

16 February 2026

Lewis Ponds Gold and Silver Project Scoping Level Mining Study

Godolphin Resources Limited (ASX: GRL) ("Godolphin" or the "Company") is pleased to announce the results of its Scoping Level Mining Study ("Scoping Study" or "the Study") on its 100%-owned, Lewis Ponds gold, silver and base metals deposit located within the Lachlan Fold Belt, NSW.

Lewis Ponds Scoping Study – Cautionary Statement

The Scoping Study referred to in this ASX release has been undertaken for the purpose of evaluation of the potential development of the Lewis Pond's gold, silver and base metals deposit located in NSW, Australia. It is a preliminary technical and economic study of the potential viability of the Lewis Pond's Deposit. The Scoping Study outcomes, production target and forecast financial information referred to in this release, are based on low accuracy level technical and economic assessments that are insufficient to support estimation of Ore Reserves. The Scoping Study has been completed to a level of accuracy of ± 35% and further exploration and evaluation work and appropriate studies are required before the Company will be in a position to estimate any Ore Reserves or to provide any assurance of an economic development case.

The Mineral Resources scheduled for extraction in the Scoping Study production target, shows a 12-year operating period of which the first six years of production, which covers the estimated payback period, 74% of the production target is Indicated Resource and 26% is Inferred Resource. Over the life of mine, 70% of the production target is classified as Indicated Resource and 30% is classified as Inferred Resource. The Company has concluded that it has reasonable grounds for disclosing a production target which includes an amount of Inferred Mineral Resource. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work (including infill drilling) on the Lewis Pond's Project will result in the determination of additional Indicated Mineral Resources or that the production target itself will be realised. However, the Company has infill drilled portions of the Inferred Mineral Resources during 2024 and 2025 with 100% conversion to Indicated Mineral Resources.

The Mineral Resources underpinning the production target in the Scoping Study have been prepared by a Competent Person in accordance with the requirements of the JORC Code (2012). For full details of the Mineral Resources Estimate, please refer to Godolphin Resource's ASX Announcement dated 15 December 2025. The Company also confirms that it is not aware of any new information or data that materially affects the information included in that release. All material assumptions and technical parameters underpinning the estimates in that ASX release continue to apply and have not materially changed.

While the Company considers all of the material assumptions to be based on reasonable grounds, there is no certainty that they will prove to be correct, or that the range of outcomes indicated by the Scoping Study will be achieved. To achieve the range of outcomes indicated in the Scoping Study, pre-production funding of approximately AUD\$268M may be required and there is no certainty that Godolphin Resources will be able to obtain that amount of funding when required. It is also possible that such funding may only be available on terms that may be dilutive to or otherwise affect the value of the Companies shares. It is also possible that the Company could pursue other value realisation strategies such as a sale, partial sale or joint venture of the Lewis Pond's gold-silver base metal Project.

Given the uncertainties involved, investors should not make any investment decisions based solely on the results of the Scoping Study.

Lewis Ponds Scoping Study Confirms Strong Economics and Supports Clear Pathway to Development for the Gold-Silver & Base Metals Project

Scoping Study Highlights

- Open Pit and Underground Mine Design with an **Initial operating mine life of 12 years** at a 1.25Mtpa throughput
 - Open Pit production for an initial four years followed by Underground production
- US\$3,700/oz gold and US\$55/oz silver price forecast delivers (**Base Case**):
 - **NPV_{7.5%} of AUD\$481M (pre-tax) and a 24% IRR (pre-tax)**
 - **AUD\$1.1 billion free cash flow (pre-tax)**
- US\$5,055/oz gold and US\$82/oz silver price forecast delivers (**Upside Case**):
 - **NPV_{7.5%} of AUD\$1,088M (pre-tax) and a 40% IRR (pre-tax)**
 - **AUD\$2.2 billion free cash flow (pre-tax)**
- During the six-year payback period, 74% of cumulative material mined is Indicated Mineral Resource and 26% of the cumulative material is Inferred Mineral Resource
- Low pre-production capital cost estimated at AUD\$268M
- Forecast average All-In-Sustaining-Cost (AISC) of AUD\$3,254/ AuEq oz
- A standalone processing option is the Company's preferred development pathway to leverage the future growth potential of the Lewis Ponds' Mineral Resources
- On the strength of these outcomes, the Godolphin Board has approved progressing the project to Pre-Feasibility Study (PFS) stage

The Study was completed by a team of external consultants, managed by *Optimal Mining Solutions*, and demonstrates an economically attractive, technically straightforward open pit and underground mine and processing operation. It assumes a 1.25Mtpa processing plant, delivering total forecast concentrate production of 244Koz of gold, 12Moz of silver, 199Kt of zinc and 78Kt of lead over an initial 12-year mine-life.

The Study is a low-level technical and economic assessment ($\pm 35\%$) and is based on a conservative base-case gold price of US\$3,700/oz and silver price of US\$55/oz. As of 11 February 2026, the gold price is US\$5,055/oz and the silver price is US\$82/oz.

The Study has utilised the December 2025 Mineral Resource Estimate (MRE) for Lewis Ponds, (refer to ASX announcement dated 15 December 2025), showing a global resource inventory of 17.52Mt (9.09Mt Indicated & 8.43Mt Inferred) @ 1.12g/t Au, 53.34g/t Ag, 2.06% Zn, 1.10% Pb, 0.14% Cu.

Management commentary:

Managing Director Ms Jeneta Owens said:

"The completion of this Scoping Study marks a major milestone for Godolphin, confirming Lewis Ponds as a technically robust and economically compelling development opportunity within one of Australia's premier mining districts. The combination of a 12-year operating outlook, attractive margins, and significant exposure to gold, silver and base metals positions the project as a standout emerging asset. These results validate the quality of the resource and the strength of the development pathway, providing the confidence to advance to Pre-Feasibility Studies. The strong contribution from Indicated Resources in the early years further underpins the Project's potential and reduces project risk.

"What is most exciting is the clear upside beyond the base case. Opportunities to optimise mine scheduling, expand underground scenarios through infill and expansion drilling and further enhance metal recoveries present a tangible pathway to strengthen the project into the future. With this foundation in place, Godolphin is entering a new growth phase as we focus on unlocking the full value of Lewis Ponds for shareholders and our regional communities in New South Wales. We look forward to continuing momentum into the next stage of development of this exciting Project."

PROJECT UPSIDE

Opportunities exist to exceed Scoping Study outcomes and include:

- 2.1Mt of Inferred Mineral Resources not included in the Production Schedule; There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work (including infill drilling) on the Lewis Ponds Project will result in the determination of additional Indicated Mineral Resources. However, the Company has infill drilled portions of the Inferred Mineral Resources during 2024 and 2025 with 100% conversion to Indicated Mineral Resources.
- Assessment of an expanded open pit and underground mining operation(s) in Pre-Feasibility Studies;
- Selective ore handling strategies;
- Expanded metallurgical program, targeting gravity gold + oxide ore test work;
- Mine scheduling refinements to optimise production;
- Introduction / extension of footwall lodes into the Mineral Resource, and
- Exploration drilling of near mine growth targets.

INTRODUCTION TO THE STUDY

Godolphin has completed a Scoping Study assessing the development of the Lewis Pond's deposit (the **Deposit**) focusing on a combined open pit and underground mining operation to produce two concentrate streams (gold-silver-lead-copper concentrate and a zinc concentrate).

Outcomes demonstrate the ability of the Deposit to support the estimated \$AUD268M pre-production capital required for the development of the Project over a 12 year mine life, feeding a 1.25Mtpa processing facility located on site.

Mining commences with open cut operations over a four-year life span, during which time 3.8Mt of ore resources will be exploited at a waste to ore strip ratio of 7.5:1. The underground operations commence as the open pit nears completion, and over an eight-year period will exploit 8.9Mt of ore resources; a further 2.1Mt of Inferred mineralised material has not been considered as part of the Production Target (Figure 1) and demonstrates upside potential as the Project develops.

A summary of the key production outcomes and assumptions relative to the Base Case and Upside Case are presented in Table 1.

Table 1: Lewis Pond's Scoping Study Key Outcomes and Assumptions

	UNIT	Base Case ¹	Upside Case ²
ECONOMIC ASSUMPTIONS		VALUES	VALUES
Gold Price	US\$/oz	\$3,700	\$5,055
Silver Price	US\$/oz	\$55	\$82
Zinc Price	US\$/tonne	\$2,750	\$3,352
Lead Price	US\$/tonne	\$1,960	\$1,912
Copper Price	US\$/tonne	\$10,600	\$12,978
Exchange Rate	AUD:USD	\$0.65	\$0.65
Discount Rate	%	7.5%	7.5%
PRODUCTION TARGET +/- 35%			
Total Life of Mine	Years	12	12
Total Ore Mined	Mtonnes	12.7	12.7
Underground Ore Mined	Mtonnes	8.9	8.9
Open Cut Ore Mined	Mtonnes	3.8	3.8
Open Cut Waste Mined	Mtonnes	28.4	28.4
Open Cut Strip Ratio	waste t:ore t	7.5	7.5
Total Tonnes Milled	Mtonnes	12.7	12.7
Plant Throughput	Mtpa	1.25	1.25
Gold Head Grade	g/t Au	0.9	0.9
Silver Head Grade	g/t Ag	40.9	40.9
Zinc Head Grade	% Zn	1.7	1.7
Lead Head Grade	% Pb	0.8	0.8
Copper Head Grade	% Cu	0.1	0.1
Gold Recovery	%	65	65
Silver Recovery	%	72	72
Zinc Recovery	%	93	93
Lead Recovery	%	73	73
Copper Recovery	%	69	69
Gold Produced in concentrate	oz	243,938	243,938
Silver Produced in concentrate	oz	12,007,907	12,007,907
Zinc Produced in concentrate	tonnes	198,850	198,850
Lead Produced in concentrate	tonnes	77,859	77,859
Copper Produced in concentrate	tonnes	8,522	8,522
FINANCIALS +/-35%			
Total Revenue	AUD\$M	\$3,234	\$4,332
Net Cash Flow Pre-Tax	AUD\$M	\$1,117	\$2,171
Upfront Capital Costs (plant and process infrastructure)	AUD\$M	\$268	\$268
Sustaining Capital Costs	AUD\$M	\$64	\$64
Operating Cost (TC/RC, Transport & Royalties)	AUD\$M	\$272	\$316
Operating Costs (On Site)	AUD\$M	\$1,512	\$1,512
Operating Cost (Processing)	AUD\$/process t	\$49	\$49
Operating Cost (Open Cut)	AUD\$/oc process t	\$50	\$50
Operating Costs (Underground)	AUD\$/ug process t	\$72	\$72
Operating Costs (General and Admin)	AUD\$/process t	\$3	\$3
Operating Costs (TC/RC, Transport & Royalties)	AUD\$/process t	\$21	\$25
All in Sustaining Cost (AISC)	AUD\$/AuEqOz	\$3,254	\$3,398
Pre-Tax NPV (@7.5%)	AUD\$M	\$481	\$1,088
Pre-Tax IRR	%	24%	40%
Pre-Tax Payback Period	Years	6	4
Post-tax NPV (@7.5%)	AUD\$M	\$298	\$724
Post-tax IRR	%	19%	33%

1: Base Case commodity prices are long-term prices sourced from a range of metals analysts who provide monthly commodity price forecasts. Long-term pricing is based on the average real consensus price of each commodity from up to 19 metals analysts. Survey date was 23/01/2026.

2: Upside Case commodity prices reflect spot prices as of 11/02/2026, taken from www.Kitco.com

The combined open cut and underground operations will produce in concentrate:

- 244Koz of gold at a 0.9g/t head grade
- 12Moz of silver at a 40.9g/t Ag head grade
- 199Kt of zinc at a 1.7% head grade
- 78Kt of lead at a 0.8% head grade and
- 9Kt of copper at a 0.1% head grade.

Within the six-year payback period, 74% of the cumulative ore tonnes mined are Indicated Mineral Resources, and over the 12 year life of mine 70% of the cumulative ore tonnes mined are Indicated Mineral Resources. This significantly de-risks the Project.

Figure 1: longitudinal view looking north-east, showing the 8.9Mt Underground Production Target and the 2.1Mt Underground Inferred Resources not included in the Production Target.

The Scoping Study concluded that the Lewis Ponds Project can deliver a strong financial return with the Base Case scenario returning:

- AUD\$1.1 billion free cash flow (pre-tax)
- a pre-tax NPV_{7.5%} of AUD\$481M
- a pre-tax IRR of 24% within a payback period of 6 years

Based on these factors, the Study shows Lewis Ponds has an estimated All-In Sustaining Cost (AISC) of AUD\$3,254 per gold equivalent ounce.

Importantly, enormous potential is reflected in the Upside Case, which is based on spot commodity prices as of 11/02/2026 and returns:

- AUD\$2.2 billion free cash flow (pre-tax)
- a pre-tax NPV_{7.5%} of AUD\$1,088M
- a pre-tax IRR of 40% within a payback period of 4 years

The Study was completed by independent mining consultant *Optimal Mining Solutions* with input from a team of expert independent consultants (Table 2). No Ore Reserves, as defined by the JORC Code, have been estimated or are implied as part of the Scoping Study or by this report. The study is based on low level technical and economic assessments of $\pm 35\%$. The mining studies undertaken as part of the Scoping Study have been underpinned by the Project MRE, with any estimated production tonnages referred to as “production target” for the purpose of this report.

Table 2: Study Input Contributors


Study Input	Contributor
Study Compilation and Management	Optimal Mining Solutions
Geology	Godolphin Resources
Resource Estimation	Measured Group
Geotechnical Assumptions	Optimal Mining Solutions
Open Cut Planning and Pit Optimisation	Optimal Mining Solutions
Underground Planning	<u>LeMar Consulting</u>
Infrastructure Planning	Optimal Mining Solutions, Mining NL
Tailings Dam Concept	Optimal Mining Solutions, Mining NL
Mineral Processing Design and Assumptions	<u>Xenco Services</u>
Mine Scheduling	Optimal Mining Solutions
Environment, Social and Permitting	Godolphin Resources
Metallurgical Test Work	Core Resources
Mining Costs – Open Pit + Underground	Optimal Mining Solutions, Mining NL
Operating Costs - Open Pit + Underground	<u>LeMar Consulting</u> , Mining NL
Capital Costs - Open Pit + Underground	Optimal Mining Solutions, <u>LeMar Consulting</u> , Mining NL
Financial Modelling	Mining NL, Optimal Mining Solutions

PROJECT LOCATION

The Lewis Pond’s Project consists of two exploration licences, EL5583 and EL8966, and covers an area of approximately 148km². Godolphin Resources Ltd holds a 100% interest in both ELs through its wholly owned subsidiary TriAusMin Pty Ltd. The Lewis Ponds gold, silver and base metal deposit is positioned within EL5583, and is located 15km east of Orange, New South Wales, Australia (Figure 2).

Orange is a major regional centre serviced by a domestic airport and railway for both passenger and heavy freight trains. Access to Sydney by road is via the Mitchell and Great Western Highways. Orange has a rich mining heritage and remains regionally significant in Australia’s mining landscape. Several significant mining operations including Cadia Valley Operations (Newmont Corporation), Tomingley Gold Mine (Alkane Resources) and Northparkes Mine (Evolution Mining: Sumitomo Corporation) as well as numerous smaller projects all occur within 125km of Orange. Cadia and Northparkes rail their concentrates to Port Kembla, 100km south of Sydney, for export to overseas refineries and smelters.

The Lewis Pond’s deposit is accessible from Orange via local sealed and unsealed roads and farm tracks. It is assumed electricity for the Project will be sourced from the grid in Orange. Local power is delivered to nearby farmhouses at Lewis Ponds. Major 330KV and 132KV operating voltage powerlines are within 3km of the project. Godolphin owns 287.6 hectares of freehold land of which much of the Lewis Pond’s deposit is situated.

Figure 2: Location map of Godolphin Resource's Lewis Ponds Deposit in the Lachlan Fold Belt, NSW

PRODUCTION PROJECTIONS

The Project's production profile (open cut + underground) forecasts 12.7Mt of mineralised material mined over a 12 year mine life as tabulated in Table 3.

The Open Cut used a cutoff grade of 0.67g/t AuEq, consistent with the Mineral Resource Estimate (MRE) to define the ore from the waste, and over a four year mine life delivers 3.8Mt @ 0.4g/t Au, 34.7g/t Ag, 1.6% Zn, 0.5% Pb, 0.1% Cu (52.9Koz Au, 4.2Moz Ag, 58.9Kt Zn, 20.1Kt Pb and 4.1Kt Cu).

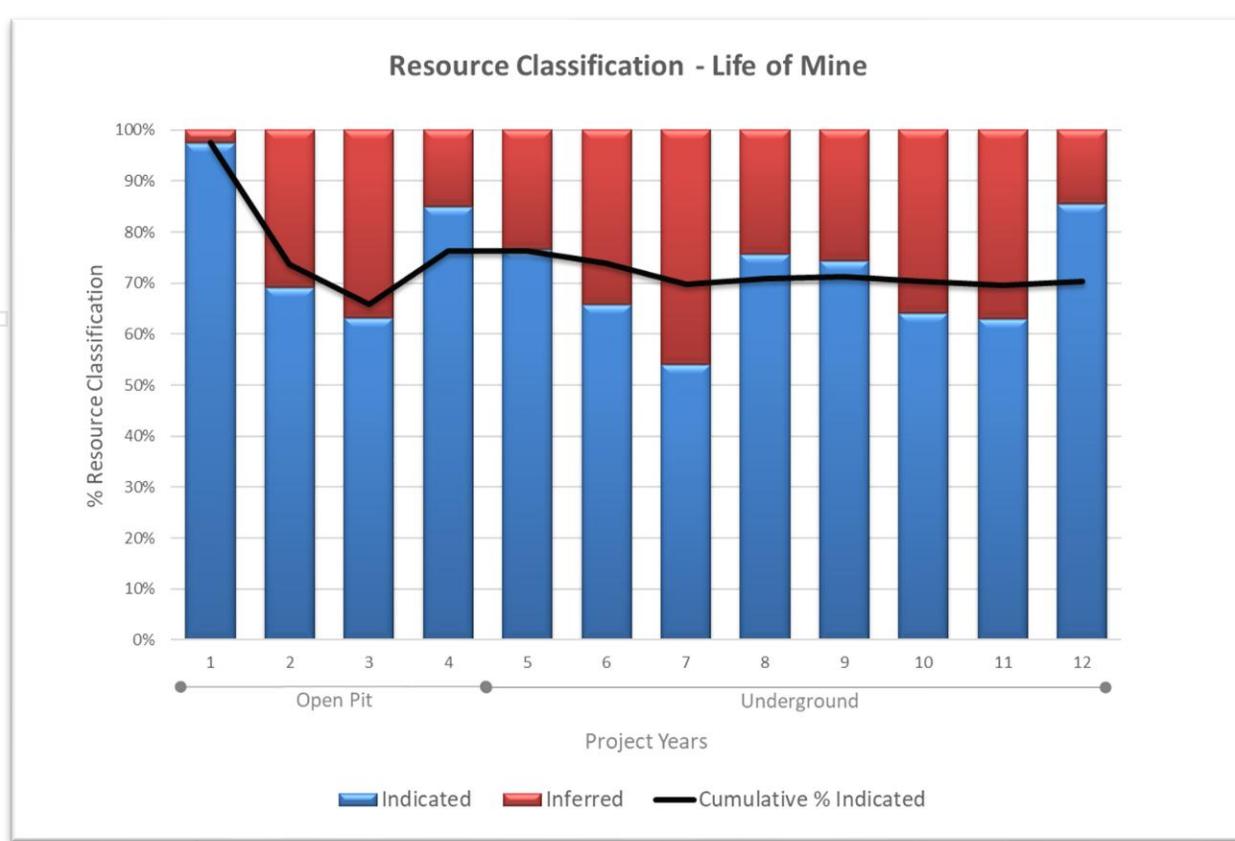
The Underground mine used a cutoff grade of 2.0g/t AuEq, which is higher than the MRE cut-off grade of 1.8g/t AuEq, but was applied to improve the overall economics of the underground operations. Over an 8-year life span it delivers 8.9Mt @ 1.1g/t Au, 43.5g/t Ag, 1.7% Zn, 1.0% Pb, 0.1% Cu (323.5Koz Au, 12.4Moz Ag, 154.7Kt Zn, 85.5Kt Pb, 8.4Kt Cu).

Total Open Cut and Underground resources produced in concentrate amounts to:

- 243.9Koz of gold
- 12.0Moz of silver
- 198.9Kt of zinc
- 77.9Kt of lead
- 8.5Kt of copper

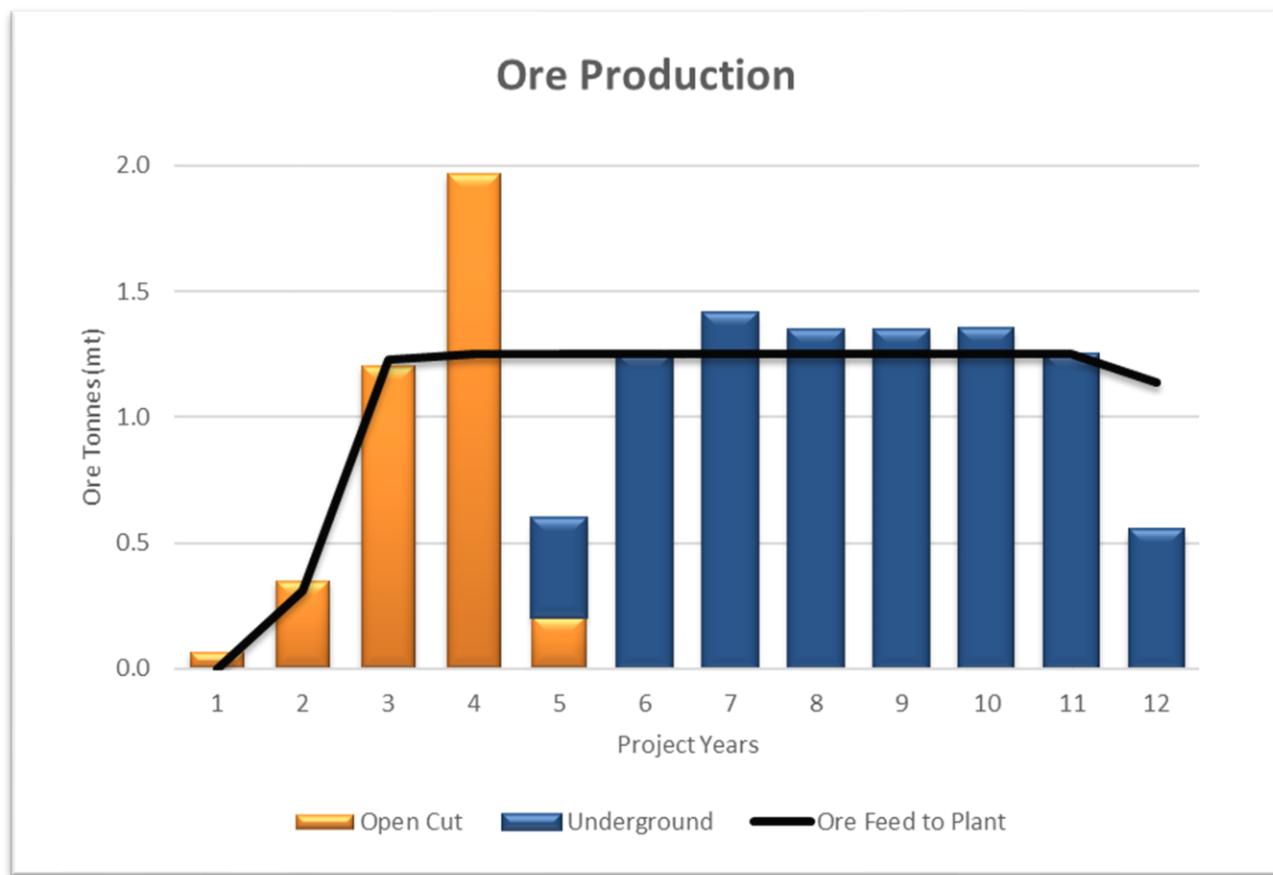
Table 3: Production profile over the life of mine, including breakdown of Open Pit and Underground

Production Category	Production Years	Cutoff AuEq (g/t)	Tonnes (Mt)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Cu (%)	Au Metal (Koz)	Ag Metal (Moz)	Zn Metal (Kt)	Pb Metal (Kt)	Cu Metal (Kt)
Open Pit	1 – 4	0.67	3.8	0.4	34.7	1.6	0.5	0.1	52.9	4.2	58.9	20.1	4.1
Underground	5 - 12	2.00	8.9	1.1	43.5	1.7	1.0	0.1	323.5	12.4	154.7	85.5	8.4
Global	1 - 12		12.7	0.9	40.9	1.7	0.8	0.1	376.4	16.7	213.6	105.6	12.5
METAL PRODUCED IN CONCENTRATE OVER LIFE OF MINE									243.9	12.0	198.9	77.9	8.5


Due to the effect of rounding, the total may not represent the sum of all components

Indicated and Inferred Resource Classification over the 12 year mine life is shown in Figure 3.

Over the four years where the open pit will be in operation, 78% of the cumulative mineralised material mined is Indicated Mineral Resource and 22% of the cumulative mineralised material mined is Inferred Mineral Resource.


Within the six-year payback period, 74% of the cumulative mineralised material mined is Indicated Mineral Resource and 26% is Inferred Mineral Resource.

Over the 12-year life of mine, 70% of the cumulative mineralised material mined is Indicated Mineral Resource and 30% is Inferred Mineral Resource.

Figure 3: Resource Classification over the life of mine

Ore will be fed to an onsite processing plant with a maximum capacity of 1.25Mtpa (Figure 4). The open cut schedule targets achieving the process plant capacity by Year 3, and by Year 4, open cut production will exceed the processing plant capacity. The excess ore will be stockpiled and processed in Year 5 during the transition to underground mining. The plant maintains a 1.25Mtpa throughput between Years 3 – 11.

Figure 4: Ore production feed over the life of mine

SENSITIVITY ANALYSIS

Sensitivity analysis has been evaluated on the base case scenario and considers pre-tax NPV, pre-tax IRR and free cash flow for key risk inputs such as commodity prices, metallurgical recovery, Capex, Opex and the Fx rate (exchange rate). Key risks are increased or decreased by 5% increments between 5% and 15% and are presented on an absolute or relative basis (Tables 4-6 below).

The project NPV and IRR are most sensitive to changes in commodity pricing, metallurgical recovery and Fx. It is moderately sensitive to changes in operating expenditure and least sensitive to changes in capital expenditure.

Table 4: Absolute and relative NPV (pre-tax) sensitivity (AUD\$M)

Absolute NPV (pre-tax) sensitivity (AUD\$M)						
	-15%	-10%	-5%	Base	5%	10%
Commodity prices	\$213	\$302	\$392	\$481	\$571	\$660
Metallurgical recovery ¹	\$234	\$317	\$399	\$481	\$564	\$646
Capex	\$525	\$510	\$496	\$481	\$467	\$452
Opex ²	\$594	\$556	\$519	\$481	\$444	\$407
fx rate ³	\$797	\$680	\$576	\$481	\$396	\$319
Relative NPV (pre-tax) sensitivity (AUD\$M)						
Commodity prices	-\$269	-\$179	-\$90	\$0	\$90	\$179
Metallurgical recovery ¹	-\$247	-\$165	-\$82	\$0	\$82	\$165
Capex	\$43	\$29	\$14	\$0	-\$14	-\$29
Opex ²	\$112	\$75	\$37	\$0	-\$37	-\$75
fx rate ³	\$316	\$199	\$94	\$0	-\$85	-\$163

Table 5: Absolute and relative IRR (pre-tax) sensitivity

Absolute IRR (pre-tax) sensitivity						
	-15%	-10%	-5%	Base	5%	10%
Commodity prices	16%	19%	21%	24%	27%	29%
Metallurgical recovery ¹	16%	19%	22%	24%	26%	29%
Capex	27%	26%	25%	24%	23%	22%
Opex ²	28%	27%	25%	24%	23%	21%
fx rate ³	33%	30%	27%	24%	21%	19%
Relative IRR (pre-tax) sensitivity						
Commodity prices	-9%	-6%	-3%	0%	3%	5%
Metallurgical recovery ¹	-8%	-5%	-2%	0%	2%	5%
Capex	3%	2%	1%	0%	-1%	-2%
Opex ²	4%	3%	1%	0%	-1%	-3%
fx rate ³	9%	6%	3%	0%	-3%	-5%

Table 6: Absolute and relative free cash Flow sensitivity

	Absolute Free Cashflow sensitivity (AUD\$M)						
	-15%	-10%	-5%	Base	5%	10%	15%
Commodity prices	\$652	\$807	\$962	\$1,117	\$1,273	\$1,428	\$1,583
Metallurgical recovery ¹	\$688	\$831	\$974	\$1,117	\$1,260	\$1,403	\$1,546
Capex	\$1,167	\$1,151	\$1,134	\$1,117	\$1,101	\$1,084	\$1,067
Opex ²	\$1,298	\$1,238	\$1,178	\$1,117	\$1,057	\$997	\$936
fx rate ³	\$1,665	\$1,462	\$1,281	\$1,117	\$969	\$835	\$712
Relative Free Cashflow sensitivity (AUD\$M)							
Commodity prices	-\$466	-\$310	-\$155	\$0	\$155	\$310	\$466
Metallurgical recovery ¹	-\$429	-\$286	-\$143	\$0	\$143	\$286	\$429
Capex	\$50	\$33	\$17	\$0	-\$17	-\$33	-\$50
Opex ²	\$181	\$121	\$60	\$0	-\$60	-\$121	-\$181
fx rate ³	\$548	\$345	\$163	\$0	-\$148	-\$282	-\$405

Notes:

1. Metallurgical recoveries are applied across all products, however zinc upside is capped at +10% for the +15% data point due to making it to the maximum realistically achievable recovery.
2. Opex only includes on site opex (i.e.. No sensitivity assessed on freight, TCRCs etc considered for this sensitivity)
3. Fx rates is only applicable to metal sales in this model. An assessment has not been made where forex risk might be applied to other inputs such as consumables (ground support, explosives, etc) or maintenance consumables/spares.

PROJECT CONFIGURATION**Mineral Resources**

The MRE for the Lewis Pond's Deposit was updated in December 2025 (refer ASX:GRL Announcement 15 December, 2025) in accordance with the JORC Code (2012 edition). The Company confirms that there have been no material changes to the resource since the date of this announcement.

The global resource estimate amounts to 17.52Mt (9.09Mt Indicated & 8.43Mt Inferred) @ 1.12g/t Au, 53.34g/t Ag, 2.06% Zn, 1.10% Pb, 0.14% Cu and is divided into Open Pit and Underground Resources as follows:

- Open Pit Resource (using a 0.67g/t AuEq cut off) equates to 4.82Mt (3.38Mt indicated & 1.44Mt inferred) @ 0.45g/t Au, 35.89g/t Ag, 1.49% Zn, 0.58% Pb, 0.11% Cu
- Underground Resource (using a 1.80g/t AuEq cutoff) equates to 12.70Mt (5.71Mt Indicated & 6.99Mt inferred) @ 1.37g/t Au, 59.97g/t Ag, 1.30% Pb, 2.28% Zn, 0.15% Cu

These results are documented in Table 7 and reflect the resources used to develop the production target within the Scoping Study.

Table 7: Lewis Pond's Deposit Mineral Resource Estimate by Open Pit and Underground Resources and Resource Classification as of December 2025. Due to the effect of rounding, the total may not represent the sum of all components

Category	Cutoff AuEq (g/t)	Resource Class	Tonnes (Mt)	AuEq (g/t)	Au (g/t)	Ag (g/t)	Zn (%)	Pb (%)	Cu (%)	Au Metal (Koz)	Ag Metal (Moz)	Pb Metal (Kt)	Zn Metal (Kt)	Cu Metal (Kt)
Open pit	0.67	Indicated	3.38	1.80	0.46	34.45	1.65	0.53	0.11	50.5	3.7	18	56	4
	0.67	Inferred	1.44	1.65	0.40	39.27	1.12	0.70	0.12	18.6	1.8	10	16	2
		Total	4.82	1.75	0.45	35.89	1.49	0.58	0.11	69.1	5.6	28	72	6
Underground	1.80	Indicated	5.71	3.44	1.50	50.00	2.24	1.25	0.12	275.8	9.2	71	128	7
	1.80	Inferred	6.99	3.56	1.27	68.11	2.31	1.35	0.17	285.3	15.3	94	162	12
		Total	12.70	3.51	1.37	59.97	2.28	1.30	0.15	561.1	24.5	165	290	18
Global		Total	17.52	3.02	1.12	53.34	2.06	1.10	0.14	630.2	30.1	194	362	24

Pit Optimisation

The revenue factor 1.0 shell (RF1.0), where 100% of the planned revenue is realised, was used to guide the practical pit design. This indicates the potential for an open pit extending over an 800m strike length, down to a depth of 150m, producing 3.8Mt of ore. The base revenue assumptions used for the pit optimisation inputs are listed in Table 8.

Further upside remains with the potential to consider a larger revenue factor pit shell. This will be considered during future pre-feasibility studies.

Table 8: Input revenue assumptions used for the Pit Optimisation

Cost item	Units	Value
Gold Sales Price	USD\$/oz	\$3,200
Silver Sales Price	USD\$/oz	\$40
Zinc Sales Price	USD\$/tonne	\$2,700
Lead Sales Price	USD\$/tonne	\$2,015
Copper Sales Price	USD\$/tonne	\$9,900
Exchange Rate	AUD:USD	0.65

* Pricing is based on the average real consensus long-term price of each commodity from up to 19 metals analysts. Survey date was 17/11/2025.

Mining

The study is based on a combined open-cut and underground mining operation (Figures 5 and 6), feeding a 1.25Mtpa Processing Plant. It incorporates a Run of Mine (ROM) pad, Paste Plant, Out-of-Pit Waste Dump and a Tailings Storage Facility (TSF).

The Open Cut will produce 3.8Mt of ore with a waste to ore strip ratio of 7.5:1. Production will last for four years via a single 200t class excavator with 11m³ bucket. The excavator will load 90t capacity trucks and will utilise a 28m wide dual access haul road within the pit.

The Underground will produce 8.9Mt of ore over eight years of operation and will be accessed from the bottom of the Open Pit, via two portal locations, one in the north and one in the south (Figure 6). Underground levels are spaced 25m apart will consist of Longitudinal Benching (23% of inventory tonnes) where the mineralisation is sufficiently narrow (typically between 3-15m in width), and Transverse Benching (77% of inventory tonnes) where the northern mineralisation reaches 30m in thickness. Mobile equipment used will include 3 x jumbos, 3 x production drills, 1 x raisebore, 5 x 10t loaders and 8 x 50t trucks.

Material handling of the underground will involve both ore and waste transported to surface using a fleet of underground articulated dump trucks. The ore will be hauled from the underground portal, through the open pit and dumped for processing on the ROM stockpile. Waste will be transported to surface and disposed of within the open pit or out of pit dump.

Backfill strategy involves the use of pastefill across the life of the underground mine. A pastefill plant will be located near the processing plant to enable in-stream collection of the milled tailings for use in the production of the pastefill. 60% of the tailings generated by the underground mining ore will be used for the paste fill operations.

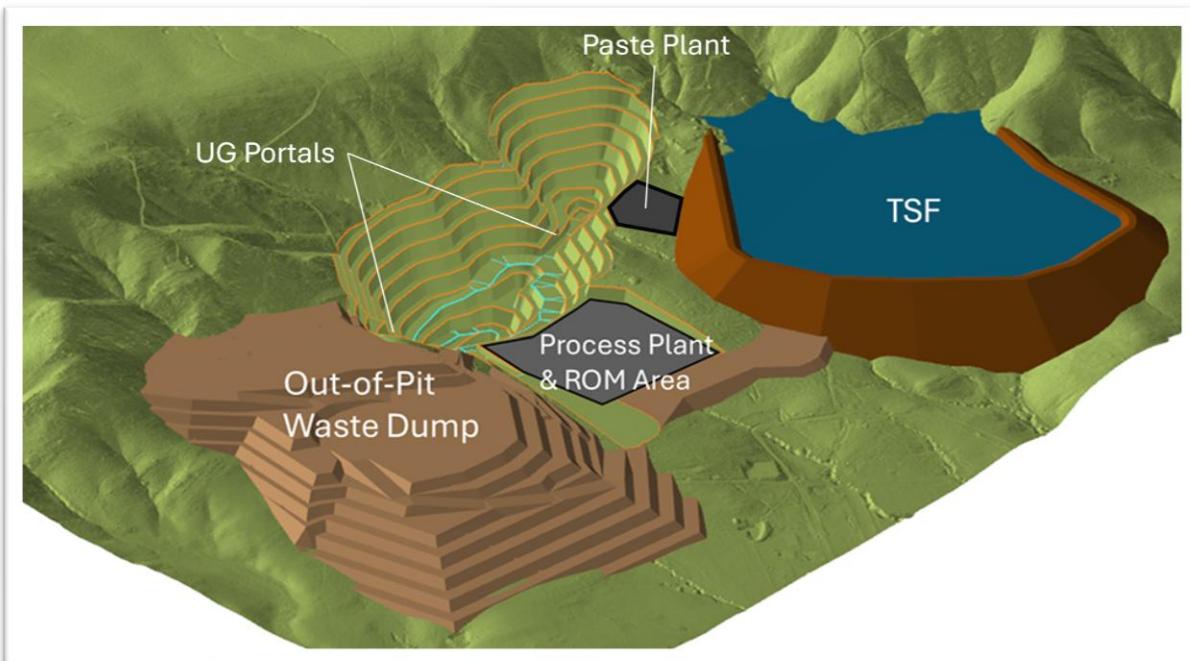


Figure 5: Oblique aerial view looking north-west of major surface infrastructure.

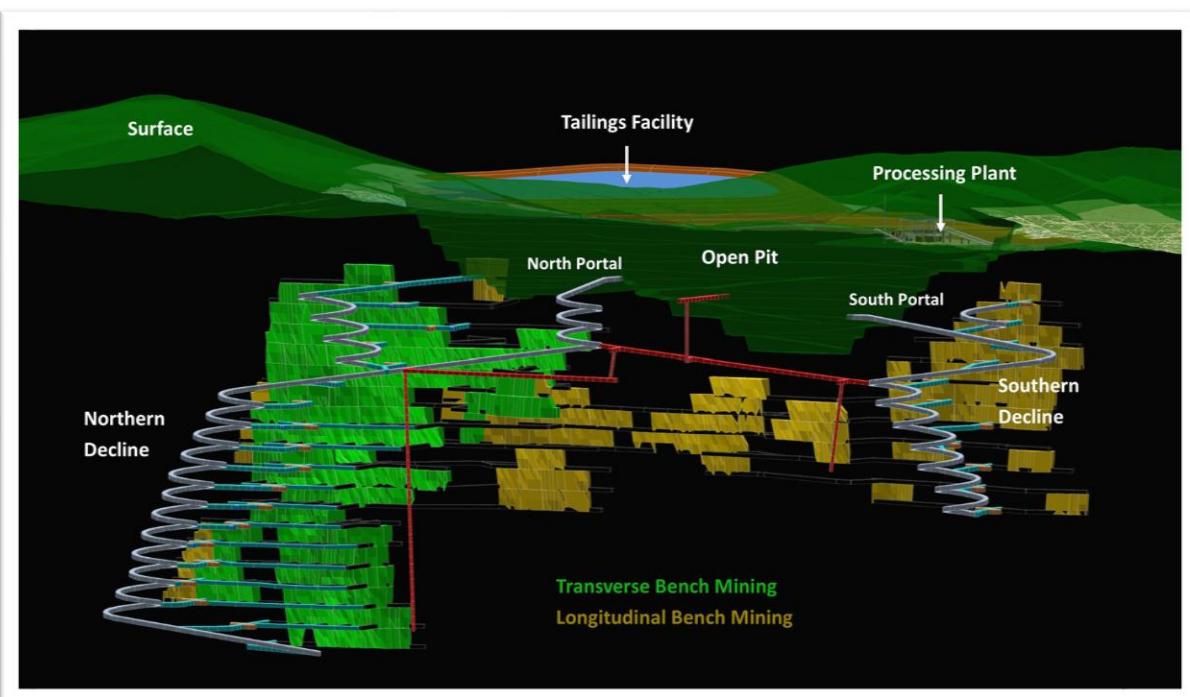


Figure 6: longitudinal view looking north-east, showing the underground mining is accessed by two portal locations in the north and south of the Open Pit. Longitudinal bench mining represents 23% of ore inventory tonnes mined while Transverse benching represents 77% of the ore inventory mined. Also shown is the ventilation system in red.

The ventilation strategy involves fresh air being pulled down the northern and southern declines and returned to surface using ventilation raises.

Metallurgy and Processing

The process plant conceptual design was undertaken by *Xenco Services* and was informed by two metallurgical testwork programs, namely a historical SGS Laboratory flotation testwork programme completed in 2018, and more recently, comminution and flotation testwork completed by Core Resources in 2025.

Consistent with the 2018 testwork program, Core Resources developed two high grade concentrates, a zinc dominant concentrate and a combined lead-gold-silver concentrate, from the Spicer's and Torphy's orebodies. Laboratory testwork indicates the potential to generate a clean zinc concentrate typically grading above 64% Zn, together with a low-impurity, high-grade lead–gold–silver concentrate (>31% Pb, >16.7 g/t Au, >1,580 g/t Ag). Arsenic is less than 0.2% in the lead concentrate and it is assumed it will not attract any penalties. A summary of the concentrate fundamentals is presented in Table 9.

Table 9: Indicative plant metallurgical performance based on the 2025 test work and the recovery calculation methodology used by SGS in 2018.

Stream	Mass	Grade							Recovery factored						
		%	Pb (%)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	Fe (%)	As (g/t)	Pb (%)	Au (%)	Ag (%)	Cu (%)	Zn (%)	Fe (%)
Feed	100.0	1.10	0.67	57.00	0.16	2.77	12.60	731.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Pb-PM Con	2.6	31.20	16.7	1580.00	4.21	1.90	19.50	1,916.0	73.40	64.7	71.8	68.90	1.80	4.00	6.80
Zn Con	4.0	0.49	0.44	58.00	0.09	64.94	12.10	927.00	1.80	2.60	4.00	2.20	93.10	3.80	5.00
Final Tail	93.4	0.29	0.23	15.00	0.05	0.15	12.40	690.00	24.80	32.70	24.20	28.90	5.20	92.20	88.20

Note: Recoveries have been calculated using the laboratory-achieved concentrate assays and recoveries, together with estimated metal recovery attributed to the tailings stream.

The simplified mass balance block flow diagram is shown in Figure 7. It involves primary crushing and screening, with the crushed ore fed to a grinding circuit targeting P80 of 38 μ m (80% of the material is finer than 38 μ m).

The discharge from the grinding circuit is directed to the lead flotation circuit where the rougher concentrate undergoes regrinding prior to the cleaning circuit. The lead concentrate is then passed through the lead filtration circuit, de-watered and bagged for storage.

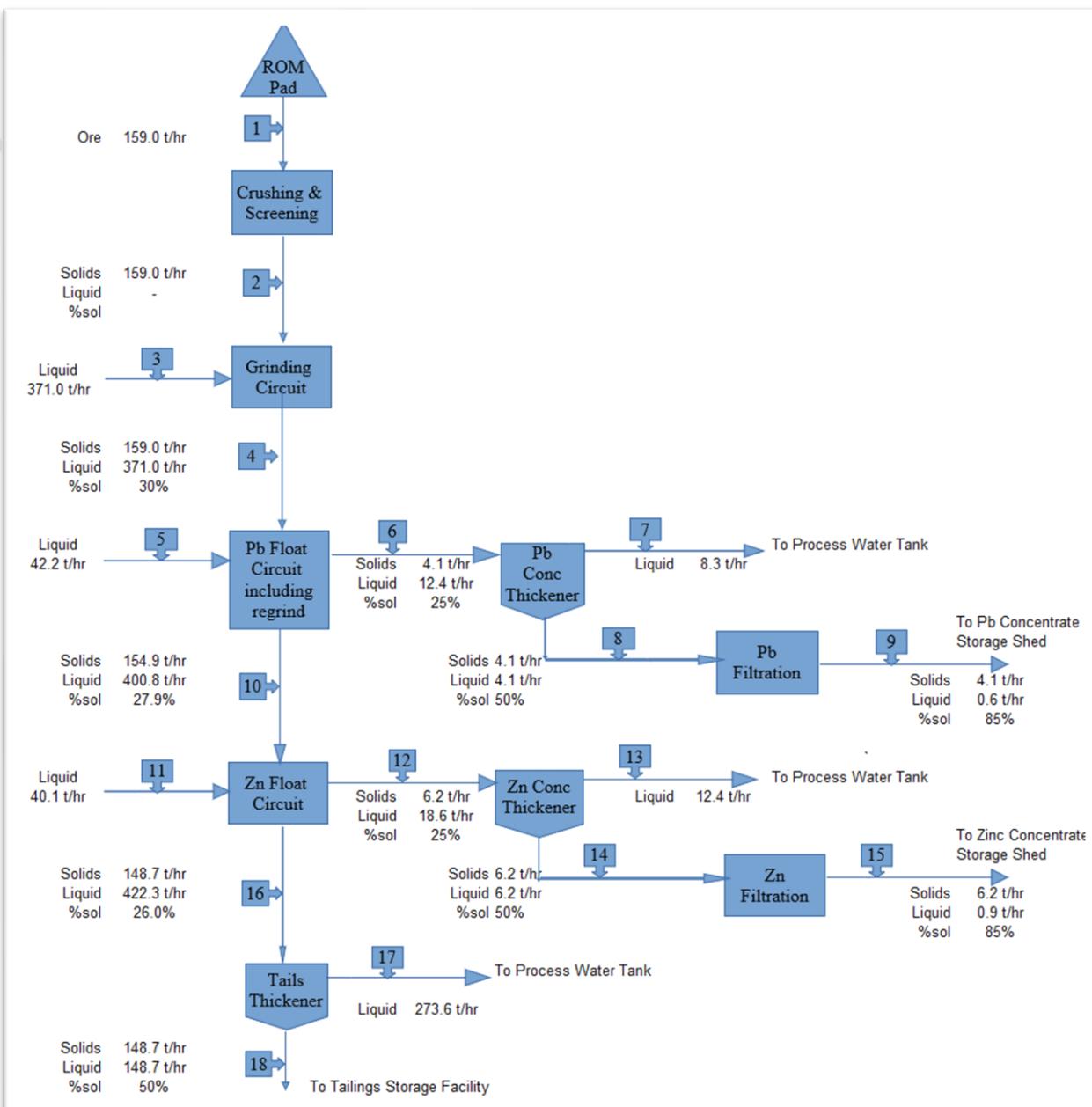
Tailings from the lead circuit are subsequently fed into the zinc flotation circuit and similarly, the zinc concentrate passes through a zinc filtration circuit and is de-watered and bagged for storage.

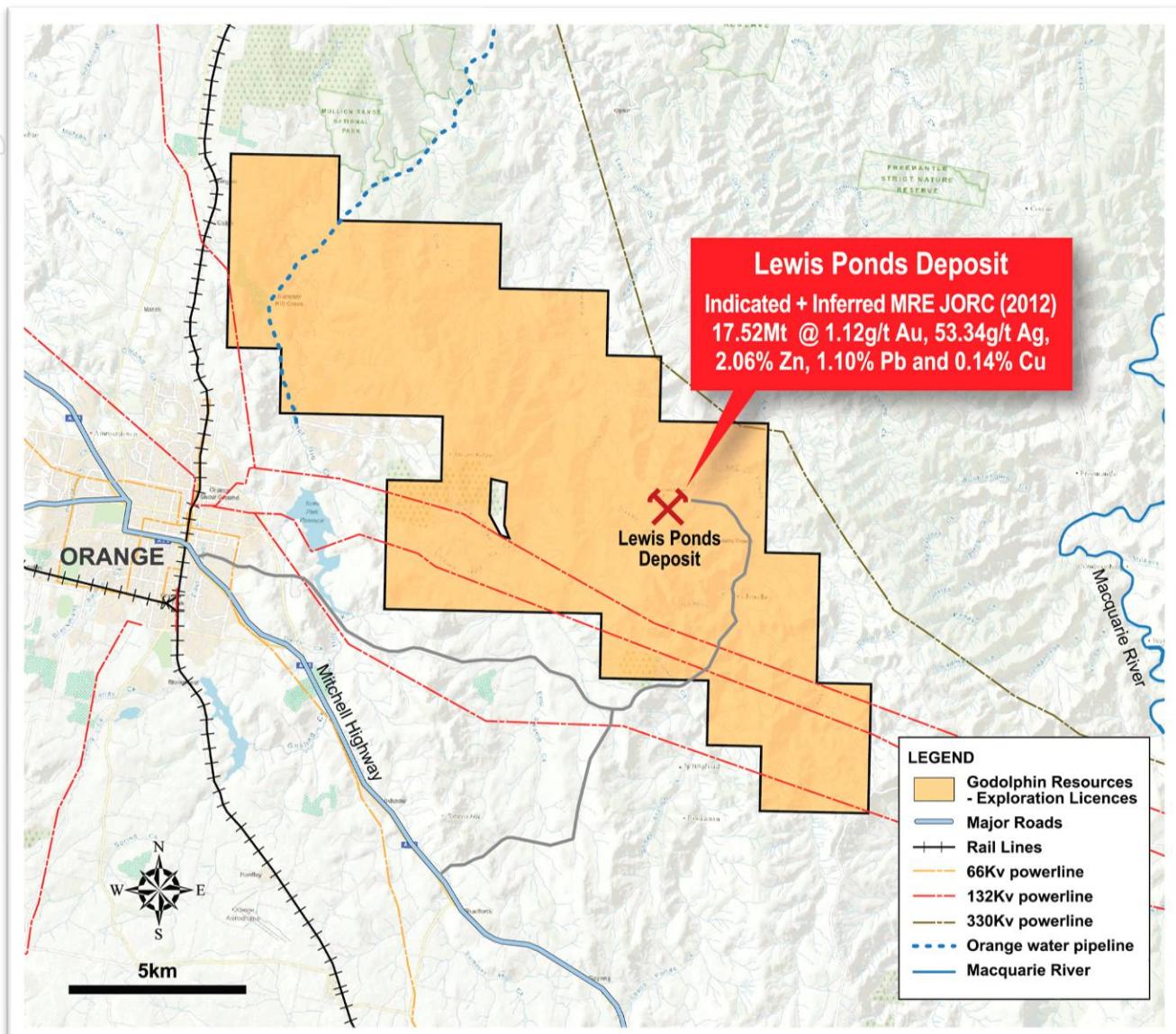
The final tailings from the zinc flotation are de-watered and pumped to the tailings storage facility.

A capital allowance of AUD\$226M has been made for the processing plant.

Infrastructure and Services

The project area benefits from proximity to established road, power, railway and water infrastructure (Figure 8).




Figure 7: Simplified mass balance block flow diagram

It is assumed electricity for the Project will be sourced from the grid in Orange. Local power is delivered to nearby farmhouses at Lewis Ponds using overhead 11KV operating voltage powerlines, while 330KV and 132KV operating voltage powerlines are within 3km of the Project.

It has been estimated that existing infrastructure can be upgraded with additional or new lines to satisfy power requirements with a capital allowance of AUD\$5M made.

It is assumed water will be sourced from within the Project site (evidence of water from an onsite spring and wet exploration boreholes) or alternatively, if this water is not sufficient, a potential water source is the Macquarie River, located 11km east of the Project or via access to the Macquarie River – Orange Water pipeline. An associated AUD\$10M capital allowance has been allocated.

Ore concentrate will be transported via trucks, from the Project site, along the Mitchell Highway and other sealed road networks to either the Port of Newcastle or Port Kembla. An allowance of AUD\$2M has been made in upgrading second order roads to connect to the Mitchell Highway.

Figure 8: Infrastructure map showing the location of existing powerlines, water pipeline and road-rail network relative to the Lewis Ponds Deposit.

Tailings and Waste Management

A potential site location for the Tailings Storage Facility (TSF) has been identified north of the open pit and processing plant and will be constructed using suitable mine waste from the open pit. It is assumed that once the underground mining operations achieve steady state production, 60% of the tailings will be utilised as paste fill in the open stopes. This results in an overall TSF capacity of approximately 2.4Mm³ based on the 1.25Mtpa processing capacity and 12 year mine life. A capital allowance of \$AUD7.3M has been made for the TSF.

Proposed out-of-pit waste dump areas have been identified south of the open pit. It is of a sufficient size to accommodate all open pit waste material.

LICENCE TO OPERATE

Approvals

No formal approval process has commenced. As the project progresses through to Pre-Feasibility this will be addressed and will include initial permitting, cultural heritage and environmental assessments. A capital allowance of AUD\$3M has been allocated for these studies.

Social Sustainability

The Company expects the project will employ 166 personnel, including contractors, when at full production. It is anticipated a high proportion of the workforce will be engaged from the surrounding local communities and towns.

CAPITAL COST ESTIMATE

The estimated capital cost has been calculated using a typical Scoping Study desktop approach of +/- 35% accuracy and was prepared in consultation with independent mining specialists and *Optimal Mining Solutions*.

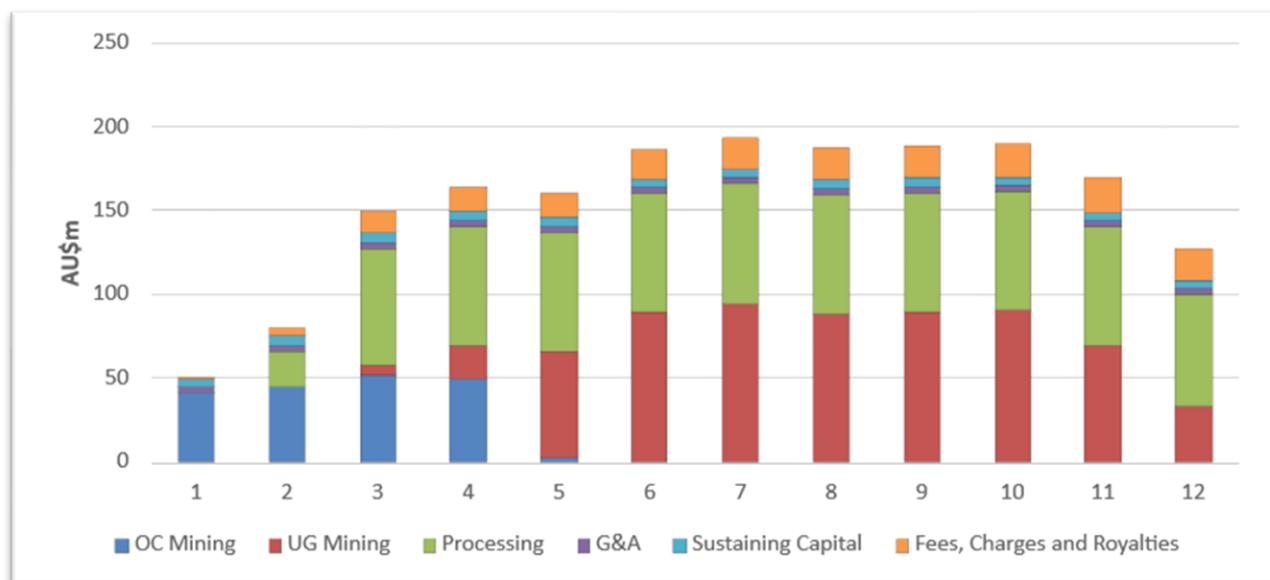
A total pre-production capital cost estimate of AUD\$268.2M has been estimated, with the sustaining capital over the life of mine estimated at AUD\$64.1M. The breakdown is shown in Table 10.

Table 10: Capital Cost Estimate

Capital Category	Key Items	Value (AUD\$M)
A – Pre-site Establishment	Studies, Permitting	\$7.0
B – Site Establishment	Offices, Warehouse, Workshop	\$23.4
C – Major Construction	Process Plant, Tailings Storage Facility	\$233.4
D – Underground Establishment	Portal, Ventilation, Paste Plant	\$4.4
Total pre-production capital cost		\$268.2
E – Sustaining Capital	Annual Ongoing Capital	\$64.1
F – Environmental Bond (mine closure) + Land Acquisition	NSW Environmental Security Bond and Land Acquisition	\$23.1
Total Capital		\$355.4

* Land acquisitions and environmental security bond items are considered to be funded from debt rather than equity due to common practice and the associated collateral to secure, hence do not appear as capital costs in the model but are included with regard to estimated interest contributing to cashflow. All other items are considered to be funded from equity.

OPERATING COST ESTIMATE AND ROYALTIES


This estimate has been calculated using a typical Scoping Study desktop approach of +/- 35% accuracy and was prepared in consultation with independent mining specialists and *Optimal Mining Solutions*. Breakdown of operating costs, including royalties is shown in Table 11 and graphically displayed by year in Figure 9.

On site operating costs for Open Pit and Underground mining operations, including processing costs amounts to AUD\$1,512M.

A further AUD\$272M is attributed to Treatment and Refining Costs (TC/RC), concentrate transport charges and the 4% NSW government mining royalty tax.

Table 11: Operating Cost as a function of AUD\$/t processed

Area	Operating Cost Estimate AUD\$/t processed
Open Pit Mining	50
Underground Mining	72
General and Administration	3
Processing	49
TC/RC/ Transport and Royalties	21

Figure 9: Operating Cost breakdown by year, including sustaining capital

Funding

Development of the Project will require an estimated AUD\$268M pre-production capital in addition to sustaining capital as the Project progresses. The strong economic base case and favourable mining jurisdiction of New South Wales provides Godolphin with a robust platform to secure funding through traditional debt and equity markets, although the Company acknowledges there is no certainty funding will be obtained as required.

Godolphin intends to evaluate a combination of funding sources, including:

- Equity raises – placements to institutional and sophisticated investors or pro-rata offers to existing shareholders
- Strategic partner or Joint Venture - early stage, non-binding discussions have commenced with strategic partners
- Offtake agreements – the Company may also consider funding the Project via long term offtake agreements

Godolphin believes there is a reasonable basis to expect the requisite funding will be available, based on the following:

- Project is located in a premier mining jurisdiction
- Strong forecast pre-tax cashflow in excess of AUD\$1.1 billion with major upside

- We aim for significant growth potential of the Project's Mineral Resources
- Release of the Scoping Study will provide the foundation for engagement with financiers, investors and potential strategic partners
- Godolphin has a clean corporate and capital structure with no debt and the Company owns 100% of the Project
- The Godolphin Board has extensive experience in financing resource industry projects and ASX-listed resource companies.
- The Company is actively considering funding options, and these discussions are ongoing.

Expected Schedule

Development of the Lewis Pond's Project is assumed to commence following completion of the next phase of technical studies, including a Pre-Feasibility Study (PFS) and permitting activities. For the purpose of the Scoping Study, the Company has assumed a project development timeframe consistent with industry-standard lead times for projects of similar scale within New South Wales. Initial site establishment and pre-production activities are expected to lead into first ore production in line with these assumptions.

Gold Equivalents have been calculated using the formula for this report:

$((\text{Au grade g/t} * \text{Au price US$/oz} * \text{Au recov} / 31.1035) + (\text{Ag grade g/t} * \text{Ag price US$/oz} * \text{Ag recov} / 31.1035) + (\text{Cu grade %} * \text{Cu price US$/t} * \text{Cu recov} / 100) + (\text{Zn grade %} * \text{Zn price US$/t} * \text{Zn recov} / 100) + (\text{Pb grade %} * \text{Pb price US$/t} * \text{Pb recov} / 100)) / (\text{Au price g/t} * \text{Au recov} / 31.1035)$. Prices are in US\$ of Au= \$3200/oz, Ag = \$40/oz, Cu= \$9,900/t, Zn = \$2,700/t, Pb = 2,015/t. These prices are long-term prices and have been sourced from a range of metals analysts who provide monthly commodity price forecasts. The long-term pricing for each commodity is based on the average real consensus price from up to 19 metals analysts surveyed. The date of the survey was November 17th, 2025.

Several metallurgical studies have been initiated on the Lewis Ponds resource and the most recent work used in this report was completed by Core Resources in December, 2025 (refer ASX GRL, 9 December 2025), who indicated a relatively simple flotation process producing two concentrates, a zinc dominant concentrate and a lead-gold-silver-copper concentrate. The average recoveries for the various metals were Gold = 64.7%, Silver = 71.8%, Zinc = 93.1%, Lead = 73.4% and Copper = 68.9%. These recoveries have been used in the gold equivalent calculation. It is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

<ENDS>

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit <https://godolphinresources.com.au/> or contact:

Jeneta Owens
Managing Director
+61 417 344 658
jowens@godolphinresources.com.au

Released through: Henry Jordan, Six Degrees Investor Relations, +61 431 271 538

About Godolphin Resources

Godolphin Resources (ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based Projects primarily located within the Lachlan Fold Belt ("LFB") NSW, a world-class gold-copper and rare earth element province of Australia. Godolphin have strategic focus on exploring for and development of critical minerals and metals, we remain committed to sustainability across the community in which we operate, the environment we undertake exploration and development on and to deliver projects which will assist Australia and the world in the clean energy transition. Currently the Company's tenements cover 3038km² of ground highly prospective for gold, silver, base metals and rare earths and is host to the Company's advanced Lewis Ponds Gold and Silver Project, the Narraburra REE Project and the Yeoval Cu-Au and Mt Aubrey Au Projects. At Godolphin we aim to operate ethically and responsibly and remain outcome focused to deliver on what we say to add value for all stakeholders.

COMPLIANCE STATEMENT

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Jeneta Owens, Managing Director for Godolphin Resources Ltd. Ms Owens is the Managing Director, full-time employee, Shareholder and Option holder of Godolphin Resources Limited. Ms Owens is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM) and the Australian Institute of Geoscientists (AIG) she has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Ms Owens consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

The information in this report that relates to Mineral Resources is based on information evaluated by Mr Jeremy Clark who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Clark is an associate of RPM and he consents to the inclusion of the estimates in the report of the Mineral Resource in the form and context in which they appear.

The information in this report that relates to the Production Target, assumptions on Modifying Factors and evaluation of other relevant factors are based on and fairly represents information and supporting documentation that has been compiled for this announcement and have been compiled under the supervision of Mr Tony O'Connell B.E. (Mining) of Optimal Mining Solutions. Mr O'Connell is a Member AusIMM and the Principal Consultant and Director of Optimal Mining Solutions. Mr O'Connell has reviewed and approved the technical content of this announcement. Mr O'Connell is a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012). Mr O'Connell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Other information in this announcement is extracted from reports lodged as market announcements referred to above and available on the Company's website www.godolphinresources.com.au. The Company confirms that it is not aware of any new information that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

FORWARD LOOKING STATEMENTS

Certain statements in this announcement constitute "forward-looking statements" or "forward-looking information" within the meaning of applicable securities laws. Such statements involve known and unknown risks, uncertainties and other factors, which may cause actual results, performance or achievements of the Company, or industry results, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements or information. Such statements can be identified by the use of words such as "may", "would", "could", "will", "intend", "expect", "believe", "plan", "anticipate", "estimate", "scheduled", "forecast", "predict" and other similar terminology, or state that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. These statements reflect the Company's current expectations regarding future events, performance and results, and speak only as of the date of this announcement. All such forward-looking information and statements are based on certain assumptions and analyses made by GRL's management in light of their experience and perception of historical trends, current conditions and expected future developments, as well as other factors management believes are appropriate in the circumstances.

Forward-looking statements, including projections, opinions, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties, assumptions, contingencies and other important factors, many of which are outside the control of the Company and which are subject to change without notice and could cause the actual results, performance or achievements of the Company to be materially different from future results, performance or achievements expressed or implied by such statements. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecasts. Nothing contained in this announcement, nor any information made available to you is, or and shall be relied upon, as a promise, representation, warranty or guarantee as to the past, present or the future performance of Godolphin Resources.

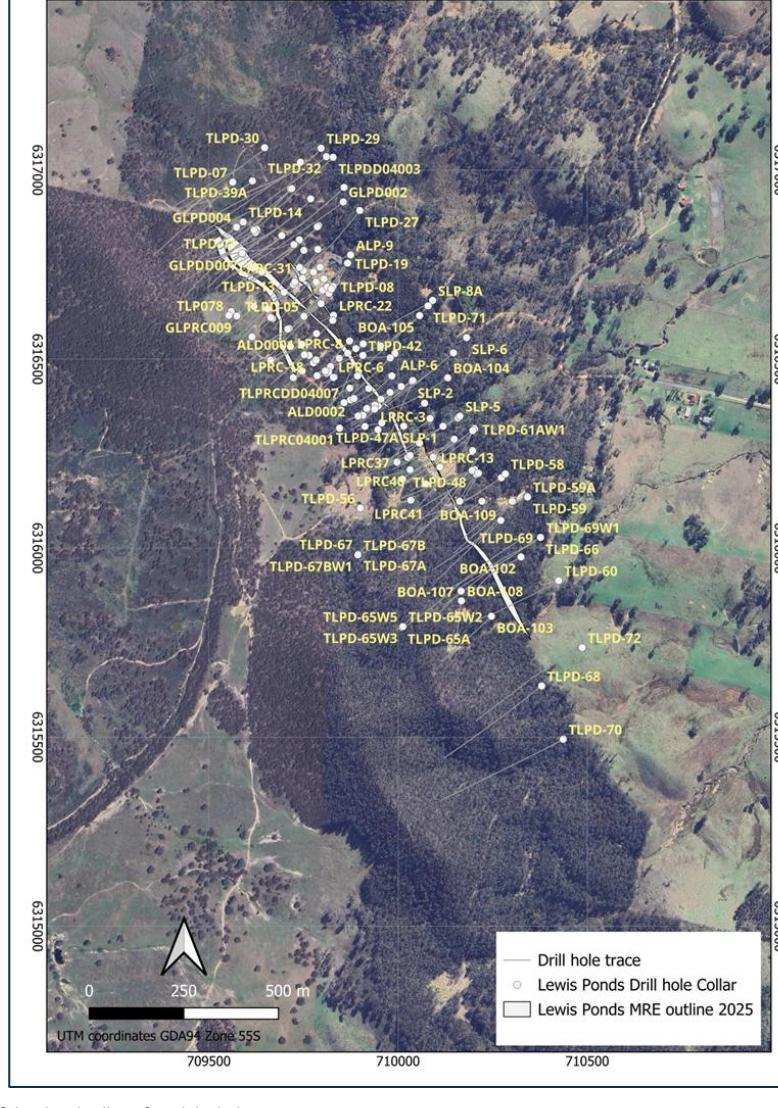
Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary																																																																																																																																																																																																																																																																																																
Sampling techniques	<ul style="list-style-type: none"> Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	<ul style="list-style-type: none"> Sawn half core samples from diamond drilling were sent for Industry standard sample preparation and analysis at a commercial laboratory. Sampling was at 1m intervals and/or based on geological control Chip samples from Reverse Circulation drilling were sent for Industry standard sample preparation and analysis at a commercial laboratory. Sampling was at 1m intervals. Measures to ensure sample representivity included triple tube drilling after 1990. Field duplicates were obtained in drill core by quartering the core. Mineralisation is defined by the visual presence of sulphide mineralisation within the host rock accompanied by significant alteration indicative of gold mineralisation All holes considered are listed in Appendix 2 and summarised below according to Company and drill campaign year <table border="1"> <thead> <tr> <th>Company</th><th>Year</th><th>Number of Drillholes</th><th>DD</th><th>Total meter DD</th><th>DD_Wedge</th><th>Total_m_DD_Wedge</th><th>RC</th><th>Total_m_RC</th><th>RC/DD</th><th>Total_m_RC/DD</th><th>Total meter drilled</th></tr> </thead> <tbody> <tr><td>AMAX</td><td>1971</td><td>1</td><td>1</td><td>111.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>111.25</td></tr> <tr><td>AMAX</td><td>1972</td><td>3</td><td>3</td><td>763.41</td><td></td><td></td><td></td><td></td><td></td><td></td><td>763.41</td></tr> <tr><td>AAS</td><td>1975</td><td>3</td><td>3</td><td>592.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td>592.50</td></tr> <tr><td>AAS</td><td>1976</td><td>7</td><td>7</td><td>1,509.28</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,509.28</td></tr> <tr><td>SHELL MINERALS</td><td>1980</td><td>5</td><td>5</td><td>1,710.90</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,710.90</td></tr> <tr><td>SHELL MINERALS</td><td>1981</td><td>3</td><td>3</td><td>691.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td>691.50</td></tr> <tr><td>SABMINCO</td><td>1987</td><td>10</td><td></td><td></td><td></td><td></td><td>10</td><td>710.00</td><td></td><td></td><td>710.00</td></tr> <tr><td>SABMINCO</td><td>1988</td><td>22</td><td></td><td></td><td></td><td></td><td>22</td><td>1,516.00</td><td></td><td></td><td>1,516.00</td></tr> <tr><td>TRIORIGIN</td><td>1992</td><td>9</td><td>8</td><td>2,350.77</td><td>1</td><td>337.50</td><td></td><td></td><td></td><td></td><td>2,688.27</td></tr> <tr><td>TRIORIGIN</td><td>1993</td><td>10</td><td>10</td><td>4,128.95</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4,128.95</td></tr> <tr><td>TRIORIGIN</td><td>1994</td><td>31</td><td>19</td><td>9,310.88</td><td>12</td><td>6,493.76</td><td></td><td></td><td></td><td></td><td>15,804.64</td></tr> <tr><td>TRIORIGIN</td><td>1995</td><td>29</td><td>22</td><td>7,379.16</td><td>7</td><td>3,206.31</td><td></td><td></td><td></td><td></td><td>10,585.47</td></tr> <tr><td>TRIORIGIN</td><td>1996</td><td>4</td><td>1</td><td>807.40</td><td>1</td><td>596.40</td><td>2</td><td>96.00</td><td></td><td></td><td>1,498.80</td></tr> <tr><td>TRIORIGIN</td><td>1997</td><td>32</td><td>17</td><td>6,939.88</td><td>9</td><td>4,443.54</td><td>4</td><td>516.00</td><td>2.00</td><td>1,328.00</td><td>13,227.42</td></tr> <tr><td>TRIORIGIN</td><td>2004</td><td>12</td><td>3</td><td>1,451.90</td><td></td><td></td><td>4</td><td>483.30</td><td>5.00</td><td>612.90</td><td>2,548.10</td></tr> <tr><td>TRIORIGIN</td><td>2005</td><td>6</td><td></td><td></td><td></td><td></td><td>4</td><td>421.90</td><td>2.00</td><td>153.60</td><td>575.50</td></tr> <tr><td>TriAusmin</td><td>2011</td><td>9</td><td></td><td></td><td></td><td></td><td>9</td><td>920.00</td><td></td><td></td><td>920.00</td></tr> <tr><td>ARDEA</td><td>2017</td><td>4</td><td>4</td><td>780.40</td><td></td><td></td><td></td><td></td><td></td><td></td><td>780.40</td></tr> <tr><td>Godolphin</td><td>2021</td><td>13</td><td>4</td><td>1,882.00</td><td></td><td></td><td>9</td><td>1,185.00</td><td></td><td></td><td>3,067.00</td></tr> <tr><td>Godolphin</td><td>2024</td><td>4</td><td>4</td><td>767.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td>767.00</td></tr> <tr><td>Godolphin</td><td>2025</td><td>1</td><td>1</td><td>327.80</td><td></td><td></td><td></td><td></td><td></td><td></td><td>327.80</td></tr> <tr><td></td><td></td><td>218</td><td>115</td><td>41,504.98</td><td>30</td><td>15,077.51</td><td>64</td><td>5,848.20</td><td>9.00</td><td>2,094.50</td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TOTAL 64,525.19</td></tr> </tbody> </table> <p>*DD = Diamond Drillhole RC = Reverse Circulation Drillhole DD_Wedge = Diamond Wedge Drillhole RC/DD = Combination RC and DD hole</p>	Company	Year	Number of Drillholes	DD	Total meter DD	DD_Wedge	Total_m_DD_Wedge	RC	Total_m_RC	RC/DD	Total_m_RC/DD	Total meter drilled	AMAX	1971	1	1	111.25							111.25	AMAX	1972	3	3	763.41							763.41	AAS	1975	3	3	592.50							592.50	AAS	1976	7	7	1,509.28							1,509.28	SHELL MINERALS	1980	5	5	1,710.90							1,710.90	SHELL MINERALS	1981	3	3	691.50							691.50	SABMINCO	1987	10					10	710.00			710.00	SABMINCO	1988	22					22	1,516.00			1,516.00	TRIORIGIN	1992	9	8	2,350.77	1	337.50					2,688.27	TRIORIGIN	1993	10	10	4,128.95							4,128.95	TRIORIGIN	1994	31	19	9,310.88	12	6,493.76					15,804.64	TRIORIGIN	1995	29	22	7,379.16	7	3,206.31					10,585.47	TRIORIGIN	1996	4	1	807.40	1	596.40	2	96.00			1,498.80	TRIORIGIN	1997	32	17	6,939.88	9	4,443.54	4	516.00	2.00	1,328.00	13,227.42	TRIORIGIN	2004	12	3	1,451.90			4	483.30	5.00	612.90	2,548.10	TRIORIGIN	2005	6					4	421.90	2.00	153.60	575.50	TriAusmin	2011	9					9	920.00			920.00	ARDEA	2017	4	4	780.40							780.40	Godolphin	2021	13	4	1,882.00			9	1,185.00			3,067.00	Godolphin	2024	4	4	767.00							767.00	Godolphin	2025	1	1	327.80							327.80			218	115	41,504.98	30	15,077.51	64	5,848.20	9.00	2,094.50													TOTAL 64,525.19
Company	Year	Number of Drillholes	DD	Total meter DD	DD_Wedge	Total_m_DD_Wedge	RC	Total_m_RC	RC/DD	Total_m_RC/DD	Total meter drilled																																																																																																																																																																																																																																																																																							
AMAX	1971	1	1	111.25							111.25																																																																																																																																																																																																																																																																																							
AMAX	1972	3	3	763.41							763.41																																																																																																																																																																																																																																																																																							
AAS	1975	3	3	592.50							592.50																																																																																																																																																																																																																																																																																							
AAS	1976	7	7	1,509.28							1,509.28																																																																																																																																																																																																																																																																																							
SHELL MINERALS	1980	5	5	1,710.90							1,710.90																																																																																																																																																																																																																																																																																							
SHELL MINERALS	1981	3	3	691.50							691.50																																																																																																																																																																																																																																																																																							
SABMINCO	1987	10					10	710.00			710.00																																																																																																																																																																																																																																																																																							
SABMINCO	1988	22					22	1,516.00			1,516.00																																																																																																																																																																																																																																																																																							
TRIORIGIN	1992	9	8	2,350.77	1	337.50					2,688.27																																																																																																																																																																																																																																																																																							
TRIORIGIN	1993	10	10	4,128.95							4,128.95																																																																																																																																																																																																																																																																																							
TRIORIGIN	1994	31	19	9,310.88	12	6,493.76					15,804.64																																																																																																																																																																																																																																																																																							
TRIORIGIN	1995	29	22	7,379.16	7	3,206.31					10,585.47																																																																																																																																																																																																																																																																																							
TRIORIGIN	1996	4	1	807.40	1	596.40	2	96.00			1,498.80																																																																																																																																																																																																																																																																																							
TRIORIGIN	1997	32	17	6,939.88	9	4,443.54	4	516.00	2.00	1,328.00	13,227.42																																																																																																																																																																																																																																																																																							
TRIORIGIN	2004	12	3	1,451.90			4	483.30	5.00	612.90	2,548.10																																																																																																																																																																																																																																																																																							
TRIORIGIN	2005	6					4	421.90	2.00	153.60	575.50																																																																																																																																																																																																																																																																																							
TriAusmin	2011	9					9	920.00			920.00																																																																																																																																																																																																																																																																																							
ARDEA	2017	4	4	780.40							780.40																																																																																																																																																																																																																																																																																							
Godolphin	2021	13	4	1,882.00			9	1,185.00			3,067.00																																																																																																																																																																																																																																																																																							
Godolphin	2024	4	4	767.00							767.00																																																																																																																																																																																																																																																																																							
Godolphin	2025	1	1	327.80							327.80																																																																																																																																																																																																																																																																																							
		218	115	41,504.98	30	15,077.51	64	5,848.20	9.00	2,094.50																																																																																																																																																																																																																																																																																								
											TOTAL 64,525.19																																																																																																																																																																																																																																																																																							
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<p><u>Lewis Ponds Historical</u></p> <ul style="list-style-type: none"> Two main types of drilling have been used since the first drill testing at Lewis Ponds in 1971: Reverse Circulation percussion (RC) and diamond-core drilling (DD). Open hole techniques including Tricone, Blade and Hammer have been used to pre-collar holes through overburden and barren ground to place casing to facilitate deeper RC and/or DD drilling. Prior to 1980, HQ sized core was drilled only to seat the casing and enable NQ sized coring to start. Most of these holes at some stage reduced to BQ sized core size when rotation became an issue with NQ sized core. In DD programs subsequent to 1980, HQ sized core was used to refusal when the core size was reduced to NQ sized core and occasionally to BQ sized core. After 1990 triple tube barrels were used to good effect minimizing core loss, and reduction to NQ sized core became the norm with no further use of BQ sized coring. As seen in the table above, the majority of the drilling supporting the MRE are post 1990. Diamond tails, as distinct from pre-collars, were used to extend RC holes in the 2004 and 2005 programs. No use of oriented core was made until 2004 when drillers marks on core assisted determination of vergence in folding adjacent to mineralization. DD wedge drilling has been undertaken to increase coverage at depth. <p><u>Lewis Ponds Godolphin (GRL) (2024/2025)</u></p> <ul style="list-style-type: none"> Diamond drilling for HQ3 core using a DE-712 rig. One hole, GLPDD009 had a combination of PQ3, HQ3 and NQ3 drill core. Holes were tripled tubed and oriented using the Reflex Ori system, with bottom of hole marks. 																																																																																																																																																																																																																																																																																																
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether 	<p><u>Lewis Ponds Historical</u></p> <ul style="list-style-type: none"> Recovery of core has been measured by restoring the core and fitting individual pieces end to end where possible. Lengths of the assembled core were measured to compare with the intervals between drillers' downhole markers. The ratio between the measured length and the marker interval length was recorded as core recovery percent. Geological logs indicate very limited core loss usually associated with the top of hole and localized shearing/faulting. Some holes terminated in pre-existing mined voids. From historical records, core loss was minimized by maintaining a satisfactory balance between core diameter and drilling cost. For the TOA, TRO and TriAusMin programs between 1992 and 2004, also the Shell/Aquitaine 1981 program, the standard core size was HQ reducing to NQ. This was the most 																																																																																																																																																																																																																																																																																																

Criteria	• JORC Code explanation	Commentary
	sample bias may have occurred due to preferential loss/gain of fine/coarse material.	<p>significant factor in minimizing core loss, to the extent that contract-controlled drilling provisions were not called for.</p> <ul style="list-style-type: none">• Percussion chip samples, at least in the more recent RC drilling, were weighed and the weight recorded. Any noticeably low weight recorded became a recovery factor in the sampling record.• The very limited amount of core loss ensured that there was no relationship between metal grades and core recovery. <p><u>Lewis Ponds Godolphin (2024/2025)</u></p> <ul style="list-style-type: none">• Core recovery was completed on every drill run and logged into GRL spreadsheets on site. Core loss was very limited, except where underground voids were encountered.• Sample recovery was maximised by drilling to ground conditions and using drilling fluids• The very limited amount of core loss ensured that there was no relationship between metal grades and core recovery
Logging	<ul style="list-style-type: none">• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.• The total length and percentage of the relevant intersections logged.	<ul style="list-style-type: none">• Logging of core and chips has been maintained throughout the Lewis Ponds programs• Drill core logs include datasets for Lithology, Alteration and Mineralisation with more recent drilling captured Veining, Structure and Magnetic Susceptibility. Geotechnical Logs are limited to TLPDD04001 and 04002 and the most recent GRL drilling.• The data is logged by a qualified geologist and together with the available core photography, is suitable for use in any future geological modelling, resource estimation, mining and/or metallurgical studies• The core logging is qualitative based on a series of codes for the various parameters recorded.• All relevant drill intersections were logged
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none">• If core, whether cut or sawn and whether quarter, half or all core taken.• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.• For all sample types, the nature, quality and appropriateness of the sample preparation technique.• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.• Whether sample sizes are appropriate to the grain size of the material being sampled.	<ul style="list-style-type: none">• During core logging, sample intervals are marked by the geologist using lithology and visual observation of sulphide mineralisation as guides. Sample lengths are not equal. The core is cut using a core saw and one half of each sample interval sent for assay analysis. Where field duplicates are required, the core is quartered.• RC sampling, generally dry, was carried out on a metre by metre basis, collected directly into a plastic bulk bag from the rig cyclone. A 3-5kg sub-sample was taken by the spear method, bagged and submitted to the laboratory. Wet samples were mixed and quartered manually, but this was a rare necessity. The large volume of the sample and the use of the Reverse Circulation method was industry standard to achieve representivity. Normal quality control procedures were in place in the RC drilling, in particular cleaning the hole with air between each sampling run and casing through overburden to avoid up hole contamination.• All samples were submitted to a commercial laboratory for sample preparation and analysis (generally to ALS in Orange, NSW but also Bureau Veritas in Adelaide, SA).• Historical sample preparation was considered appropriate for the time. The more recent Godolphin drill samples were sorted, dried then weighed. Sample preparation involved crushing to a target of 70% passing 6mm and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction (up to 3kg) which was pulverised in a vibrating pulveriser with a target of 85% passing 75 micron. All coarse residues have been retained• With both RC and DD drill sampling, a field duplicate sample was taken approximately every 20-25m for quality control and submitted without special identification with other samples to the laboratory. It was rare for duplicate sample assays, when compared with the original, to fall outside normal variability within the sampling/assay process. On some occasions a triplicate sample was taken for a Check lab Au assay.• The Lewis Ponds sulphides, whether massive or disseminated, have not raised problems of representivity with the DD sampling employed. Preliminary metallurgical study indicates that gold may be refractory within some sulphide lenses.• Sample sizes are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	<ul style="list-style-type: none">• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	<p><u>Lewis Ponds Historical</u></p> <ul style="list-style-type: none">• 30 or 50g charges were used for fire assay for gold, platinum and palladium depending on sulphide content with an Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish. The method is a total digest method and is an industry standard• Ag, Cu, Pb, Zn were either assayed using a 4 acid (near total digestion) or via an aqua regia digestion.• GRL routinely inserts analytical blanks and standards at regular intervals (sometimes at specific intervals based on the geologist's discretion) into the client sample batches for laboratory accuracy performance monitoring. Standards used are commercially available standards.• All the QAQC data has been statistically assessed, both Company QAQC and Lab data. GRL has undertaken its own further review of QAQC results of the BV routine standards through a database consultancy, 100% of which returned within acceptable QAQC limits. This fact combined with the fact that the data is demonstrably consistent has meant that the results are considered to be acceptable and suitable for reporting. <p><u>Lewis Ponds Godolphin (2024/2025)</u></p> <ul style="list-style-type: none">• Samples were analysed for gold using a 30g fire assay technique with FA-AA finish (Au-AA25) and for a 34-element suite using a 4 acid digest with an ICP-AES finish (ME-ICP61). Both techniques are considered a near total technique.• Assays for Pb, Zn and Ag which are over detection are further reported by the laboratory using: Pb-

Criteria	• JORC Code explanation	Commentary																												
	<p>and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</p>	<p>OG62, Zn-OG62 and Ag-OG62</p> <ul style="list-style-type: none"> • GRL routinely inserts analytical blanks [coarse and pulp blanks] and standards at regular intervals (sometimes at specific intervals based on the geologist's discretion but nominally at an insertion rate of 1 in 25) into the client sample batches for laboratory accuracy performance monitoring. Standards used are commercially available standards. • No second laboratory checks were reported. • All of the QAQC data has been statistically assessed and are within designated thresholds. Contamination was detected in the coarse blank samples and is believed to have occurred from a compromised batch at site. 																												
Verification of sampling and assaying	<ul style="list-style-type: none"> • The verification of significant intersections by either independent or alternative company personnel. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. 	<p><u>Lewis Ponds Historical</u></p> <p>All significant intersections (TRO, TOA and prior) have been independently verified by a historical senior consultant to the extent of re-logging to become familiar with the detailed characteristics. Significant intersections have also been verified by the Measured Group Pty Ltd in 2025</p> <p>The drill intercept spacing is perhaps surprisingly regular given the number of drilling campaigns that have contributed. One significant intersection twinned is:</p> <table border="1"> <thead> <tr> <th>Drill hole</th> <th>Interval</th> <th>Au</th> <th>Ag</th> <th>Cu</th> <th>Pb</th> <th>Zn</th> </tr> <tr> <th></th> <th>m.</th> <th>gpt</th> <th>gpt</th> <th>pct</th> <th>pct</th> <th>pct</th> </tr> </thead> <tbody> <tr> <td>SLP-2</td> <td>2.1</td> <td>13.5</td> <td>486</td> <td>2.73</td> <td>3.44</td> <td>5.21</td> </tr> <tr> <td>SLP-2W</td> <td>2.1</td> <td>3.9</td> <td>370</td> <td>0.32</td> <td>5.3</td> <td>5.8</td> </tr> </tbody> </table> <p>This is indicative of Cu and Au variability between two intersections two metres apart.</p> <p>In 2004 an internal database verification exercise was carried out for Lewis Ponds. This was recorded on a master spreadsheet which listed all drill holes, one sample per record. The data as had been entered was checked individually against source Assay Certificates and Sample Submission information. 289 errors were identified, listed and corrected. Of these 16 were significant errors. 9 of the 16 from early drilling could not be reconstructed and had to be deleted from the database. In those cases, original Assay Certificates were not available, and checks could only be made against scanned tables of assays or in some cases scans of assay results on drill cross sections.</p> <p><u>Lewis Ponds Godolphin (2024/2025)</u></p> <ul style="list-style-type: none"> • Significant intersections have been reviewed and verified by internal GRL geologists reviewing historical logs. • No twinned holes were completed • All primary data is captured into digital excel logging sheets and transferred to a Microsoft Access database. This is stored on the GRL server. • Primary assay data is received by the Company from the laboratory and entered/ stored on the GRL server. GRL database geologists facilitate this process. • Assays which are below detection are entered as half their detection limit. Any assay values above detection have been re-assayed for their true value and are used in the reporting herein. 	Drill hole	Interval	Au	Ag	Cu	Pb	Zn		m.	gpt	gpt	pct	pct	pct	SLP-2	2.1	13.5	486	2.73	3.44	5.21	SLP-2W	2.1	3.9	370	0.32	5.3	5.8
Drill hole	Interval	Au	Ag	Cu	Pb	Zn																								
	m.	gpt	gpt	pct	pct	pct																								
SLP-2	2.1	13.5	486	2.73	3.44	5.21																								
SLP-2W	2.1	3.9	370	0.32	5.3	5.8																								
Location of data points	<ul style="list-style-type: none"> • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	<p><u>Lewis Ponds Historical</u></p> <ul style="list-style-type: none"> • Collar positions were set using a Trimble GPS instrument with a sub-5-meter level of accuracy. Collars of TOA and TRO holes have been picked up using a DGPS Sub-1 meter instrument since mid-1995. Prior to that, holes may have been sited relative to a pegged tape and compass grid with significant inaccuracies. However, in 1995 all previous hole collars appear to have been identified and surveyed by DGPS. No tape and compass co-ordinates are used to locate any item of drill data in the current database. In 2004 limited checks were made of surviving early hole collars (pre-1995) using DGPS with satisfactory results when compared with database. • GRL also conducted collar check prior to the 2021 Mineral Resource Estimation using a Trimble TDC150 GPS with average accuracy of 20-30cm in all three axes. When comparing the GRL collar data with the current database, the average variance was between 1.5m and 3.0m, resulting in high confidence for the current collar database. • Pre 2017 downhole surveys were taken at various intervals such as 30m, 50m or as large as 100m and measured magnetic north. Post 2017 surveys used Reflex EZ or TruShot tools with regular intervals surveyed such as 30m and 6m. • In 1992 a Lewis Ponds grid was established using a local grid north reference of 3150 magnetic. This Grid is no longer in use and the current grid is GDA94/ MGA Zone55 but for completeness the conversion is included below: <p>The Grid north orientation of 3150 (Mag) equates to 3290 MGA. To convert local grid bearing to magnetic subtract 450. To convert local grid bearings to MGA subtract 310. A number of points along the local grid baseline have been surveyed using real time DGPS with sub-metre accuracy. To allow for transformation into MGA coordinates two corresponding surveyed points are:</p> <p>Local converting to MGA(55):</p> <table> <thead> <tr> <th>Local grid</th> <th>MGA(55) grid</th> </tr> </thead> <tbody> <tr> <td>000East 1100North</td> <td>709679.3East 6316506.4North</td> </tr> <tr> <td>000East -370North</td> <td>710436.0East 6315245.4North</td> </tr> </tbody> </table> <ul style="list-style-type: none"> • It is considered that all issues with the location of data points have been identified and remedied prior to the start of 2004 drilling. 	Local grid	MGA(55) grid	000East 1100North	709679.3East 6316506.4North	000East -370North	710436.0East 6315245.4North																						
Local grid	MGA(55) grid																													
000East 1100North	709679.3East 6316506.4North																													
000East -370North	710436.0East 6315245.4North																													


Criteria	• JORC Code explanation	Commentary
		<p><u>Lewis Ponds Godolphin (2024/2025)</u></p> <ul style="list-style-type: none"> • Drill hole collars have been picked up by MPF Surveying using the DPGS method • Downhole surveys were taken using a True North seeking Devi Gyro. Surveys were taken at regular 3m intervals along the entire hole. • Grid used GDA94/ MGA Z55 • Underground mine workings exist but have not been mapped with any level of accuracy. If intersected in the drilling they are recorded. If they are evident at surface, they have been picked up with a handheld GPS with an accuracy of +/- 5m • Topographic control for the majority of drilling is constrained by recently acquired Lidar in 2025, with a resolution of 0.03m. Z or RL values for all drill collars have been updated to the Lidar Z value
Data spacing and distribution	<ul style="list-style-type: none"> • Data spacing for reporting of Exploration Results. • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied. 	<ul style="list-style-type: none"> • The main mineralized zone of the Spicer's Lode in the north of the deposit has a drillhole spacing of 40m-60m in both dimensions for an area roughly 500m x 300m. The general data density for Tom's Lode is similar, but for smaller areas of strike and dip throughout the length of the deposit. • Historical sampling was selective likely targeting areas within the geological model. For this reason, some intercepts of historic drillholes with the current model have no assay data, and the data spacing is greater in areas such as these. Where individual samples were taken, they did not typically exceed 1m. • The data spacing is sufficient to establish both geological and grade continuity for the Mineral Resource Estimate classification. • No sample compositing was applied
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	<ul style="list-style-type: none"> • As the lenses dip variably to the north-east, and the difficult topography is to the west, there has been little problem in siting holes to optimize the drilling for mineralisation intersection angles. The strongest mineralization dips about 70°-80° east. This has resulted in intersection angles effectively normal to the thicker parts of the mineralization. • No significant bias is likely as a result of the pattern of intersection angles.
Sample security	<ul style="list-style-type: none"> • The measures taken to ensure sample security. 	<ul style="list-style-type: none"> • For all programs, care has been taken to have standard procedures for sample processing, and each past drilling program has recorded its procedures. These have been simple and industry standard to avoid sample bias. • For the GRL work, all core was collected and accounted for by GRL employees/consultants during drilling. All logging was done by GRL personnel. • All samples were bagged into calico bags by GRL personnel following GRL procedures and were transported direct to the laboratory using a company vehicle. • The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	<ul style="list-style-type: none"> • The results of any audits or reviews of sampling techniques and data. 	<p>A total review and audit of the Lewis Ponds database was carried out following the public float of Tri Origin Minerals Limited on 9 Jan 2004. Areas were: Grids and Collars, Downhole Surveys, Assays, Geology. Apart from this review, previous resource estimates were studied for factors likely to introduce bias, up or down. It is not clear if sampling techniques were audited or not.</p>

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	<ul style="list-style-type: none"> • The Lewis Ponds project is comprised of tenement EL5583 located approximately 15km east-northeast of the city of Orange, central New South Wales, Australia. • EL 5583 was granted to TriAusMin in 1999 for an area of 71 units and replaced three previously held exploration licenses (EL 1049, EL 4137 and EL 4432). In the 2006 renewal, the licence was partly relinquished to 57 units and the following year TriAusMin purchased 289 hectares of freehold land over Lewis Ponds. Upon renewal in 2011, EL 5583 was reduced to 51 units for a further term until 24th June 2014. The second renewal of EL 5583 was granted until June of 2017 with no reduction in tenement size. • On August 5th 2014, TriAusMin underwent a corporate merger with Heron Resources Limited which resulted in Heron acquiring 100% of EL 5583 and the 289 hectares of freehold land over Lewis Ponds. In 2017, Ardea Resources Ltd was "spun out" as a new company, and gained ownership of EL 5583, with TriAusmin becoming a wholly owned subsidiary of Ardea. In 2019, Godolphin Resources Ltd was spun out of Ardea as a new company, and gained ownership of EL 5583, with TriAusmin becoming a wholly owned subsidiary of Godolphin. • Local relief at the site is between 700m and 900m above sea level. • Access to the area is by sealed and gravel roads and a network of farm tracks. • The exploration rights to the project are owned 100% by Godolphin Resources through the granted exploration license EL5583. • Security of \$67,000 is held by the NSW Department of Planning and Environment in relation to EL5583 • The project is on partly cleared private land, most of which is owned by Godolphin Resources. Access agreements are in place for the private land surrounding the main deposit area. There are no national parks, reserves or heritage sites affecting the project area.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none">At this stage, security can only be enhanced by continued engagement with stakeholders and maintaining profile in the City of Orange in particular.
<i>Exploration done by other parties</i>	<ul style="list-style-type: none">Acknowledgment and appraisal of exploration by other parties.	<ul style="list-style-type: none">In the 1850's gold was discovered at Ophir. At this time Lewis Ponds was already a small mining camp. Shallow underground mining took place at Spicer's, Lady Belmore, Tom's Zone and on several mines in the Icely area during the period 1887 to 1921. In 1964, a number of major companies including Aquitaine, Amax, Shell and Homestake explored the region looking for depth and strike extensions of the Lewis Ponds mineralization but failed to intersect significant mineralization. These companies had drilled approximately 8,500 meters. Not commonly noted, but of great significance is the fact that much of Lewis Ponds' early development was due to the high grades of silver in its ores. It appears that silver was the major commodity mined at different points of the mines' history.Several Mineral Resource Estimates have been completed:<ul style="list-style-type: none">2005 & 2016 (Tri Origin): Indicated (6.35Mt) + Inferred Resource for a total of 6.62Mt at 69gpt Ag, 1.50gpt Au, 0.15% Cu, 1.38% Pb and 2.41% Zn (JORC 2012).The report for this Lewis Ponds resource estimate replaces the first April 2005 resource report for the silver-gold-copper-lead-zinc mineralisation at the Lewis Ponds Project prepared for Tri Origin Minerals Ltd (TRO). The purpose of that Resource estimate was to enable a scoping study to assess the economics of an underground mining operation. The original April 2005 Mineral Resource was prepared in compliance with guidelines published by the Joint Ore Reserves Committee (JORC) of the Aus IMM in 2004. In 2012 the Committee presented revised guidelines including the comprehensive Table 1. The 2016 report presents the 2005 Mineral Resource in the context of the 2012 JORC Code & Guidelines. The author of this report, Robert Cotton was also the author of the 2005 report.2021 (Godolphin): Inferred Resource 6.2Mt @ 2.0 g/t Au, 80 g/t Ag, 2.74% Zn, 1.59% Pb and 0.17% Cu (JORC 2012). This was completed by an external consultancy, GEO-Wiz, on behalf of Godolphin Resources. Please refer to ASX: GRL Announcement dated 2 February 2021.August 2025 (Godolphin): 9.83Mt (5.01Mt Indicated, 4.82Mt Inferred) @ 1.49g/t Au, 66.15g/t Ag, 2.46% Zn, 1.38% Pb, 0.15% Cu (470Koz of gold and 21Moz of silver). This was completed by an external consultancy, Measured Group, on behalf of Godolphin Resources. Please refer to ASX: GRL Announcement dated 12 August 2025.December 2025 (Godolphin): 17.52Mt (9.09Mt Indicated & 8.43Mt Inferred) @ 1.12g/t Au, 53.34g/t Ag, 2.06% Zn, 1.10% Pb, 0.14% Cu. This was an update to the August 2025 resource completed by an external consultancy, Measured Group, on behalf of Godolphin Resources. Please refer to ASX: GRL Announcement dated 15 December 2025.Numerous drill campaigns have been completed over the project by various companies, the earliest of which was by Amax in 1971, using a Longyear 44 rig.A total of 218 holes for 64,525.19m informs this MRE as per the figure below. Breakdown of drill type is as follows:<ul style="list-style-type: none">145 x DD Holes = 56,582.49m64 x RC holes = 5,848.2m9 x RC/DD holes = 2094.5m

Criteria	JORC Code explanation	Commentary
		<p>Other key bodies of work include:</p> <ul style="list-style-type: none"> 1992-1993: Tri Origin engaged Crone Geophysics to complete a dipole-dipole IP Survey over the deposit. This data was reprocessed by Godolphin Resources using MITRE Geophysics in 2025 (see ASX Announcement 5 May 2025). This data shows the disseminated mineralisation of the deposit is mapped as an IP chargeability anomaly. 1991-1993: Tri Origin engaged Crone Geophysics to complete DHEM on numerous holes across the deposit. This data was reprocessed by Godolphin Resources using MITRE Geophysics in 2025 (See ASX: GRL Announcement 27 June 2025). The Lewis Ponds mineralisation is mapped by conductance's between 16 – 150S. Several off hole conductor plates were detected. 1990s: Surface geological map compilation by Tri Origin. Rock type, mineralised lodes and mine workings were mapped. This mapping continues to be used today to help guide exploration. 2004-2005: Geological logging and core photography carried out by external consultant Dr Peter Gregory (Gregory, P., February 2004 and Gregory P., January 2005). This work influenced the 2005 resource estimate. 2010: VTEM survey completed by Geotech Airborne Limited. As part of this survey magnetics were collected. This showed Lewis Ponds is mapped as a weak conductor. The magnetics is used on an ongoing basis to help interpret structure and rock type. 2018: Metallurgical studies reported by Ardea Resources described results of metallurgical test work show excellent recovery of base and precious metals into two concentrate streams (See ASX: ARL Announcement 26 November 2018).
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralization. 	<p>The Lewis Ponds project is located on the western margin of the Hill End Trough, which forms part of the Lachlan Fold Belt (LFB). The Lewis Ponds deposit is positioned on the eastern limb of the regional Mullion's Range Anticline and is hosted within the Late Silurian Mumbil Group.</p> <p>The primary volcanogenic mineralisation, as it has been defined to date, extends over a 1200m long zone and dips steeply to the northeast. The deposit is mapped by multiple mineralised lodes, namely (from east to west) Tom's, Spicer's and Torphy's. Spicer's includes the historical Main Zone mineralisation which features in the north of the deposit. These lodes are wireframed as discrete</p>

Criteria	JORC Code explanation	Commentary												
		<p>entities, however, they may reflect the same primary volcanogenic sulphide horizon, which has subsequently been folded.</p> <p>The mineralisation has been disrupted by a major 200-250m wide high strain zone, termed the Lewis Ponds Fault Zone with apparent east-block-up movement. The mineralised lodes are hosted in a volcanoclastic-sediment package overlying a quartz eye-feldspar rhyolite porphyry (footwall sequence). The hanging wall of the deposit is dominated by siltstones. The metamorphic grade of these Late Silurian volcanics and sedimentary rocks is greenschist facies.</p> <p>The Lewis Ponds mineralisation is genetically classified as a volcanic-hosted sulphide system, comprising massive, semi-massive and disseminated sulphides. The dominant sulphide phases occur in decreasing abundance as pyrite > sphalerite > galena > chalcopyrite > pyrrhotite, with trace quantities of arsenopyrite. Trace amounts of magnetite are locally present within the massive sulphide zones. Mineralisation reports as stratiform lenses as well as vein networks and replacement textures affecting the host volcanoclastic sequence...</p>												
<i>Drill hole Information</i>	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Drill hole locations are shown on the map within the body of the ASX release and in previous releases, with all details of drill hole information repeated in Appendix 2. No drill hole information has been excluded: 												
<i>Data aggregation methods And Gold Equivalent Calculation</i>	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	<ul style="list-style-type: none"> Exploration results are not being reported Gold Equivalents have been calculated using the formula: $((Au\ grade\ g/t * Au\ price\ US\$/oz * Au\ recov / 31.1035) + (Ag\ grade\ g/t * Ag\ price\ US\$/oz * Ag\ recov / 31.1035) + (Cu\ grade\ % * Cu\ price\ US\$/t * Cu\ recov / 100) + (Zn\ grade\ % * Zn\ price\ US\$/t * Zn\ recov / 100) + (Pb\ grade\ % * Pb\ price\ US\$/t * Pb\ recov / 100)) / (Au\ price\ g/t * Au\ recov / 31.1035)$ Prices used for the AuEq are in US\$ of Au= \$3,200/oz, Ag = \$40/oz, Cu= \$9,900/t, Zn = \$2,700/t, Pb = 2,015/t. These prices are long-term prices and have been sourced from a range of metals analysts who provide monthly commodity price forecasts. The long-term pricing for each commodity is based on the average real consensus price from up to 19 metals analysts surveyed. The date of the survey was November 17th, 2025. The metallurgical recoveries are based on the December 2025 flotation results (Disseminated Ore Domain) as summarised below (refer ASX: GRL 9 December 2025) <table> <thead> <tr> <th>Metal</th> <th>Recovery (%)</th> </tr> </thead> <tbody> <tr> <td>Gold (Au)</td> <td>64.7%</td> </tr> <tr> <td>Silver (Ag)</td> <td>71.8%</td> </tr> <tr> <td>Copper (Cu)</td> <td>68.9%</td> </tr> <tr> <td>Zinc (Zn)</td> <td>93.1%</td> </tr> <tr> <td>Lead (Pb)</td> <td>73.4%</td> </tr> </tbody> </table> <ul style="list-style-type: none"> It is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold 	Metal	Recovery (%)	Gold (Au)	64.7%	Silver (Ag)	71.8%	Copper (Cu)	68.9%	Zinc (Zn)	93.1%	Lead (Pb)	73.4%
Metal	Recovery (%)													
Gold (Au)	64.7%													
Silver (Ag)	71.8%													
Copper (Cu)	68.9%													
Zinc (Zn)	93.1%													
Lead (Pb)	73.4%													
<i>Relationship between mineralization widths and intercept lengths</i>	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	<ul style="list-style-type: none"> Example cross sections are provided in the main body of the report and the press release however, exploration results are not being reported. Drill holes vary in orientation due to orientation as discussed above 												
<i>Diagrams</i>	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any 	<ul style="list-style-type: none"> Diagrams can be found in the body of the announcement. 												

Criteria	JORC Code explanation	Commentary												
	significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.													
Balanced reporting	<ul style="list-style-type: none">Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Results.	<ul style="list-style-type: none">All information in regard to the drillhole data used as the basis for the MRE have been previously reported as referenced in the ASX release.												
Other substantive exploration data	<ul style="list-style-type: none">Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	<ul style="list-style-type: none">Metallurgical test work has historically been completed on the Lewis Ponds deposit. In 2018 SGS completed the most comprehensive flotation test work and demonstrated that the deposit is amenable to a relatively simple flotation flowsheet producing two concentrates:<ul style="list-style-type: none">(1) a zinc concentrate, and(2) a lead-copper- precious metals concentrate containing the majority of the gold and silver.Recoveries reported from the SGS program averaged: Gold 60%, Silver 79%, Zinc 92%, Lead 75%, and Copper 69%. In December 2025, further metallurgical flotation test work was completed by the Brisbane based laboratory Core Resources [refer ASX GRL 9 December 2025]. This study separated the mineralisation into two discrete metallurgical domains:<ul style="list-style-type: none">- Semi – Massive (SEM) and was selected based on >15% total sulphide content with a combined Lead-Zinc grade > 6%.- Disseminated (DIS) and was selected based on 5 – 15% total sulphide content and a combined lead-zinc grade between 2 – 6%. This domain represents the bulk of the depositAs previously identified by SGS in 2018, the 2025 study has produced two concentrates:<ul style="list-style-type: none">(1) a zinc dominant concentrate, and(2) a lead-gold-silver-copper concentrateThe 2025 concentrate produced better gold and zinc recoveries, reflecting a more optimised flowsheet and processing knowledge. These revised recoveries were used to update the AuEq calculation. The updated metallurgical recoveries (based on the Disseminated Ore Domain) applied in the 2025 MRE revision are summarised below:<table><thead><tr><th>Metal</th><th>Recovery (%)</th></tr></thead><tbody><tr><td>Gold (Au)</td><td>64.7%</td></tr><tr><td>Silver (Ag)</td><td>71.8%</td></tr><tr><td>Copper (Cu)</td><td>68.9%</td></tr><tr><td>Zinc (Zn)</td><td>93.1%</td></tr><tr><td>Lead (Pb)</td><td>73.4%</td></tr></tbody></table><ul style="list-style-type: none">1970s – 1990s: Various historical soil campaigns completed to provide coverage over a 3km strike along the deposit trend, at nominal 150m x 25m centres. This data is publicly available on MINVIEW. The Deposit is mapped by a coherent Pb-Zn soil anomaly with a copper in soil anomaly developed to the south and west of the 2021 era MRE.1992-1993: Tri Origin engaged Crone Geophysics to complete a dipole-dipole IP Survey over the deposit. This data was reprocessed by Godolphin Resources using MITRE Geophysics in 2025 (see ASX: GRL Announcement 5 May 2025). This data shows the disseminated mineralisation of the deposit is mapped as an IP chargeability anomaly.1990s: Surface geological map compilation by Tri Origin. Rock type, mineralised lodes and mine workings were mapped. This mapping continues to be used today to help guide exploration.	Metal	Recovery (%)	Gold (Au)	64.7%	Silver (Ag)	71.8%	Copper (Cu)	68.9%	Zinc (Zn)	93.1%	Lead (Pb)	73.4%
Metal	Recovery (%)													
Gold (Au)	64.7%													
Silver (Ag)	71.8%													
Copper (Cu)	68.9%													
Zinc (Zn)	93.1%													
Lead (Pb)	73.4%													
Further Work	<ul style="list-style-type: none">The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	<ul style="list-style-type: none">Further metallurgical test work is underway with Core Resources, a Brisbane based metallurgical laboratory.A Pre Feasibility study may commence in 2026.Drilling in 2026												

Section 3 - Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Database integrity</i>	<ul style="list-style-type: none">Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.Data validation procedures used.	<ul style="list-style-type: none">All geological data, including collar, survey, lithology, sampling, assay, and QA/QC records—is stored in a Microsoft Access relational database. The design of the database ensures data integrity, supports resource modelling activities, and aligns with the reporting standards set by the JORC Code.Data used in this estimate was validated using Micromine's built-in database logic checks, which include verification of collar, survey, lithology, sample interval, and assay table relationships. These checks ensure consistency, eliminate overlaps or gaps, and confirm that all records align with the expected geological database structure.Key characteristics of the data storage system include a Relational Structure, whereby the database uses linked tables for drillhole collars, downhole surveys, lithology, sample intervals, assay results, and QA/QC data. Each table is connected by primary keys such as Hole ID and Sample ID, enabling relational integrity and controlled querying. <p><i>Drillhole and Sampling Data:</i></p> <ul style="list-style-type: none">Collar Table: Contains spatial coordinates (Easting, Northing, RL), drillhole ID, depth, and orientation, drill year, company and drilling contractor.Survey Table: Stores downhole deviation data (depth, azimuth, dip, survey method, equipment).Lithology Table: Logs geological intervals, rock types, details rock attributes, and description.Bulk density data: Contains weight measurement and the calculation of the rock density.Sample Table: Defines sampled intervals (from-to depths), sample type, and method.Assay Table: Contains analytical results for all elements, tied to unique Sample IDs
<i>Site visits</i>	<ul style="list-style-type: none">Comment on any site visits undertaken by the Competent Person and the outcome of those visits.If no site visits have been undertaken indicate why this is the case.	<ul style="list-style-type: none">Measured Group Pty Ltd Principal Resource Geologist, Peter Handley, visited the site on 15 July, 2025, on behalf of the Competent Person. The site visit aimed to review the local geology, the presence of mineralised zones in exposed trenches/ outcrop/ in drill core, review the drilling and sampling methods, review QAQC and analytical procedures, site infrastructure and access, meet with key personnel and assess technical documentation.Mr Handley's overall finding is the data and interpretations used to define the mineralisation at the Lewis Ponds polymetallic deposit are sound. The deposit has been adequately explored and sampled to allow for the reporting of Mineral Resources in accordance with the JORC Code (2012).
<i>Geological interpretation</i>	<ul style="list-style-type: none">Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.Nature of the data used and of any assumptions made.The effect, if any, of alternative interpretations on Mineral Resource estimation.The use of geology in guiding and controlling Mineral Resource estimation.The factors affecting continuity both of grade and geology.	<ul style="list-style-type: none">A moderate to high level of confidence exists in the geological model and mineralisation interpretationA weathering wireframe was modelled by Godolphin Resources using logged weathering parameters and was snapped to drillholes.Three mineralisation wireframes (Toms, Spicers and Torphys) were modelled based on 2021 era interpretation and modified to reflect Hangingwall and Footwall contacts using a 0.5g/t AuEq cutoff. In the southern sector of the deposit, however, the southern part of Spicers Lode is now interpreted as the continuation of Tom's Lode, based on geology and grade continuity. Mineral resources have not been reported outside of these lodes.Alternative interpretations may moderately impact the Mineral Resource estimate on a local scale, but not a global scaleGeological logging of drillholes and mapping guided the Mineral Resource Estimate in addition to historical wireframing of Tom's Spicers and Torphy's Lodes.Local grade continuity is considered good and controlled by the presence a polymict sedimentary breccia, particularly for the Spicer's Lode. High grades appear to be controlled by a northwest plunge of Spicer's Lode.
<i>Dimensions</i>	<ul style="list-style-type: none">The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	<ul style="list-style-type: none">The resource area extends over three zones:Zone 11 – Spicer's Lode – maximum strike length of 1400m, with approximate average thickness between 10 – 40m. Extends from surface to a known vertical depth of 700m.Zone 12 – Tom's Lode – maximum strike length of 1550m, with an approximate average thickness between 5 – 10m. Extends from surface to a maximum vertical depth of 700m.Zone 13 – Torphy's Lode – maximum strike length of 600m, with an approximate average thickness between 5 – 10m. Extends from surface to a maximum vertical depth of 640m.

Criteria	JORC Code explanation	Commentary																																	
<i>Estimation and modelling techniques</i>	<ul style="list-style-type: none"> The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	<p>A Lewis Ponds block model was developed using the software package Micromine Origin 2025.5, to facilitate mineralised Zone grade estimation across all mineralised domains. Key model parameters include:</p> <table border="1"> <thead> <tr> <th>Variable</th><th>Description</th><th>Units/Type</th></tr> </thead> <tbody> <tr> <td>X,Y,Z</td><td>Block centroid co-ordinates</td><td>Meters (m)</td></tr> <tr> <td>Zone</td><td>Mineralised Zone</td><td>11 – Spicer's Lode 12 – Tom's Lode 13 – Torphy's Lode</td></tr> <tr> <td>Au_best</td><td>Gold Grade</td><td>g/t</td></tr> <tr> <td>AuEq_best</td><td>Gold Equivalent grade</td><td>g/t</td></tr> <tr> <td>Ag_best</td><td>Silver Grade</td><td>g/t</td></tr> <tr> <td>Cu_best</td><td>Copper grade</td><td>ppm</td></tr> <tr> <td>Pb_best</td><td>Lead grade</td><td>ppm</td></tr> <tr> <td>Zn_best</td><td>Zinc grade</td><td>ppm</td></tr> <tr> <td>BD</td><td>Bulk Density</td><td>g/cc³</td></tr> <tr> <td>Nested</td><td>Estimation pass</td><td>Integer (categorical)</td></tr> </tbody> </table> <p>Estimation Methodology</p> <ul style="list-style-type: none"> Grade estimation was undertaken using Ordinary Kriging (OK) within hard boundaries defined by mineralisation wireframes. OK was selected as it is a robust and well-understood method that honours the spatial continuity of grade and accounts for the underlying data distribution and domain structure. <p>Data and Drill Spacing</p> <ul style="list-style-type: none"> The estimation relied on drilling data of acceptable quality, with a regular drill spacing of 10m x 10m in the central zone, expanding to approximately 25mE x 25mN in the northern and southern parts of the Main zone. Wireframes were extrapolated by an average of 20m, with the maximum extrapolation reaching 90m. <p>Domaining and Compositing</p> <ul style="list-style-type: none"> Assay values were converted into categories to allow for the allocation of grade intervals to specific lode (domain) identifiers. One-metre composites were generated separately for each domain. The block model was constructed based on wireframes outlining the mineralised domains. To ensure the accuracy of the model, the volume between the wireframes and the corresponding coded blocks was carefully validated, confirming that the chosen sub-block dimensions were appropriate for capturing the geometry of the domains (lodes). <p>High Grade Capping</p> <ul style="list-style-type: none"> To manage extreme values, a top cut of 16 g/t Au and 400 g/t Silver was applied on Spicers Lode. No top cut was applied for other domains as the values present were within acceptable ranges. <p>Variography:</p> <ul style="list-style-type: none"> Variography was conducted on the 1m composited data to model grade continuity, with co-kriging applied in select domains using correlated secondary variables (e.g. silver for gold) to improve estimates in areas with sparse data or high nugget effect. Directional variograms and cross-variograms were modelled using nested spherical structures with consistent anisotropy between variables. Search ellipsoids were defined based on the anisotropy structures derived from variogram modelling and aligned with the geological interpretation of each estimation domain. Dynamic anisotropy was used to allow the ellipsoid orientation to follow the local geometry of mineralised wireframes, ensuring that interpolation honoured the principal directions of mineralisation continuity. <p>Grade Interpolation and Search Strategy</p> <ul style="list-style-type: none"> Gold, Silver, Copper, Lead & Zinc were estimated into the block model. A four-pass estimation strategy was employed to accommodate varying data densities while preserving spatial continuity. Each pass progressively expanded the search radius, scaled to 0.5, 1.0, 1.5, and 4.0 times the modelled variogram range. Passes 1 to 3 used a minimum of 2 and a maximum of 16 samples, while Pass 4 allowed a maximum of 12. All passes limited contributions to a maximum of 5 samples per drillhole to reduce bias from clustered data. This approach enabled higher confidence estimates in well-informed areas while ensuring full block model coverage in sparsely sampled zones. The controlled, multi-pass method supports appropriate classification under the JORC Code by reflecting the underlying geological confidence and data support across the deposit. <p>Model Comparison to previous estimates</p> <p>Check estimates were available from historical resource models. The current resource estimate matches closely with the 2021 resource but due to additional drilling and geological confidence the resource classification is reported as Inferred and Indicated. The 2021 MRE was an Inferred Resource of 6.2Mt @ 2.0 g/t Au, 80 g/t Ag, 2.74% Zn, 1.59% Pb and 0.17% Cu (JORC 2012).</p> <ul style="list-style-type: none"> The MRE does not include any underground depletion from historical workings By Products No assumptions regarding the recovery of by-products were made. <p>Block Model Dimensions</p>	Variable	Description	Units/Type	X,Y,Z	Block centroid co-ordinates	Meters (m)	Zone	Mineralised Zone	11 – Spicer's Lode 12 – Tom's Lode 13 – Torphy's Lode	Au_best	Gold Grade	g/t	AuEq_best	Gold Equivalent grade	g/t	Ag_best	Silver Grade	g/t	Cu_best	Copper grade	ppm	Pb_best	Lead grade	ppm	Zn_best	Zinc grade	ppm	BD	Bulk Density	g/cc ³	Nested	Estimation pass	Integer (categorical)
Variable	Description	Units/Type																																	
X,Y,Z	Block centroid co-ordinates	Meters (m)																																	
Zone	Mineralised Zone	11 – Spicer's Lode 12 – Tom's Lode 13 – Torphy's Lode																																	
Au_best	Gold Grade	g/t																																	
AuEq_best	Gold Equivalent grade	g/t																																	
Ag_best	Silver Grade	g/t																																	
Cu_best	Copper grade	ppm																																	
Pb_best	Lead grade	ppm																																	
Zn_best	Zinc grade	ppm																																	
BD	Bulk Density	g/cc ³																																	
Nested	Estimation pass	Integer (categorical)																																	

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> The parent block dimensions used in the block model were: 4m E by 20m N by 10m RL, with sub-cells of 1m by 5m by 2.5m. For the block model definition parameters, the primary block size and sub blocking was deemed appropriate for the mineralisation style No assumptions have been made regarding selective mining units <p>Correlation between variables</p> <ul style="list-style-type: none"> Gold and Silver; Lead and Zinc show strong correlations. These two groups have been co-kriged <p>Domain specifics</p> <ul style="list-style-type: none"> The mineralisation domain interpretation was used at all stages to control the estimation. Overall, the mineralisation was constrained by wireframes constructed using a nominal 0.5g/t Au-Equivalent cut-off grade for hanging wall and footwall contacts. Statistical analysis was carried out for all domains. Top cuts were selected for Gold, Silver, Lead and Zinc following statistical analysis (primarily by reviewing histogram plots and Coefficient of variation changes with capping). The point on the histogram at which the number of samples supporting the high-grade tail diminishes and reduction of the CV to reasonable levels was the method employed. <p>Block model validation was conducted by the following means:</p> <ul style="list-style-type: none"> Summary statistics were used to compare the overall distribution of estimated block grades against composited sample grades, ensuring consistency in mean values and grade ranges. Swath plots were generated along key directions to assess spatial trends and check for smoothing or bias in the block model. Q-Q plots were used to compare quantile distributions between the samples and model, highlighting any over- or under-estimation. <p>Visual validation was also carried out using cross sections, confirming that estimated grades followed the geometry and distribution of the input data.</p>
<i>Moisture</i>	<ul style="list-style-type: none"> Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	<ul style="list-style-type: none"> Tonnages are estimated on a dry basis. No moisture data is available
<i>Cut-off parameters</i>	<ul style="list-style-type: none"> The basis of the adopted cut-off grade(s) or quality parameters applied. 	<ul style="list-style-type: none"> A reporting cut-off grade above 0.67/t AuEq was used for the Open Pit Resource, following a pit optimisation study. A reporting cut-off grade above 1.80 g/t AuEq was applied to the Underground Resource, both cut-off grades were selected based on findings from the Scoping Study that identified these cut-offs as more appropriately reflecting the Reasonable Prospects of Eventual Economic Extraction, related to improved operating efficiencies, lower operating costs and higher commodity pricing and the underground AuEq cutoff grades used from other comparable underground resource projects in both New South Wales and within Australia.
<i>Mining factors or assumptions</i>	<ul style="list-style-type: none"> Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	<ul style="list-style-type: none"> It has been assumed the deposit will be mined via conventional open pit and underground mining methods. Underground mining methods may include long hole open stoping where the orebody is sufficiently narrow, or via traverse primary/secondary stoping where the orebody is sufficiently thick.
<i>Metallurgical factors or assumptions</i>	<ul style="list-style-type: none"> The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding 	<ul style="list-style-type: none"> Metallurgical test work has historically been completed on the Lewis Ponds deposit. In 2018 SGS completed the most comprehensive flotation test work and demonstrated that the deposit is amenable to a relatively simple flotation flowsheet producing two concentrates: <ul style="list-style-type: none"> (1) a zinc concentrate, and (2) a lead-copper- precious metals concentrate containing the majority of the gold and silver. <p>Recoveries reported from the SGS program averaged: Gold 60%, Silver 79%, Zinc 92%, Lead 75%, and Copper 69%.</p> <p>In December 2025, further metallurgical flotation test work was completed by the Brisbane based</p>

Criteria	JORC Code explanation	Commentary												
	<p>metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.</p>	<p>laboratory Core Resources [refer ASX GRL 9 December 2025]. This study separated mineralisation into two discrete metallurgical domains:</p> <ul style="list-style-type: none">• Semi – Massive (SEM) and was selected based on >15% total sulphide content with a combined Lead-Zinc grade > 6%.• Disseminated (DIS) and was selected based on 5 – 15% total sulphide content and a combined lead-zinc grade between 2 – 6%. This domain represents the bulk of the deposit <p>As previously identified by SGS in 2018, the 2025 study has produced two concentrates:</p> <p>(1) a zinc dominant concentrate, and</p> <p>(2) a lead–gold–silver–copper concentrate</p> <p>The 2025 concentrate produced better gold and zinc recoveries, reflecting a more optimised flowsheet and processing knowledge. These revised recoveries were used to update the AuEq calculation and inform the economic parameters adopted for the cut-off grade assessment.</p> <p>The updated metallurgical recoveries (based on the Disseminated Ore Domain) applied in the 2025 MRE revision are summarised below:</p> <table><thead><tr><th>Metal</th><th>Recovery (%)</th></tr></thead><tbody><tr><td>Gold (Au)</td><td>64.7%</td></tr><tr><td>Silver (Ag)</td><td>71.8%</td></tr><tr><td>Copper (Cu)</td><td>68.9%</td></tr><tr><td>Zinc (Zn)</td><td>93.1%</td></tr><tr><td>Lead (Pb)</td><td>73.4%</td></tr></tbody></table> <p>These updated recovery factors materially influence the AuEq formula and therefore the economic assessment of both open-cut and underground mineralisation. The combination of improved metal recoveries and updated metal price assumptions resulted in revised open-cut and underground cut-off grades.</p>	Metal	Recovery (%)	Gold (Au)	64.7%	Silver (Ag)	71.8%	Copper (Cu)	68.9%	Zinc (Zn)	93.1%	Lead (Pb)	73.4%
Metal	Recovery (%)													
Gold (Au)	64.7%													
Silver (Ag)	71.8%													
Copper (Cu)	68.9%													
Zinc (Zn)	93.1%													
Lead (Pb)	73.4%													
<i>Environmental factors or assumptions</i>	<ul style="list-style-type: none">• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	<ul style="list-style-type: none">• Environmental factors or assumptions have not been assessed at the current stage of the project. Waste disposal will form part of the mine rehabilitation plan and site specific mine handling plan.												
<i>Bulk density</i>	<ul style="list-style-type: none">• Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.• The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.• Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	<ul style="list-style-type: none">• The water immersion method measurements were determined by measuring the weight of part or the entire sample in air and water and then applying the formula bulk density = weight in air/(weight in air-weight in water).• A high percentage of holes between TLPD-12 and TLPD-41 had bulk density measurements taken across hanging wall stratigraphy, mineralisation and footwall rocks. This was also undertaken on the 2024/2025 era diamond drilling.• Bulk density (BD) was estimated using inverse distance within all resource model blocks.												

Criteria	JORC Code explanation	Commentary
<i>Classification</i>	<ul style="list-style-type: none"> The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	<ul style="list-style-type: none"> The resource classification was undertaken by the competent person using a combination of data and techniques. Confidence in the resource was assessed through: QA/QC analyses and scatter plots; constrained to the samples within a tight band of values around the expected values. Drillhole/sample spacing; assessed through physical proximity, kriging efficiency, nested search ellipsoid analysis. Geological continuity: assessed through slope of regression variogram analysis and comparisons between samples and estimated values. A combination of these techniques enabled the competent person to classify the deposit into indicated and inferred resources and reflects the Competent Person's view of the deposit. No Measured material has been classified.
<i>Audits or reviews.</i>	<ul style="list-style-type: none"> The results of any audits or reviews of Mineral Resource estimates. 	<ul style="list-style-type: none"> The current resource model has not been audited or reviewed by third parties but has been subject to Measured Group's internal peer review process.
<i>Discussion of relative accuracy/confidence</i>	<ul style="list-style-type: none"> Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	<ul style="list-style-type: none"> The Mineral Resource estimate has been classified in accordance with the JORC Code (2012 Edition) using a qualitative approach. All factors that have been considered have been adequately communicated in Section 1 and Section 3 of this Table. The Mineral Resource statement relates to a global estimate of in-situ tonnes and grade. Small scale mining of the deposit occurred during the late 1880s and early 1900s. Exact production figures are not known but it is estimated 8116 tonnes of ore was mined and a further 30,000 tonnes of rock was mined at the historical Tom's mine area for sulphuric acid production. Given the small production numbers in comparison to the global resource reported herein, depletion of the Mineral Resource Estimate is not warranted.

Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

No Ore Reserve has been declared. This document has been prepared in compliance with the JORC Code (2012) and the ASX Listing Rules. All material assumptions on which the Scoping Study production target and projected financial information are based have been included in this release and disclosed in the table below

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	<p>Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve.</p> <p>Clear statement as to whether the Mineral Resources are reported</p>	<ul style="list-style-type: none"> The Mineral Resource Estimate used is based on the December 2025 MRE update, reported to the ASX on the 15th of December 2025. No Ore Reserves have been declared.

Criteria	JORC Code explanation	Commentary
	additional to, or inclusive of, the Ore Reserves.	
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	<ul style="list-style-type: none"> Measured Group Pty Ltd Principal Resource Geologist, Peter Handley, visited the site on 15 July, 2025, on behalf of the Competent Person. The site visit aimed to review the local geology, the presence of mineralised zones in exposed trenches/ outcrop/ in drill core, review the drilling and sampling methods, review QAQC and analytical procedures, site infrastructure and access, meet with key personnel and assess technical documentation. Mr Handley's overall finding is the data and interpretations used to define the mineralisation at the Lewis Ponds polymetallic deposit are sound. The deposit has been adequately explored and sampled to allow for the reporting of Mineral Resources in accordance with the JORC Code (2012).
Study status	The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered.	<ul style="list-style-type: none"> No Ore Reserves have been declared. The study is at Scoping Study level and has been completed to a +/-35% level of accuracy.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	<ul style="list-style-type: none"> The cut-off grade for the open cut was set to 0.67g/t AuEquiv, which matched the December 2025 Mineral Resource Estimate value, and was calculated using the following formula: $\text{Cut off Grade} = \frac{\text{Mining and Processing Cost}}{\text{Gold Price/Exchange Rate} \times \text{Recovery}} / 31.1035$ The parameters applied to the cut-off grade calculation were conservative and based on a smaller processing plant and lower forecast gold price, as summarised below: <ul style="list-style-type: none"> Total Mining and Processing Costs - Au\$66.20/t Gold Price - US\$3,200/oz Royalty (subtracted from price) - US\$128/oz Exchange Rate - 0.65 Recovery - 64.7% A cut-off grade for the underground stopes of 2.0/t AuEq was applied. This is higher than the MRE cut-off grade of 1.8g/t AuEq but was applied to improve the overall economics of the underground operations.
Mining factors or assumptions	The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for	<ul style="list-style-type: none"> No Ore Reserves have been declared. The chosen mining method is open cut, followed by underground longitudinal bench and transverse bench mining. A detailed geotechnical assessment for both open cut and underground mining methods has not been completed. A set of estimated geotechnical parameters for the purposes of the study aligned with drillholes that have had RQD logging as well as conditions generally observed regionally have been applied. For the open cut, an inter-ramp slope angle of 52° has been applied based on 20m high benches with 10m wide berms and pre-split face angles of 75°. An overall pit slope angle of 42° is achieved when a 28m wide haul road is inserted. For the underground, it is planned that the stope voids would be backfilled with waste from development operations and/or paste fill from cemented tailings where appropriate. For scheduling of the underground, a 49-day delay is applied before an adjacent stope can commence production to allow for curing of the cemented paste fill. The model used for pit and stope optimisation was the December 2025 MRE update model titled <i>lpbm1205.dm</i>. Open pit optimisation assumptions were applied to the Deswik Pseudoflow module to generate open pit economic shells from 0.5 to 1.5 revenue factors in 0.1 increments. Deswik stope optimiser was used to create all stopes, which were limited to a maximum height of 25m. The transverse stopes were designed up to 60m long and 30m wide, with the longitudinal stopes up to 30m long and between 3m-15m wide. Mining dilution factor for the open pit is 5.7% and 10% for the underground stopes Mining recovery factors for open pit is 95.8% and for the underground: 90% for stope recovery uphole and 95% for stope recovery downhole Inferred Resources have been included in the Study. The Mineral Resources scheduled for extraction in the production target, shows a 12-year operating period of which the first six years of production, which covers the estimated payback period, 74% of the production target is Indicated Resource and 26% is Inferred Resource. Over the life of mine, 70% of the production target is classified as Indicated Resource and 30% is classified as Inferred Resource. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further

Criteria	JORC Code explanation	Commentary																																																																																															
	<p>pit and stope optimisation (if appropriate).</p> <p>The mining dilution factors used.</p> <p>The mining recovery factors used.</p> <p>Any minimum mining widths used.</p> <p>The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.</p> <p>The infrastructure requirements of the selected mining methods.</p>	<p>exploration work (including infill drilling) on the Lewis Ponds Project will result in the determination of additional Indicated Mineral Resources. However, the Company has infill drilled portions of the Inferred Mineral Resources during 2024 and 2025 with 100% conversion to Indicated Mineral Resources.</p> <ul style="list-style-type: none"> All infrastructure required to facilitate the Open Pit and Underground mining has been included. 																																																																																															
Metallurgical factors or assumptions	<p>The metallurgical process proposed and the appropriateness of that process to the style of mineralisation.</p> <p>Whether the metallurgical process is well-tested technology or novel in nature.</p> <p>The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.</p> <p>Any assumptions or allowances made for deleterious elements.</p> <p>The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole.</p> <p>For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?</p>	<ul style="list-style-type: none"> The metallurgical flow sheet process is outlined in the body of this report, however, it involves primary crushing and screening, with the crushed ore fed to a grinding circuit targeting P80 of 38μm (80% of the material is finer than 38μm). The discharge from the grinding circuit is directed to the lead flotation circuit where the rougher concentrate undergoes regrinding prior to the cleaning circuit. The lead concentrate is then passed through the lead filtration circuit, de-watered and bagged for storage. Tailings from the lead circuit are subsequently fed into the zinc flotation circuit and similarly, the zinc concentrate passes through a zinc filtration circuit and is de-watered and bagged for storage. The final tailings from the zinc flotation are de-watered and pumped to the tailings storage facility. This is considered appropriate for the style of mineralisation. The metallurgical process is considered standard using well tested technology. The most comprehensive round of metallurgical test work was performed by Core Resources in 2025 and complimented historical work completed by SGS in 2018. The Core Resource's work investigated drillholes GLPD006 – 009 drillholes, specifically ore from the Spicer's Lode and partially from the Torphy's Lode. Tom's Lode has not been assessed. The ore was domain based on: <ul style="list-style-type: none"> Semi – Massive (SEM) : >15% total sulphide content with a combined Lead-Zinc grade > 6%. Disseminated (DIS): 5 – 15% total sulphide content and a combined lead-zinc grade between 2 – 6%. This domain represents the bulk of the deposit <p>The updated metallurgical recoveries (based on the Disseminated Ore Domain) applied in the 2025 MRE are summarised below. These are the Indicative plant metallurgical performances based on the 2025 test work and the recovery calculation methodology used by SGS in 2018.</p> <table border="1"> <thead> <tr> <th rowspan="2">Stream</th> <th rowspan="2">Mass</th> <th colspan="7">Grade</th> <th colspan="7">Recovery factored</th> </tr> <tr> <th>%</th> <th>Pb (%)</th> <th>Au (g/t)</th> <th>Ag (g/t)</th> <th>Cu (%)</th> <th>Zn (%)</th> <th>Fe (%)</th> <th>As (g/t)</th> <th>Pb (%)</th> <th>Au (%)</th> <th>Ag (%)</th> <th>Cu (%)</th> <th>Zn (%)</th> <th>Fe (%)</th> <th>As (%)</th> </tr> </thead> <tbody> <tr> <td>Feed</td> <td>100.0</td> <td>1.10</td> <td>0.67</td> <td>57.00</td> <td>0.16</td> <td>2.77</td> <td>12.60</td> <td>731.00</td> <td>100.00</td> <td>100.00</td> <td>100.00</td> <td>100.00</td> <td>100.00</td> <td>100.00</td> <td>100.00</td> </tr> <tr> <td>Pb-PM Con</td> <td>2.6</td> <td>31.20</td> <td>16.7</td> <td>1580.00</td> <td>4.21</td> <td>1.90</td> <td>19.50</td> <td>1,916.0</td> <td>73.40</td> <td>64.7</td> <td>71.8</td> <td>68.90</td> <td>1.80</td> <td>4.00</td> <td>6.80</td> </tr> <tr> <td>Zn Con</td> <td>4.0</td> <td>0.49</td> <td>0.44</td> <td>58.00</td> <td>0.09</td> <td>64.94</td> <td>12.10</td> <td>927.00</td> <td>1.80</td> <td>2.60</td> <td>4.00</td> <td>2.20</td> <td>93.10</td> <td>3.80</td> <td>5.00</td> </tr> <tr> <td>Final Tail</td> <td>93.4</td> <td>0.29</td> <td>0.23</td> <td>15.00</td> <td>0.05</td> <td>0.15</td> <td>12.40</td> <td>690.00</td> <td>24.80</td> <td>32.70</td> <td>24.20</td> <td>28.90</td> <td>5.20</td> <td>92.20</td> <td>88.20</td> </tr> </tbody> </table> <ul style="list-style-type: none"> Arsenic is considered a deleterious element but considering the concentrate grade is <0.2% it is assumed no penalties will apply. No other deleterious elements have been considered. No bulk sample or pilot test scale work has been completed. No ore reserve estimation has been made. 	Stream	Mass	Grade							Recovery factored							%	Pb (%)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	Fe (%)	As (g/t)	Pb (%)	Au (%)	Ag (%)	Cu (%)	Zn (%)	Fe (%)	As (%)	Feed	100.0	1.10	0.67	57.00	0.16	2.77	12.60	731.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	Pb-PM Con	2.6	31.20	16.7	1580.00	4.21	1.90	19.50	1,916.0	73.40	64.7	71.8	68.90	1.80	4.00	6.80	Zn Con	4.0	0.49	0.44	58.00	0.09	64.94	12.10	927.00	1.80	2.60	4.00	2.20	93.10	3.80	5.00	Final Tail	93.4	0.29	0.23	15.00	0.05	0.15	12.40	690.00	24.80	32.70	24.20	28.90	5.20	92.20	88.20
Stream	Mass	Grade							Recovery factored																																																																																								
		%	Pb (%)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	Fe (%)	As (g/t)	Pb (%)	Au (%)	Ag (%)	Cu (%)	Zn (%)	Fe (%)	As (%)																																																																																	
Feed	100.0	1.10	0.67	57.00	0.16	2.77	12.60	731.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00																																																																																		
Pb-PM Con	2.6	31.20	16.7	1580.00	4.21	1.90	19.50	1,916.0	73.40	64.7	71.8	68.90	1.80	4.00	6.80																																																																																		
Zn Con	4.0	0.49	0.44	58.00	0.09	64.94	12.10	927.00	1.80	2.60	4.00	2.20	93.10	3.80	5.00																																																																																		
Final Tail	93.4	0.29	0.23	15.00	0.05	0.15	12.40	690.00	24.80	32.70	24.20	28.90	5.20	92.20	88.20																																																																																		
Environmental	<p>The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.</p>	<ul style="list-style-type: none"> No environmental assessments have been included in this Study. This will commence as the Pre-Feasibility progresses. 																																																																																															
Infrastructure	<p>The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour,</p>	<ul style="list-style-type: none"> Godolphin Resources owns a section of freehold land, upon which some of the infrastructure will be built. Availability of land will be assessed as the Pre-Feasibility Study progresses The Project is close to the major regional city of Orange, which is supported by major mining operations, an airport, grid power, railway, major road, hospitals, local labour and water infrastructure. 																																																																																															

Criteria	JORC Code explanation	Commentary																								
	accommodation; or the ease with which the infrastructure can be provided, or accessed.																									
Costs	<p>The derivation of, or assumptions made, regarding projected capital costs in the study.</p> <p>The methodology used to estimate operating costs.</p> <p>Allowances made for the content of deleterious elements.</p> <p>The source of exchange rates used in the study.</p> <p>Derivation of transportation charges.</p> <p>The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc.</p> <p>The allowances made for royalties payable, both Government and private.</p>	<ul style="list-style-type: none"> Project capital costs have been estimated to +/- 35%. The process capital costs have been prepared by Optimal Mining in consultation with Xenco Services for a 1.25Mtpa processing facility and paste plant. Operating costs have been estimated from both industry examples and knowledge and initial discussions with potential suppliers. No allowance has been made for deleterious elements. Exchange rate source is xe.com Transport charges are derived from charges incurred for similar concentrate transport distances from Central NSW to either Port Kembla or Newcastle. Treat and refining charges are based on average charges incurred for similar projects within Australia. An allowance of the 4% NSW State Government royalty has been made for all metals, in addition to an AUD\$2 million finder's fee, payable once the Project goes into production. 																								
Revenue factors	<p>The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc.</p> <p>The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products.</p>	<ul style="list-style-type: none"> Open pit revenue factor major assumptions are: <table border="1"> <thead> <tr> <th>Commodity</th><th>USD Sales Price</th><th>AUD Sales Price</th></tr> </thead> <tbody> <tr> <td>Gold</td><td>\$3,400/oz</td><td>\$5,231/oz</td></tr> <tr> <td>Silver</td><td>\$50/oz</td><td>\$77/oz</td></tr> <tr> <td>Copper</td><td>\$10,600/tonne</td><td>\$16,308/tonne</td></tr> <tr> <td>Lead</td><td>\$1,960/tonne</td><td>\$3,015/tonne</td></tr> <tr> <td>Zinc</td><td>\$2,685/tonne</td><td>\$4,131/tonne</td></tr> </tbody> </table>	Commodity	USD Sales Price	AUD Sales Price	Gold	\$3,400/oz	\$5,231/oz	Silver	\$50/oz	\$77/oz	Copper	\$10,600/tonne	\$16,308/tonne	Lead	\$1,960/tonne	\$3,015/tonne	Zinc	\$2,685/tonne	\$4,131/tonne						
Commodity	USD Sales Price	AUD Sales Price																								
Gold	\$3,400/oz	\$5,231/oz																								
Silver	\$50/oz	\$77/oz																								
Copper	\$10,600/tonne	\$16,308/tonne																								
Lead	\$1,960/tonne	\$3,015/tonne																								
Zinc	\$2,685/tonne	\$4,131/tonne																								
Market assessment	<p>The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.</p> <p>A customer and competitor analysis along with the identification of likely market windows for the product.</p> <p>Price and volume forecasts and the basis for these forecasts.</p> <p>For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.</p>	<ul style="list-style-type: none"> An assessment of the concentrate market conditions and the suitability of the concentrates estimated to be produced from the Lewis Ponds ore has been assembled from experience and informed by industry understanding and consensus" The Zn concentrate is high grade with low impurities and readily marketable and saleable. The Pb concentrate which contains the precious metals is more challenging, however, similar concentrates are currently sold from Australia and are sought after. Price payables and penalties assumed are: <table border="1"> <thead> <tr> <th>Concentrate</th><th>Metal</th><th>Payable</th><th>Penalties</th></tr> </thead> <tbody> <tr> <td>Lead</td><td>Cu</td><td>40%</td><td>Rejected < 4%</td></tr> <tr> <td></td><td>PB</td><td>95%</td><td>3%</td></tr> <tr> <td></td><td>Au</td><td>95%</td><td>1g/t</td></tr> <tr> <td></td><td>Ag</td><td>95%</td><td>50g/t</td></tr> <tr> <td>Zinc</td><td>Zn</td><td>95%</td><td>Nil</td></tr> </tbody> </table> <ul style="list-style-type: none"> Demand for all commodities produced at Lewis Ponds are expected to remain high throughout the life of the project. 	Concentrate	Metal	Payable	Penalties	Lead	Cu	40%	Rejected < 4%		PB	95%	3%		Au	95%	1g/t		Ag	95%	50g/t	Zinc	Zn	95%	Nil
Concentrate	Metal	Payable	Penalties																							
Lead	Cu	40%	Rejected < 4%																							
	PB	95%	3%																							
	Au	95%	1g/t																							
	Ag	95%	50g/t																							
Zinc	Zn	95%	Nil																							
Economic	The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc.	<ul style="list-style-type: none"> The level of accuracy is estimated to be +/- 35% consistent with a Scoping Study. The NPV has been calculated using a discount rate of 7.5%. Capital and Operating Costs have been estimated from both industry examples and knowledge and initial discussion with potential supplies. Xenco Services completed the conceptual design of the Processing Plant and calculated the associated capital outlay of \$226M. Major Capex and Opex assumptions include: 																								

Criteria	JORC Code explanation	Commentary																																																																																											
	NPV ranges and sensitivity to variations in the significant assumptions and inputs.	<p>Upfront Capital Costs (plant and process infrastructure) AUD\$M \$268</p> <p>Sustaining Capital Costs AUD\$M \$64</p> <p>Operating Cost (TC/RC, Transport & Royalties) AUD\$M \$272</p> <p>Operating Costs (On Site) AUD\$M \$1,512</p> <p>Operating Cost (Processing) AUD\$/process t \$49</p> <p>Operating Cost (Open Cut) AUD\$/oc process t \$50</p> <p>Operating Costs (Underground) AUD\$/ug process t \$72</p> <p>Operating Costs (General and Admin) AUD\$/process t \$3</p> <p>Operating Costs (TC/RC, Transport & Royalties) AUD\$/process t \$21</p> <ul style="list-style-type: none"> Further economic inputs to derive the NPV are detailed in Section 12 of the Final Scoping Study Report, which can be obtained by contacting the Company. NPV sensitivity to variances for some inputs identified as key risk items were calculated. Error! Reference source not found. presents the changes in the pre-tax NPV on an absolute and relative basis when these key risks are increased or decreased by 5% increments between 5% and 15%. <table border="1"> <thead> <tr> <th colspan="7">Absolute NPV (pre-tax) sensitivity (AUD\$M)</th></tr> <tr> <th>-15%</th><th>-10%</th><th>-5%</th><th>Base</th><th>5%</th><th>10%</th><th>15%</th></tr> </thead> <tbody> <tr> <td>\$213</td><td>\$302</td><td>\$392</td><td>\$481</td><td>\$571</td><td>\$660</td><td>\$750</td></tr> <tr> <td>\$234</td><td>\$317</td><td>\$399</td><td>\$481</td><td>\$564</td><td>\$646</td><td>\$728</td></tr> <tr> <td>\$525</td><td>\$510</td><td>\$496</td><td>\$481</td><td>\$467</td><td>\$452</td><td>\$438</td></tr> <tr> <td>\$594</td><td>\$556</td><td>\$519</td><td>\$481</td><td>\$444</td><td>\$407</td><td>\$369</td></tr> <tr> <td>\$797</td><td>\$680</td><td>\$576</td><td>\$481</td><td>\$396</td><td>\$319</td><td>\$248</td></tr> </tbody> </table> <table border="1"> <thead> <tr> <th colspan="7">Relative NPV (pre-tax) sensitivity (AUD\$M)</th></tr> <tr> <th>-\$269</th><th>-\$179</th><th>-\$90</th><th>\$0</th><th>\$90</th><th>\$179</th><th>\$269</th></tr> </thead> <tbody> <tr> <td>-\$247</td><td>-\$165</td><td>-\$82</td><td>\$0</td><td>\$82</td><td>\$165</td><td>\$247</td></tr> <tr> <td>\$43</td><td>\$29</td><td>\$14</td><td>\$0</td><td>-\$14</td><td>-\$29</td><td>-\$43</td></tr> <tr> <td>\$112</td><td>\$75</td><td>\$37</td><td>\$0</td><td>-\$37</td><td>-\$75</td><td>-\$112</td></tr> <tr> <td>\$316</td><td>\$199</td><td>\$94</td><td>\$0</td><td>-\$85</td><td>-\$163</td><td>-\$233</td></tr> </tbody> </table>	Absolute NPV (pre-tax) sensitivity (AUD\$M)							-15%	-10%	-5%	Base	5%	10%	15%	\$213	\$302	\$392	\$481	\$571	\$660	\$750	\$234	\$317	\$399	\$481	\$564	\$646	\$728	\$525	\$510	\$496	\$481	\$467	\$452	\$438	\$594	\$556	\$519	\$481	\$444	\$407	\$369	\$797	\$680	\$576	\$481	\$396	\$319	\$248	Relative NPV (pre-tax) sensitivity (AUD\$M)							-\$269	-\$179	-\$90	\$0	\$90	\$179	\$269	-\$247	-\$165	-\$82	\$0	\$82	\$165	\$247	\$43	\$29	\$14	\$0	-\$14	-\$29	-\$43	\$112	\$75	\$37	\$0	-\$37	-\$75	-\$112	\$316	\$199	\$94	\$0	-\$85	-\$163	-\$233
Absolute NPV (pre-tax) sensitivity (AUD\$M)																																																																																													
-15%	-10%	-5%	Base	5%	10%	15%																																																																																							
\$213	\$302	\$392	\$481	\$571	\$660	\$750																																																																																							
\$234	\$317	\$399	\$481	\$564	\$646	\$728																																																																																							
\$525	\$510	\$496	\$481	\$467	\$452	\$438																																																																																							
\$594	\$556	\$519	\$481	\$444	\$407	\$369																																																																																							
\$797	\$680	\$576	\$481	\$396	\$319	\$248																																																																																							
Relative NPV (pre-tax) sensitivity (AUD\$M)																																																																																													
-\$269	-\$179	-\$90	\$0	\$90	\$179	\$269																																																																																							
-\$247	-\$165	-\$82	\$0	\$82	\$165	\$247																																																																																							
\$43	\$29	\$14	\$0	-\$14	-\$29	-\$43																																																																																							
\$112	\$75	\$37	\$0	-\$37	-\$75	-\$112																																																																																							
\$316	\$199	\$94	\$0	-\$85	-\$163	-\$233																																																																																							
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	<ul style="list-style-type: none"> Godolphin continues to work with the various landholders of the Project. Current land access agreements are in place which allows for continued exploration of the project 																																																																																											
Other	<p>To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves:</p> <p>Any identified material naturally occurring risks.</p> <p>The status of material legal agreements and marketing arrangements.</p> <p>The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.</p>	<ul style="list-style-type: none"> There are no Ore Reserves declared for this project as part of the Scoping Study No naturally occurring risks have been identified No material legal agreements and marketing arrangements have been made No government agreements are in place other than the current Exploration Licence EL5583 and EL8966 secured under the Mining Act 1992, which guarantees the Company's right to explore for minerals. 																																																																																											
Classification	The basis for the classification of the Ore Reserves into varying confidence categories.	<ul style="list-style-type: none"> No Ore reserves are declared in this report 																																																																																											

Criteria	JORC Code explanation	Commentary
	<p>Whether the result appropriately reflects the Competent Person's view of the deposit.</p> <p>The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).</p>	
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	<ul style="list-style-type: none">• No Ore reserves are declared in this report
Discussion of relative accuracy/confidence	<p>Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate.</p> <p>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation.</p> <p>Documentation should include assumptions made and the procedures used.</p> <p>Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.</p> <p>It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</p>	<ul style="list-style-type: none">• No Ore reserves are declared in this report• The scoping study has been completed to an accuracy of +/- 35%

Appendix 2 – Summary table of drillholes used in the Mineral Resource Estimate

DD = Diamond Drilling, RC = Reverse Circulation Drilling, DD Wedge – Diamond Wedge Drillhole, RC/DD = Combination RC and DD hole

HOLE_ID	Hole_Type	Grid_ID	East	North	RL	Dip	Azimuth	Max_Depth (m)
ALD0001	DD	GDA94_55S	709746	6316539	822	-60	237	259.8
ALD0002	DD	GDA94_55S	709874	6316392	805	-65	237	100
ALD0003	DD	GDA94_55S	710056	6316278	782	-55	237	190.6
ALD0004	DD	GDA94_55S	710163	6316124	800	-55	237	230
ALP-6	DD	GDA94_55S	709992	6316515	782	-50	242	111.25
ALP-7	DD	GDA94_55S	710197	6316258	775	-55	247	265.2
ALP-8	DD	GDA94_55S	709954	6316535	785	-55	247	249.95
ALP-9	DD	GDA94_55S	709875	6316776	787	-55	247	248.26
BOA-101	DD	GDA94_55S	710271	6316073	807	-60	225	155.5
BOA-102	DD	GDA94_55S	710325	6315977	794	-60	242	217
BOA-103	DD	GDA94_55S	710247	6315820	800	-58	224	220
BOA-104	DD	GDA94_55S	710131	6316451	784	-70	237	336
BOA-105	DD	GDA94_55S	710057	6316615	774	-67	227	266
BOA-106	DD	GDA94_55S	710057	6316615	774	-52	227	330.5
BOA-107	DD	GDA94_55S	710166	6315886	811	-50	225	150
BOA-108	DD	GDA94_55S	710167	6315861	819	-46	187	120
BOA-109	DD	GDA94_55S	710222	6316124	799	-50	234	130
BOA-110	DD	GDA94_55S	709947	6316376	807	-65	225	176.78
GLPD001	DD	GDA94_55S	709794	6316743	801	-60	218	373.3
GLPD002	DD	GDA94_55S	709855	6316916	798	-60	230	606.8
GLPD003	DD	GDA94_55S	709742	6317021	814	-58	232	612.1
GLPD004	DD	GDA94_55S	709573	6316849	827	-55	228	289.8
GLPDD005	DD	GDA94_55S	709786	6316456	810	-54	231	17.1
GLPDD006	DD	GDA94_55S	709628	6316840	814	-70	234	321.9
GLPDD007	DD	GDA94_55S	709590	6316779	840	-70	234	232.2
GLPDD008	DD	GDA94_55S	709641	6316735	826	-63	244	195.8
GLPDD009	DD	GDA94_55S	709723	6316698	814	-77	233	327.8
GLPRC001	RC	GDA94_55S	709668	6316607	826	-50	227	162
GLPRC002	RC	GDA94_55S	709619	6316639	835	-50	227	163
GLPRC004	RC	GDA94_55S	709747	6316469	815	-50	227	96
GLPRC005	RC	GDA94_55S	710008	6316428	797	-50	227	138
GLPRC006	RC	GDA94_55S	709984	6316456	793	-50	227	210
GLPRC008	RC	GDA94_55S	709559	6316626	849	-60	257	130
GLPRC009	RC	GDA94_55S	709574	6316614	848	-60	227	110
GLPRC010	RC	GDA94_55S	709614	6316559	841	-62	201	96
GLPRC011	RC	GDA94_55S	709663	6316497	832	-60	227	80
LPRC-1	RC	GDA94_55S	709894	6316349	814	-60	245	72
LPRC-10	RC	GDA94_55S	709908	6316540	791	-60	238	58
LPRC-12	RC	GDA94_55S	710032	6316245	792	-60	65	70
LPRC-13	RC	GDA94_55S	710093	6316241	786	-60	243	60
LPRC-14	RC	GDA94_55S	710111	6316215	793	-60	252	60

LPRC-15	RC	GDA94_55S	709913	6316322	810	-60	246	46
LPRC-16	RC	GDA94_55S	709883	6316396	805	-60	241	72
LPRC-17	RC	GDA94_55S	709872	6316423	797	-60	244	72
LPRC-18	RC	GDA94_55S	709765	6316510	818	-60	241	78
LPRC-19	RC	GDA94_55S	709776	6316490	816	-60	243	24
LPRC-2	RC	GDA94_55S	709917	6316369	810	-60	246	72
LPRC-20	RC	GDA94_55S	709812	6316462	814	-60	244	52
LPRC-21	RC	GDA94_55S	709831	6316452	810	-60	241	72
LPRC-22	RC	GDA94_55S	709829	6316616	797	-60	243	96
LPRC-23	RC	GDA94_55S	709817	6316674	804	-60	238	80
LPRC-24	RC	GDA94_55S	709801	6316682	807	-60	242	40
LPRC-25	RC	GDA94_55S	709813	6316691	806	-60	243	80
LPRC-26	RC	GDA94_55S	709784	6316704	809	-60	244	48
LPRC-27	RC	GDA94_55S	709804	6316713	807	-60	251	96
LPRC-28	RC	GDA94_55S	709747	6316713	810	-60	241	60
LPRC-29	RC	GDA94_55S	709776	6316730	802	-60	239	100
LPRC-3	RC	GDA94_55S	709938	6316378	807	-60	248	72
LPRC-30	RC	GDA94_55S	709750	6316734	802	-60	244	78
LPRC-31	RC	GDA94_55S	709740	6316742	802	-60	246	72
LPRC-32	RC	GDA94_55S	709783	6316498	815	-60	245	80
LPRC-33	RC	GDA94_55S	709816	6316466	814	-60	239	80
LPRC34	RC	GDA94_55S	709907	6316352	814	-64	248	120
LPRC35	RC	GDA94_55S	709957	6316331	802	-65	249	150
LPRC37	RC	GDA94_55S	709997	6316227	795	-60	261	90
LPRC38	RC	GDA94_55S	710024	6316240	793	-60	261	48
LPRC38A	RC	GDA94_55S	710026	6316240	793	-61	259	126
LPRC39	RC	GDA94_55S	710012	6316183	806	-60	261	78
LPRC-4	RC	GDA94_55S	709955	6316394	804	-60	248	72
LPRC40	RC	GDA94_55S	710032	6316208	801	-60	253	151
LPRC41	RC	GDA94_55S	710034	6316127	819	-60	261	84
LPRC42	RC	GDA94_55S	710073	6316170	805	-56	247	73
LPRC-5	RC	GDA94_55S	709979	6316412	800	-60	248	72
LPRC-6	RC	GDA94_55S	709821	6316480	812	-60	238	78
LPRC-7	RC	GDA94_55S	709845	6316502	803	-60	238	72
LPRC-8	RC	GDA94_55S	709867	6316516	798	-60	238	70
LPRC-9	RC	GDA94_55S	709888	6316528	794	-60	238	72
SLP-1	DD	GDA94_55S	710119	6316322	775	-60	239	392.6
SLP-2	DD	GDA94_55S	710037	6316441	794	-65	239	204.1
SLP-3	DD	GDA94_55S	710207	6316196	781	-60	239	470
SLP-4	DD	GDA94_55S	710158	6316344	772	-66	239	177.2
SLP-5	DD	GDA94_55S	710163	6316349	772	-78	239	467
SLP-6	DD	GDA94_55S	710181	6316557	774	-82	238	144
SLP-7	DD	GDA94_55S	709723	6316451	820	-81	77	118.6
SLP-8A	DD	GDA94_55S	710091	6316655	775	-75	238	428.9
TLP073	RC	GDA94_55S	709796	6316646	803	-55	243	60.3

TLP074	RC	GDA94_55S	709797	6316646	803	-61	237	61
TLP075	RC/DD	GDA94_55S	709797	6316646	803	-63	230	92.5
TLP076	RC/DD	GDA94_55S	709796	6316647	804	-65	218	61.1
TLP077	RC	GDA94_55S	709716	6316533	828	-55	233	150.3
TLP078	RC	GDA94_55S	709553	6316615	849	-50	239	150.3
TLPD-01	DD	GDA94_55S	709979	6316503	783	-60	223	286.01
TLPD-02	DD	GDA94_55S	709827	6316602	797	-60	223	175.2
TLPD-02W	DD_Wedge	GDA94_55S	709827	6316602	797	-60	223	337.5
TLPD-03	DD	GDA94_55S	709727	6316704	813	-60	224	309.96
TLPD-04	DD	GDA94_55S	709626	6316843	814	-60	224	365.5
TLPD-05	DD	GDA94_55S	709752	6316613	808	-60	223	272.4
TLPD-06	DD	GDA94_55S	709740	6316816	795	-60	223	83.7
TLPD-06A	DD	GDA94_55S	709739	6316816	795	-61	247	448
TLPD-07	DD	GDA94_55S	709563	6316968	879	-60	223	410
TLPD-08	DD	GDA94_55S	709828	6316692	804	-60	223	434.7
TLPD-09A	DD	GDA94_55S	709751	6316788	793	-65	213	440.65
TLPD-10	DD	GDA94_55S	709699	6316677	815	-50	223	277.1
TLPD-11	DD	GDA94_55S	709588	6316780	840	-50	223	187.5
TLPD-12	DD	GDA94_55S	709769	6316924	816	-75	223	579.1
TLPD-12W	DD_Wedge	GDA94_55S	709769	6316924	816	-75	223	462
TLPD-12W2	DD_Wedge	GDA94_55S	709769	6316924	816	-75	223	427.1
TLPD-12W3	DD_Wedge	GDA94_55S	709769	6316924	816	-75	223	514.5
TLPD-13	DD	GDA94_55S	709639	6316728	826	-50	223	166.4
TLPD-14	DD	GDA94_55S	709591	6316863	825	-75	221	268.7
TLPD-15	DD	GDA94_55S	709719	6316951	832	-75	223	553.7
TLPD-16A	DD	GDA94_55S	709790	6316853	796	-78	220	577.4
TLPD-17	DD	GDA94_55S	709866	6316754	792	-75	223	643.7
TLPD-17W	DD_Wedge	GDA94_55S	709866	6316754	792	-75	223	555
TLPD-18	DD	GDA94_55S	709787	6316850	796	-63	223	544.7
TLPD-19	DD	GDA94_55S	709865	6316754	792	-63	223	483
TLPD-20	DD	GDA94_55S	709717	6316951	832	-65	223	465
TLPD-21	DD	GDA94_55S	709716	6316950	832	-60	223	266
TLPD-21W	DD	GDA94_55S	709719	6316951	832	-75	223	516
TLPD-22	DD	GDA94_55S	710070	6316383	782	-75	233	83.6
TLPD-23	DD	GDA94_55S	710149	6316289	774	-75	233	291
TLPD-24	DD	GDA94_55S	710085	6316344	777	-80	233	450.4
TLPD-25	DD	GDA94_55S	710148	6316288	774	-50	233	274.3
TLPD-26	DD	GDA94_55S	710085	6316343	777	-50	233	251
TLPD-27	DD	GDA94_55S	709899	6316893	794	-80	223	792.5
TLPD-28	DD	GDA94_55S	709857	6316954	790	-80	223	750.3
TLPD-28A	DD_Wedge	GDA94_55S	709857	6316954	790	-80	223	234.3
TLPD-28W	DD_Wedge	GDA94_55S	709857	6316954	790	-80	223	675.7
TLPD-29	DD	GDA94_55S	709796	6317058	803	-85	223	791.5
TLPD-29W	DD_Wedge	GDA94_55S	709796	6317058	803	-85	223	744
TLPD-29W2	DD_Wedge	GDA94_55S	709796	6317058	803	-85	223	768

TLPD-30	DD	GDA94_55S	709647	6317059	863	-85	220	802.9
TLPD-30W	DD_Wedge	GDA94_55S	709647	6317059	863	-85	220	736.9
TLPD-31	DD	GDA94_55S	709867	6316754	792	-80	203	488
TLPD-31W	DD_Wedge	GDA94_55S	709867	6316754	792	-80	203	603.3
TLPD-32	DD	GDA94_55S	709811	6317035	800	-65	233	645.1
TLPD-33	DD	GDA94_55S	709726	6316804	796	-79	223	489.8
TLPD-34	DD	GDA94_55S	709725	6316803	796	-58	228	327.1
TLPD-34W	DD_Wedge	GDA94_55S	709725	6316803	796	-58	228	273.42
TLPD-35	DD	GDA94_55S	709788	6316790	788	-80	205	598.68
TLPD-35W	DD_Wedge	GDA94_55S	709788	6316790	788	-80	205	499.54
TLPD-35W2	DD_Wedge	GDA94_55S	709788	6316790	788	-80	205	325.57
TLPD-35W3	DD_Wedge	GDA94_55S	709788	6316790	788	-80	205	424.54
TLPD-36	DD	GDA94_55S	709623	6316835	815	-66	227	223.45
TLPD-36W	DD_Wedge	GDA94_55S	709623	6316835	815	-66	227	397.6
TLPD-37	DD	GDA94_55S	709640	6316731	826	-76	233	294.6
TLPD-38	DD	GDA94_55S	709871	6316547	794	-45	223	237.5
TLPD-39	DD	GDA94_55S	709615	6316972	864	-82	223	60
TLPD-39A	DD	GDA94_55S	709615	6316971	863	-83	218	631.5
TLPD-40	DD	GDA94_55S	709872	6316548	794	-80	223	349.7
TLPD-41	DD	GDA94_55S	710041	6316442	794	-50	208	481
TLPD-42	DD	GDA94_55S	709907	6316510	792	-45	218	226.4
TLPD-43	DD	GDA94_55S	709824	6316685	804	-46	223	389
TLPD-44	DD	GDA94_55S	710039	6316443	794	-71	242	406.4
TLPD-45	DD	GDA94_55S	710038	6316443	794	-60	229	379.5
TLPD-46A	DD	GDA94_55S	710202	6316208	780	-43	223	351
TLPD-47A	DD	GDA94_55S	710015	6316323	785	-45	223	210.8
TLPD-48	DD	GDA94_55S	710194	6316205	780	-50	248	349.1
TLPD-49	DD	GDA94_55S	710195	6316205	780	-72	248	299.21
TLPD-50	DD	GDA94_55S	710195	6316205	780	-60	230	235.5
TLPD-51A	DD	GDA94_55S	710273	6316186	784	-70	238	623.2
TLPD-51AW1	DD_Wedge	GDA94_55S	710273	6316186	784	-70	238	508
TLPD-51AW2	DD_Wedge	GDA94_55S	710273	6316186	784	-70	238	501
TLPD-51AW3	DD_Wedge	GDA94_55S	710273	6316186	784	-70	238	409
TLPD-52	DD	GDA94_55S	710213	6316198	781	-55	213	232.2
TLPD-53	DD	GDA94_55S	710211	6316198	781	-68	222	369.9
TLPD-54	DD	GDA94_55S	710302	6316122	795	-47	240	241
TLPD-55	DD	GDA94_55S	710303	6316123	795	-74	226	565.6
TLPD-55W	DD_Wedge	GDA94_55S	710303	6316123	795	-74	226	640.6
TLPD-56	DD	GDA94_55S	709900	6316106	821	-80	63	222.6
TLPD-57	DD	GDA94_55S	710202	6316317	771	-80	231	807.4
TLPD-57W1	DD_Wedge	GDA94_55S	710202	6316317	771	-80	231	705.34
TLPD-57W2	DD_Wedge	GDA94_55S	710202	6316317	771	-80	231	596.4
TLPD-58	DD	GDA94_55S	710283	6316196	783	-85	228	231.3
TLPD-59	RC	GDA94_55S	710342	6316135	791	-85	228	30
TLPD-59A	RC	GDA94_55S	710342	6316135	791	-85	238	66

TLPD-60	DD	GDA94_55S	710424	6315914	773	-65	239	522.2
TLPD-61	DD	GDA94_55S	710201	6316314	771	-80	218	96.4
TLPD-61A	DD	GDA94_55S	710202	6316315	771	-80	218	636.6
TLPD-61AW1	DD_Wedge	GDA94_55S	710202	6316315	771	-80	218	147.3
TLPD-62	DD	GDA94_55S	710301	6316124	795	-65	227	441.2
TLPD-63	DD	GDA94_55S	710146	6316517	781	-70	230	507.4
TLPD-63W1	DD_Wedge	GDA94_55S	710146	6316517	781	-70	230	576.4
TLPD-64	DD	GDA94_55S	710197	6316311	771	-70	202	561
TLPD-65	RC/DD	GDA94_55S	710013	6315793	884	-85	33	338
TLPD-65A	RC/DD	GDA94_55S	710011	6315790	884	-85	48	990
TLPD-65W2	DD_Wedge	GDA94_55S	710013	6315793	884	-85	33	291
TLPD-65W3	DD_Wedge	GDA94_55S	710013	6315793	884	-85	33	318.1
TLPD-65W5	DD_Wedge	GDA94_55S	710013	6315793	884	-85	33	318
TLPD-65W6	DD_Wedge	GDA94_55S	710013	6315793	884	-85	33	339
TLPD-66	DD	GDA94_55S	710375	6316028	780	-60	239	420.5
TLPD-67	DD	GDA94_55S	709894	6315984	848	-85	47	246.18
TLPD-67A	DD	GDA94_55S	709894	6315984	848	-80	47	189.9
TLPD-67B	DD	GDA94_55S	709894	6315982	848	-78	74	995.4
TLPD-67BW1	DD_Wedge	GDA94_55S	709894	6315982	848	-78	74	1170.4
TLPD-68	DD	GDA94_55S	710379	6315636	810	-50	238	425.9
TLPD-69	DD	GDA94_55S	710376	6316028	780	-73	233	561
TLPD-69W1	DD_Wedge	GDA94_55S	710376	6316028	780	-73	233	578
TLPD-70	DD	GDA94_55S	710436	6315495	791	-60	238	549.3
TLPD-71	DD	GDA94_55S	710078	6316641	774	-73	220	48
TLPD-71A	DD	GDA94_55S	710079	6316641	774	-60	220	36
TLPD-72	DD	GDA94_55S	710486	6315737	788	-59	239	471.6
TLPDD04001	DD	GDA94_55S	709619	6316841	815	-65	238	273.3
TLPDD04002	DD	GDA94_55S	709693	6316827	802	-60	229	404
TLPDD04003	DD	GDA94_55S	709828	6317034	797	-69	225	774.6
TLPRC-01	RC	GDA94_55S	709808	6316469	815	-60	223	36
TLPRC-02	RC	GDA94_55S	709752	6316512	820	-50	223	192
TLPRC-03	RC	GDA94_55S	709655	6316633	826	-50	223	168
TLPRC-04	RC	GDA94_55S	709829	6316451	810	-50	223	120
TLPRC04001	RC	GDA94_55S	709845	6316317	815	-50	238	78
TLPRC04003	RC	GDA94_55S	709938	6316368	808	-60	238	150
TLPRC04004	RC	GDA94_55S	709708	6316579	822	-50	238	177.3
TLPRC04006	RC	GDA94_55S	709663	6316610	826	-55	238	78
TLPRCDD04002	RC/DD	GDA94_55S	709947	6316313	803	-60	238	124.9
TLPRCDD04007	RC/DD	GDA94_55S	709857	6316385	806	-60	238	62.6
TLPRCDD04008	RC/DD	GDA94_55S	709922	6316422	800	-55	238	114.9
TLPRCDD04009	RC/DD	GDA94_55S	709893	6316456	793	-55	238	128.7
TLPRCDD04010	RC/DD	GDA94_55S	709784	6316568	807	-55	238	181.8
								Total 64,525.19