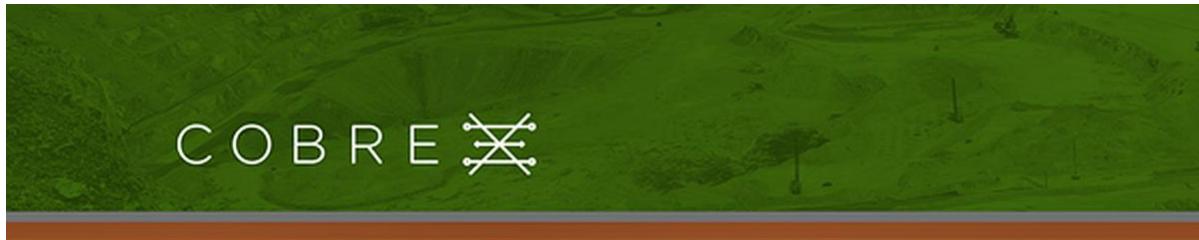
Criteria	JORC Code explanation						Commentary	
SMRC-096A	385470.2	7429999.7	1307.0	90	AC		48	264
SMRC-098	385526.1	7429750.0	1299.1	144	AC		60	270
SMRC-099	385551.1	7429899.7	1323.4	230	AC		60	269
SMRC-100	385525.1	7429849.8	1315.8	200	AC		59	268
SMRC-120	385487.3	7429950.0	1308.7	156	AC		59	270
SMRC-121	385556.7	7429949.8	1333.7	250	AC		63	267
SMRC-122	385560.6	7429949.8	1333.7	240	AC		79	263
SMRC-123	385555.9	7430000.0	1313.3	192	AC		64	268
SMRC-124	385593.3	7429999.9	1317.8	250	AC		64	270
SMRC-125	385635.7	7430049.8	1324.5	220	AC		59	267
SMRC-126	385579.0	7430049.9	1329.1	234	AC		59	269
SMRC-127	385639.5	7430099.9	1337.0	168	AC		58	270
SMRC-128	385594.7	7430149.8	1345.7	114	AC		64	269
SPD-01	385217.9	7429440.8	1278.4	80	AR		90	360
SPD-02	385236.7	7429381.7	1276.7	103	AR		75	270
SPD-03	385270.9	7429557.7	1276.5	73	AR		45	270
SPD-04	385263.9	7429317.1	1271.3	83.5	AR		60	270
SPD-05	385237.5	7429268.5	1273.1	66	AR		75	270
SPD-06	385247.3	7429226.7	1270.1	84	AR		75	270
SPD-07	385267.0	7429185.0	1270.1	81	AR		70	270
SPD-08	385222.0	7429152.3	1271.4	58	AR		70	300
SPD-09	385206.1	7429122.4	1272.2	35.5	AR		75	300
SPD-10	385178.9	7429093.0	1273.4	61	AR		80	300
V-07	385473.5	7430004.0	1293.0	94.5	AC		15	275

Criteria	JORC Code explanation						Commentary	
V-08	385473.5	7430004.0	1292.0	85.5	AC		57	275
V-09	385473.5	7430004.0	1292.0	72	AC		45	305
V-14	385586.1	7430244.9	1211.5	133	AC		-5	289
V-15	385586.2	7430245.0	1211.6	140.5	AC		-5	1
V-16	385601.0	7430273.4	1212.4	140.5	AC		5	1
VAL-01	385451.7	7432297.9	1345.9	11	AC		90	0
VAL-02	385452.8	7432295.7	1345.9	11	AC		90	0
VAL-03	385453.7	7432293.8	1345.9	11	AC		90	0
VAL-04	385454.8	7432291.2	1345.9	11	AC		90	0
VAL-05	385450.1	7432290.2	1345.9	11	AC		90	0
VAL-06	385448.1	7432289.2	1345.9	11	AC		90	0
VAL-07	385442.5	7432290.2	1345.9	11	AC		90	0
VAL-08	385372.7	7432313.2	1352.2	11	AC		90	0
VAL-09	385374.3	7432310.7	1351.8	11	AC		90	0
VAL-10	385367.1	7432307.4	1353.2	11	AC		90	0
VAL-100	385415.3	7432277.3	1350.8	8.6	AC		80	0
VAL-101	385415.6	7432271.7	1351.8	9.2	AC		80	0
VAL-102	385417.2	7432269.1	1351.8	9	AC		80	0
VAL-103	385418.7	7432266.6	1351.7	9.3	AC		80	0
VAL-104	385420.3	7432264.0	1351.4	9.3	AC		80	0
VAL-105	385421.8	7432261.4	1351.1	9.2	AC		80	0
VAL-106	385410.8	7432274.6	1352.3	8.9	AC		80	0
VAL-107	385416.8	7432274.8	1351.1	10	AC		80	0
VAL-108	385409.6	7432271.6	1352.9	9.8	AC		80	0


Criteria	JORC Code explanation						Commentary	
VAL-109	385411.2	7432269.0	1352.9	9.6	AC	80	0	
VAL-11	385368.7	7432304.9	1353.4	11	AC	90	0	
VAL-110	385412.7	7432266.4	1352.7	9.6	AC	80	0	
VAL-111	385418.4	7432272.2	1351.1	9.4	AC	80	0	
VAL-112	385419.9	7432269.6	1351.1	9.2	AC	80	0	
VAL-113	385421.5	7432267.0	1351.0	9.5	AC	80	0	
VAL-114	385414.1	7432274.3	1351.7	9.4	AC	80	0	
VAL-115	385427.9	7432240.3	1347.7	9.3	AC	80	0	
VAL-116	385429.4	7432237.7	1346.6	9.2	AC	80	0	
VAL-117	385431.0	7432235.2	1345.6	9.8	AC	80	0	
VAL-118	385450.6	7432300.2	1345.1	9.7	AC	90	0	
VAL-119	385449.2	7432292.2	1345.9	9.5	AC	90	0	
VAL-12	385370.3	7432302.3	1353.6	11	AC	90	0	
VAL-120	385451.2	7432288.3	1345.9	9.6	AC	90	0	
VAL-121	385444.9	7432296.6	1347.1	9.6	AC	90	0	
VAL-122	385451.8	7432300.6	1344.6	9.6	AC	90	0	
VAL-123	385440.0	7432297.1	1347.8	9.6	AC	90	0	
VAL-124	385440.3	7432294.7	1347.8	9.4	AC	90	0	
VAL-125	385438.0	7432293.5	1347.9	9.7	AC	90	0	
VAL-126	385437.8	7432291.1	1345.9	9.6	AC	90	0	
VAL-127	385439.9	7432290.7	1345.9	9.5	AC	90	0	
VAL-128	385453.4	7432298.8	1345.9	9.6	AC	90	0	
VAL-129	385435.4	7432295.2	1348.0	9.7	AC	90	0	
VAL-13	385371.9	7432299.8	1353.5	11	AC	90	0	


Criteria	JORC Code explanation						Commentary	
VAL-130	385432.8	7432293.9	1347.5	9.7	AC	90	0	
VAL-131	385454.6	7432296.7	1345.9	9.6	AC	90	0	
VAL-132	385447.1	7432303.1	1346.1	9.5	AC	90	0	
VAL-133	385448.5	7432301.9	1345.7	8.4	AC	90	0	
VAL-134	385368.6	7432300.1	1353.8	8.2	AC	90	0	
VAL-135	385370.2	7432297.5	1353.6	10	AC	90	0	
VAL-136	385367.5	7432297.0	1353.8	10	AC	90	0	
VAL-137	385369.1	7432294.5	1353.4	10	AC	90	0	
VAL-138	385370.7	7432291.9	1353.2	9.8	AC	90	0	
VAL-139	385364.2	7432297.3	1353.6	9.6	AC	90	0	
VAL-14	385373.5	7432297.2	1353.5	11	AC	90	0	
VAL-140	385357.4	7432328.0	1353.3	9.7	AC	90	0	
VAL-141	385365.8	7432294.8	1353.5	9.6	AC	90	0	
VAL-142	385358.8	7432325.3	1353.4	9.4	AC	90	0	
VAL-143	385367.4	7432292.2	1353.2	9.5	AC	90	0	
VAL-144	385360.3	7432322.7	1353.2	9.7	AC	90	0	
VAL-145	385369.0	7432289.7	1353.0	9.8	AC	90	0	
VAL-146	385361.7	7432320.1	1353.3	9.5	AC	90	0	
VAL-147	385363.1	7432317.4	1353.3	9.4	AC	90	0	
VAL-148	385364.6	7432314.8	1353.2	9.3	AC	90	0	
VAL-149	385352.4	7432320.7	1353.5	9.1	AC	90	0	
VAL-15	385375.1	7432294.7	1353.7	11	AC	90	0	
VAL-150	385353.9	7432318.1	1353.6	9.2	AC	90	0	
VAL-151	385355.3	7432315.4	1353.7	9.2	AC	90	0	

Criteria	JORC Code explanation						Commentary	
VAL-152	385377.8	7432292.0	1353.7	9.6	AC	80	0	
VAL-153	385379.4	7432289.5	1353.6	9.2	AC	80	0	
VAL-154	385381.0	7432286.9	1353.4	9	AC	80	0	
VAL-155	385373.4	7432289.3	1353.2	8.8	AC	80	0	
VAL-156	385375.0	7432286.7	1353.2	9.1	AC	80	0	
VAL-157	385376.5	7432284.2	1353.0	9.3	AC	80	0	
VAL-158	385371.7	7432287.0	1353.0	9	AC	80	0	
VAL-159	385373.3	7432284.5	1352.9	8.9	AC	80	0	
VAL-16	385375.9	7432308.1	1351.9	11	AC	90	0	
VAL-160	385394.5	7432276.4	1353.7	8.6	AC	80	0	
VAL-161	385394.9	7432266.0	1352.7	8.7	AC	80	0	
VAL-162	385396.1	7432273.9	1353.7	9.1	AC	80	0	
VAL-163	385396.5	7432263.5	1352.7	9.9	AC	80	0	
VAL-164	385398.0	7432261.0	1352.7	10	AC	80	0	
VAL-165	385387.4	7432273.1	1353.1	9.7	AC	80	0	
VAL-166	385388.9	7432270.6	1353.0	9.3	AC	80	0	
VAL-167	385390.5	7432268.1	1352.8	9.2	AC	80	0	
VAL-168	385397.7	7432271.3	1353.5	9.2	AC	80	0	
VAL-169	385393.6	7432258.2	1351.8	9.1	AC	80	0	
VAL-17	385365.5	7432305.2	1353.5	11	AC	90	0	
VAL-170	385395.2	7432255.7	1351.6	8.9	AC	80	0	
VAL-171	385404.0	7432261.2	1353.0	9.2	AC	80	0	
VAL-172	385406.9	7432256.9	1352.7	9.2	AC	90	0	
VAL-173	385408.5	7432254.4	1352.4	9	AC	90	0	


Criteria	JORC Code explanation						Commentary	
VAL-174	385407.3	7432246.5	1351.2	8.7	AC	90	0	
VAL-175	385408.9	7432244.0	1350.5	9.7	AC	90	0	
VAL-176	385410.5	7432241.5	1349.6	8.7	AC	90	0	
VAL-177	385410.1	7432251.8	1352.2	8.7	AC	90	0	
VAL-178	385399.8	7432253.6	1351.9	8.5	AC	90	0	
VAL-179	385401.4	7432251.1	1351.5	9.1	AC	90	0	
VAL-18	385367.1	7432302.6	1353.6	11	AC	90	0	
VAL-180	385403.0	7432248.6	1351.4	9	AC	90	0	
VAL-181	385414.9	7432244.2	1350.2	8.8	AC	90	0	
VAL-182	385416.5	7432241.7	1349.4	8.6	AC	90	0	
VAL-183	385418.1	7432239.1	1348.6	8.3	AC	90	0	
VAL-184	385356.0	7432301.9	1353.2	8.2	AC	80	0	
VAL-185	385346.4	7432312.4	1353.3	8.2	AC	80	0	
VAL-186	385342.1	7432314.4	1352.8	9.5	AC	80	0	
VAL-187	385354.0	7432310.1	1353.7	8	AC	80	0	
VAL-188	385355.9	7432297.0	1353.0	9	AC	80	0	
VAL-189	385375.7	7432319.5	1352.2	8.9	AC	90	0	
VAL-19	385371.8	7432295.0	1353.4	11	AC	90	0	
VAL-190	385374.4	7432316.5	1352.4	8.7	AC	90	0	
VAL-191	385394.8	7432297.6	1353.0	8.4	AC	90	0	
VAL-192	385396.3	7432295.1	1352.6	8.1	AC	90	0	
VAL-193	385390.5	7432299.7	1353.2	7.8	AC	90	0	
VAL-194	385392.0	7432297.2	1353.4	7.6	AC	90	0	
VAL-195	385387.6	7432294.5	1354.2	9.4	AC	90	0	

Criteria	JORC Code explanation						Commentary	
VAL-196	385389.1	7432291.9	1354.0	9.4	AC	90	0	
VAL-197	385412.4	7432272.1	1352.4	9.2	AC	80	0	
VAL-198	385413.9	7432269.5	1352.4	9	AC	80	0	
VAL-199	385415.5	7432266.9	1352.3	9.3	AC	80	0	
VAL-20	385357.3	7432333.6	1353.2	11	AC	90	0	
VAL-200	385417.0	7432264.4	1352.0	9.4	AC	80	0	
VAL-201	385418.5	7432261.8	1351.8	8.7	AC	80	0	
VAL-202	385420.1	7432259.2	1351.5	8.6	AC	80	0	
VAL-203	385421.6	7432256.6	1351.3	8.3	AC	80	0	
VAL-204	385414.3	7432263.9	1352.5	8.1	AC	80	0	
VAL-205	385415.8	7432261.3	1352.3	7.7	AC	80	0	
VAL-206	385417.3	7432258.7	1352.0	7	AC	80	0	
VAL-207	385418.9	7432256.2	1351.6	6.2	AC	80	0	
VAL-208	385420.4	7432253.6	1351.3	5.4	AC	80	0	
VAL-209	385406.4	7432272.0	1353.4	4.7	AC	80	0	
VAL-21	385373.4	7432292.5	1353.4	11	AC	90	0	
VAL-210	385407.9	7432269.4	1353.2	8.4	AC	80	0	
VAL-211	385409.4	7432266.8	1352.9	8.2	AC	80	0	
VAL-212	385401.9	7432269.3	1353.6	8	AC	80	0	
VAL-213	385403.4	7432266.7	1353.5	7.8	AC	80	0	
VAL-214	385405.0	7432264.1	1353.3	7.2	AC	80	0	
VAL-215	385422.9	7432253.6	1351.0	6.5	AC	80	0	
VAL-216	385423.2	7432248.0	1350.3	5.6	AC	80	0	
VAL-217	385424.8	7432245.4	1349.5	4.6	AC	80	0	

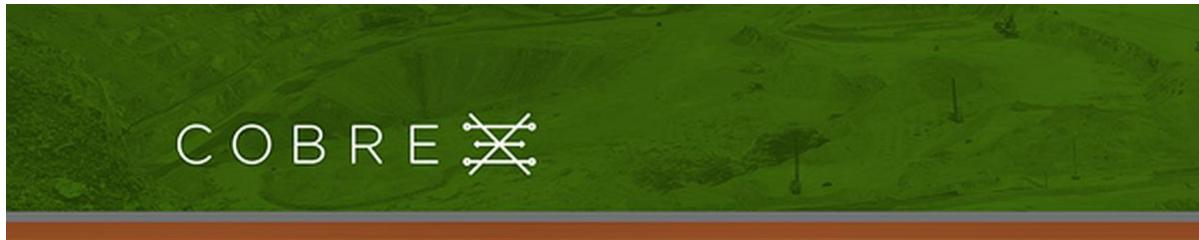

Criteria	JORC Code explanation						Commentary	
VAL-218	385426.3	7432242.9	1348.7	8.2	AC	80	0	
VAL-219	385418.4	7432251.0	1351.3	7.9	AC	80	0	
VAL-22	385358.7	7432331.0	1353.0	11	AC	90	0	
VAL-220	385420.0	7432248.4	1350.8	7.5	AC	80	0	
VAL-221	385421.5	7432245.8	1350.0	7.4	AC	80	0	
VAL-222	385423.1	7432243.3	1349.2	7.1	AC	80	0	
VAL-223	385424.6	7432240.7	1348.3	6.3	AC	80	0	
VAL-224	385426.1	7432238.1	1347.2	5.5	AC	80	0	
VAL-225	385427.7	7432235.5	1346.1	4.4	AC	80	0	
VAL-226	385421.9	7432240.2	1348.5	7.6	AC	80	0	
VAL-227	385423.4	7432237.6	1347.4	7.3	AC	80	0	
VAL-228	385424.9	7432235.1	1346.3	6.9	AC	80	0	
VAL-229	385433.5	7432246.0	1347.2	6.7	AC	80	0	
VAL-23	385360.1	7432328.3	1352.8	11	AC	90	0	
VAL-230	385435.1	7432243.5	1347.0	6.3	AC	80	0	
VAL-231	385436.6	7432240.9	1346.1	5.4	AC	80	0	
VAL-232	385438.2	7432238.3	1345.1	4.5	AC	80	0	
VAL-233	385448.8	7432304.3	1345.3	7	AC	90	0	
VAL-234	385454.9	7432289.2	1345.9	6.9	AC	90	0	
VAL-235	385444.9	7432302.0	1346.7	6.6	AC	90	0	
VAL-236	385446.4	7432300.5	1346.7	6.1	AC	90	0	
VAL-237	385447.0	7432297.8	1346.5	5.7	AC	90	0	
VAL-238	385447.8	7432294.1	1345.9	4.8	AC	90	0	
VAL-239	385450.5	7432303.2	1344.8	4	AC	90	0	

Criteria	JORC Code explanation						Commentary	
VAL-24	385361.6	7432325.7	1353.2	11	AC	90	0	
VAL-240	385444.5	7432299.2	1347.2	6.2	AC	90	0	
VAL-241	385442.7	7432300.4	1347.5	5.4	AC	90	0	
VAL-242	385442.7	7432298.1	1347.6	4.6	AC	90	0	
VAL-243	385443.1	7432295.8	1347.4	9.7	AC	90	0	
VAL-244	385445.2	7432293.4	1345.9	9.5	AC	90	0	
VAL-245	385446.8	7432291.1	1345.9	9.4	AC	90	0	
VAL-246	385440.4	7432299.7	1347.7	9.5	AC	90	0	
VAL-247	385438.0	7432298.5	1347.8	9.2	AC	90	0	
VAL-248	385437.8	7432296.3	1348.0	9.2	AC	90	0	
VAL-249	385435.7	7432297.5	1348.3	9.1	AC	90	0	
VAL-25	385377.5	7432305.6	1352.2	11	AC	90	0	
VAL-250	385432.9	7432296.4	1347.6	9.3	AC	90	0	
VAL-251	385430.5	7432294.8	1347.6	9.3	AC	90	0	
VAL-252	385430.4	7432292.3	1347.3	9.6	AC	90	0	
VAL-253	385428.0	7432293.2	1347.0	9.2	AC	90	0	
VAL-254	385455.7	7432294.8	1345.9	9	AC	90	0	
VAL-255	385456.4	7432292.3	1345.9	8.9	AC	90	0	
VAL-256	385373.1	7432307.6	1352.3	8.8	AC	90	0	
VAL-257	385374.7	7432305.1	1352.7	9.6	AC	90	0	
VAL-258	385376.3	7432302.5	1353.0	9	AC	90	0	
VAL-259	385377.9	7432300.0	1353.2	8.8	AC	90	0	
VAL-26	385363.0	7432323.1	1352.8	11	AC	90	0	
VAL-260	385368.3	7432310.5	1352.6	9.7	AC	90	0	

Criteria	JORC Code explanation						Commentary	
VAL-261	385369.9	7432307.9	1352.7	9.7	AC	90	0	
VAL-262	385371.5	7432305.4	1353.1	9.4	AC	90	0	
VAL-263	385373.1	7432302.8	1353.3	9.4	AC	90	0	
VAL-264	385374.6	7432300.3	1353.4	9.5	AC	90	0	
VAL-265	385376.2	7432297.8	1353.4	9.4	AC	90	0	
VAL-266	385363.9	7432307.7	1353.4	9.4	AC	90	0	
VAL-267	385362.7	7432304.6	1353.6	9.2	AC	90	0	
VAL-268	385364.3	7432302.1	1353.7	9.1	AC	90	0	
VAL-269	385365.9	7432299.6	1353.8	9	AC	90	0	
VAL-27	385364.4	7432320.4	1352.9	11	AC	90	0	
VAL-270	385359.5	7432305.0	1353.5	8.9	AC	90	0	
VAL-271	385361.1	7432302.4	1353.6	9.3	AC	90	0	
VAL-272	385362.6	7432299.9	1353.5	9.4	AC	90	0	
VAL-273	385366.0	7432312.2	1352.9	9.3	AC	90	0	
VAL-274	385355.6	7432325.8	1353.6	2.6	AC	90	0	
VAL-275	385357.0	7432323.2	1353.6	2.5	AC	90	0	
VAL-276	385358.4	7432320.6	1353.4	3	AC	90	0	
VAL-277	385359.9	7432317.9	1353.5	3.2	AC	90	0	
VAL-278	385361.3	7432315.3	1353.4	2.7	AC	90	0	
VAL-279	385362.8	7432312.7	1353.3	2.1	AC	90	0	
VAL-28	385365.9	7432317.8	1353.0	11	AC	90	0	
VAL-280	385364.2	7432310.0	1353.2	1.9	AC	90	0	
VAL-281	385351.4	7432328.1	1353.8	4	AC	90	0	
VAL-282	385352.8	7432325.5	1353.7	3.8	AC	90	0	

Criteria	JORC Code explanation						Commentary	
VAL-283	385354.2	7432322.8	1353.5	3.9	AC	90	0	
VAL-284	385355.7	7432320.2	1353.6	4.1	AC	90	0	
VAL-285	385357.1	7432317.6	1353.6	3.7	AC	90	0	
VAL-286	385358.6	7432314.9	1353.6	3.2	AC	90	0	
VAL-287	385360.0	7432312.3	1353.6	3	AC	90	0	
VAL-288	385361.4	7432309.7	1353.4	2.6	AC	90	0	
VAL-289	385349.6	7432326.0	1353.7	1.9	AC	90	0	
VAL-29	385367.3	7432315.2	1352.9	11	AC	90	0	
VAL-290	385351.0	7432323.3	1353.6	7.5	AC	90	0	
VAL-291	385356.8	7432312.8	1353.7	7.6	AC	90	0	
VAL-292	385358.2	7432310.2	1353.6	8	AC	90	0	
VAL-293	385359.6	7432307.5	1353.5	8.3	AC	90	0	
VAL-294	385370.0	7432312.7	1352.4	7.9	AC	90	0	
VAL-295	385371.6	7432310.2	1352.2	8.2	AC	90	0	
VAL-296	385382.2	7432294.8	1354.0	8.3	AC	80	0	
VAL-297	385383.8	7432292.2	1353.8	7.9	AC	80	0	
VAL-298	385377.7	7432287.3	1353.3	8.4	AC	80	0	
VAL-299	385379.3	7432284.7	1353.1	8.2	AC	80	0	
VAL-30	385368.8	7432312.5	1352.6	11	AC	90	0	
VAL-300	385380.9	7432282.2	1353.2	7.4	AC	80	0	
VAL-301	385385.4	7432289.7	1353.6	6.9	AC	80	0	
VAL-302	385394.9	7432270.8	1353.3	7.1	AC	80	0	
VAL-303	385396.5	7432268.3	1353.2	7.2	AC	80	0	
VAL-304	385398.1	7432265.7	1353.2	6.4	AC	80	0	

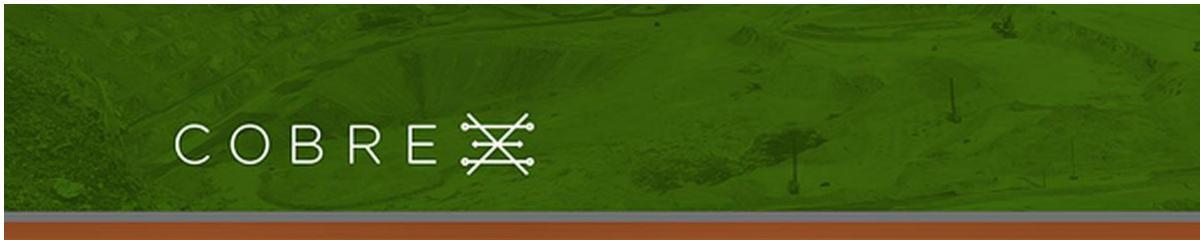
Criteria	JORC Code explanation						Commentary	
VAL-305	385399.7	7432263.2	1353.1	6.7	AC	80	0	
VAL-306	385401.3	7432260.6	1352.9	7.6	AC	80	0	
VAL-307	385399.6	7432258.4	1352.5	8.3	AC	80	0	
VAL-308	385392.1	7432265.5	1352.6	8.7	AC	80	0	
VAL-309	385393.7	7432263.0	1352.3	9	AC	80	0	
VAL-31	385353.1	7432335.9	1353.6	11	AC	90	0	
VAL-310	385395.3	7432260.4	1352.2	8.6	AC	80	0	
VAL-311	385396.9	7432257.9	1352.2	6.9	AC	80	0	
VAL-312	385398.5	7432255.3	1352.0	7.7	AC	80	0	
VAL-313	385388.9	7432265.8	1352.7	8.6	AC	80	0	
VAL-314	385390.5	7432263.3	1352.4	9.2	AC	80	0	
VAL-315	385392.0	7432260.7	1352.1	9.4	AC	80	0	
VAL-316	385399.3	7432268.8	1353.4	7.1	AC	80	0	
VAL-317	385400.9	7432266.3	1353.4	7.1	AC	80	0	
VAL-318	385402.4	7432263.7	1353.2	7.6	AC	80	0	
VAL-319	385391.8	7432275.9	1353.3	8.5	AC	80	0	
VAL-32	385354.5	7432333.2	1353.8	11	AC	90	0	
VAL-320	385393.4	7432273.4	1353.4	9.4	AC	80	0	
VAL-321	385404.2	7432256.4	1352.6	9.8	AC	90	0	
VAL-322	385405.8	7432253.9	1352.3	9.9	AC	90	0	
VAL-323	385407.4	7432251.3	1352.1	9.9	AC	90	0	
VAL-324	385409.0	7432248.8	1351.7	7.3	AC	90	0	
VAL-325	385410.6	7432246.2	1351.0	7.6	AC	90	0	
VAL-326	385412.2	7432243.7	1350.2	7.8	AC	90	0	


Criteria	JORC Code explanation						Commentary	
VAL-327	385413.7	7432241.1	1349.4	8.7	AC	90	0	
VAL-328	385415.3	7432238.6	1348.7	9.4	AC	90	0	
VAL-329	385412.1	7432238.9	1348.6	9.8	AC	90	0	
VAL-33	385355.9	7432330.6	1353.5	11	AC	90	0	
VAL-330	385404.6	7432246.0	1351.1	10.2	AC	90	0	
VAL-331	385406.2	7432243.5	1350.3	10	AC	90	0	
VAL-332	385407.7	7432240.9	1349.5	7.1	AC	90	0	
VAL-333	385409.3	7432238.4	1348.4	6.8	AC	90	0	
VAL-334	385411.7	7432249.3	1351.6	7.8	AC	90	0	
VAL-335	385401.3	7432246.3	1350.7	7.8	AC	90	0	
VAL-336	385402.9	7432243.8	1350.3	7.7	AC	90	0	
VAL-337	385404.5	7432241.2	1349.4	7.4	AC	90	0	
VAL-338	385406.1	7432238.7	1348.5	7.1	AC	90	0	
VAL-339	385413.3	7432246.8	1350.9	6.9	AC	90	0	
VAL-34	385379.1	7432303.1	1352.6	11	AC	90	0	
VAL-340	385400.2	7432243.3	1349.7	6.7	AC	90	0	
VAL-341	385401.7	7432240.7	1348.8	8.3	AC	90	0	
VAL-342	385403.3	7432238.2	1348.0	8.4	AC	90	0	
VAL-343	385348.1	7432314.6	1353.4	8.4	AC	80	0	
VAL-344	385349.7	7432312.1	1353.5	7.1	AC	80	0	
VAL-345	385344.8	7432315.0	1353.3	8.3	AC	80	0	
VAL-346	385352.8	7432302.2	1353.0	8	AC	80	0	
VAL-347	385354.4	7432299.7	1352.9	7.8	AC	80	0	
VAL-348	385350.8	7432315.2	1353.6	7.5	AC	80	0	

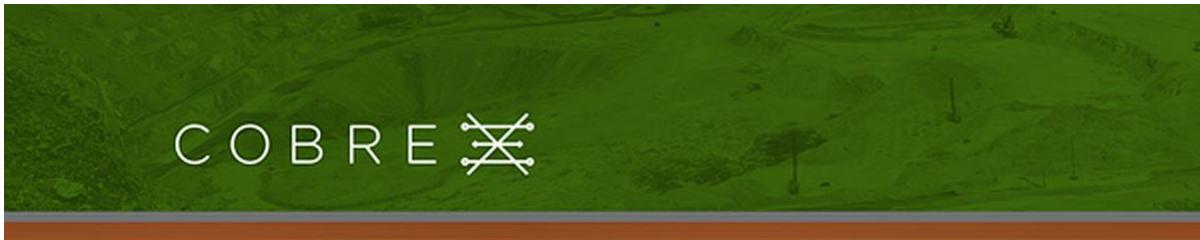
Criteria	JORC Code explanation						Commentary	
VAL-349	385350.0	7432301.7	1352.8	7.3	AC	80	0	
VAL-35	385352.7	7432331.1	1354.0	11	AC	90	0	
VAL-350	385352.4	7432312.6	1353.7	8.9	AC	80	0	
VAL-351	385358.8	7432302.5	1353.5	8.9	AC	80	0	
VAL-352	385360.3	7432299.8	1353.4	8.7	AC	80	0	
VAL-353	385360.7	7432294.1	1353.1	8.5	AC	80	0	
VAL-354	385357.4	7432294.5	1352.9	8.3	AC	80	0	
VAL-355	385361.9	7432297.2	1353.3	7.1	AC	80	0	
VAL-356	385363.4	7432294.7	1353.4	8	AC	80	0	
VAL-357	385357.5	7432299.2	1353.3	7.6	AC	80	0	
VAL-358	385374.6	7432326.9	1351.5	7.3	AC	90	0	
VAL-359	385376.0	7432324.2	1351.6	9.4	AC	90	0	
VAL-36	385354.1	7432328.5	1353.8	11	AC	90	0	
VAL-360	385377.5	7432321.6	1352.0	9.2	AC	90	0	
VAL-361	385378.9	7432319.0	1352.3	8.9	AC	90	0	
VAL-362	385380.4	7432316.3	1351.9	9	AC	90	0	
VAL-363	385377.1	7432316.9	1352.3	8.8	AC	90	0	
VAL-364	385378.6	7432314.2	1351.9	8.5	AC	90	0	
VAL-365	385375.8	7432313.9	1352.2	8.1	AC	90	0	
VAL-366	385377.2	7432311.2	1351.4	7.1	AC	90	0	
VAL-367	385382.1	7432324.1	1350.9	7.8	AC	90	0	
VAL-368	385383.5	7432321.5	1351.1	9.4	AC	90	0	
VAL-369	385384.9	7432318.8	1351.2	9.2	AC	90	0	
VAL-37	385380.6	7432300.5	1353.2	11	AC	90	0	

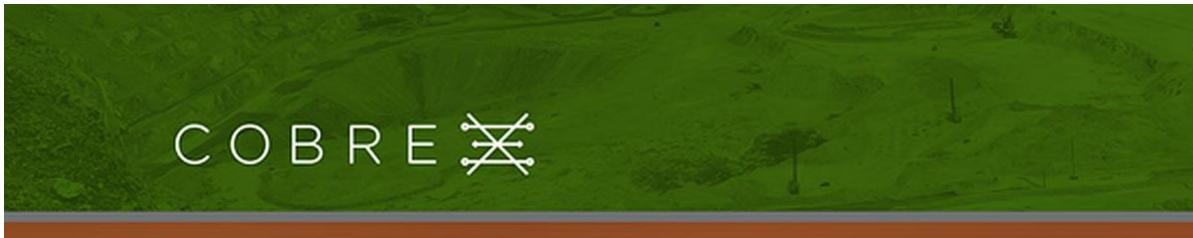
Criteria	JORC Code explanation						Commentary	
VAL-370	385387.1	7432310.5	1350.4	9.3	AC	90	0	
VAL-371	385388.6	7432307.9	1350.7	9.1	AC	90	0	
VAL-372	385390.2	7432305.4	1351.6	8.8	AC	90	0	
VAL-373	385391.7	7432302.8	1352.3	8.4	AC	90	0	
VAL-374	385393.2	7432300.2	1352.7	8	AC	90	0	
VAL-375	385385.9	7432307.4	1350.9	7.4	AC	90	0	
VAL-376	385387.4	7432304.9	1351.7	9.6	AC	90	0	
VAL-377	385389.0	7432302.3	1352.6	7	AC	90	0	
VAL-378	385385.7	7432302.7	1352.5	9.5	AC	90	0	
VAL-379	385387.2	7432300.1	1353.4	9.3	AC	90	0	
VAL-38	385383.7	7432287.5	1354.0	11	AC	80	0	
VAL-380	385388.8	7432297.5	1353.8	9.1	AC	90	0	
VAL-381	385390.3	7432295.0	1353.9	8.9	AC	90	0	
VAL-382	385391.9	7432292.4	1353.9	8.6	AC	90	0	
VAL-383	385383.0	7432302.2	1352.7	8.3	AC	90	0	
VAL-384	385384.5	7432299.6	1353.4	7.9	AC	90	0	
VAL-385	385386.0	7432297.1	1353.8	6.6	AC	90	0	
VAL-386	385385.5	7432313.1	1351.1	6.3	AC	90	0	
VAL-387	385423.3	7432258.8	1350.9	6.2	AC	80	0	
VAL-388	385424.9	7432256.3	1350.7	7.7	AC	80	0	
VAL-389	385411.0	7432264.3	1353.0	6.1	AC	80	0	
VAL-39	385385.3	7432284.9	1354.0	11	AC	80	0	
VAL-390	385412.5	7432261.7	1352.8	5.9	AC	80	0	
VAL-391	385414.1	7432259.1	1352.5	4.6	AC	80	0	

Criteria	JORC Code explanation						Commentary	
VAL-392	385415.6	7432256.5	1352.1	4.5	AC	80	0	
VAL-393	385417.2	7432254.0	1351.8	3.5	AC	80	0	
VAL-394	385405.2	7432268.9	1353.4	2.6	AC	80	0	
VAL-395	385406.7	7432266.3	1353.2	1.6	AC	80	0	
VAL-396	385408.3	7432263.8	1353.3	7	AC	80	0	
VAL-397	385409.8	7432261.2	1353.1	6.5	AC	80	0	
VAL-398	385411.3	7432258.6	1352.8	5.2	AC	80	0	
VAL-399	385412.9	7432256.1	1352.4	5.3	AC	80	0	
VAL-40	385386.9	7432282.4	1353.8	11	AC	80	0	
VAL-400	385414.4	7432253.5	1352.0	5.8	AC	80	0	
VAL-401	385416.0	7432250.9	1351.4	4.4	AC	80	0	
VAL-402	385406.5	7432261.6	1353.1	3.4	AC	80	0	
VAL-403	385408.1	7432259.0	1352.9	2.3	AC	80	0	
VAL-404	385409.6	7432256.4	1352.6	1.3	AC	80	0	
VAL-405	385411.2	7432253.9	1352.3	6.6	AC	80	0	
VAL-406	385412.7	7432251.3	1351.9	6.3	AC	80	0	
VAL-407	385423.0	7432264.5	1350.6	5.5	AC	80	0	
VAL-408	385424.5	7432261.9	1350.3	4.7	AC	80	0	
VAL-409	385426.1	7432259.3	1350.2	3.7	AC	80	0	
VAL-41	385388.5	7432279.8	1353.6	11	AC	80	0	
VAL-410	385427.3	7432256.3	1350.1	2.6	AC	80	0	
VAL-411	385427.7	7432250.7	1349.9	5.3	AC	80	0	
VAL-412	385429.2	7432248.1	1348.6	1.6	AC	80	0	
VAL-413	385430.8	7432245.6	1348.5	7.3	AC	80	0	


Criteria	JORC Code explanation						Commentary	
VAL-414	385432.3	7432243.0	1347.5	6.8	AC	80	0	
VAL-415	385433.9	7432240.4	1346.6	6	AC	80	0	
VAL-416	385435.4	7432237.8	1345.6	5.2	AC	80	0	
VAL-417	385424.4	7432251.1	1350.5	4.3	AC	80	0	
VAL-418	385426.0	7432248.5	1349.2	3.2	AC	80	0	
VAL-419	385427.5	7432245.9	1349.3	2.1	AC	80	0	
VAL-42	385382.5	7432284.4	1353.5	11	AC	80	0	
VAL-420	385428.9	7432253.8	1349.8	4.5	AC	80	0	
VAL-421	385429.1	7432243.4	1348.4	4.5	AC	80	0	
VAL-422	385430.6	7432240.8	1347.4	3.4	AC	80	0	
VAL-423	385432.1	7432238.2	1346.3	2.3	AC	80	0	
VAL-424	385433.7	7432235.6	1345.3	3.2	AC	80	0	
VAL-425	385421.7	7432250.6	1350.6	3	AC	80	0	
VAL-426	385430.4	7432251.2	1349.3	2.1	AC	80	0	
VAL-427	385432.0	7432248.6	1348.5	1.1	AC	80	0	
VAL-428	385426.1	7432253.3	1350.3	6.3	AC	80	0	
VAL-43	385384.1	7432281.8	1353.7	11	AC	80	0	
VAL-44	385385.7	7432279.3	1353.5	11	AC	80	0	
VAL-45	385376.1	7432289.8	1353.4	11	AC	80	0	
VAL-46	385378.1	7432281.6	1352.8	11	AC	80	0	
VAL-47	385379.7	7432279.1	1353.1	8.2	AC	80	0	
VAL-48	385381.3	7432276.5	1353.3	8.3	AC	80	0	
VAL-49	385374.9	7432282.0	1352.6	8.7	AC	80	0	
VAL-50	385376.5	7432279.4	1352.7	9	AC	80	0	


Criteria	JORC Code explanation						Commentary	
VAL-51	385378.1	7432276.9	1353.1	9.2	AC	80	0	
VAL-52	385380.5	7432292.6	1353.9	8.6	AC	80	0	
VAL-53	385382.1	7432290.0	1354.0	8.7	AC	80	0	
VAL-54	385390.1	7432273.7	1353.2	9.1	AC	80	0	
VAL-55	385391.7	7432271.1	1353.2	9.3	AC	80	0	
VAL-56	385393.3	7432268.6	1353.0	7.8	AC	80	0	
VAL-57	385385.7	7432270.9	1353.0	9.4	AC	80	0	
VAL-58	385387.3	7432268.4	1352.9	9.4	AC	80	0	
VAL-59	385402.5	7432254.2	1352.2	9.2	AC	90	0	
VAL-60	385404.1	7432251.6	1352.0	9.4	AC	90	0	
VAL-61	385405.7	7432249.1	1351.8	9.6	AC	90	0	
VAL-62	385398.1	7432251.4	1351.3	9.5	AC	90	0	
VAL-63	385399.7	7432248.9	1350.9	9.5	AC	90	0	
VAL-64	385395.4	7432250.9	1351.0	9.7	AC	90	0	
VAL-65	385397.0	7432248.3	1350.6	7.9	AC	90	0	
VAL-66	385398.6	7432245.8	1350.1	9.4	AC	90	0	
VAL-67	385347.6	7432320.3	1353.7	9.5	AC	80	0	
VAL-68	385346.5	7432317.2	1353.5	9.6	AC	80	0	
VAL-69	385354.4	7432304.5	1353.2	9.8	AC	80	0	
VAL-70	385343.2	7432317.5	1353.1	9.6	AC	80	0	
VAL-71	385349.2	7432317.7	1353.6	9.4	AC	80	0	
VAL-72	385351.2	7432304.8	1353.2	9.2	AC	80	0	
VAL-73	385348.4	7432304.3	1353.0	9.4	AC	80	0	
VAL-74	385355.6	7432307.5	1353.4	9	AC	80	0	


Criteria	JORC Code explanation						Commentary	
VAL-75	385357.2	7432305.0	1353.4	9.6	AC	80	0	
VAL-76	385344.9	7432319.7	1353.4	8.8	AC	80	0	
VAL-77	385359.1	7432296.7	1353.2	9.7	AC	80	0	
VAL-78	385431.7	7432268.6	1346.6	9.2	AC	80	0	
VAL-79	385433.2	7432266.1	1346.5	9.8	AC	80	0	
VAL-80	385434.7	7432263.5	1347.0	8.2	AC	80	0	
VAL-81	385436.3	7432260.9	1347.2	8.8	AC	80	0	
VAL-82	385437.8	7432258.4	1346.7	9.8	AC	80	0	
VAL-83	385439.4	7432255.8	1346.1	8.9	AC	80	0	
VAL-84	385440.9	7432253.2	1345.9	9.4	AC	80	0	
VAL-85	385428.9	7432268.2	1348.0	9	AC	80	0	
VAL-86	385430.5	7432265.6	1347.8	9.2	AC	80	0	
VAL-87	385432.0	7432263.0	1347.9	8.9	AC	80	0	
VAL-88	385433.6	7432260.4	1348.1	8.6	AC	80	0	
VAL-89	385435.1	7432257.9	1347.7	9.5	AC	80	0	
VAL-90	385436.6	7432255.3	1347.2	9.6	AC	80	0	
VAL-91	385438.2	7432252.7	1347.0	9.6	AC	80	0	
VAL-92	385439.7	7432250.2	1346.6	9.8	AC	80	0	
VAL-93	385441.3	7432247.6	1345.9	9.5	AC	80	0	
VAL-94	385381.1	7432310.4	1351.1	9.5	AC	90	0	
VAL-95	385382.6	7432307.8	1351.1	9.6	AC	90	0	
VAL-96	385384.2	7432305.3	1351.6	9.3	AC	90	0	
VAL-97	385378.3	7432309.9	1351.3	9.5	AC	90	0	
VAL-98	385379.9	7432307.3	1351.6	9.4	AC	90	0	

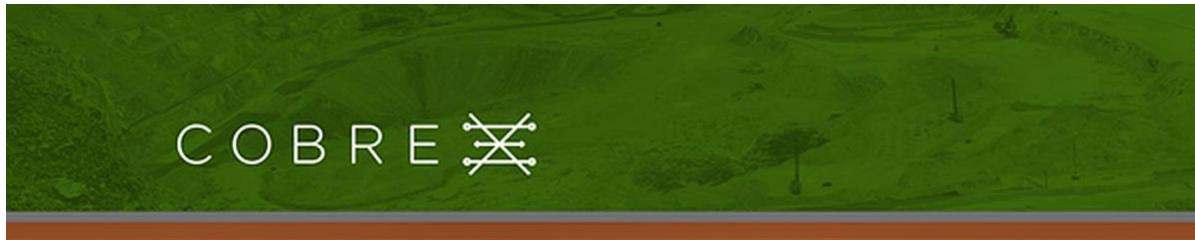

Criteria	JORC Code explanation						Commentary	
VAL-99	385381.4	7432304.8	1351.8	9.2	AC		90	0
VN-0	385467.4	7432220.2	1321.0	130	AC		7	270
VO-11	385454.3	7430067.1	1315.0	70.5	AC		90	360
VO-12	385454.3	7430065.1	1315.0	108	AC		90	360
X-1	385615.7	7430765.4	1352.7	35.5	AR		45	83
X-2	385616.4	7430765.3	1352.7	40	AR		65	83
X-3	385655.0	7430908.9	1364.0	61	AR		30	83
X-4	385653.8	7430909.2	1360.0	61	AR		0	83
X-5	385656.7	7430890.9	1358.7	70	AR		70	83
X-6	385635.3	7430858.7	1354.1	65.5	AR		-5	83
X-7	385635.9	7430858.6	1352.9	79	AR		15	83
X-8	385640.1	7430858.1	1352.1	55	AR		40	82
XC-1	386079.7	7430236.2	1161.1	91	AR		64	280
XC-2	386080.3	7430236.0	1161.2	111	AR		78	277
XC-3	386081.5	7430235.7	1161.1	130	AR		86	248
XC-4	385942.0	7431297.0	1341.0	103.5	AR		-2	75
XM-1	385800.1	7430443.4	1113.9	110	AR		49	237
XM-2	385828.6	7430459.6	1109.6	140.5	AR		51	309
XM-3	385827.6	7430460.4	1110.4	100	AR		10	308
XM-4	385829.1	7430459.0	1109.1	154	AR		7	305
XM-5	385799.5	7430442.5	1114.5	106	AR		16	237
XM-6	385800.9	7430443.6	1113.8	140.5	AR		69	240
XR-1	386086.1	7430232.6	1162.2	130	AR		8	116
XR-2	386086.2	7430232.6	1161.6	141	AR		26	116

Criteria	JORC Code explanation					Commentary	
XR-3	386085.8	7430232.7	1161.5	160	AR	35	116
XR-4	386060.7	7430174.3	1160.0	151	AR	5	117
XR-5	386060.7	7430174.6	1159.7	162	AR	20	117
XR-6	386060.5	7430174.0	1160.0	160.5	AR	35	117
XR-7	386101.4	7430599.1	1151.0	171	AR	0	51
XR-8	386102.6	7430552.4	1153.9	66	AR	0	6
XV-1	385521.0	7430132.0	1199.0	76	AR	7	270
XV-2	385521.0	7430131.6	1199.0	70	AR	28	270
XV-3	385521.8	7430135.0	1198.0	56.5	AR	6	314
Hole	From	To	CuT%	Length			
M1090220	0	4.2	19.3	4.2			
SMRC-086	67	85	4.1	18			
M1090259	0	4.2	15.5	4.2			
M1260472	0	6	10.1	6			
SMR-134	45	73	2.1	28			
SADDH-70	2	22	2.7	20			
M1260204	0	6	8.4	6			
M1070223	0	4.2	11.8	4.2			
ARC27_M5	0	2.5	18.3	2.5			
XC-2	100	109	5.1	9			
M1260160	0	6	7.3	6			
M1090137	0	2.6	16.2	2.6			
M1170124	0	4.8	8.7	4.8			
M1090114	0	4.2	9.4	4.2			

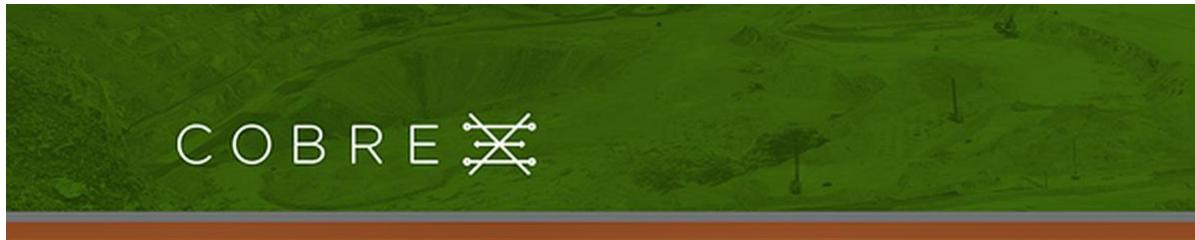
Criteria	JORC Code explanation				Commentary
M1090125	0	4.2	9.4	4.2	
SMR-129	89	103	2.7	14	
M1150124	0	6	6.1	6	
M117016	0	6	5.9	6	
M109077	0	5.5	6.4	5.5	
CHS-1	12	27	2.2	15	
M1370244	0	5.6	6	5.6	
M1370192	0	5	6.5	5	
M1370205	0	5.6	5.8	5.6	
SMRC-098	79	93	2.3	14	
M1150125	0	6	5.4	6	
M127013	0	5	6.4	5	
M13	0	2.113	15.1	2.113	
M1370110	0	5	6.4	5	
M1090126	0	4.2	7.2	4.2	
RP-09-01	198	202	7.5	4	
M1370220	0	5.1	5.5	5.1	
SM-02-09	46	58	2.3	12	
M121018	0	5.2	5.4	5.2	
RP-06-08	48	58	2.8	10	
M1370215	0	5	5.5	5	
M1070218	0	4.2	6.5	4.2	
M1290183	0	4.2	6.3	4.2	
M1370249	0	5.5	4.8	5.5	

Criteria	JORC Code explanation				Commentary
M134059	0	5.9	4.5	5.9	
011-RC7-03	164	172	3.3	8	
M1070144	0	4.2	6.3	4.2	
M1320285	0	5.5	4.8	5.5	
M1090136	0	4.2	6.3	4.2	
M1070226	0	4.2	6.2	4.2	
079-RC7-01	294	306	2.1	12	
M1210744	0	3	8.5	3	
M1090337	0	4.2	6.1	4.2	
M121024	0	4.2	5.9	4.2	
RP-01-01	32	36	6	4	
M1210629	0	5.6	4.3	5.6	
M1090167	0	3.7	6.5	3.7	
M1320270	0	6.1	3.9	6.1	
SMR-129A	56	65	2.6	9	
M11907	0	4.2	5.6	4.2	
M12703	0	5	4.7	5	
016-RC7-01	94	104	2.3	10	
M14006	0	4.2	5.3	4.2	
M109027	0	5.5	4	5.5	
M1070221	0	4.2	5.2	4.2	
M1260483	0	6	3.6	6	
SADDH-46	16	20	5.4	4	
M1090218	0	4.2	5.1	4.2	

Criteria	JORC Code explanation				Commentary
SADDH-40	20	30	2.1	10	
M1130103	0	5	4.2	5	
M1320279	0	6.8	3.1	6.8	
RP-01-02	44	52	2.6	8	
M117045	0	5.1	4.1	5.1	
M1090271	0	4.2	4.9	4.2	
M117097	0	5.1	4	5.1	
M1370222	0	5	4.1	5	
M117088	0	5.1	4	5.1	
M127022	0	5	4	5	
SADDH-36	26	30	5	4	
RC6-SA-6	186	188	10	2	
M127038	0	5	4	5	
M1290186	0	4.2	4.7	4.2	
M127028	0	5	3.9	5	
SMRC-066	55	62	2.8	7	
DTH-EXP-25	37	46	2.1	9	
M1090293	0	6	3.2	6	
M1290190	0	4.2	4.5	4.2	
RC-12A	250	252	9.5	2	
M1320323	0	4.6	4.1	4.6	
M-10	229	234	3.7	5	
M117032	0	8.9	2.1	8.9	
M1090260	0	4.2	4.4	4.2	

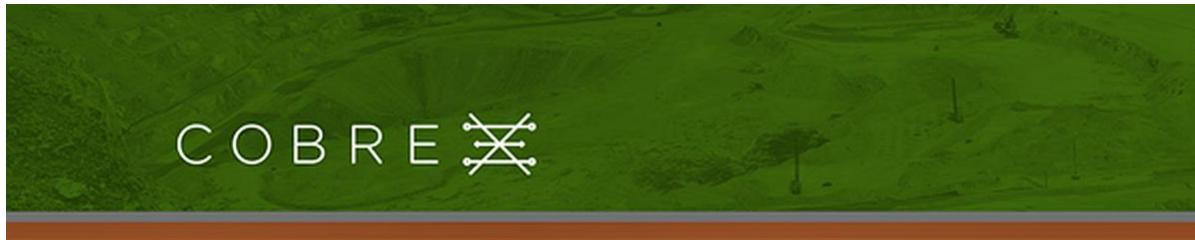

Criteria	JORC Code explanation				Commentary
M1340279	0	4	4.5	4	
M121042	0	4.2	4.2	4.2	
M1210666	0	6.2	2.8	6.2	
M1320218	0	4.2	4.2	4.2	
M1070219	0	4.2	4.1	4.2	
M119031	0	4.8	3.6	4.8	
M1210187	0	4.2	4.1	4.2	
M121041	0	4.2	4.1	4.2	
DTH-EXP-16	20.5	23.5	5.6	3	
M132042	0	4	4.2	4	
M127016	0	5	3.4	5	
M1320264	0	6.5	2.6	6.5	
M1210490	0	5.6	3	5.6	
M1090166	0	4.2	3.9	4.2	
M127019	0	5	3.3	5	
M1090239	0	4.2	3.9	4.2	
M132043	0	4.2	3.9	4.2	
M1320128	0	5.2	3.2	5.2	
M121043	0	4.2	3.9	4.2	
M1210336	0	5.3	3.1	5.3	
M1150230	0	4	4	4	
RC-12A	78	80	8	2	
M1150180	0	4	4	4	
M1370210	0	5.6	2.9	5.6	

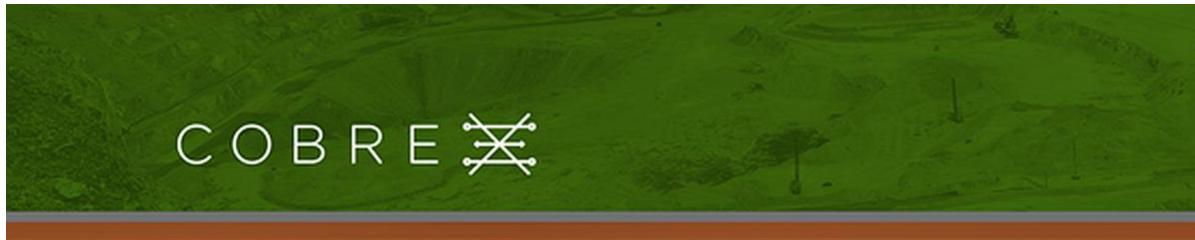
Criteria	JORC Code explanation				Commentary
M121028	0	4.2	3.8	4.2	
ARC65_M4	0	3.03	5.2	3.03	
M1320294	0	6.3	2.5	6.3	
SADDH-50	28	32	3.9	4	
M1320263	0	6.5	2.4	6.5	
M126010	0	4.2	3.7	4.2	
M1090132	0	4.2	3.7	4.2	
M1070178	0	2.1	7.4	2.1	
M1340255	0	4	3.9	4	
M1370112	0	5	3.1	5	
M1290187	0	4.2	3.7	4.2	
N06-08	11.5	17.5	2.6	6	
ARC61_M3	0	3.13	4.9	3.13	
M1070148	0	4.2	3.6	4.2	
M117067	0	4.2	3.6	4.2	
M1260450	0	6	2.5	6	
M1090236	0	4.2	3.6	4.2	
M1370245	0	5.5	2.7	5.5	
RP-00-01	106	110	3.7	4	
SADDH-72	0	2	7.5	2	
M121082	0	5.5	2.7	5.5	
M1320247	0	5.4	2.7	5.4	
SADDH-57	8	10	7.4	2	
M1090120	0	4.2	3.5	4.2	

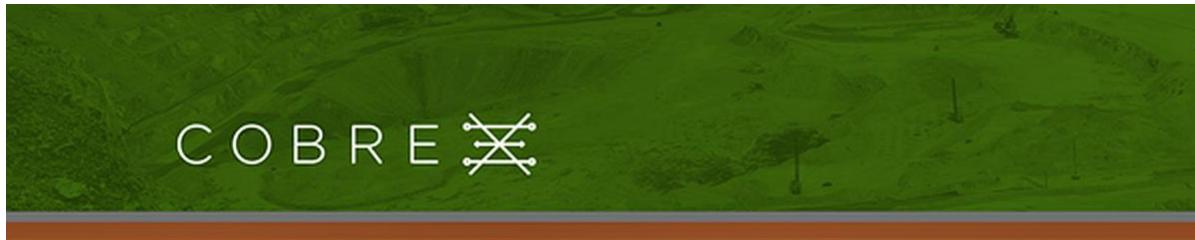

Criteria	JORC Code explanation				Commentary
M117095	0	5.1	2.9	5.1	
RP-20-03	192	196	3.6	4	
SMRC-070	44	51	2.1	7	
M1130132	0	3.1	4.7	3.1	
M1150409	0	4.2	3.5	4.2	
M134064	0	5.7	2.5	5.7	
SADDH-76	0	2	7.2	2	
M1340109	0	4	3.6	4	
SADDH-60	34	40	2.4	6	
M107023	0	4.2	3.4	4.2	
M134021	0	7	2.1	7	
M121033	0	4.2	3.4	4.2	
M1090219	0	4.2	3.4	4.2	
SADDH-36	58	64	2.4	6	
M1090208	0	4.2	3.4	4.2	
SADDH-43	20	24	3.6	4	
M1210716	0	3	4.7	3	
RP-10-04	40	44	3.6	4	
M1340294	0	4	3.5	4	
RP-06-07	42	44	7.1	2	
M1370178	0	5.4	2.6	5.4	
M1370221	0	5	2.8	5	
M1210550	0	5.3	2.6	5.3	
M1070222	0	4.2	3.3	4.2	

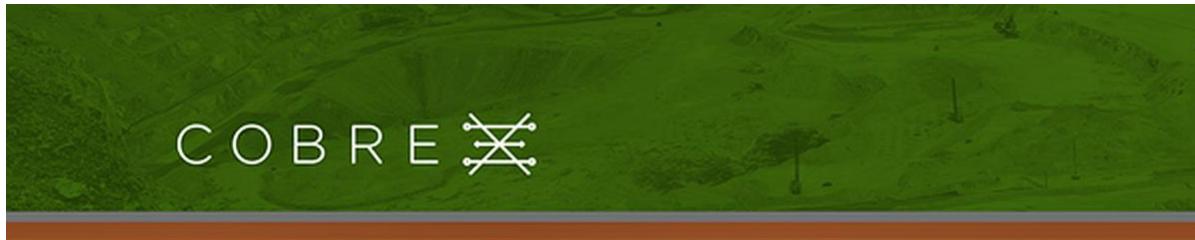
Criteria	JORC Code explanation				Commentary
M1070156	0	5.1	2.7	5.1	
M1260486	0	6	2.3	6	
M1090264	0	4.2	3.3	4.2	
M1320326	0	4.6	3	4.6	
M1070163	0	4.2	3.3	4.2	
M1090128	0	4.2	3.2	4.2	
M1090237	0	4.2	3.2	4.2	
M1260203	0	6	2.3	6	
M1370247	0	5.5	2.5	5.5	
SMR-129	116	120	3.4	4	
M121025	0	4.2	3.2	4.2	
M1150203	0	4	3.4	4	
M1150204	0	4	3.4	4	
M107078	0	2.7	4.9	2.7	
RC6-15	338	340	6.7	2	
M132012	0	4.5	2.9	4.5	
M1090188	0	2.1	6.3	2.1	
M1150394	0	4.2	3.1	4.2	
M1150407	0	4.2	3.1	4.2	
M1150221	0	4	3.3	4	
M134044	0	5	2.6	5	
M1370108	0	5.2	2.5	5.2	
M1130137	0	4.2	3.1	4.2	
M1320241	0	6	2.2	6	

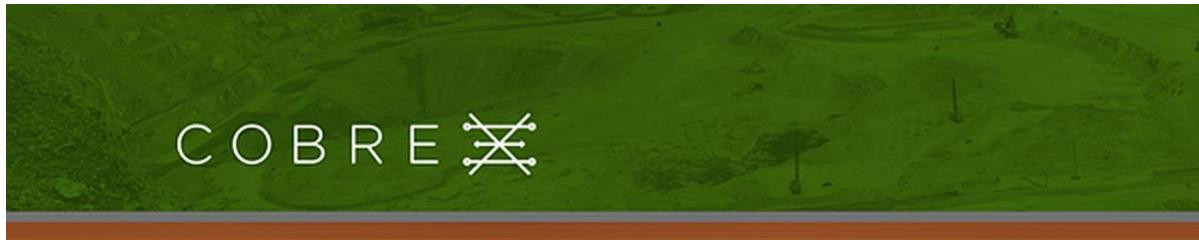
Criteria	JORC Code explanation				Commentary
M1210492	0	5.6	2.3	5.6	
M117011	0	4.5	2.9	4.5	
M1090262	0	4.2	3.1	4.2	
M1370262	0	4.6	2.8	4.6	
M1260447	0	6	2.1	6	
M1090204	0	4.2	3	4.2	
M1090287	0	4.2	3	4.2	
M1320444	0	4	3.2	4	
RC-08	256	260	3.2	4	
M1070158	0	3.5	3.6	3.5	
ARC31_M7	0	2	6.3	2	
M117044	0	5.1	2.5	5.1	
M1370138	0	5.1	2.5	5.1	
M121023	0	4.3	2.9	4.3	
SMRC-084	61	65	3.1	4	
M1090307	0	4.2	3	4.2	
SMR-015	75	81	2.1	6	
M1210477	0	5.6	2.2	5.6	
M1070138	0	4.8	2.6	4.8	
M_VILMA_6	0	2.336	5.3	2.336	
M121032	0	4.2	2.9	4.2	
M1290185	0	4.2	2.9	4.2	
M132023	0	4.2	2.9	4.2	
SADDH-34	10	14	3.1	4	


Criteria	JORC Code explanation				Commentary
M134047	0	5	2.5	5	
M1340200	0	4	3.1	4	
M1260157	0	6	2	6	
M1130102	0	5	2.4	5	
M1290199	0	4.2	2.9	4.2	
M1340222	0	4	3	4	
M1070139	0	5.2	2.3	5.2	
M1260484	0	6	2	6	
M134075	0	5	2.4	5	
SADDH-35	66	70	3	4	
M121034	0	5.2	2.3	5.2	
M1070117	0	2.2	5.4	2.2	
M1290207	0	4.2	2.8	4.2	
C-04A	23.5	28	2.6	4.5	
M1210781	0	3	3.9	3	
M1320216	0	4.2	2.8	4.2	
M1070115	0	4.2	2.8	4.2	
M1150397	0	4.2	2.8	4.2	
M1370186	0	4.9	2.4	4.9	
M1070141	0	4.2	2.8	4.2	
M1340197	0	4	2.9	4	
M107056	0	4.2	2.7	4.2	
SADDH-61	0	4	2.9	4	
M1370243	0	5.6	2.1	5.6	

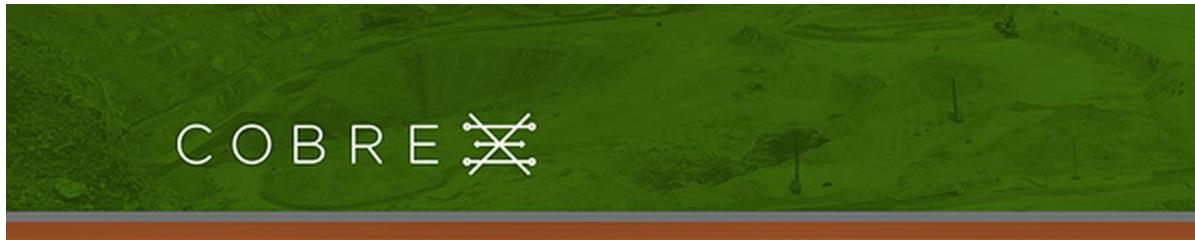

Criteria	JORC Code explanation				Commentary
M1070159	0	4.2	2.7	4.2	
SA-13	23	27	2.9	4	
M1370248	0	5.5	2.1	5.5	
M1090342	0	4.2	2.7	4.2	
M1370214	0	5	2.3	5	
M121039	0	4.2	2.7	4.2	
SMRC-072	92	97	2.3	5	
M1190222	0	4.2	2.7	4.2	
M1370274	0	4.6	2.5	4.6	
M117068	0	4.2	2.7	4.2	
M1210475	0	5.6	2	5.6	
M1370111	0	5.6	2	5.6	
M1130101	0	5	2.2	5	
M1320420	0	4	2.8	4	
M117089	0	4.3	2.6	4.3	
M1320223	0	4.2	2.6	4.2	
M1340219	0	4	2.8	4	
M1340315	0	4	2.8	4	
SI-15	90	94.5	2.4	4.5	
M1090138	0	4.2	2.6	4.2	
M1090345	0	4.2	2.6	4.2	
M1150393	0	4.2	2.6	4.2	
M1290148	0	4.2	2.6	4.2	
M1290201	0	3.8	2.9	3.8	

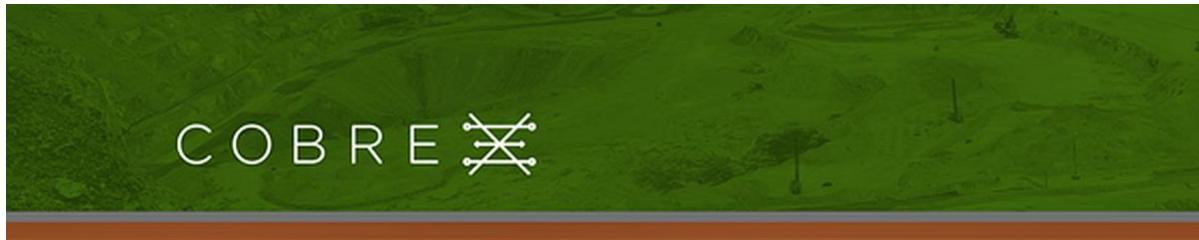

Criteria	JORC Code explanation				Commentary
M115082	0	3	3.6	3	
M1320442	0	4	2.7	4	
M1210731	0	3	3.6	3	
M121027	0	4.2	2.6	4.2	
M1190290	0	5	2.2	5	
M1210768	0	3	3.6	3	
M1210734	0	3	3.6	3	
ARC77_M4	0	3.34	3.2	3.34	
M121050	0	4.2	2.5	4.2	
M1370259	0	4.6	2.3	4.6	
M119082	0	4.2	2.5	4.2	
M129072	0	2.2	4.7	2.2	
M1320322	0	4.6	2.3	4.6	
M1170103	0	5	2.1	5	
M1090129	0	4.2	2.5	4.2	
M1090217	0	4	2.6	4	
ARC23_M3	0	2.3	4.5	2.3	
M1090165	0	4.2	2.5	4.2	
M1210393	0	4.7	2.2	4.7	
M1150389	0	4.2	2.4	4.2	
M1150226	0	4	2.6	4	
M1370160	0	4.9	2.1	4.9	
M1090258	0	2.1	4.9	2.1	
M107014	0	4.2	2.4	4.2	


Criteria	JORC Code explanation				Commentary
M119097	0	4.2	2.4	4.2	
M127027	0	5	2	5	
082-RC7-01	84	86	5.1	2	
M1090286	0	4.2	2.4	4.2	
M1340223	0	4	2.5	4	
M119095	0	4.3	2.4	4.3	
M1320465	0	4	2.5	4	
M107030	0	4.2	2.4	4.2	
011-RC7-03	264	266	5	2	
M121031	0	4.2	2.4	4.2	
M1320443	0	4	2.5	4	
M1290203	0	4.2	2.4	4.2	
RP-10-05	56	58	5	2	
M1370125	0	4.8	2.1	4.8	
M1070147	0	4.2	2.3	4.2	
M1370361	0	4.2	2.3	4.2	
M1340265	0	4	2.5	4	
M1090209	0	4.2	2.3	4.2	
M1150402	0	4.2	2.3	4.2	
M1340280	0	4	2.4	4	
M1090202	0	4.2	2.3	4.2	
M1070207	0	4.2	2.3	4.2	
M1370389	0	4.2	2.3	4.2	
SMR-009	59	63	2.4	4	

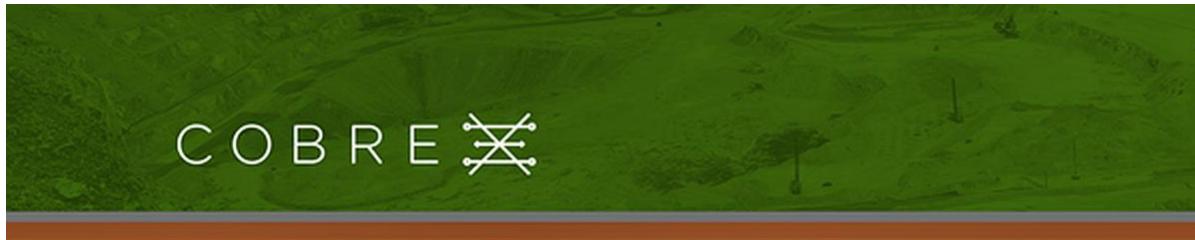

Criteria	JORC Code explanation				Commentary
M132013	0	4.5	2.1	4.5	
M1340112	0	4	2.4	4	
M1070205	0	4.2	2.3	4.2	
M1090189	0	4.2	2.3	4.2	
M1090127	0	4.2	2.3	4.2	
M1290200	0	4.2	2.3	4.2	
M1340338	0	4	2.4	4	
M1190108	0	2.7	3.5	2.7	
M1090300	0	4.2	2.3	4.2	
M1290150	0	3.7	2.6	3.7	
M1320319	0	4.6	2.1	4.6	
M1070213	0	4.2	2.2	4.2	
M1340107	0	4	2.4	4	
RP-07-06	138	142	2.3	4	
M1370398	0	4.2	2.2	4.2	
M113043	0	4	2.3	4	
M107093	0	4.2	2.2	4.2	
M121026	0	4.2	2.2	4.2	
M121046	0	4.2	2.2	4.2	
SI-04	19.5	24	2.1	4.5	
M1150406	0	4.2	2.2	4.2	
M119081	0	4.2	2.2	4.2	
VN-0	40	43	3.1	3	
RM-1	49	52	3.1	3	

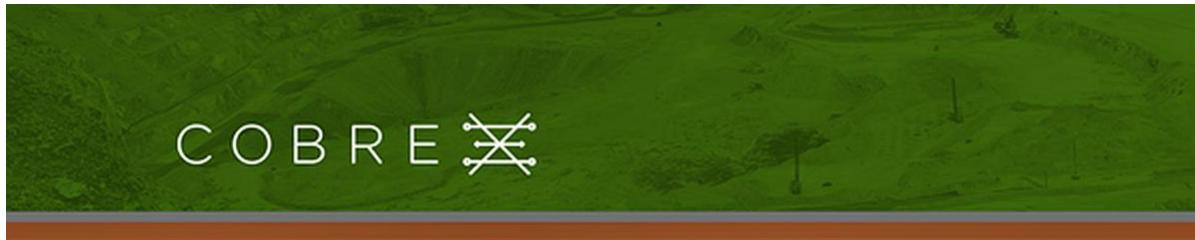
Criteria	JORC Code explanation				Commentary
M1070143	0	4.2	2.2	4.2	
M1070160	0	4.2	2.2	4.2	
M1090162	0	4.2	2.2	4.2	
M1320225	0	4.2	2.2	4.2	
SL-14	22	25	3	3	
M1170168	0	4.2	2.2	4.2	
M1320446	0	4	2.3	4	
M1340217	0	4	2.3	4	
ARC69_M4	0	3.23	2.8	3.23	
M1290202	0	4.2	2.1	4.2	
RP-11-04	130	132	4.5	2	
M1070146	0	4.2	2.1	4.2	
M1090244	0	4.2	2.1	4.2	
M1090194	0	4.2	2.1	4.2	
M1130161	0	4.2	2.1	4.2	
M1150276	0	4.2	2.1	4.2	
M121022	0	4.2	2.1	4.2	
M1320437	0	4	2.2	4	
M1130147	0	4.2	2.1	4.2	
M1190225	0	4.2	2.1	4.2	
M113013	0	4	2.2	4	
M1150222	0	4	2.2	4	
M1290204	0	4.2	2.1	4.2	
M1290205	0	4.2	2.1	4.2	


Criteria	JORC Code explanation				Commentary
M107027	0	4.2	2.1	4.2	
M1090168	0	4.2	2.1	4.2	
M1090246	0	4.2	2.1	4.2	
M109099	0	4.2	2.1	4.2	
M1340148	0	4	2.2	4	
M1190320	0	3	2.9	3	
M1090123	0	4.2	2	4.2	
M129071	0	4.2	2	4.2	
M1090212	0	3.4	2.5	3.4	
ARC77_M1	0	2.3	3.7	2.3	
086-RC7-02	278	282	2.1	4	
M1320460	0	4	2.1	4	
M1320463	0	4	2.1	4	
M1340147	0	4	2.1	4	
M1340191	0	4	2.1	4	
M1340241	0	4	2.1	4	
M1090115	0	4.2	2	4.2	
M14004	0	2	4.2	2	
M1320378	0	4	2.1	4	
SM-01-09	46	49	2.8	3	
M1090139	0	2.8	3	2.8	
RC6-SA-9	146	148	4.1	2	
M1340202	0	4	2.1	4	
ARC41_M3	0	2.59	3.2	2.59	

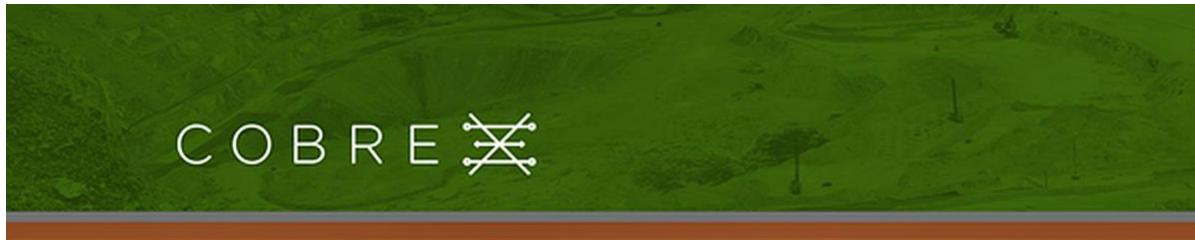

Criteria	JORC Code explanation				Commentary
RP-00-05	96	98	4	2	
M1370321	0	3.3	2.4	3.3	
M113044	0	4	2	4	
M1320421	0	4	2	4	
M1090116	0	2.1	3.8	2.1	
SMRC-099	204	207	2.7	3	
M1090193	0	3.1	2.6	3.1	
RC-11	128	130	4	2	
SL-02	38	40	3.9	2	
M1290181	0	2.5	3.1	2.5	
M1190316	0	3	2.6	3	
ARC29_M4	0	2.4	3.2	2.4	
M1090210	0	2	3.9	2	
ARC57_M3	0	3.42	2.3	3.42	
M1370397	0	3.2	2.4	3.2	
M1090133	0	2.7	2.9	2.7	
012-RC7-01	222	224	3.9	2	
085-RC7-02	102	104	3.8	2	
RP-04-02	80	82	3.8	2	
SI-11	37.5	40.5	2.5	3	
M129073	0	2.1	3.6	2.1	
F12-08	58	61	2.5	3	
SADDH-44	24	26	3.7	2	
SADDH-15	36	38	3.7	2	


Criteria	JORC Code explanation				Commentary
M1070189	0	2.2	3.3	2.2	
M1090187	0	2.7	2.7	2.7	
RC6-SA-7	90	92	3.6	2	
M-09	56	58	3.6	2	
SMRC-066	43	45	3.5	2	
SDD-13	76.6	79	2.9	2.4	
RP-01-02	12	14	3.5	2	
SMRC-084	117	120	2.3	3	
M129078	0	2.1	3.3	2.1	
080-RC7-01	230	232	3.4	2	
RP-04-02	92	94	3.4	2	
067-RC7-01	168	170	3.4	2	
N-15	80.5	83.5	2.2	3	
RP-00-02	42	44	3.3	2	
SDD-13	446.5	448.85	2.8	2.35	
RC6-25	152	154	3.3	2	
ARC47_M3	0	3.12	2.1	3.12	
M132048	0	2.1	3.1	2.1	
ARC61_M4	0	3.13	2	3.13	
M1070136	0	2.2	2.8	2.2	
A-007	0	3	2.1	3	
M1070116	0	2.2	2.8	2.2	
DTHMG-02-03	98	100	3.1	2	
016-RC7-01	232	234	3	2	


Criteria	JORC Code explanation				Commentary
SADDH-67	118	120	3	2	
M1190221	0	2.1	2.8	2.1	
RC6-11	218	220	3	2	
RC-04	192	194	2.9	2	
SMRC-087	148	150	2.9	2	
RP-09-06	138	140	2.9	2	
ARC25_M4	0	2.72	2.1	2.72	
SDD-13	69.6	71.6	2.9	2	
RP-12-05	56	58	2.9	2	
RP-11-04	72	74	2.9	2	
SADDH-03	26	28	2.9	2	
SADDH-44	0	2	2.9	2	
M1090285	0	2.1	2.7	2.1	
SADDH-04	0	2	2.8	2	
RC6-12	210	212	2.8	2	
RC6-SA-8	64	66	2.8	2	
DTHTS-02-01	58	60	2.8	2	
RP-00-02	174	176	2.8	2	
RC-05	216	218	2.8	2	
SL-01	37	39	2.7	2	
M1090269	0	2	2.7	2	
SADDH-41	40	42	2.7	2	
M119058	0	2.7	2	2.7	
M33	0	2.087	2.6	2.087	

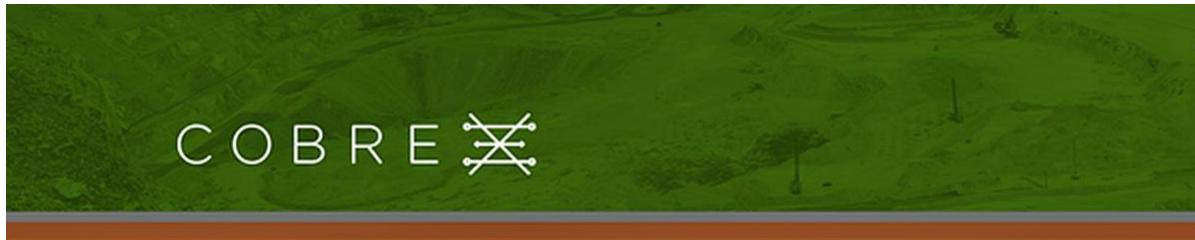

Criteria	JORC Code explanation				Commentary
M1190232	0	2.5	2.1	2.5	
087-RC7-01	224	226	2.7	2	
SADDH-54	6	8	2.7	2	
082-RC7-02	196	198	2.7	2	
RP-06-01	146	148	2.7	2	
RP-01-02	32	34	2.7	2	
RC6-5	112	114	2.6	2	
RC6-SA-7	102	104	2.6	2	
079-RC7-01	312	314	2.6	2	
SDD-25	221	223	2.6	2	
M1290191	0	2.1	2.4	2.1	
SADDH-59	40	42	2.5	2	
RP-08-06	64	66	2.5	2	
M1070131	0	2.2	2.3	2.2	
RC-04	184	186	2.5	2	
SADDH-12	4	6	2.4	2	
M1370347	0	2.1	2.3	2.1	
RP-19-03	132	134	2.4	2	
RP-09-07	106	108	2.4	2	
SMR-134	86	88	2.4	2	
SADDH-33	36	38	2.4	2	
RP-00-05	80	82	2.3	2	
M1070187	0	2.2	2.1	2.2	
SADDH-77	12	14	2.3	2	

Criteria	JORC Code explanation				Commentary
087-RC7-01	218	220	2.3	2	
RP-12-02	64	66	2.3	2	
M1150507	0	2.2	2.1	2.2	
RP-10-05	122	124	2.3	2	
080-RC7-01	138	140	2.3	2	
082-RC7-02	102	104	2.3	2	
RC6-SA-9	156	158	2.2	2	
RP-06-02	46	48	2.2	2	
RP-20-03	136	138	2.2	2	
RP-11-04	190	192	2.2	2	
RC6-SA-2	48	50	2.2	2	
SADDH-59	28	30	2.2	2	
SADDH-44	6	8	2.2	2	
M14002	0	2.1	2.1	2.1	
AL-02-01	116	118	2.2	2	
RP-07-05	84	86	2.2	2	
RC-07	54	56	2.2	2	
RP-20-03	232	234	2.2	2	
RCH093-001	81	83	2.2	2	
RC-09	182	184	2.1	2	
SMRC-077	156	158	2.1	2	
SADDH-64	106	108	2.1	2	
SADDH-06	0	2	2.1	2	
RP-01-04	28	30	2.1	2	


Criteria	JORC Code explanation				Commentary
SADDH-11	0	2	2.1	2	
087-RC7-01	144	146	2.1	2	
RC6-SA-12	74	76	2.1	2	
SADDH-37	22	24	2.1	2	
AL-02-01	46	48	2	2	
RC-08	184	186	2	2	
012-RC7-02	144	146	2	2	
RC6-8	176	178	2	2	
<i>Data aggregation methods</i>	<ul style="list-style-type: none"><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i><i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i>				<ul style="list-style-type: none">Data is not known to have been aggregated with grade truncations.Metal equivalents were not calculated for the project
<i>Relationship between mineralisation</i>	<ul style="list-style-type: none"><i>These relationships are particularly important in the reporting of Exploration Results.</i><i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be</i>				<ul style="list-style-type: none">Drill holes at the project were generally oriented to cut across the mineralised zone at a high angle to the mineralisation, but drill intersections are not true thicknesses. .

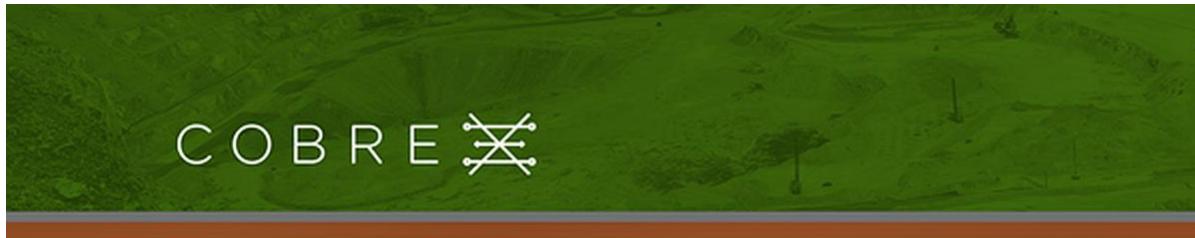
Criteria	JORC Code explanation	Commentary
<i>widths and intercept lengths</i>	<p><i>reported.</i></p> <ul style="list-style-type: none"><i>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</i>	
<i>Diagrams</i>	<ul style="list-style-type: none"><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i>	<ul style="list-style-type: none">Maps and tables are shown in the body of report and in the supporting NI 43-101 report.
<i>Balanced reporting</i>	<ul style="list-style-type: none"><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</i>	<ul style="list-style-type: none">Given the quantity of assays it is not possible to report the assay results from pre 2021 historical drilling samples.Graphics are provided in the announcement showing relevant information.In the opinion of the CP the information provided gives a balanced view of the project and the potential.
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	<ul style="list-style-type: none">High resolution ground magnetic survey data was obtained over the project, as was Aster satellite data.The project is an operating mine, with SX-EW production of cathode copper. Historically metallurgical testing has been conducted.

Criteria	JORC Code explanation	Commentary
<i>Further work</i>	<ul style="list-style-type: none"><i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i>	<ul style="list-style-type: none">Planned work on the project includes an evaluation of current mining operations, with a view to optimising the production. In addition, there will be evaluation of the potential to extract mineralisation with expanded open pit operations; an evaluation of the potential production from the deeper sulphide mineralisation; evaluation of any residual potential from historical leach heaps and evaluation of exploration potential in the much less explored concessions in the south.


Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.) The resource discussed is historical, foreign and non JORC compliant

Criteria	JORC Code explanation	Commentary
<i>Database integrity</i>	<ul style="list-style-type: none">• <i>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.</i>• <i>Data validation procedures used.</i>	<ul style="list-style-type: none">• Data for the project was compiled in excel sheets. This data was revised by Geoinvest, as part of their verification sampling in 2025, preparing information for resource estimation.• Data was plotted to check the spatial location and relationship to drill hole locations on historical maps.
<i>Site visits</i>	<ul style="list-style-type: none">• <i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i>• <i>If no site visits have been undertaken indicate why this is the case.</i>	<ul style="list-style-type: none">• A company representative visited the project during January and February, and confirmed the presence of original drill core and associated information.
<i>Geological interpretation</i>	<ul style="list-style-type: none">• <i>Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.</i>• <i>Nature of the data used and of any assumptions made.</i>• <i>The effect, if any, of alternative interpretations on Mineral Resource estimation.</i>• <i>The use of geology in guiding and controlling Mineral Resource estimation.</i>• <i>The factors affecting continuity both of</i>	<ul style="list-style-type: none">• The project is a manto-style deposit that is possibly related to porphyry intrusives. This type of mineralisation is common in the coastal belt of northern Chile. However, in the SA mineralisation, a significant part of the mineralisation is present as oxide copper minerals within Jurassic intrusive rocks.• A significant part of the information is historical and the level of documentation regarding information collection is not exhaustive the assumptions made are that the survey, assay and geological data were fit for the purpose of the original resource estimation.• An alternative interpretation of the geology, and hence mineral resource, would have some impact on the final estimate number, as the interpretation depends on the tightness of the estimation around intersection points.


Criteria	JORC Code explanation	Commentary
	<i>grade and geology.</i>	<ul style="list-style-type: none"> Geology is used in guiding the vein and fracture to stratabound mineralisation for the resource estimate. Continuity in grade depends on the location within the deposit. Continuity in the geology depends on the faulting and fracturing in the host rocks.
<i>Dimensions</i>	<ul style="list-style-type: none"> <i>The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource</i> 	<ul style="list-style-type: none"> The deposit has been drilled in three principal mine areas, with oxide mineralisation predominant and deep holes intersecting sulphide mineralisation with chalcopyrite, with the deepest drillhole approximately 900 m deep. The mineral resource dimensions consist of the Roxana deposit extending 1800 m N to S; Chabuca-Rebeca extending 1600 m N to S and Nicolasa extending 1900 m N to S. The mineralisation consists of different lenses that dip in a generally eastern orientation, though varying between deposits. Mineralisation varies from 200 m to more than 500 m in defined vertical extent, though the true depth extent may be much deeper in the sulphide zone, which has not been fully defined.
<i>Estimation and modelling techniques</i>	<ul style="list-style-type: none"> <i>The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.</i> <i>The availability of check estimates, previous estimates and/or mine production records</i> 	<ul style="list-style-type: none"> The estimation was undertaken based on the total copper content values, with the average CuT to CuS value of 0.83 applied to obtain the CuS estimate. An average density value of 2.74 t/m³ was considered for all estimation domains and units. No supporting documentation is available for the application of this value. Grade shell: $\geq 0.3\%$ CuT were defined, with a Vein-style setting. Implicit Leapfrog model was geologically constrained by explicit EW cross sections. Estimation was undertaken with ordinary kriging. Search ellipses were oriented along 350 degrees or 15 degrees, depending on the deposit. The dip of the ellipse depends on the orientation of the mineralisation down dip, varying between -45 and -85 degrees, Search ellipses were isotropic. The estimation was undertaken with 4 x 4 x 4 m blocks for all areas, except for

Criteria	JORC Code explanation	Commentary
	<p><i>and whether the Mineral Resource estimate takes appropriate account of such data.</i></p> <ul style="list-style-type: none"> ● <i>The assumptions made regarding recovery of by-products.</i> ● <i>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).</i> ● <i>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</i> ● <i>Any assumptions behind modelling of selective mining units.</i> ● <i>Any assumptions about correlation between variables.</i> ● <i>Description of how the geological interpretation was used to control the Resource estimates.</i> ● <i>Discussion of basis for using or not using grade cutting or capping.</i> ● <i>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.</i> 	<p>Roxana, where 2.5 x 2.5 x 2.5 m blocks were used.</p> <ul style="list-style-type: none"> ● No cutting or capping of mineralisation was undertaken. ● The estimate was for copper and no other elements.
Moisture	<ul style="list-style-type: none"> ● <i>Whether the tonnages are estimated on a dry basis or with natural moisture, and the</i> 	<ul style="list-style-type: none"> ● It is unknown whether the tonnage was estimated on a dry basis or with natural moisture. Considering the environment, which is hyper-arid it is considered the

Criteria	JORC Code explanation	Commentary
	<i>method of determination of the moisture content.</i>	estimate was on a natural moisture basis and samples were essentially dry.
<i>Cut-off parameters</i>	<ul style="list-style-type: none"> <i>The basis of the adopted cut-off grade(s) or quality parameters applied.</i> 	<ul style="list-style-type: none"> The resource uses of a cut-off grade of 0.3% Cu applied for total copper. The cut-off is believed to be based on economic parameters from operation of the SA mine. The estimation only encompasses oxide material that can be processed in the site processing plant.
<i>Mining factors or assumptions</i>	<ul style="list-style-type: none"> <i>Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.</i> 	<ul style="list-style-type: none"> The deposit is amendable to underground and also open pit mining, with an initial pit shell design that suggests a significant part of the oxide mineralisation can be extracted from open pit mining. Given the outcrop of parts of the deposits open pit mining could supplement underground production and this will be an area of detailed study, to define future mining plans. Consideration of current economics would be required to assess the basis of extraction with current commodity prices. A global slope angle for the conceptual pit design was 52 degrees, which has not been subject to optimisation. Initial evaluation of stripping ratio for the potential open pit development suggested a ratio of 5:1 for the Chabuca-Rebeca/Roxana sectors and 6.7: 1 for the Nicolasa sector.
<i>Metallurgical factors or assumptions</i>	<ul style="list-style-type: none"> <i>The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider</i> 	<ul style="list-style-type: none"> Some metallurgy has been conducted on the deposit, which production shows is highly amenable to SX-EX processing and has a high overall proportion of soluble to total copper. Detailed metallurgy has not been conducted on the deeper chalcopyrite sulphide

Criteria	JORC Code explanation	Commentary
	<i>potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.</i>	mineralisation, which is an area for further study.
<i>Environmental factors or assumptions</i>	<i>Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.</i>	<ul style="list-style-type: none">Waste disposal currently takes place on site in waste dumps, with the mineralised material laid out on leach pads for acid extraction of the soluble copper.The process uses sulphuric acid, a well-established processing chemical in Chile and globally. The project currently does not process any sulphide mineralisation.
<i>Bulk density</i>	<ul style="list-style-type: none">Whether assumed or determined. If	<ul style="list-style-type: none">The specific gravity for the massive sulphide mineralisation was assumed at 2.74

Criteria	JORC Code explanation	Commentary
	<p><i>assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</i></p> <ul style="list-style-type: none"><i>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.</i><i>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</i>	<p>g/cc, throughout the deposit. It is not clear how this value is arrived at, but is a typical density applicable to intrusive or volcanic rocks.</p> <ul style="list-style-type: none">Detailed measurements should be made on future drill core.
<i>Classification</i>	<ul style="list-style-type: none"><i>The basis for the classification of the Mineral Resources into varying confidence categories.</i><i>Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</i><i>Whether the result appropriately reflects the Competent Person's view of the deposit</i>	<ul style="list-style-type: none">The 2025 resource is classified as Measured, Indicated and Inferred Resources.

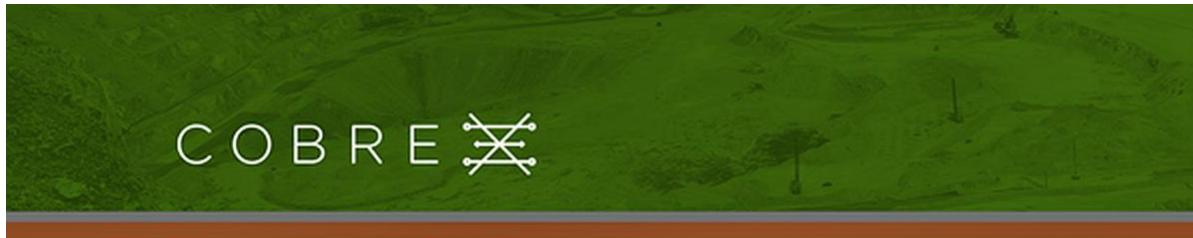
Criteria	JORC Code explanation	Commentary
<i>Audits or reviews</i>	<ul style="list-style-type: none"><i>The results of any audits or reviews of Mineral Resource estimates</i>	<ul style="list-style-type: none">An audit of the most recent resource estimate will be conducted as part of the work that is planned by Cobre.
<i>Discussion of relative accuracy/ confidence</i>	<ul style="list-style-type: none"><i>Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the Resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</i><i>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</i><i>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</i>	<ul style="list-style-type: none">Based on the available information (which does not include significant QA/QC sampling, such as standards and duplicates) the estimate appears to be reasonable. However, this will be the subject of an in depth evaluation.The drill core has been sighted by a company representative and a limited number of intersections have been evaluated. The geological interpretation and assay results rely on the original data, which was verified in 2025 by Geoinvest. Consequently, the result is not consistent with the JORC code and cannot be relied upon.In order to validate the historical resource, the core and cuttings will be re-assayed in a selection of holes and soluble copper assays will be completed to allow estimation throughout the deposit.New measurements of specific gravity would be made to check the original results. Location and surveying of drill holes will also be completed in more detail.The competent person notes the information in this market announcement provided under rules ASX rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. This statement include information referred to in rule 5.22(b) and (c).

Section 4 Estimation and Reporting of Mineral Reserves

(Criteria listed in the preceding section also apply to this section.) The reserve discussed is foreign and non JORC compliant

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	<ul style="list-style-type: none"><i>Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve.</i><i>Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.</i>	<ul style="list-style-type: none">The mineral resources used as the basis for the reserve estimation were those derived by Geoinvest in 2025. Some of these estimates were largely based on internal data compilation and estimates.The Mineral Resources were reported inclusive of the Mineral Reserves. The Mineral Resources were also inclusive of historical extraction, which was not extracted from the resources at the time of estimation, but is required to be undertaken as part of activities to convert the resources to JORC compliance.
Site visits	<ul style="list-style-type: none"><i>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</i><i>If no site visits have been undertaken indicate why this is the case.</i>	<ul style="list-style-type: none">The JORC Competent Person and a team of consulting engineers visited the project over a period of 3 weeks during January and February 2026, and confirmed the presence of original drill core and associated information and undertook extensive discussions with the staff on site, evaluation of mining activities, work conducted, past exploration and development activities and workflows.
Study status	<ul style="list-style-type: none"><i>The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves.</i><i>The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered.</i>	<ul style="list-style-type: none">The project is a producing mine, which has a long production history of open pit and underground production. It is not known whether studies equivalent to a Pre-Feasibility study were historically completed, given the long mining history of the project.The project has more recently been subject to third party evaluations of the project geology and estimation of project resources. This included work undertaken by Geoinvest, who verified historical data, evaluated the geology and estimated resources.This study represents a conceptual-level assessment, carried out based on

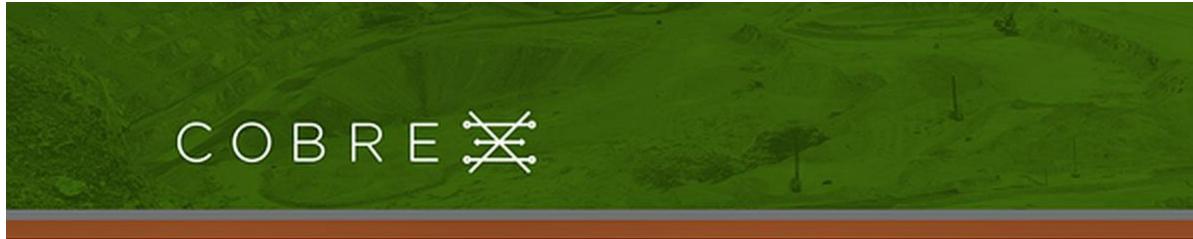
Criteria	JORC Code explanation	Commentary
		<p>the quantity and quality of information currently available. It is not intended to support investment decisions nor to be submitted to a stock exchange. The aim is to identify technical and economic value opportunities for the project and to establish recommendations that can serve as a basis for subsequent phases and more advanced evaluations.</p> <ul style="list-style-type: none"> Geoinvest also undertook an initial estimation of reserves, which is considered to be early stage and not optimised, but is based on actual mining cost metrics, which are considered to be of at least Pre-Feasibility confidence. This study is useful for evaluating different options for the project going forward and help identify key areas for further study to advance the project, and additional information on the Modifying Factors to be evaluated for future reserve estimation.
Cut-off parameters	<ul style="list-style-type: none"> <i>The basis of the cut-off grade(s) or quality parameters applied.</i> 	<ul style="list-style-type: none"> The cut-off grade of 0.3% CuT was used for the resource and the reserve, based on the resource.
Mining factors or assumptions	<ul style="list-style-type: none"> <i>The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design).</i> <i>The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.</i> <i>The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade</i> 	<ul style="list-style-type: none"> The Reserve Estimation by Geoinvest was conducted using actual costs provided by the operator CMSA, believed to be based on the mining operation costs and those of comparable operations. The mining method selected for the conceptual assessment of Mineral Reserves was open pit mining, with larger and deeper open pits than previously utilised to extract the oxide material. Strip ratios varied between mining areas, with Chabuca-Rebeca/Roxana sectors with a strip ratio of 4.98 and for the Nicolasa sector a ratio of 6. 70. The economic estimates incorporate inferred mineral resources in addition to proven and probable reserves. Inferred resources are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves.


Criteria	JORC Code explanation	Commentary																																				
	<p><i>control and pre-production drilling.</i></p> <ul style="list-style-type: none"> • <i>The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate).</i> • <i>The mining dilution factors used.</i> • <i>The mining recovery factors used.</i> • <i>Any minimum mining widths used.</i> • <i>The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.</i> • <i>The infrastructure requirements of the selected mining methods.</i> 	<ul style="list-style-type: none"> • These estimates are therefore preliminary in nature and should be considered only as part of a conceptual scoping evaluation. Inferred resources are noted to be a significant part of the overall project resource base. • Assumptions related to the estimation are summarised below. Mining dilution, minimum widths and recovery factors are to be clearly defined in future studies. • The project has excellent infrastructure. Open pit mining would require establishment of waste and ore pile areas as part of future mining operations. <table border="1"> <thead> <tr> <th>Economic Parameters</th> <th>Value</th> <th>Unit</th> </tr> </thead> <tbody> <tr> <td>CuT Recovery</td> <td>72</td> <td>%</td> </tr> <tr> <td>Cu Price</td> <td>4.3</td> <td>US\$/lb</td> </tr> <tr> <td>Processing Cost</td> <td>13</td> <td>US\$/ton</td> </tr> <tr> <td>Crushing + HL + SX/EW</td> <td>12.72</td> <td>US\$/ton</td> </tr> <tr> <td>Administration Cost</td> <td>0.28</td> <td>US\$/ton</td> </tr> <tr> <td>Mining Cost</td> <td>2.44</td> <td>US\$/ton</td> </tr> <tr> <td>Drilling + Blasting + Loading + Services</td> <td>2.08</td> <td>US\$/ton</td> </tr> <tr> <td>Transportation</td> <td>0.36</td> <td>US\$/ton</td> </tr> <tr> <td>Product Sales Cost</td> <td>0.06</td> <td>US\$/lb</td> </tr> </tbody> </table> <table border="1"> <thead> <tr> <th>Geotechnical Parameters</th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <td>Overall Slope Angle</td> <td>52</td> <td>°</td> </tr> </tbody> </table>	Economic Parameters	Value	Unit	CuT Recovery	72	%	Cu Price	4.3	US\$/lb	Processing Cost	13	US\$/ton	Crushing + HL + SX/EW	12.72	US\$/ton	Administration Cost	0.28	US\$/ton	Mining Cost	2.44	US\$/ton	Drilling + Blasting + Loading + Services	2.08	US\$/ton	Transportation	0.36	US\$/ton	Product Sales Cost	0.06	US\$/lb	Geotechnical Parameters			Overall Slope Angle	52	°
Economic Parameters	Value	Unit																																				
CuT Recovery	72	%																																				
Cu Price	4.3	US\$/lb																																				
Processing Cost	13	US\$/ton																																				
Crushing + HL + SX/EW	12.72	US\$/ton																																				
Administration Cost	0.28	US\$/ton																																				
Mining Cost	2.44	US\$/ton																																				
Drilling + Blasting + Loading + Services	2.08	US\$/ton																																				
Transportation	0.36	US\$/ton																																				
Product Sales Cost	0.06	US\$/lb																																				
Geotechnical Parameters																																						
Overall Slope Angle	52	°																																				
Metallurgical factors or assumptions	<ul style="list-style-type: none"> • <i>The metallurgical process proposed and the appropriateness of that process to the style of mineralisation.</i> • <i>Whether the metallurgical process is well-tested</i> 	<ul style="list-style-type: none"> • The metallurgical process proposed for the processing of the oxide mineralisation is SX-EW processing, which is typical and appropriate for this style of oxide deposit in Chile. Other processing technology would be required to process the deeper sulphide material. 																																				

Criteria	JORC Code explanation	Commentary
	<p><i>technology or novel in nature.</i></p> <ul style="list-style-type: none"> • <i>The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.</i> • <i>Any assumptions or allowances made for deleterious elements.</i> • <i>The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole.</i> • <i>For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?</i> 	<ul style="list-style-type: none"> • The metallurgical process is well-tested and widely applied globally. • The amount of metallurgical test work is unknown, but the project oxide material has been mined over a period of decades, which provides an excellent bulk sample and provides information on the differences within the deposit. • Deleterious elements are not considered as a product of the SX-EW cathode copper output. This will need to be further considered for the sulphide mineralisation.
Environmental	<ul style="list-style-type: none"> • <i>The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.</i> 	<ul style="list-style-type: none"> • The project is a permitted mining operation that uses sulphuric acid and SX-EW processing to produce copper. The mineralisation itself is oxide mineralisation and waste material. • Waste rock is accumulated in waste piles and mineralised material is accumulated on leach pads to which acid is added to liberate the soluble copper.
Infrastructure	<ul style="list-style-type: none"> • <i>The existence of appropriate infrastructure: availability of land for plant development, power,</i> 	<ul style="list-style-type: none"> • The project is located approximately 50 km to the northeast of Antofagasta, a major mining support and services city on the coast in Northern Chile. The

Criteria	JORC Code explanation	Commentary
	<i>water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.</i>	<p>site has power supply (currently generator based), water and is well serviced by roads, with the workforce residing in Antofagasta and in accommodation on-site.</p> <ul style="list-style-type: none"> • The Antofagasta area includes several ports for the export of mineral products and import of industrial chemicals.
Costs	<ul style="list-style-type: none"> • <i>The derivation of, or assumptions made, regarding projected capital costs in the study.</i> • <i>The methodology used to estimate operating costs.</i> • <i>Allowances made for the content of deleterious elements.</i> • <i>The derivation of assumptions made of metal or commodity price(s), for the principal minerals and co- products.</i> • <i>The source of exchange rates used in the study.</i> • <i>Derivation of transportation charges.</i> • <i>The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc.</i> • <i>The allowances made for royalties payable, both Government and private.</i> 	<ul style="list-style-type: none"> • The Reserve Estimate is preliminary and is not associated with a Pre-Feasibility or Feasibility study that has intensive cost analysis. • The Reserve Estimate is based around costs from the current mining operations. • No deleterious elements are considered, as the mineralisation is oxide in nature and SX-EW is used for extracting the copper. • There are no private royalties. Government royalties are payable on production.
Revenue factors	<ul style="list-style-type: none"> • <i>The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc.</i> • <i>The derivation of assumptions made of metal or</i> 	<ul style="list-style-type: none"> • Costs influencing revenue factors are presented in a table listed above in this table. • Assumptions are based on long-term experience at this mining operation and similar mining operations.

Criteria	JORC Code explanation	Commentary
	<i>commodity price(s), for the principal metals, minerals and co-products.</i>	
Market assessment	<ul style="list-style-type: none"> <i>The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.</i> <i>A customer and competitor analysis along with the identification of likely market windows for the product.</i> <i>Price and volume forecasts and the basis for these forecasts.</i> <i>For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.</i> 	<ul style="list-style-type: none"> Copper is a standard commodity with a well developed and deep market, for which the long term demand forecasts show steady growth. Consequently it is considered a fairly predictable and low-risk commodity. The mine already has established clients for the mine offtake and copper cathode is a standard product, easily sold commercially. An average price was applied to the Mineral Reserve estimate.
Economic	<ul style="list-style-type: none"> <i>The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc.</i> <i>NPV ranges and sensitivity to variations in the significant assumptions and inputs.</i> 	<ul style="list-style-type: none"> The assessment results in estimated net profits of USD \$1,314 for the Chabuca-Rebeca/Roxana sectors and USD \$355 for Nicolasa.
Social	<ul style="list-style-type: none"> <i>The status of agreements with key stakeholders and matters leading to social licence to operate.</i> 	<ul style="list-style-type: none"> The project is a well-established mining operation within 50 km of Antofagasta, in an area that has extensive mines and no other significant source of employment. Mining is the predominant source of income in the province..
Other	<ul style="list-style-type: none"> <i>To the extent relevant, the impact of the following on the project and/or on the estimation and</i> 	<ul style="list-style-type: none"> The project is a well-established mine, which holds permits for production and processing. Any permits for additional future operations should be



Criteria	JORC Code explanation	Commentary
	<p><i>classification of the Ore Reserves:</i></p> <ul style="list-style-type: none">• <i>Any identified material naturally occurring risks.</i>• <i>The status of material legal agreements and marketing arrangements.</i>• <i>The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.</i>	obtainable as a matter of course, providing the appropriate documentation is applied.
<i>Classification</i>	<ul style="list-style-type: none">• <i>The basis for the classification of the Ore Reserves into varying confidence categories.</i>• <i>Whether the result appropriately reflects the Competent Person's view of the deposit.</i>• <i>The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).</i>	<ul style="list-style-type: none">• The classification of the Ore Reserves into the different confidence categories is considered by the CP to be reasonable. Further evaluation will be undertaken as part of the full evaluation of all elements of the project by Cobre.
<i>Audits or reviews</i>	<ul style="list-style-type: none">• <i>The results of any audits or reviews of Ore Reserve estimates.</i>	<ul style="list-style-type: none">• The Reserve Estimate has been evaluated by the CP, but has not been fully audited. More detailed evaluation and auditing will be undertaken as part of Cobre's plan to bring the project to JORC compliance for the Resource and Reserve Estimates.

Criteria	JORC Code explanation	Commentary
<i>Discussion of relative accuracy/confidence</i>	<ul style="list-style-type: none"><i>Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate.</i><i>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</i><i>Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.</i><i>It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</i>	<ul style="list-style-type: none">The Reserve Estimate is considered to be for planning purposes but is not considered to be of a high level of accuracy and is not JORC 2012 compliant. The company will undertake evaluation of historical data and collection of new data, in order to deliver a JORC compliant resource and reserve.The Reserve Estimate was a global reserve estimate for the project, including the main mining areas.

personal use only

